JP2008249367A - Evaluation method of immune competence, and kit for evaluating immune competence - Google Patents

Evaluation method of immune competence, and kit for evaluating immune competence Download PDF

Info

Publication number
JP2008249367A
JP2008249367A JP2007087984A JP2007087984A JP2008249367A JP 2008249367 A JP2008249367 A JP 2008249367A JP 2007087984 A JP2007087984 A JP 2007087984A JP 2007087984 A JP2007087984 A JP 2007087984A JP 2008249367 A JP2008249367 A JP 2008249367A
Authority
JP
Japan
Prior art keywords
cells
immunity
evaluating
living body
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007087984A
Other languages
Japanese (ja)
Other versions
JP5144950B2 (en
Inventor
Satoshi Furukura
聡 古倉
Toshiichi Yoshikawa
敏一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biomarker Science Co Ltd
Original Assignee
Biomarker Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biomarker Science Co Ltd filed Critical Biomarker Science Co Ltd
Priority to JP2007087984A priority Critical patent/JP5144950B2/en
Publication of JP2008249367A publication Critical patent/JP2008249367A/en
Application granted granted Critical
Publication of JP5144950B2 publication Critical patent/JP5144950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method of immune competence or the like, capable of managing easily accuracy, and evaluating accurately and simply immune competence of a living body. <P>SOLUTION: The immune competence of a living body is evaluated by using as an index, the ratio between the number of CD4+ cells and the number of CD8+ cells in a group of peripheral mononuclear blood cells isolated from the living body. Otherwise, the immune competence of the living body is evaluated by using as an index, the ratio of the number of CD4+ CD25+ cells in the group of the peripheral mononuclear blood cells isolated from the living body. Preferably, a value having correlation with a natural killer activity in the peripheral mononuclear blood cells just after being isolated from the living body is adopted as a reference value. A kit for evaluating immune competence including an antibody specific to the CD4+ cells and an antibody specific to the CD8+ cells, and a kit for evaluating immune competence including an antibody specific to the CD4+ CD25+ cells are also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は免疫能の評価方法及び免疫能評価用キットに関し、さらに詳細には、精度管理が容易で生体の免疫能をより正確かつ簡便に評価することができる免疫能の評価方法、及び該方法に用いるための免疫能評価用キットに関する。   The present invention relates to a method for evaluating immunity and a kit for evaluating immunity, and more particularly, an immunity evaluation method capable of accurately and simply evaluating immunity of a living body, and accuracy control, and the method The present invention relates to a kit for evaluating immunity for use in medical treatment.

生体内にウイルスや細菌などの抗原(非自己)が侵入したり、生体内でがん細胞が発生した場合には、生体は抗原やがん細胞を排除するために多様な生体反応を引き起こす。この抗原等に対して起こる一連の生体反応が免疫応答であり、その強さ、すなわち免疫能がいわゆる抵抗力に直接関連している。すなわち、ヒトの免疫能を正確に評価することは、感染症や発ガンを予防する上での指標として極めて重要である。この免疫能については、生体の免疫応答が複雑であるために多方面から評価する必要がある。   When antigens (non-self) such as viruses or bacteria enter the living body or cancer cells are generated in the living body, the living body causes various biological reactions in order to eliminate the antigens and cancer cells. A series of biological reactions that occur against this antigen and the like is an immune response, and its strength, that is, immunity is directly related to so-called resistance. In other words, accurate evaluation of human immunity is extremely important as an index for preventing infections and carcinogenesis. The immune ability needs to be evaluated from various aspects because the immune response of the living body is complicated.

ヒトの免疫能の評価方法としては、被検者の末梢血から得た免疫担当細胞のナチュラルキラー活性(NK活性)を指標とする方法が従来から広く採用されている。具体的には「細胞障害性試験」と呼ばれる手法で行われており、被検者から採取した末梢血を遠心分離して得た末梢血単核細胞をエフェクター細胞とし、該エフェクター細胞を標的となるがん細胞(ターゲット細胞)と接触させ、ターゲット細胞に対する細胞障害性を細胞内に取り込ませた51Cr等の遊離をもって評価するものである。 As a method for evaluating human immunity, a method using as an index the natural killer activity (NK activity) of immunocompetent cells obtained from the peripheral blood of a subject has been widely employed. Specifically, it is performed by a technique called “cytotoxicity test”, and peripheral blood mononuclear cells obtained by centrifuging peripheral blood collected from a subject are used as effector cells, and the effector cells are targeted. It is evaluated by the release of 51 Cr or the like that is brought into contact with a target cancer cell and the cytotoxicity against the target cell is taken into the cell.

一方で、細胞障害性試験については、精度管理の難しさと操作の煩雑さが指摘されている。すなわち測定結果のばらつきが大きく、複数の条件を設定して試験を行う必要がある。そもそも細胞障害性試験で得られたNK活性の値が被検者の免疫能を正しく反映しているのか、との指摘さえある。また、51Cr等の放射性物質を用いることが多く、専用の取扱い施設が必要となり、かつ作業者の安全性にも不安が残る。このような背景の下、ヒトの免疫能をより正確かつ簡便に評価するための技術開発が進められている。特許文献1には、殺細胞活性分子であるグラニュライシン、パーフォリン、あるいはグランザイムBの免疫担当細胞における発現量を指標として、被検者の免疫状態を確認する方法が開示されている。 On the other hand, regarding the cytotoxicity test, it is pointed out that the accuracy control is difficult and the operation is complicated. That is, the measurement results vary greatly, and it is necessary to set a plurality of conditions for testing. In the first place, it is even pointed out that the value of NK activity obtained in the cytotoxicity test correctly reflects the immunity of the subject. In addition, radioactive materials such as 51 Cr are often used, and a dedicated handling facility is required, and the safety of workers remains uneasy. Under such a background, technical development for more accurately and simply evaluating human immunity has been underway. Patent Document 1 discloses a method for confirming the immune state of a subject using as an index the expression level of a cell killing active molecule, granulysin, perforin, or granzyme B, in immunocompetent cells.

なお臨床検査の現場において、検査体制が整っている施設では採血後ただちに細胞障害性試験を行うことができるが、そうでない施設では外部の検査機関に試験を依頼することになる。この際、採血から試験開始までに24時間以上経過していることも少なくない。
特開2001−249126号公報
In clinical laboratories, a cytotoxicity test can be performed immediately after blood collection at a facility with a well-established examination system, but at other facilities, an examination is requested from an external laboratory. At this time, it is often the case that 24 hours or more have passed from the blood collection to the start of the test.
JP 2001-249126 A

前述のように、ヒトの免疫能を正確に把握するためには、多方面から評価する必要がある。そのためには、従来とは異なった方面から免疫能を評価する方法であって且つ精度管理が容易な技術が求められる。本発明の目的は、精度管理が容易で、生体の免疫能をより正確かつ簡便に評価することができる免疫能の評価方法等を提供することにある。   As described above, in order to accurately grasp human immunity, it is necessary to evaluate from various aspects. For this purpose, there is a need for a technique that is a method for evaluating immunity from a direction different from the prior art and that allows easy precision control. An object of the present invention is to provide a method for evaluating immunity and the like, which can be easily managed in accuracy and can more accurately and easily evaluate immunity of a living body.

本発明者らは、従来の細胞障害性試験における精度管理の難しさの一要因として、採血から試験開始までの経過時間が影響しているのではないかと考えた。すなわち、細胞障害性試験はターゲット細胞に対する細胞障害性を直接みるものであり、エフェクター細胞の成育状態(例えば、保存状態)が試験結果に影響することが予想された。そこで、採血からの経過時間とNK活性との関係について実際に実験を行って調査した。その結果、時間の経過とともにNK活性が減少しており、しかもその減少の度合いが予想を上回るほど大きいものであることを確認した。検体によっては24時間経過時で50%以下まで減少している例も見られた。さらに、検体ごとの減少度合いのばらつきが大きく、外挿も困難であった。これにより、従来の細胞障害性試験によるNK活性をもって免疫能を正確に評価するためには、採血直後の新鮮な検体を用いて試験を行う必要があることが強く示唆された。   The present inventors thought that the elapsed time from blood collection to the start of the test had an effect as one factor in the difficulty of accuracy control in the conventional cytotoxicity test. That is, the cytotoxicity test directly looks at cytotoxicity against the target cell, and it was predicted that the growth state (for example, preservation state) of the effector cell affects the test result. Therefore, an experiment was actually conducted to investigate the relationship between the elapsed time from blood collection and NK activity. As a result, it was confirmed that the NK activity decreased with the passage of time, and that the degree of decrease exceeded the expectation. Some specimens were reduced to 50% or less after 24 hours. Furthermore, the variation in the degree of decrease for each specimen was large, and extrapolation was difficult. This strongly suggests that it is necessary to perform a test using a fresh specimen immediately after blood collection in order to accurately evaluate immune ability with NK activity by a conventional cytotoxicity test.

そこで本発明者らは、採血からある程度の時間が経過した検体を用いても正確な免疫能の評価ができる技術の開発を目指し、鋭意研究を行った。その結果、末梢血単核細胞の表面抗原の違いによる亜分類に着目することにより、採血からの時間経過の影響を受けず、且つばらつきも小さい免疫能の評価方法を確立することに成功した。さらに、該評価方法を簡便に行うためのキットを構築し、本発明を完成した。すなわち、本発明の要旨は以下のとおりである。   Therefore, the present inventors have conducted intensive research with the aim of developing a technique that can accurately evaluate immune ability even when using a sample after a certain amount of time has passed since blood collection. As a result, by focusing on the sub-classification of peripheral blood mononuclear cells according to the difference in surface antigen, the inventors succeeded in establishing a method for evaluating immune ability that is not affected by the passage of time since blood collection and has little variation. Furthermore, a kit for simply carrying out the evaluation method was constructed, and the present invention was completed. That is, the gist of the present invention is as follows.

請求項1に記載の発明は、生体から単離された末梢血単核細胞の集団におけるCD4+細胞の数とCD8+細胞の数との比を指標として、前記生体の免疫能を評価することを特徴とする免疫能の評価方法である。   The invention according to claim 1 is characterized in that the immunity of the living body is evaluated using the ratio between the number of CD4 + cells and the number of CD8 + cells in the peripheral blood mononuclear cell population isolated from the living body as an index. It is the evaluation method of immunity.

また請求項2に記載の発明は、生体から単離された末梢血単核細胞の集団におけるCD4+・CD25+細胞の数の比率を指標として、前記生体の免疫能を評価することを特徴とする免疫能の評価方法である。   The invention according to claim 2 is characterized in that the immunity of the living body is evaluated using the ratio of the number of CD4 + / CD25 + cells in a population of peripheral blood mononuclear cells isolated from the living body as an index. It is a method for evaluating performance.

免疫担当細胞は、発現している表面抗原の種類によって亜分類されている。表面抗原の種類としては、CD3、CD4、CD8、CD14、CD19、CD25等があり、CD4を発現している細胞(CD4+細胞)はヘルパーT細胞、CD8を発現している細胞(CD8+細胞)はキラーT細胞、CD4とCD25の両方を発現している細胞(CD4+・CD25+細胞)は制御性T細胞に相当する。そして、本発明の免疫能の評価方法では、生体から単離された末梢血単核細胞の集団におけるCD4+細胞の数とCD8+細胞の数との比(請求項1)、あるいはCD4+・CD25+細胞の数の比率(請求項2)を指標として、生体の免疫能を評価する。本発明の免疫能の評価方法では、表面抗原の種類によって分類された特定の細胞集団の数比をもって評価するので、検体となる末梢血単核細胞が生きてさえおればよく、その成育状態の影響を受けない。そのため、末梢血単核細胞が生きている限りにおいて採血から試験開始までの経過時間の影響を受けることはなく、精度管理が容易で、外部の検査機関にて試験を行う場合でも正確に免疫能の評価を行うことができる。さらに、末梢血単核細胞の分類については、例えばフローサイトメトリーによって簡単に行うことができるので、操作が簡便であり、多数の検体を一度に処理することができる。またさらに、放射性物質を使う必要がないので、専用の施設も不要である。   Immunocompetent cells are subclassified according to the type of surface antigen that is expressed. The types of surface antigens include CD3, CD4, CD8, CD14, CD19, CD25 and the like. Cells expressing CD4 (CD4 + cells) are helper T cells, cells expressing CD8 (CD8 + cells) are Killer T cells, cells expressing both CD4 and CD25 (CD4 + .CD25 + cells) correspond to regulatory T cells. In the method for evaluating immunity according to the present invention, the ratio of the number of CD4 + cells to the number of CD8 + cells in a population of peripheral blood mononuclear cells isolated from a living body (Claim 1) or CD4 + · CD25 + cells The immunity of the living body is evaluated using the ratio of the numbers (claim 2) as an index. In the method for evaluating immunity according to the present invention, the evaluation is performed based on the ratio of the number of specific cell populations classified according to the type of surface antigen. Not affected. Therefore, as long as the peripheral blood mononuclear cells are alive, they are not affected by the elapsed time from blood collection to the start of the test, are easy to control the accuracy, and are accurate even when testing in an external laboratory. Can be evaluated. Furthermore, since the classification of peripheral blood mononuclear cells can be easily performed by, for example, flow cytometry, the operation is simple and a large number of specimens can be processed at a time. Furthermore, since there is no need to use radioactive materials, no dedicated facilities are required.

なお、「CD4+細胞の数とCD8+細胞の数との比」は、例えば「CD4+細胞の数/CD8+細胞の数」やその逆数「CD8+細胞の数/CD4+細胞の数」をもって表現することができる。あるいは、単に「CD4+細胞の数:CD8+細胞の数」で表現してもよい。同様に、「末梢血単核細胞の集団におけるCD4+・CD25+細胞の数の比率」は、例えば、「CD4+・CD25+細胞の数/末梢血単核細胞の全数」で表現することができる。これらは、いずれもフローサイトメトリーによって簡単に測定および算出することができる。   The “ratio between the number of CD4 + cells and the number of CD8 + cells” can be expressed by, for example, “the number of CD4 + cells / the number of CD8 + cells” or its inverse “the number of CD8 + cells / the number of CD4 + cells”. . Alternatively, it may be expressed simply as “number of CD4 + cells: number of CD8 + cells”. Similarly, the “ratio of the number of CD4 + · CD25 + cells in the population of peripheral blood mononuclear cells” can be expressed, for example, as “number of CD4 + · CD25 + cells / total number of peripheral blood mononuclear cells”. All of these can be easily measured and calculated by flow cytometry.

請求項3に記載の発明は、CD4+細胞の数とCD8+細胞の数との比あるいはCD4+・CD25+細胞の数の比率を、予め設定された基準値と比較することにより、前記生体の免疫能を評価することを特徴とする請求項1又は2に記載の免疫能の評価方法である。   In the invention according to claim 3, the ratio of the number of CD4 + cells to the number of CD8 + cells or the ratio of the number of CD4 + · CD25 + cells is compared with a preset reference value, thereby improving the immunity of the living body. The method for evaluating immunity according to claim 1 or 2, wherein the evaluation is performed.

本発明の免疫能の評価方法では、予め基準値を設定しておき、CD4+細胞の数とCD8+細胞の数との比あるいはCD4+・CD25+細胞の数の比率を当該基準値と比較して免疫能を評価する。かかる構成により、より正確に免疫能の評価を行うことができる。   In the method for evaluating immunity according to the present invention, a reference value is set in advance, and the ratio of the number of CD4 + cells to the number of CD8 + cells or the ratio of the number of CD4 + · CD25 + cells is compared with the reference value. To evaluate. With this configuration, it is possible to more accurately evaluate immunity.

請求項4に記載の発明は、前記基準値は、生体から単離された直後の末梢血単核細胞におけるナチュラルキラー活性との相関性を有する値であることを特徴とする請求項3に記載の免疫能の評価方法である。   The invention according to claim 4 is characterized in that the reference value is a value having a correlation with natural killer activity in peripheral blood mononuclear cells immediately after being isolated from a living body. It is a method for evaluating the immunity of

細胞障害性試験によるナチュラルキラー活性(NK活性)測定については、試験を採血直後に行えば、その測定結果は生体の免疫状態を正確に反映していると考えられる。そして本発明の免疫能の評価方法では、基準値として生体から単離された直後の末梢血単核細胞におけるNK活性との相関性を有する値を採用する。かかる構成により、さらに正確に免疫能の評価を行うことができる。   Regarding the measurement of natural killer activity (NK activity) by the cytotoxicity test, if the test is performed immediately after blood collection, the measurement result is considered to accurately reflect the immune state of the living body. In the method for evaluating immunity of the present invention, a value having a correlation with NK activity in peripheral blood mononuclear cells immediately after being isolated from a living body is adopted as a reference value. With this configuration, it is possible to more accurately evaluate immunity.

請求項5に記載の発明は、請求項1に記載の免疫能の評価方法に用いるための免疫能評価用キットであって、CD4+細胞に特異的な抗体と、CD8+細胞に特異的な抗体とを含むことを特徴とする免疫能評価用キットである。   The invention according to claim 5 is an immune capacity evaluation kit for use in the method for evaluating immune capacity according to claim 1, wherein the kit is an antibody specific for CD4 + cells and an antibody specific for CD8 + cells. It is a kit for immunity evaluation characterized by including this.

本発明は上述の免疫能の評価方法に用いるための免疫能評価用キットにかかるものであり、CD4+細胞に特異的な抗体とCD8+細胞に特異的な抗体とを含む。本発明の免疫能評価用キットによれば、生体から単離した末梢血単核細胞の集団をフローサイトメトリーに供する際にCD4+細胞ならびにCD8+細胞の分類を簡便に行うことができる。その結果、「CD4+細胞の数とCD8+細胞の数との比」をきわめて簡便に測定および算出することができる。   The present invention relates to an immune capacity evaluation kit for use in the above-described evaluation method of immune capacity, and includes an antibody specific for CD4 + cells and an antibody specific for CD8 + cells. According to the kit for evaluating immunity of the present invention, CD4 + cells and CD8 + cells can be easily classified when a population of peripheral blood mononuclear cells isolated from a living body is subjected to flow cytometry. As a result, the “ratio between the number of CD4 + cells and the number of CD8 + cells” can be measured and calculated very simply.

請求項6に記載の発明は、さらにCD4+・CD25+細胞に特異的な抗体を含むことを特徴とする請求項5に記載の免疫能評価用キットである。   The invention described in claim 6 is the kit for evaluating immune capacity according to claim 5, further comprising an antibody specific for CD4 + · CD25 + cells.

かかる構成により、「末梢血単核細胞の集団におけるCD4+・CD25+細胞の数の比率」をもきわめて簡便に測定および算出することができる免疫能評価用キットが提供される。   With this configuration, an immunological ability evaluation kit is provided that can measure and calculate the “ratio of the number of CD4 + · CD25 + cells in a population of peripheral blood mononuclear cells” very simply.

請求項7に記載の発明は、請求項2に記載の免疫能の評価方法に用いるための免疫能評価用キットであって、CD4+・CD25+細胞に特異的な抗体を含むことを特徴とする免疫能評価用キットである。   The invention according to claim 7 is an immune capacity evaluation kit for use in the method for evaluating immune capacity according to claim 2, and includes an antibody specific for CD4 + / CD25 + cells. This is a performance evaluation kit.

本発明は上述の免疫能の評価方法に用いるための免疫能評価用キットにかかるものであり、CD4+・CD25+細胞に特異的な抗体とを含む。本発明の免疫能評価用キットによれば、生体から単離した末梢血単核細胞の集団をフローサイトメトリーに供する際にCD4+・CD25+細胞の分類を簡便に行うことができる。その結果、「末梢血単核細胞の集団におけるCD4+・CD25+細胞の数の比率」をきわめて簡便に測定および算出することができる。   The present invention relates to a kit for evaluating immunity for use in the above-described method for evaluating immunity, and includes an antibody specific for CD4 + / CD25 + cells. According to the kit for evaluating immunity of the present invention, CD4 + / CD25 + cells can be easily classified when a population of peripheral blood mononuclear cells isolated from a living body is subjected to flow cytometry. As a result, the “ratio of the number of CD4 + · CD25 + cells in the peripheral blood mononuclear cell population” can be measured and calculated very simply.

請求項8に記載の発明は、さらにCD4+細胞に特異的な抗体とCD8+細胞に特異的な抗体と含むことを特徴とする請求項7に記載の免疫能評価用キットである。   The invention according to claim 8 is the immune capacity evaluation kit according to claim 7, further comprising an antibody specific for CD4 + cells and an antibody specific for CD8 + cells.

かかる構成により、「CD4+細胞の数とCD8+細胞の数との比」をもきわめて簡便に測定および算出することができる免疫能評価用キットが提供される。   With such a configuration, a kit for evaluating immunity is provided that can measure and calculate the “ratio between the number of CD4 + cells and the number of CD8 + cells” very simply.

本発明の免疫能の評価方法によれば、末梢血単核細胞が生きている限りにおいて採血から試験開始までの経過時間の影響を受けることはなく、精度管理が容易で、外部の検査機関にて試験を行う場合でも正確に免疫能の評価を行うことができる。さらに、末梢血単核細胞の分類については、フローサイトメトリーによって簡単に行うことができるので、操作が簡便であり、多数の検体を一度に処理することができる。またさらに、放射性物質を使う必要がないので、専用の施設も不要である。   According to the method for evaluating immunity of the present invention, as long as the peripheral blood mononuclear cells are alive, they are not affected by the elapsed time from the blood collection to the start of the test, the accuracy control is easy, and the Thus, even when the test is conducted, the immune ability can be accurately evaluated. Furthermore, since the peripheral blood mononuclear cells can be easily classified by flow cytometry, the operation is simple and a large number of specimens can be processed at one time. Furthermore, since there is no need to use radioactive materials, no dedicated facilities are required.

本発明の免疫能の評価用キットによれば、本発明の免疫能の評価方法をきわめて簡便に行うことができる。   According to the kit for evaluating immunity of the present invention, the method for evaluating immunity of the present invention can be carried out very simply.

本発明の免疫能の評価方法の1つの様相は、生体から単離された末梢血単核細胞の集団におけるCD4+細胞の数とCD8+細胞の数との比を指標として、前記生体の免疫能を評価する免疫能の評価方法である。また、本発明の免疫能の評価方法の他の様相は、生体から単離された末梢血単核細胞の集団におけるCD4+・CD25+細胞の数の比率を指標として、前記生体の免疫能を評価する免疫能の評価方法である。   One aspect of the method for evaluating immunity of the present invention is to determine the immunity of the living body using the ratio of the number of CD4 + cells to the number of CD8 + cells in the population of peripheral blood mononuclear cells isolated from the living body as an index. It is the evaluation method of the immune ability to evaluate. Another aspect of the method for evaluating immunity of the present invention is to evaluate the immunity of the living body using as an index the ratio of the number of CD4 + / CD25 + cells in the population of peripheral blood mononuclear cells isolated from the living body. It is a method for evaluating immunity.

本発明の免疫能の評価方法では、生体から単離された末梢血単核細胞(PBMC)を検体とする。PBMCの単離方法としては、公知の方法をそのまま用いることができ、例えば、ヘパリン採血した全血を比重遠心分離に供することにより、単離することができる。採血からPBMCを単離するまでの時間については、PBMCが生存状態で保持できる条件下で血液が保存されていれば特に制限はなく、採血直後にPBMCを単離することは必須でない。むしろ作業性を考慮すると、採血した血液を適切な条件下で一旦保存し、その後にPBMCを単離することが好ましい。血液の保存方法としては、臨床検査の分野で採用されている方法がそのまま適用でき、例えば、ヘパリン共存下で室温保存または冷蔵保存することができる。   In the method for evaluating immunity of the present invention, peripheral blood mononuclear cells (PBMC) isolated from a living body are used as specimens. As a method for isolating PBMC, a known method can be used as it is, and for example, it can be isolated by subjecting whole blood collected from heparin to specific gravity centrifugation. The time from blood collection to isolation of PBMC is not particularly limited as long as the blood is stored under conditions where PBMC can be maintained in a viable state, and it is not essential to isolate PBMC immediately after blood collection. Rather, in consideration of workability, it is preferable to store the collected blood once under appropriate conditions and then isolate PBMC. As a blood storage method, a method employed in the field of clinical examination can be applied as it is, and for example, it can be stored at room temperature or refrigerated in the presence of heparin.

本発明の免疫能の評価方法では、単離されたPBMCの集団における「CD4+細胞の数とCD8+細胞の数との比」あるいは「CD4+・CD25+細胞の数の比率」といったパラメータを指標とする。これらのパラメータについては、例えば、単離したPBMCをフローサイトメトリーに供することにより、容易に得ることができる。この際、PBMCの各表面抗原に特異的な抗体とPBMCの集団とを接触させることにより、PBMCを表面抗原の種類に従って分類する。すなわち、CD4+細胞に特異的な抗体とCD8+細胞に特異的な抗体とを用いることにより、CD4+細胞の数の比率(%)とCD8+細胞の数の比率(%)を測定することができ、「単離されたPBMCの集団におけるCD4+細胞の数とCD8+細胞の数との比」を得ることができる。また、CD4+・CD25+細胞に特異的な抗体を用いることにより、「単離されたPBMCの集団におけるCD4+・CD25+細胞の数の比率(%)」を測定することができる。なお、これらの抗体についてはすでに取得されており、市販もされている。ケーラーとミルシュタインの方法等の公知技術で自家調製してもよい。   In the method for evaluating immunity of the present invention, a parameter such as “ratio between the number of CD4 + cells and the number of CD8 + cells” or “ratio of the number of CD4 + · CD25 + cells” in an isolated PBMC population is used as an index. These parameters can be easily obtained, for example, by subjecting isolated PBMC to flow cytometry. At this time, by contacting an antibody specific for each surface antigen of PBMC with a population of PBMC, the PBMC are classified according to the type of the surface antigen. That is, by using an antibody specific for CD4 + cells and an antibody specific for CD8 + cells, the ratio (%) of the number of CD4 + cells and the ratio (%) of the number of CD8 + cells can be measured. The ratio of the number of CD4 + cells to the number of CD8 + cells in the isolated PBMC population can be obtained. Furthermore, by using an antibody specific for CD4 + · CD25 + cells, the “ratio (%) of the number of CD4 + · CD25 + cells in the isolated PBMC population” can be measured. These antibodies have already been acquired and are commercially available. It may be self-prepared by a known technique such as the method of Kohler and Milstein.

好ましい実施形態では、上記した「CD4+細胞の数とCD8+細胞の数との比」あるいは「CD4+・CD25+細胞の数の比率」を、予め設定された基準値と比較することにより、生体の免疫能を評価する。すなわち、生体から単離された直後のPBMC、換言すれば、採血直後のPBMCを検体とする場合には、細胞障害性試験によるNK活性をもって生体の免疫能を正確に評価することができる。そこで、正確な免疫能を反映しているNK活性との相関性を有する基準値を採用することにより、本発明による免疫能の評価をきわめて正確に行うことができる。当該基準値は、採血直後のPBMCを用いてNK活性と各パラメータ(CD4+細胞の数とCD8+細胞の数との比、並びに、CD4+・CD25+細胞の数の比率)の測定を行い、NK活性と各パラメータとの相関データから選択すればよい。例えば、20%のNK活性に相当する各パラメータの値を基準値として採用すればよい。なお、NK活性と各パラメータとは負の相関を示すので、20%のNK活性に相当する基準値を仮にAとするとき、「NK活性20%以上」の状態であれば各パラメータはA以下の値を示す。   In a preferred embodiment, the above-mentioned “ratio between the number of CD4 + cells and the number of CD8 + cells” or “ratio of the number of CD4 + · CD25 + cells” described above is compared with a preset reference value, so To evaluate. That is, when PBMC immediately after being isolated from a living body, in other words, PBMC immediately after blood collection is used as a specimen, the immunity of the living body can be accurately evaluated with NK activity by a cytotoxicity test. Therefore, by adopting a reference value having a correlation with NK activity that reflects accurate immunity, immunity evaluation according to the present invention can be performed very accurately. The reference value is determined by measuring NK activity and each parameter (ratio between the number of CD4 + cells and the number of CD8 + cells and the ratio of the number of CD4 + · CD25 + cells) using PBMC immediately after blood collection. What is necessary is just to select from the correlation data with each parameter. For example, the value of each parameter corresponding to 20% NK activity may be adopted as the reference value. In addition, since NK activity and each parameter show a negative correlation, if the reference value corresponding to 20% NK activity is A, each parameter is A or less if it is in the state of “NK activity 20% or more”. Indicates the value of.

上記基準値については、多数の被検者から収集した値を元に設定すれば、ユニバーサルな値となり、集団検診等の際に有用である。一方、被検者ごとに固有の基準値を設定してもよく、この際には、当該被検者の免疫能をモニタリングするのに有用である。   About the said reference value, if it sets based on the value collected from many subjects, it will become a universal value and is useful in the case of a group medical examination etc. On the other hand, a specific reference value may be set for each subject, and in this case, it is useful for monitoring the immune ability of the subject.

本発明の免疫能測定用キットの1つの様相は、CD4+細胞に特異的な抗体とCD8+細胞に特異的な抗体とを含むものである。また、本発明の免疫能測定用キットの他の様相は、CD4+・CD25+細胞に特異的な抗体を含むものである。当該抗体はポリクローナル抗体とモノクローナル抗体のいずれでもよいが、より特異性の高いモノクローナル抗体が好ましい。これらの抗体の形状については特に限定はなく、溶液状でもよいし凍結乾燥品でもよい。また、抗体以外の試薬類、例えば、PBMC単離用の試薬(Ficoll-paque液など)、各種の緩衝液、遠心用チューブ等をさらに含むものでもよい。なお、CD4+細胞に特異的な抗体、CD8+細胞に特異的な抗体、およびCD4+・CD25+細胞に特異的な抗体、の計3種の抗体を含むキットであれば、「CD4+細胞の数とCD8+細胞の数との比」と「CD4+・CD25+細胞の数の比率」の両パラメータの測定に対応可能であり、特に好ましい。   One aspect of the kit for measuring immunity of the present invention comprises an antibody specific for CD4 + cells and an antibody specific for CD8 + cells. Further, another aspect of the kit for measuring immunity of the present invention comprises an antibody specific for CD4 + / CD25 + cells. The antibody may be either a polyclonal antibody or a monoclonal antibody, but a monoclonal antibody with higher specificity is preferred. The shape of these antibodies is not particularly limited, and may be a solution or a lyophilized product. Moreover, reagents other than antibodies, for example, reagents for isolating PBMC (Ficoll-paque solution, etc.), various buffers, centrifuge tubes and the like may be further included. If the kit contains a total of three antibodies, an antibody specific for CD4 + cells, an antibody specific for CD8 + cells, and an antibody specific for CD4 + / CD25 + cells, the number of CD4 + cells and CD8 + cells It is possible to cope with the measurement of both parameters of “ratio to the number of cells” and “ratio of the number of CD4 + · CD25 + cells”, which is particularly preferable.

以下に、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

1.細胞障害性試験によるNK活性測定の基礎的検討
(1)エフェクター細胞の調製
文書により同意を得た健常人ボランティア8名から、安静時静脈血35mLをヘパリン入り採血管にて無菌的に採取し、5mLずつ6本に分注した。そのまま室温にて静置し、0時間後(採血直後)、2時間後、5時間後、8時間後、11時間後、および24時間後に比重遠心分離に供し、末梢血単核細胞(PBMC)を回収した。PBMCの回収は以下の手順によった。
1. Basic examination of NK activity measurement by cytotoxicity test (1) Preparation of effector cells From 8 healthy volunteers who have obtained consent in writing, 35 mL of resting venous blood is aseptically collected with heparin-containing blood collection tubes, 5 mL each was dispensed into 6 bottles. Allowed to stand at room temperature, and subjected to specific gravity centrifugation after 0 hour (immediately after blood collection), 2 hours, 5 hours, 8 hours, 11 hours, and 24 hours, and peripheral blood mononuclear cells (PBMC) Was recovered. The recovery of PBMC was performed according to the following procedure.

まず、各時間経過後(0〜24時間)に1,500Gで5分間遠心した後、バフィーコード部分を別の遠心管に回収し、RPMI1640で希釈した。パスツールピペットにてFicoll-paque液(ファルマシア社)を3〜4mL重層し、20℃、400Gで15分間遠心し(アクセル・ブレーキなし)、Ficoll-paque液層の上に分離したPBMC層をチューブに回収した。回収したPBMCをPBS(−)で希釈し、4℃、450Gで6分間遠心した。上清除去後、10%仔ウシ血清(FCS)含有RPMI1640に浮遊させ、4℃、400Gで5分間遠心した。上清除去後、10%FCS含有RPMI1640に再浮遊させ、4×106個/mLの細胞濃度になるようにPBMCを浮遊させた(エフェクター細胞浮遊液)。 First, after lapse of each time (0 to 24 hours), centrifugation was performed at 1,500 G for 5 minutes, and then the buffy cord portion was collected in another centrifuge tube and diluted with RPMI 1640. 3-4 mL of Ficoll-paque liquid (Pharmacia) is layered with a Pasteur pipette, centrifuged at 20 ° C. and 400 G for 15 minutes (without accelerator / brake), and the PBMC layer separated on the Ficoll-paque liquid layer is tubed Recovered. The recovered PBMC was diluted with PBS (−) and centrifuged at 4 ° C. and 450 G for 6 minutes. After removing the supernatant, it was suspended in RPMI 1640 containing 10% calf serum (FCS) and centrifuged at 400 G for 5 minutes at 4 ° C. After removing the supernatant, the suspension was resuspended in RPMI 1640 containing 10% FCS, and PBMC was suspended so that the cell concentration was 4 × 10 6 cells / mL (effector cell suspension).

(2)ターゲット細胞の調製
119gのHEPES、54.4gのNaCl、3.73gのKCl、4.07gのMgCl2・6H2Oを800mLの精製水に溶解後、1N NaOHでpH7.4に調整し、精製水にて全量1,000mLとした。この溶液をフィルター滅菌し、バッファーA(50mM HEPES、93mM NaCl、5mM KCl、2mM MgCl2、pH7.4)を調製した。また、119gのHEPES、54.4gのNaCl、3.73gのKCl、4.07gのMgCl2・6H2O、2.94gのCaCl2・2H2O、18.0gのグルコースを800mLの精製水に溶解後、1N NaOHでpH7.4に調整し、精製水にて全量1,000mLとした。この溶液をフィルター滅菌し、バッファーB(50mM HEPES、93mM NaCl、5mM KCl、2mM MgCl2、2mM CaCl2、10mMグルコース、pH7.4)を調製した。
(2) Preparation of target cells 119 g of HEPES, 54.4 g of NaCl, 3.73 g of KCl, 4.07 g of MgCl 2 .6H 2 O were dissolved in 800 mL of purified water, and adjusted to pH 7.4 with 1N NaOH. The total volume was made up to 1,000 mL with purified water. This solution was sterilized by filter to prepare buffer A (50 mM HEPES, 93 mM NaCl, 5 mM KCl, 2 mM MgCl 2, pH 7.4). In addition, 119 g of HEPES, 54.4 g of NaCl, 3.73 g of KCl, 4.07 g of MgCl 2 .6H 2 O, 2.94 g of CaCl 2 .2H 2 O, 18.0 g of glucose, 800 mL of purified water After being dissolved in the solution, the pH was adjusted to 7.4 with 1N NaOH, and the total volume was adjusted to 1,000 mL with purified water. This solution was filter sterilized to prepare buffer B (50 mM HEPES, 93 mM NaCl, 5 mM KCl, 2 mM MgCl 2, 2 mM CaCl 2 , 10 mM glucose, pH 7.4).

393mgのDTPA(Titriplex V)を10mLの1N NaOHに溶解し、100mM DTPA溶液を調製した。次に、1.52mLの原子吸光用Eu溶液(1,000μg/mL)、7.98mLのバッファーA、及び0.5mLの100mM DTPA溶液を混和し、HCl又はNaOHにてpHを7.4に調整してEu−DTPA溶液を調製した。一方、5.0mgのデキストラン硫酸(ファルマシア社)を1.0mLのバッファーAに溶解し、デキストラン硫酸溶液を調製した。そして、25〜27μLのEu−DTPA溶液と100μLのデキストラン硫酸溶液を混和し、バッファーAにて全量を1mLとしてラベリングバッファーを調製した。   393 mg of DTPA (Titriplex V) was dissolved in 10 mL of 1N NaOH to prepare a 100 mM DTPA solution. Next, 1.52 mL of atomic absorption Eu solution (1,000 μg / mL), 7.98 mL of buffer A, and 0.5 mL of 100 mM DTPA solution are mixed, and the pH is adjusted to 7.4 with HCl or NaOH. An Eu-DTPA solution was prepared by adjusting. On the other hand, 5.0 mg of dextran sulfate (Pharmacia) was dissolved in 1.0 mL of buffer A to prepare a dextran sulfate solution. Then, 25 to 27 μL of Eu-DTPA solution and 100 μL of dextran sulfate solution were mixed, and a labeling buffer was prepared using Buffer A with a total volume of 1 mL.

T−75フラスコにて継代培養されたK−562細胞浮遊液を15mL容チューブに移し、4℃、400Gで5分間遠心した。上清除去後、3.0mLのバッファーAを加えて再浮遊させ、1.5mL容マイクロチューブ2本に分けて4℃、2,300Gで30秒間遠心した。上清除去後、バッファーAを用いて1.5mL容マイクロチューブ1本にまとめ、4℃、2,300Gで30秒間遠心した。上清除去後、1.0mLのラベリングバッファーで再浮遊させ、15mL容チューブに移し、氷中で20分間インキュベートした。この間、5分ごとに穏やかに撹拌した。   The K-562 cell suspension subcultured in a T-75 flask was transferred to a 15 mL tube and centrifuged at 4 ° C. and 400 G for 5 minutes. After removing the supernatant, 3.0 mL of buffer A was added to resuspend, and the cells were divided into two 1.5 mL microtubes and centrifuged at 4 ° C. and 2,300 G for 30 seconds. After removing the supernatant, it was put together into one 1.5 mL volume microtube using buffer A and centrifuged at 4 ° C. and 2,300 G for 30 seconds. After removing the supernatant, it was resuspended with 1.0 mL of labeling buffer, transferred to a 15 mL tube, and incubated on ice for 20 minutes. During this time, it was gently stirred every 5 minutes.

インキュベート終了後、4℃に冷却したバッファーBを3.0mL加え、氷中で5分間インキュベートした。1.5mL容マイクロチューブ3本に分けて、4℃、2,300Gで30秒間遠心した。上清除去後、バッファーBを用いて1本にまとめ、4℃、2,300Gで30秒間遠心した。再度、バッファーBにて4℃、2,300Gで30秒間洗浄遠心した。さらに、10%FCS含有RPMI1640を用いて4℃、2,300Gで30秒間洗浄遠心を2回行い、再浮遊させて氷中で30分間静置した。さらに、10%FCS含有RPMI1640を用いて同様に洗浄遠心を2回行った後、5×104個/mLの細胞濃度となるように浮遊させた(ターゲット細胞浮遊液)。 After completion of the incubation, 3.0 mL of buffer B cooled to 4 ° C. was added and incubated in ice for 5 minutes. The solution was divided into three 1.5 mL microtubes and centrifuged at 4 ° C. and 2,300 G for 30 seconds. After removing the supernatant, it was combined into one using buffer B and centrifuged at 4 ° C. and 2,300 G for 30 seconds. Again, it was washed and centrifuged in buffer B at 4 ° C. and 2,300 G for 30 seconds. Further, washing and centrifugation were performed twice at 4 ° C. and 2,300 G for 30 seconds using RPMI 1640 containing 10% FCS, resuspended, and allowed to stand in ice for 30 minutes. Further, washing and centrifugation were similarly performed twice using RPMI 1640 containing 10% FCS, and then suspended so as to obtain a cell concentration of 5 × 10 4 cells / mL (target cell suspension).

(3)NK活性の測定
ターゲット細胞浮遊液を96ウェルプレートに100μLずつ分注した。その上に、上記(1)で調製したエフェクター細胞浮遊液を「エフェクター細胞:ターゲット細胞」が「40:1」または「20:1」の比率となるように分注した。そのままプレートを5%CO2、37℃の条件下で4時間静置した。4時間経過後、プレートのまま室温、350Gで5分間遠心した。遠心後の上清20μLを測定用プレートに移し、増強試薬100μLを分注して、放出されたEu3+の量(1/10量)をラベルカウンターにて測定した(測定値A)。別途、エフェクター細胞浮遊液の代わりに100μLの1%トリトンX−100溶液を添加したウェル(Total、測定値B)と、100μLの10%FCS含有RPMI1640を添加したウェル(Back、測定値C)も設定し、同時測定した。Totalはターゲット細胞を全て人工的に破壊した場合のEu3+放出値、Backはターゲット細胞からの自然Eu3+放出値を測定するためのものである。
(3) Measurement of NK activity 100 μL of the target cell suspension was dispensed into a 96-well plate. Furthermore, the effector cell suspension prepared in (1) above was dispensed so that the ratio of “effector cells: target cells” was “40: 1” or “20: 1”. The plate was allowed to stand for 4 hours under conditions of 5% CO 2 and 37 ° C. After 4 hours, the plate was centrifuged for 5 minutes at 350 G at room temperature. 20 μL of the supernatant after centrifugation was transferred to a measurement plate, 100 μL of the enhancement reagent was dispensed, and the amount of released Eu 3+ (1/10 amount) was measured with a label counter (measurement value A). Separately, wells added with 100 μL of 1% Triton X-100 solution (Total, measured value B) instead of effector cell suspension and wells added with 100 μL of RPMI 1640 containing 10% FCS (Back, measured value C) Set and measured simultaneously. Total is for measuring the Eu 3+ release value when all the target cells are artificially destroyed, and Back is for measuring the natural Eu 3+ release value from the target cells.

以下の式(I)によりNK活性(%)を算出した。
{(A−C)/(B−C)}×100 (I)
NK activity (%) was calculated by the following formula (I).
{(AC) / (BC)} × 100 (I)

(4)結果
第1表ならびに図1に結果を示す。第1表と図1において、a〜hはぞれぞれ同一被検者由来の検体を示している。第1表において、各数値はNK活性の測定値(%)、かっこ内の数値は0時間を100とした場合の相対値である。図1は、NK活性と経過時間との関係を表すグラフである。すなわち、いずれの検体の場合も、採血後からPBMCの分離までに要した時間が長いほどNK活性の値が減少していた。また、その減少度合いは検体によってばらつきが大きかった。例えば、24時間経過後に50%以下まで減少した検体(検体f,g)がある一方で、75%程度に留まった検体(検体e)もあり、外挿によって採血直後(0時間経過後)のNK活性を推定することは困難であった。
以上より、細胞障害性試験によるNK活性は、採血後からPBMCの分離までに要した時間が長いほど減少し、採血直後に測定しないと生体の正しい免疫能を反映しないことが示された。
(4) Results The results are shown in Table 1 and FIG. In Table 1 and FIG. 1, a to h indicate specimens derived from the same subject. In Table 1, each numerical value is a measured value (%) of NK activity, and a numerical value in parentheses is a relative value when 0 hour is 100. FIG. 1 is a graph showing the relationship between NK activity and elapsed time. That is, in any sample, the value of NK activity decreased as the time required from the collection of blood to the separation of PBMC was longer. In addition, the degree of decrease varied greatly from sample to sample. For example, there are specimens (specimens f, g) that have decreased to 50% or less after 24 hours, while there are specimens (specimen e) that have remained at about 75%. It was difficult to estimate NK activity.
From the above, it was shown that the NK activity by the cytotoxicity test decreases as the time required from the blood collection to the separation of PBMC decreases, and does not reflect the correct immunity of the living body unless measured immediately after blood collection.

Figure 2008249367
Figure 2008249367

2.フローサイトメトリーによる免疫担当細胞の亜分類
文書により同意を得た健常人ボランティア30名を被検者とし、上記1と同様の手順で採血直後(0時間経過後)のNK活性を測定した。このNK活性測定値は採血直後のPBMCを用いて測定したものであるから、被検者の免疫能を正確に反映していると考えられた。
2. Subclassification of immunocompetent cells by flow cytometry 30 healthy volunteers who obtained informed consent were used as subjects, and NK activity was measured immediately after blood collection (after 0 hours) in the same procedure as described above. Since this NK activity measurement value was measured using PBMC immediately after blood collection, it was considered to accurately reflect the immune ability of the subject.

一方、採血直後(0時間経過後)におけるPBMCを、8種の表面抗原にそれぞれ特異的なモノクローナル抗体で染め分け、フローサイトメトリーに供して全PBMC数に対する各細胞の数の比率(%)を測定した。表面抗原8種の内訳は、T細胞(CD3+)、ヘルパーT細胞(CD4+)、キラーT細胞(CD8+)、単球(CD14+)、B細胞(CD19+)、NK細胞(CD16+・CD56+)、NKT細胞(CD3+・CD16+・CD56+)、および制御性T細胞(CD4+・CD25+)とし、CD4+細胞の数のCD8+細胞の数に対する比(CD4+/CD8+)を加えた9項目について検討した。結果を第2表に示す。   On the other hand, PBMC immediately after blood collection (after 0 hours) are stained with monoclonal antibodies specific for each of the eight surface antigens, and subjected to flow cytometry to measure the ratio (%) of the number of cells to the total number of PBMCs. did. The breakdown of 8 types of surface antigens is T cell (CD3 +), helper T cell (CD4 +), killer T cell (CD8 +), monocyte (CD14 +), B cell (CD19 +), NK cell (CD16 + / CD56 +), NKT cell Nine items including CD3 + · CD16 + · CD56 + and regulatory T cells (CD4 + · CD25 +) and a ratio of the number of CD4 + cells to the number of CD8 + cells (CD4 + / CD8 +) were examined. The results are shown in Table 2.

Figure 2008249367
Figure 2008249367

第2表に示す結果を元に、縦軸にNK活性(40:1)、横軸に各項目の値をプロットしたグラフ(全9種)を作成した。その結果、CD4+/CD8+と、CD4+・CD25+細胞の数の全PBMC数に対する比率(%)(以下、単に「CD4+・CD25+」と略記する。)の2項目が、NK活性に対して高い負の相関を示した。図2は、NK活性とCD4+/CD8+との関係を示すグラフである。CD4+/CD8+については、回帰式「Y=40.506−9.415X」、相関係数「0.800」が得られた。図3は、NK活性とCD4+・CD25+との関係を示すグラフである。CD4+・CD25+については、回帰式「Y=49.795−1.36X」、相関係数「0.718」が得られた。
以上より、採血直後において、NK活性とCD4+/CD8+とは高い相関性を示し、NK活性に代わってCD4+/CD8+を測定することで、免疫能の評価を行えることが示された。同様に、採血直後において、NK活性とCD4+・CD25+とは高い相関性を示し、NK活性に代わってCD4+・CD25+を測定することで、免疫能の評価を行えることが示された。
Based on the results shown in Table 2, a graph (9 types in total) was prepared by plotting the NK activity (40: 1) on the vertical axis and the values of each item on the horizontal axis. As a result, two items of the ratio (%) of the number of CD4 + / CD8 + and the number of CD4 + · CD25 + cells to the total number of PBMCs (hereinafter simply abbreviated as “CD4 + · CD25 +”) are highly negative for NK activity. Correlation was shown. FIG. 2 is a graph showing the relationship between NK activity and CD4 + / CD8 +. For CD4 + / CD8 +, the regression equation “Y = 40.506-9.415X” and the correlation coefficient “0.800” were obtained. FIG. 3 is a graph showing the relationship between NK activity and CD4 + · CD25 +. For CD4 + · CD25 +, the regression equation “Y = 49.795-1.36X” and the correlation coefficient “0.718” were obtained.
As described above, NK activity and CD4 + / CD8 + showed a high correlation immediately after blood collection, and it was shown that immunity can be evaluated by measuring CD4 + / CD8 + instead of NK activity. Similarly, NK activity and CD4 + · CD25 + showed a high correlation immediately after blood collection, and it was shown that immunity can be evaluated by measuring CD4 + · CD25 + instead of NK activity.

なお得られた回帰式によれば、NK活性20%(Y=20)に対応するCD4+/CD8の値(X)は2.178、CD4+・CD25+の値(X)は21.91%となる。したがって、通常、NK活性の値が20%以上であるときに免疫能が正常と評価している場合には、CD4+/CD8の値が2.178以下、あるいはCD4+・CD25+の値が21.91%以下という基準で同様の評価を行うことができる。   According to the obtained regression equation, the CD4 + / CD8 value (X) corresponding to NK activity 20% (Y = 20) is 2.178, and the CD4 + · CD25 + value (X) is 21.91%. . Therefore, when the immunity is normally evaluated when the NK activity value is 20% or more, the CD4 + / CD8 value is 2.178 or less, or the CD4 + · CD25 + value is 21.91. Similar evaluations can be made on the basis of% or less.

CD4+/CD8+とCD4+・CD25+との関係についても検討した。図4は、CD4+/CD8+とCD4+・CD25+との関係を示すグラフである。CD4+/CD8+とCD4+・CD25+とは高い正の相関を示した(相関係数0.815)。   The relationship between CD4 + / CD8 + and CD4 + · CD25 + was also examined. FIG. 4 is a graph showing the relationship between CD4 + / CD8 + and CD4 + · CD25 +. CD4 + / CD8 + and CD4 + · CD25 + showed a high positive correlation (correlation coefficient 0.815).

3.同一個体における各パラメータの検討
文書により同意を得た健常人ボランティア2名を被検者とし、温熱ストレスをかける直前、並びに、かけた直後、3時間後、6時間後、12時間後、24時間後に採血し、直ちに上記1と同様の手順でPBMCを採取した。温熱ストレスとして、遠赤外線全身加温装置を用い、60分間全身加温を負荷した。この負荷により、被検者2名の直腸温度は39℃まで上昇した。
3. Examination of each parameter in the same individual Two healthy volunteers who have obtained consent in writing are subjects, immediately before applying thermal stress, immediately after applying, 3 hours, 6 hours, 12 hours, 24 hours Later, blood was collected and PBMCs were collected immediately by the same procedure as described above. As a thermal stress, whole body warming was applied for 60 minutes using a far infrared whole body warming device. This load increased the rectal temperature of the two subjects to 39 ° C.

採取したPBMCを直ちに上記1と同様手順の細胞障害性試験と上記2と同様手順のフローサイトメトリーに供し、NK活性(40:1)、CD4+/CD8+、及びCD4+・CD25+を測定した。得られた測定値を元に、NK活性とCD4+/CD8+との相関性、並びに、NK活性とCD4+・CD25+との相関性を検討した。結果を図5と図6に示す。図5(a)は一方の被検者におけるNK活性とCD4+/CD8+との関係を示すグラフ、図5(b)は一方の被検者におけるNK活性とCD4+・CD25+との関係を示すグラフである。図6(a)は他方の被検者におけるNK活性とCD4+/CD8+との関係を示すグラフ、図6(b)は他方の被検者におけるNK活性とCD4+・CD25+との関係を示すグラフである。図5,6に示すように、CD4+/CD8+とCD4+・CD25+はいずれもNK活性と強い負の相関を示した。特に、CD4+/CD8+についてはいずれの個体でも相関係数が0.97以上であり、CD4+/CD8+とNK活性とはほぼ同一視できることが示された。
以上より、同一個体においてCD4+/CD8+あるいはCD4+・CD25+の変動を調べることにより、免疫能の変動を正確に把握できることが示された。
The collected PBMC was immediately subjected to the cytotoxicity test in the same procedure as in the above 1 and the flow cytometry in the same procedure as in the above 2, and NK activity (40: 1), CD4 + / CD8 +, and CD4 + · CD25 + were measured. Based on the measured values obtained, the correlation between NK activity and CD4 + / CD8 + and the correlation between NK activity and CD4 + · CD25 + were examined. The results are shown in FIGS. FIG. 5 (a) is a graph showing the relationship between NK activity and CD4 + / CD8 + in one subject, and FIG. 5 (b) is a graph showing the relationship between NK activity and CD4 + · CD25 + in one subject. is there. FIG. 6 (a) is a graph showing the relationship between NK activity and CD4 + / CD8 + in the other subject, and FIG. 6 (b) is a graph showing the relationship between NK activity and CD4 + · CD25 + in the other subject. is there. As shown in FIGS. 5 and 6, both CD4 + / CD8 + and CD4 + · CD25 + showed a strong negative correlation with NK activity. In particular, for CD4 + / CD8 +, the correlation coefficient was 0.97 or more in any individual, indicating that CD4 + / CD8 + and NK activity can be almost identical.
From the above, it was shown that by examining the change of CD4 + / CD8 + or CD4 + · CD25 + in the same individual, the fluctuation of immunity can be accurately grasped.

なお、図5(a)のグラフから回帰式「Y=28.284−4.983X」、図5(b)のグラフから「Y=32.924−0.974X」が得られた。これらの式からNK活性20%(Y=20)に相当する各パラメータ値(X)を計算すると、CD4+/CD8+は1.662、CD4+・CD25+は13.27となる。これらのパラメータ値は、図5の被検者に固有の基準値となり得る。同様に、図6(a)のグラフから回帰式「Y=71.199−27.264X」、図6(b)のグラフから「Y=55.521−1.779X」が得られた。これらの式からNK活性20%(Y=20)に相当する各パラメータ値(X)を計算すると、CD4+/CD8+は1.878、CD4+・CD25+は19.97となる。これらのパラメータ値は、図6の被検者に固有の基準値となり得る。   The regression equation “Y = 28.284-4.983X” was obtained from the graph of FIG. 5A, and “Y = 32.924-0.974X” was obtained from the graph of FIG. 5B. When each parameter value (X) corresponding to NK activity 20% (Y = 20) is calculated from these equations, CD4 + / CD8 + is 1.661 and CD4 + · CD25 + is 13.27. These parameter values can be reference values specific to the subject in FIG. Similarly, a regression equation “Y = 71.199-27.264X” was obtained from the graph of FIG. 6A, and “Y = 55.521-1.1.779X” was obtained from the graph of FIG. When each parameter value (X) corresponding to NK activity 20% (Y = 20) is calculated from these equations, CD4 + / CD8 + is 1.878 and CD4 + · CD25 + is 19.97. These parameter values can be reference values specific to the subject in FIG.

NK活性と経過時間との関係を表すグラフである。It is a graph showing the relationship between NK activity and elapsed time. NK活性とCD4+/CD8+との関係を示すグラフである。It is a graph which shows the relationship between NK activity and CD4 + / CD8 +. NK活性とCD4+・CD25+との関係を示すグラフである。It is a graph which shows the relationship between NK activity and CD4 + * CD25 +. CD4+/CD8とCD4+・CD25+との関係を示すグラフである。It is a graph which shows the relationship between CD4 + / CD8 and CD4 + * CD25 +. (a)は一方の被検者におけるNK活性とCD4+/CD8+との関係を示すグラフ、(b)は一方の被検者におけるNK活性とCD4+・CD25+との関係を示すグラフである。(A) is a graph showing the relationship between NK activity and CD4 + / CD8 + in one subject, and (b) is a graph showing the relationship between NK activity and CD4 + · CD25 + in one subject. (a)は他方の被検者におけるNK活性とCD4+/CD8+との関係を示すグラフ、(b)は他方の被検者におけるNK活性とCD4+・CD25+との関係を示すグラフである。(A) is a graph showing the relationship between NK activity and CD4 + / CD8 + in the other subject, and (b) is a graph showing the relationship between NK activity and CD4 + · CD25 + in the other subject.

Claims (8)

生体から単離された末梢血単核細胞の集団におけるCD4+細胞の数とCD8+細胞の数との比を指標として、前記生体の免疫能を評価することを特徴とする免疫能の評価方法。   A method for evaluating immunity, characterized in that the immunity of the living body is evaluated using a ratio between the number of CD4 + cells and the number of CD8 + cells in a population of peripheral blood mononuclear cells isolated from the living body as an index. 生体から単離された末梢血単核細胞の集団におけるCD4+・CD25+細胞の数の比率を指標として、前記生体の免疫能を評価することを特徴とする免疫能の評価方法。   A method for evaluating immunity, comprising evaluating the immunity of the living body using as an index the ratio of the number of CD4 + / CD25 + cells in a population of peripheral blood mononuclear cells isolated from the living body. CD4+細胞の数とCD8+細胞の数との比あるいはCD4+・CD25+細胞の数の比率を、予め設定された基準値と比較することにより、前記生体の免疫能を評価することを特徴とする請求項1又は2に記載の免疫能の評価方法。   The immunity of the living body is evaluated by comparing the ratio of the number of CD4 + cells and the number of CD8 + cells or the ratio of the number of CD4 + · CD25 + cells with a preset reference value. 3. The method for evaluating immunity according to 1 or 2. 前記基準値は、生体から単離された直後の末梢血単核細胞におけるナチュラルキラー活性との相関性を有する値であることを特徴とする請求項3に記載の免疫能の評価方法。   4. The method for evaluating immune capacity according to claim 3, wherein the reference value is a value having a correlation with natural killer activity in peripheral blood mononuclear cells immediately after being isolated from a living body. 請求項1に記載の免疫能の評価方法に用いるための免疫能評価用キットであって、CD4+細胞に特異的な抗体と、CD8+細胞に特異的な抗体とを含むことを特徴とする免疫能評価用キット。   An immunity evaluation kit for use in the method for evaluating immunity according to claim 1, comprising an antibody specific for CD4 + cells and an antibody specific for CD8 + cells. Evaluation kit. さらにCD4+・CD25+細胞に特異的な抗体を含むことを特徴とする請求項5に記載の免疫能評価用キット。   The kit for evaluating immunity according to claim 5, further comprising an antibody specific for CD4 + / CD25 + cells. 請求項2に記載の免疫能の評価方法に用いるための免疫能評価用キットであって、CD4+・CD25+細胞に特異的な抗体を含むことを特徴とする免疫能評価用キット。   A kit for evaluating immunity for use in the method for evaluating immunity according to claim 2, comprising an antibody specific for CD4 + / CD25 + cells. さらにCD4+細胞に特異的な抗体とCD8+細胞に特異的な抗体と含むことを特徴とする請求項7に記載の免疫能評価用キット。   The kit for evaluating immunity according to claim 7, further comprising an antibody specific for CD4 + cells and an antibody specific for CD8 + cells.
JP2007087984A 2007-03-29 2007-03-29 Evaluation method of natural killer activity Active JP5144950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087984A JP5144950B2 (en) 2007-03-29 2007-03-29 Evaluation method of natural killer activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087984A JP5144950B2 (en) 2007-03-29 2007-03-29 Evaluation method of natural killer activity

Publications (2)

Publication Number Publication Date
JP2008249367A true JP2008249367A (en) 2008-10-16
JP5144950B2 JP5144950B2 (en) 2013-02-13

Family

ID=39974515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087984A Active JP5144950B2 (en) 2007-03-29 2007-03-29 Evaluation method of natural killer activity

Country Status (1)

Country Link
JP (1) JP5144950B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007704A (en) * 2011-06-27 2013-01-10 Takeda Takahisa Immune tendency discrimination and presentation system
WO2017213249A1 (en) * 2016-06-09 2017-12-14 学校法人川崎学園 Method for testing natural killer cell functions
CN113125719A (en) * 2021-04-16 2021-07-16 浙江普罗亭健康科技有限公司 6 antibody kit for monitoring human immune state and application
CN114686431A (en) * 2022-03-30 2022-07-01 益诺思生物技术南通有限公司 Method and model for evaluating immunotoxicity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101992170B1 (en) 2017-08-30 2019-06-24 (주)에스엠티바이오 Method of immune score determination by measuring NK cells proliferation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121755A (en) * 1987-09-30 1989-05-15 Sanofi Sa Immunological calibration kit and immunological calibration
WO2007014420A1 (en) * 2005-08-02 2007-02-08 Centenary Institute Of Cancer Medicine And Cell Biology Method for identifying regulatory t cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121755A (en) * 1987-09-30 1989-05-15 Sanofi Sa Immunological calibration kit and immunological calibration
WO2007014420A1 (en) * 2005-08-02 2007-02-08 Centenary Institute Of Cancer Medicine And Cell Biology Method for identifying regulatory t cells

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007704A (en) * 2011-06-27 2013-01-10 Takeda Takahisa Immune tendency discrimination and presentation system
WO2017213249A1 (en) * 2016-06-09 2017-12-14 学校法人川崎学園 Method for testing natural killer cell functions
JPWO2017213249A1 (en) * 2016-06-09 2019-06-06 学校法人 川崎学園 Test method of natural killer cell function
JP7019188B2 (en) 2016-06-09 2022-02-15 学校法人 川崎学園 How to test natural killer cell function
CN113125719A (en) * 2021-04-16 2021-07-16 浙江普罗亭健康科技有限公司 6 antibody kit for monitoring human immune state and application
CN114686431A (en) * 2022-03-30 2022-07-01 益诺思生物技术南通有限公司 Method and model for evaluating immunotoxicity
CN114686431B (en) * 2022-03-30 2023-09-15 益诺思生物技术南通有限公司 Immunotoxicity evaluation method and model

Also Published As

Publication number Publication date
JP5144950B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
Ruff et al. Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity
JP5805368B2 (en) Immunological monitoring based on IP-10
Pesenacker et al. Control of tissue‐localized immune responses by human regulatory T cells
Pierer et al. Association of anticytomegalovirus seropositivity with more severe joint destruction and more frequent joint surgery in rheumatoid arthritis
Zorio et al. Assessment of sepsis-induced immunosuppression at ICU discharge and 6 months after ICU discharge
Animut et al. Febrile illnesses of different etiology among outpatients in four health centers in Northwestern Ethiopia
JPH06505332A (en) Treatment and diagnostic methods using total leukocyte surface antigen
JP2009521690A (en) Improved monocyte activation test that is better able to detect non-endotoxin pyrogen contaminants in medical products
JP7008739B2 (en) Cell-mediated immune response assay
JP5992393B2 (en) Preparation method
Zheng et al. Comparative study of the lymphocyte change between COVID-19 and non-COVID-19 pneumonia cases suggesting uncontrolled inflammation might not be the main reason of tissue injury
JP5144950B2 (en) Evaluation method of natural killer activity
JPWO2013168602A1 (en) Methods for detecting disseminated intravascular coagulation syndrome or infectious disseminated intravascular coagulation syndrome
Darmochwal-Kolarz et al. The immunophenotype of patients with recurrent pregnancy loss
CN103760345B (en) A kind of kit and application thereof utilizing peripheral blood detection m tuberculosis infection
Rose et al. Bronchoalveolar lavage as a research tool
KR101483883B1 (en) A novel method for assessing immuno-activity without cell counting
JP2017528734A (en) Anti-lymphocyte autoantibodies as diagnostic biomarkers
Solanky et al. Utility of plasma microbial cell-free DNA decay kinetics after aortic valve replacement for Bartonella endocarditis: case report
Morgan et al. Flagellin-specific CD4 cytokine production in Crohn disease and controls is limited to a small subset of antigen-induced CD40L+ T cells
Augustine et al. Comparison of ATP production in whole blood and lymphocyte proliferation in response to phytohemagglutinin
RU2498311C2 (en) Method for assessing tuberculosis activity in children and adolescents
Bauman et al. Canine memory T-cell subsets in health and disease
Dabo et al. Diagnosis of malaria and typhoid fevers using basic tools: a comparative analysis of a retrospective data with a prospective evaluation in an endemic setting
Dzik et al. When monocytes and platelets compete: The effect of platelet count on the flow cytometric measurement of monocyte CD36

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350