JP2008249363A - 濁度計 - Google Patents

濁度計 Download PDF

Info

Publication number
JP2008249363A
JP2008249363A JP2007087913A JP2007087913A JP2008249363A JP 2008249363 A JP2008249363 A JP 2008249363A JP 2007087913 A JP2007087913 A JP 2007087913A JP 2007087913 A JP2007087913 A JP 2007087913A JP 2008249363 A JP2008249363 A JP 2008249363A
Authority
JP
Japan
Prior art keywords
light
liquid
sample liquid
liquid surface
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087913A
Other languages
English (en)
Inventor
Toshiichi Kobayashi
敏一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2007087913A priority Critical patent/JP2008249363A/ja
Publication of JP2008249363A publication Critical patent/JP2008249363A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】表面散乱光方式によって濁度を主に前方散乱光で測定することができる濁度計を提供する。
【解決手段】試料液16が導入され、試料液の液面18に下方から光20を照射することができる測定槽10と、上記試料液の液面に下方から光を照射する光源12と、試料液の液面の上方に配置され、光源から試料液の液面に下方から光を照射したときに試料液中で生じる散乱光22を受光する受光部14とを具備する濁度計とする。
【選択図】図1

Description

本発明は、試料液の濁度を測定する濁度計に関する。
濁度とは、試料液の濁りの程度を表すものである。試料液の濁度は、一般に濁度計によって測定されており、濁度計の測定方式としては、散乱光・透過光方式、表面散乱光方式、透過光方式、散乱光方式、積分球方式、微粒子カウント方式などがある。いずれの方式も、試料液に光を照射し、試料液中の粒子による吸収、散乱、屈折などによって変化する光量を測定することにより、試料液の濁度を求めるものである。
上述した測定方式のうち、表面散乱光方式は、試料液の液面に上方から光を当て、その液面からの散乱光を試料液の液面の上方で測定して濁度を測定するものであり、光源側、受光部側のいずれもが試料液と接する窓を必要としないため、上記窓の汚れによる誤差の発生がないという点で優れている。
しかし、上述した表面散乱光方式による濁度計は、下記のような問題点を有する。
(a)試料液の液面の上方に光源および受光部を配置する場合、光源からの光の入射方向に対する受光部の配置角度はほぼ90度以内に限定される(例えば、特許文献1、2参照)。したがって、受光部では主に後方散乱光(粒子に光が当たったときに粒子の後方に散乱する光)を検出することになるが、後方散乱光は散乱光量が少ないため、検出感度が低い。
(b)散乱光は、粒子の大きさ(粒径の大きさ)と照射する光の波長との関係により、散乱パターンが異なる。一般に、後方散乱光の強度は粒径の大きさによる差が小さいが、前方散乱光(粒子に光が当たったときに粒子の前方に散乱する光)は粒径が大きくなるほど強度を増す。特に、粒径が光波長より大きい粒子の前方散乱光の強度は著しく強い(非特許文献1)。そのため、粒径が光波長よりも大きい粒子(通常は粒径が0.6μmよりも大きい粒子)が含まれる試料液を測定する場合には、どの方向の散乱光を測定するかによって感度に差が生じることになる。一方、上水試験法に定められた濁度計の校正用標準液であるポリスチレン系粒子懸濁液(PSL)には、粒径0.5〜10μmの大きさの粒子が所定の比率で含まれる。そのため、上記ポリスチレン系粒子懸濁液で濁度計の校正を行った後に、その濁度計で粒径が0.6μmよりも小さい粒子が多く含まれる試料液を測定すると、主に後方散乱光により測定する表面散乱光方式の濁度計の測定値が、前方散乱光により測定する方式の濁度計の測定値に比べて非常に高くなる。
実開平7−41454号公報 特開平8−21795号公報 水道協会雑誌・第68巻第1号(第772号)中の論文「濾過水の濁度、微粒子数及びFIの相互関係」
前述した(a)、(b)の問題は、いずれも濁度を主に後方散乱光により測定する方式であることが原因である。
本発明は、前述した事情に鑑みてなされたもので、表面散乱光方式によって濁度を主に前方散乱光で測定することにより、前述した(a)、(b)の問題を解消した濁度計を提供することを目的とする。
本発明は、前記目的を達成するため、試料液が導入され、前記試料液の液面に下方から光を照射することができる測定槽と、前記試料液の液面に下方から光を照射する光源と、前記試料液の液面の上方に配置され、前記光源から前記試料液の液面に下方から光を照射したときに試料液中で生じる散乱光を受光する受光部とを具備することを特徴とする濁度計を提供する。
以下、本発明につきさらに詳しく説明する。本発明の濁度計は、図1に例示するように、測定槽10と、光源12と、受光部14とを具備する。測定槽10は、試料液16が導入され、試料液の液面18に下方から光を照射することができるものである。光源12は、試料液16の液面18に下方から光20を照射することができるものである。受光部14は、試料液16の液面18の上方に配置され、光源12から試料液16の液面18に下方から光20を照射したときに試料液16中で生じる散乱光22を受光するものである。なお、図1において、24は試料液入口、26はコリメーターレンズ、28は集光レンズ、30は受光素子、32は電気信号を示す。
本発明の濁度計は、上述したように、試料液の液面に下方から光を照射し、そのときに試料液中で生じる散乱光を試料液の液面の上方に配置した受光部で検出するので、光源からの光の入射方向に対する受光部の配置角度Aを90度を超える角度とすることができ、したがって濁度を主に前方散乱光で測定することができる。
本発明において、光源は、試料液の液面で光が全反射する入射角で試料液の液面に下方から光を照射することが望ましい。このようにすると、理論上、光源からの光束は液面上の空間に出射することはないため、液面上の空間に配置された受光部には散乱光のみが入ることになり、散乱光対迷光のS/N比が改善される。
上述した試料液の液面で光が全反射する入射角とは、上記液面における光の臨界角を超える角度を言う。上記臨界角とは、光が光学的に密な媒質から疎な媒質に入射する場合、屈折角が90度となるときの入射角を言う。入射角が臨界角に近づくと、光の反射の割合は急激に100%に近づき、入射角が臨界角を超すと、光が全反射するようになる。臨界角の求め方は、図2に例示するとおりである。すなわち、試料液16の液面18への光20の入射角をB、光20が空気32中に出射するときの屈折角をCとすると、空気に対する水の屈折率nは、
n=sinC/sinB
であり、空気に対する水の屈折率nは、1.333であるから、
1.333=sinC/sinB
であり、臨界角の場合はC=90度でsinC=1となるから、
sinB=1/1.333
B=48.6度
となる。したがって、試料液が上水等の水である場合、臨界角は48.6度であり、入射角Bが48.6度を超えると、試料液の液面で光が全反射するようになる。よって、本発明では、入射角Bを48.6度を超える角度とすることが適当である。
本発明の濁度計は、図1に示すように、下記構成(1)〜(4)を有することが好ましい。
(1)測定槽は、試料液の液面に外部の下方から光を照射することができる光入射窓34を有する構成。これにより、光源を測定槽の外部に配置可能となり、液面で光が全反射する条件を満たすことができるとともに、測定槽の容積を小さくすることができるという効果を得ることができる。ただし、測定槽内の試料液中に光源を配置してもよい。
(2)測定槽は、試料液の液面で反射した光36が出射する光出射窓38を有する構成。これにより、光トラップ(後述)を測定槽の外部に配置可能となり、測定槽の容積が小さくても迷光の影響を小さくすることができるという効果を得ることができる。
(3)受光部は、図1に示すように、液面への光の入射箇所40の真上に配置されている構成。これにより、試料液中の粒子からの前方および後方からの散乱光を受光することが可能になるという効果を得ることができる。
(4)試料液の液面で反射した光36を吸収する光トラップ42をさらに有する構成。これにより、試料液中の粒子からの散乱光量対迷光量のS/N比を向上させることができるという効果を得ることができる。ただし、測定槽内の試料液中に光トラップを設けてもよい。
本発明の濁度計は、表面散乱光方式によって濁度を主に前方散乱光で測定することができる。したがって、本発明の濁度計は、下記の効果を奏する。
(ア)受光部では主に散乱光量が多い前方散乱光を検出するため、検出感度が高い。
(イ)濁度を主に前方散乱光で測定するため、一般にラボで用いられる積分球方式による濁度計の測定値との差が少なくなる。
以下、図面を参照して本発明をさらに詳しく説明する。図3〜図6は本発明に係る濁度計の一実施形態を示すもので、図3は概略斜視図、図4は概略正面図、図5は概略平面図、図6は概略側面図である。
本例の濁度計50において、52は測定槽、54は脱泡槽、56は排液槽、58は光源配置室、60は光トラップ室、62は試料液入口、64は排液口、66は透明な材質からなる光入射窓、68は透明な材質からなる光出射窓、70は光源(発光ダイオード)、72は光源カバー、74はコリメーターレンズ、76、78はそれぞれミラー、80は受光部、82は集光レンズ、84は受光素子を示す。測定槽52、脱泡槽54、排液槽56、光源配置室58および光トラップ室60を有する構造体は、プラスチックなどの適宜材質により形成することができる。
本例の濁度計において、試料液86は、試料液入口62から脱泡槽54に導入され、ここで脱泡された後、測定槽52に下部から導入され、次いでオーバーフローにより排液槽56に入り、排液口64から排出される。また、脱泡槽54に導入された試料液の一部はオーバーフローにより排液槽56に入る。
本例の濁度計では、試料液86の液面88に、光源70からの光90がミラー76を経て、光入射窓66を通って上記液面88で光90が全反射する入射角(本例では60度)で下方から照射される。そして、そのときに試料液86中で生じる散乱光92を、液面88への光の入射箇所の真上に配置されている受光部80で受光し、その受光部80の信号に基づいて試料液の濁度を求める。また、試料液の液面で反射した光94は、光出射窓68を通りミラー78を経て光トラップ室60に入り、ここで吸収される。光トラップ室60では、内面を黒色とした暗室を光トラップとして構成してある。
なお、本実施形態の測定槽では、光源側に光入射窓が設けられているため、この光入射窓の汚れの影響を受ける可能性があるが、上水等の低濃度の濁度測定を行う場合には、上記光入射窓の汚れは定期的なメンテナンス時の洗浄によって対応可能である。
本発明の濁度計は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更することが可能である。例えば、光入射窓を設けることなく測定槽内に光源を配置してもよく、光出射窓を設けることなく測定槽内に光トラップを設けてもよい。また、脱泡法や外光を遮る構造などは従来と同様に適宜設計することができる。
本発明に係る濁度計の構成を示す説明図である。 臨界角の求め方を示す説明図である。 本発明に係る濁度計の一実施形態を示す概略斜視図である。 同濁度計の概略正面図である。 同濁度計の概略平面図である。 同濁度計の概略側面図である。
符号の説明
10 測定槽
12 光源
14 受光部
16 試料液
18 液面
20 光
22 散乱光
34 光入射窓
36 光
38 光出射窓
40 光の入射箇所
42 光トラップ
50 濁度計
52 測定槽
58 光源配置室
60 光トラップ室
66 光入射窓
68 光出射窓
70 光源
80 受光部

Claims (6)

  1. 試料液が導入され、前記試料液の液面に下方から光を照射することができる測定槽と、前記試料液の液面に下方から光を照射する光源と、前記試料液の液面の上方に配置され、前記光源から前記試料液の液面に下方から光を照射したときに試料液中で生じる散乱光を受光する受光部とを具備することを特徴とする濁度計。
  2. 前記光源は、前記試料液の液面で光が全反射する入射角で前記試料液の液面に下方から光を照射することを特徴とする請求項1に記載の濁度計。
  3. 前記測定槽は、前記試料液の液面に外部の下方から光を照射することができる光入射窓を有することを特徴とする請求項1または2に記載の濁度計。
  4. 前記測定槽は、前記試料液の液面で反射した光が出射する光出射窓を有することを特徴とする請求項1〜3のいずれか1項に記載の濁度計。
  5. 前記受光部は、前記液面への光の入射箇所の真上に配置されていることを特徴とする請求項1〜4のいずれか1項に記載の濁度計。
  6. 前記試料液の液面で反射した光を吸収する光トラップを有することを特徴とする請求項請求項1〜5のいずれか1項に記載の濁度計。
JP2007087913A 2007-03-29 2007-03-29 濁度計 Pending JP2008249363A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087913A JP2008249363A (ja) 2007-03-29 2007-03-29 濁度計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087913A JP2008249363A (ja) 2007-03-29 2007-03-29 濁度計

Publications (1)

Publication Number Publication Date
JP2008249363A true JP2008249363A (ja) 2008-10-16

Family

ID=39974511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087913A Pending JP2008249363A (ja) 2007-03-29 2007-03-29 濁度計

Country Status (1)

Country Link
JP (1) JP2008249363A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138896A1 (ja) * 2010-05-06 2011-11-10 シャープ株式会社 濁度検知器
US8355132B2 (en) 2007-04-06 2013-01-15 Qiagen Gaithersburg, Inc. Sample adequacy measurement system having a plurality of sample tubes and using turbidity light scattering techniques
US8877507B2 (en) 2007-04-06 2014-11-04 Qiagen Gaithersburg, Inc. Ensuring sample adequacy using turbidity light scattering techniques
US9476895B2 (en) 2007-04-06 2016-10-25 Becton, Dickinson And Company Open platform automated sample processing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355132B2 (en) 2007-04-06 2013-01-15 Qiagen Gaithersburg, Inc. Sample adequacy measurement system having a plurality of sample tubes and using turbidity light scattering techniques
US8877507B2 (en) 2007-04-06 2014-11-04 Qiagen Gaithersburg, Inc. Ensuring sample adequacy using turbidity light scattering techniques
US9476895B2 (en) 2007-04-06 2016-10-25 Becton, Dickinson And Company Open platform automated sample processing system
WO2011138896A1 (ja) * 2010-05-06 2011-11-10 シャープ株式会社 濁度検知器
JP2011237191A (ja) * 2010-05-06 2011-11-24 Sharp Corp 濁度検知器
CN102869981A (zh) * 2010-05-06 2013-01-09 夏普株式会社 浊度检测器
CN102869981B (zh) * 2010-05-06 2015-03-04 夏普株式会社 浊度检测器

Similar Documents

Publication Publication Date Title
US6124937A (en) Method and device for combined absorption and reflectance spectroscopy
US4053229A (en) 2°/90° Laboratory scattering photometer
EP2366100A1 (en) Nephelometric turbidity sensor device
WO2017060105A1 (en) Particle sensor for particle detection
AU2008276127A1 (en) Spatial frequency optical measurement instrument and method
JP2012509486A (ja) 媒体中の固体粒子を分析する方法およびシステム
JP2008249363A (ja) 濁度計
WO2017073143A1 (ja) 微粒子検出装置
EP3321664B1 (en) Functional water concentration sensor
US10948416B2 (en) Method and apparatus for determining a concentration of a substance in a liquid medium
US7411668B2 (en) Light returning target for a photometer
KR101466384B1 (ko) 탁도센서
JP2016153774A (ja) オイルミスト検出装置
JP2006317270A (ja) 濁度計
JP7429161B2 (ja) ToF型距離センサ及び電子機器
US20190302027A1 (en) Method and apparatus for determining solids content in a liquid medium
JP2006242623A (ja) フローサイトメータ及び蛍光集光方法
CN103267744A (zh) 基于直角棱镜的浊度光学检测装置
WO2016129166A1 (ja) オイルミスト検出装置
Belz et al. Fiber optic sample cells for polychromatic detection of dissolved and particulate matter in natural waters
CN101606054B (zh) 线栅监视设备
Zhou et al. Polarization discrimination technique to separate overlapping fluorescence and elastic scattering applied to algae in seawater
Gilerson et al. Properties and potential of a polarization technique for the separation of the overlapping fluorescence and elastic scattering applied to algae in seawater
Ahmed et al. Characteristics of polarization techniques for the separation of the overlapping fluorescence and reflectance applied to algae in seawater
WO2017209685A1 (en) Method and apparatus for determining a concentration of a substance in a liquid medium