JP2008248314A - Method for producing thick steel plate excellent in total elongation and fatigue crack propagation resistance - Google Patents

Method for producing thick steel plate excellent in total elongation and fatigue crack propagation resistance Download PDF

Info

Publication number
JP2008248314A
JP2008248314A JP2007090617A JP2007090617A JP2008248314A JP 2008248314 A JP2008248314 A JP 2008248314A JP 2007090617 A JP2007090617 A JP 2007090617A JP 2007090617 A JP2007090617 A JP 2007090617A JP 2008248314 A JP2008248314 A JP 2008248314A
Authority
JP
Japan
Prior art keywords
less
fatigue crack
crack propagation
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007090617A
Other languages
Japanese (ja)
Other versions
JP5157220B2 (en
Inventor
Tomoyuki Yokota
智之 横田
Hirofumi Otsubo
浩文 大坪
Shigeru Endo
茂 遠藤
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007090617A priority Critical patent/JP5157220B2/en
Publication of JP2008248314A publication Critical patent/JP2008248314A/en
Application granted granted Critical
Publication of JP5157220B2 publication Critical patent/JP5157220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a thick steel plate of thin sheet having ≤20 mm thickness excellent in total elongation and fatigue-cracking propagation resistance, and suitable to a welded structural material which strongly requires the structural safety, such as a vessel. <P>SOLUTION: The steel composed by mass% of 0.03 to <0.10% C, 0.05-0.50% Si, 0.5-2.0% Mn, ≤0.05% P, ≤0.02% S and if necessary, one or more kinds of Cu, Ni, Cr, Mo, Nb, V, Ti, B, Ca and 0.3-0.4 Ceq(=äC}+äMn}/6+äCu+Ni}/15+äCr+Mo+V}/5, wherein, each element shows content by mass.%), and the balance substantially Fe, is heated to 1,000-1,250°C and after rolling at Ar<SB>3</SB>point or higher and in ≥50% accumulated rolling-reduction ratio and at Ar<SB>3</SB>point or higher of rolling-finish temperature, the accelerated cooling is performed from the temperature range of Ar<SB>3</SB>-10°C to Ar<SB>3</SB>-80°C to 600-300°C at ≥10°C/s. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、船舶、海洋構造物、橋梁、建築物、タンクなど構造安全性が強く求められる溶接構造物に好適な、疲労き裂伝播抵抗性に優れた厚鋼板の製造方法に関し、特に伸びの低下が問題となる板厚20mm以下の薄物の厚鋼板のオンライン製造方法に関する。   The present invention relates to a method for producing a thick steel plate excellent in fatigue crack propagation resistance, which is suitable for welded structures such as ships, offshore structures, bridges, buildings, tanks, and the like where structural safety is strongly required. The present invention relates to an on-line manufacturing method of a thin steel plate having a thickness of 20 mm or less, which causes a problem of deterioration.

船舶、海洋構造物、橋梁、建築物、タンクなどの構造物に使用される鋼材は、強度、靭性などの機械的性質や溶接性に優れていることに加えて、常時稼動における繰返し荷重や風、地震等による震動に起因する繰返しに対して構造物の構造安全性を担保しなければならない。   Steel materials used in structures such as ships, offshore structures, bridges, buildings, tanks, etc. have excellent mechanical properties such as strength and toughness and weldability, as well as repeated loads and winds during normal operation. In addition, the structural safety of the structure must be ensured against repeated vibration caused by earthquakes.

繰返し荷重に対しては疲労特性に優れていることが要求され、特に部材の破断といった終局的な破壊を防止するためには、鋼材の有する疲労き裂の伝播抵抗性を向上することが効果的と考える。   It is required to have excellent fatigue characteristics for repeated loads, and in order to prevent ultimate failure such as member breakage, it is effective to improve the resistance to propagation of fatigue cracks in steel materials. I think.

一般的な溶接構造物の場合、溶接止端部は応力集中部になりやすく、溶接による引張残留応力も作用するため疲労き裂の発生源となることが多く、その防止策として、止端部をなめ付け溶接したり、ショットピーニングにより圧縮残留応力を導入することが知られている。   In the case of general welded structures, the weld toe tends to be a stress concentration part, and the tensile residual stress due to welding also acts and often becomes a source of fatigue cracks. It is known to introduce a compressive residual stress by tanning welding or shot peening.

しかしながら、溶接構造物には多数の溶接止端部があり、またコスト的にも負担が大きいため、これらの方法は工業的規模での実施には不適当で、溶接構造物の耐疲労特性は使用される鋼材自体の疲労き裂伝播特性の向上により図られることが多い。   However, since there are a large number of weld toes in the welded structure and the burden is high in cost, these methods are unsuitable for implementation on an industrial scale, and the fatigue resistance characteristics of the welded structure are It is often achieved by improving the fatigue crack propagation characteristics of the steel material used.

これら鋼構造物においては鋼板に対して様々な方向、例えば、圧延方向に対して様々な方向から自由に溶接施工される場合が多く、それゆえ疲労き裂発生・伝播の方向も様々であるため、鋼板の疲労き裂伝播抵抗性能も鋼中における方向を問わずに高い性能をもつことが望ましい。   In these steel structures, welding is often performed in various directions with respect to the steel sheet, for example, in various directions with respect to the rolling direction, and therefore the direction of fatigue crack initiation and propagation is also various. In addition, it is desirable that the fatigue crack propagation resistance performance of the steel plate is high regardless of the direction in the steel.

特許文献1はタンカー用鋼板に関し、その組織をフェライトの第一相ならびにベイナイトおよび/またはパーライトの第二相の混合組織からなり、前記フェライトの平均粒径が20μm以下とすることで湿潤硫化水素環境で耐疲労き裂進展特性に優れることが記載されている。   Patent Document 1 relates to a steel plate for a tanker, and the structure thereof is composed of a mixed structure of a first phase of ferrite and a second phase of bainite and / or pearlite. It is described that it has excellent fatigue crack growth characteristics.

特許文献2には組織を硬質部の素地とこの素地に分散した軟質部とで構成し、両者の硬度差がビッカース硬度で150以上であることを特徴とする疲労き裂進展抑制効果を有する鋼板が記載されている。   Patent Document 2 discloses a steel sheet having a fatigue crack growth-suppressing effect characterized in that the structure is composed of a base of a hard part and a soft part dispersed in the base, and the hardness difference between the two is 150 or more in terms of Vickers hardness. Is described.

特許文献3には断面の鋼組織がフェライトとベイナイトであって、フェライト相は面積率で38%以上52%以下で、そのフェライト相部分の硬さが80HV0.02〜150HV0.02であり、かつフェライト相とベイナイト相の境界が断面内任意の場所に引いた直線上において50〜300カ所/mmの密度で存在することを特徴とする、疲労き裂進展抵抗性に優れた引張り強さが55kgf/mm以上のフェライト・ベイナイト二相鋼が記載されている。 In Patent Document 3, the steel structure of the cross section is ferrite and bainite, the ferrite phase has an area ratio of 38% or more and 52% or less, the hardness of the ferrite phase portion is 80HV0.02-150HV0.02, and The tensile strength with excellent fatigue crack growth resistance is 55 kgf, characterized in that the boundary between the ferrite phase and the bainite phase exists at a density of 50 to 300 locations / mm on a straight line drawn at an arbitrary position in the cross section. Ferritic bainite duplex steel with a / mm 2 or more is described.

特許文献4には疲労き裂進展方向の第二相間の界面から次の第二相への界面との間隔が25μm以下であり、板厚方向の断面組織が面積率で60〜90%のフェライト母相と第二相からなり、第二相の硬さ:Hv(SP)とフェライトの硬さ:Hv(F)が特定の式で示される値を満足し、かつ第二相のアスペクト比:1(長軸長さ)/d(短軸長さ)が1/d>3.42であることを特徴とする疲労き裂伝播特性の優れた鋼材が記載されている。
特許第2785643号公報 特許第2962134号公報 特許第3489243号公報 特許第3434434号公報
Patent Document 4 discloses a ferrite in which the distance from the interface between the second phases in the fatigue crack propagation direction to the interface to the next second phase is 25 μm or less, and the cross-sectional structure in the plate thickness direction is 60 to 90% in area ratio. It consists of a parent phase and a second phase, the hardness of the second phase: Hv (SP) and the hardness of the ferrite: Hv (F) satisfy the value represented by a specific formula, and the aspect ratio of the second phase: A steel material having excellent fatigue crack propagation characteristics is described, wherein 1 (major axis length) / d (minor axis length) is 1 / d> 3.42.
Japanese Patent No. 2785643 Japanese Patent No. 2962134 Japanese Patent No. 3489243 Japanese Patent No. 3434434

ところで、特許文献1〜4記載の発明に係る鋼板はいずれも、疲労き裂伝播抵抗性を向上するために硬質相としてベイナイトあるいはマルテンサイトなどを導入しているが、これら硬質相の利用は全伸びの劣化をもたらす。   By the way, all the steel plates according to the inventions described in Patent Documents 1 to 4 have introduced bainite or martensite as a hard phase in order to improve fatigue crack propagation resistance. It causes deterioration of elongation.

特に、本願で対象としている、圧延と加速冷却制御によるオンラインプロセスにより、疲労き裂伝播抵抗性に優れた厚鋼板を製造する場合、このような硬質相を得るため、冷却停止温度を下げることが必要で、20mm以下の薄物においては、冷却停止温度低下のために全伸びが顕著に低下する問題があった。   In particular, when producing a thick steel plate with excellent fatigue crack propagation resistance by an on-line process by rolling and accelerated cooling control, which is the subject of this application, in order to obtain such a hard phase, the cooling stop temperature can be lowered. Necessary and for thin objects of 20 mm or less, there is a problem that the total elongation is significantly reduced due to a decrease in cooling stop temperature.

しかしながら、船舶、海洋構造物、橋梁、建築物、タンクなどの構造物に使用される鋼材では、規格において全伸び値が規定されることが多く、疲労き裂伝播抵抗性を向上させる場合も、全伸びが規格値を満たすことが前提であるが、従来、疲労き裂伝播抵抗性と全伸びの両者を制御できる製造指針は得られていない。   However, in steel materials used for structures such as ships, marine structures, bridges, buildings, and tanks, the total elongation value is often specified in the standard, and even when improving fatigue crack propagation resistance, Although it is premised on that the total elongation satisfies the standard value, there has not been a production guideline that can control both the fatigue crack propagation resistance and the total elongation.

そこで、本発明は、全伸びに優れ、かつ疲労き裂伝播抵抗性に優れた板厚20mm以下の薄物の厚鋼板の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing a thin steel plate having a thickness of 20 mm or less that is excellent in total elongation and excellent in fatigue crack propagation resistance.

本発明者は、可逆式圧延機による圧延と加速冷却によるオンラインプロセスによって製造される厚鋼板を対象に、全伸びならびに疲労き裂伝播におよぼす化学成分と製造条件の影響を詳細に検討し、板厚20mm未満の厚鋼板の製造法において、C添加量を低くしてCeqを特定の範囲に制御し、冷却停止温度を低くすることで伸びと疲労き裂伝播抵抗性を両立させることを知見した。   The present inventor has studied in detail the influence of chemical composition and manufacturing conditions on total elongation and fatigue crack propagation for thick steel plates manufactured by rolling using a reversible rolling mill and an on-line process by accelerated cooling. In the method of manufacturing a thick steel plate having a thickness of less than 20 mm, it has been found that Ceq is controlled to a specific range by lowering the C addition amount, and both elongation and fatigue crack propagation resistance are achieved by lowering the cooling stop temperature. .

本発明は、得られた知見に更に検討を加えてなされたもので、すなわち、本発明は
1.質量%で、C:0.03%以上、0.10%未満、Si:0.05〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Ceq(={C}+{Mn}/6+{Cu+Ni}/15+{Cr+Mo+V}/5、但し、各元素は含有量(質量%)):0.3〜0.4、残部が実質的にFeからなる鋼を、1000℃以上、1250℃以下に加熱し、Ar点以上で累積圧下率50%以上、圧延終了温度Ar点以上の圧延後、Ar−10℃からAr−80℃の温度域より600℃以下300℃以上まで、10℃/s以上で加速冷却することを特徴とする、全伸びと疲労き裂伝播抵抗性に優れた厚鋼板の製造方法。
2.更に、鋼成分として、質量%で、Cu:0.4%以下、Ni:0.8%以下、Cr:0.4%以下、Mo:0.4%以下、Nb:0.05%以下、V:0.10%以下、Ti:0.03%以下、B:0.003%以下、Ca:0.005%以下の一種または二種以上を含有することを特徴とする1記載の全伸びと疲労き裂伝播抵抗性に優れた厚鋼板の製造方法。
The present invention has been made by further studying the obtained knowledge. C: 0.03% or more, less than 0.10%, Si: 0.05 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02% or less, Ceq (= {C} + {Mn} / 6 + {Cu + Ni} / 15 + {Cr + Mo + V} / 5, where each element is contained (mass%)): 0.3 to 0.4 the steel balance being substantially Fe, 1000 ° C. or higher, then heated to 1250 ° C. or less, the cumulative rolling reduction of 50% or more at Ar 3 point or more, after rolling over the rolling end temperature Ar 3 point, Ar 3 -10 Production of a thick steel plate excellent in total elongation and fatigue crack propagation resistance, characterized by accelerated cooling at a rate of 10 ° C / s or higher from a temperature range of from 3 ° C to Ar 3-80 ° C to 600 ° C or lower and 300 ° C or higher Method.
2. Further, as a steel component, in mass%, Cu: 0.4% or less, Ni: 0.8% or less, Cr: 0.4% or less, Mo: 0.4% or less, Nb: 0.05% or less, 1. Total elongation according to 1, characterized by containing one or more of V: 0.10% or less, Ti: 0.03% or less, B: 0.003% or less, Ca: 0.005% or less And a method for producing thick steel plates with excellent fatigue crack propagation resistance.

本発明によれば、全伸びに優れ、かつ高い疲労き裂伝播抵抗性を有した、板厚20mm未満の厚鋼板の製造方法が得られ、例え、応力集中部や溶接部等から疲労き裂が経年的に発生したとしても、その後の伝播を遅らせて、鋼構造物の安全性を高めることが可能であり、産業上極めて有用である。   According to the present invention, a method for producing a thick steel sheet having a thickness of less than 20 mm and excellent in total elongation and having high fatigue crack propagation resistance can be obtained. For example, a fatigue crack can be obtained from a stress-concentrated part or a welded part. Even if it occurs over time, it is possible to delay the subsequent propagation and increase the safety of the steel structure, which is extremely useful in the industry.

本発明の成分組成、製造条件の規定について詳細に説明する。
[成分組成]説明において%は質量%とする。

Cは強度を確保するため0.03%以上添加する。0.10%以上添加すると、圧延・背加速冷却制御によるオンラインプロセスにおいて、全伸びの劣化を伴うとともに、溶接性が劣化するため、0.03%以上0.10%未満添加する。
The composition of the present invention and the definition of production conditions will be described in detail.
[Ingredient composition] In the description, “%” means “mass%”.
C
C is added in an amount of 0.03% or more to ensure strength. When 0.10% or more is added, in the online process based on rolling / accelerated cooling control, the total elongation is deteriorated and weldability is deteriorated. Therefore, 0.03% to less than 0.10% is added.

Si
Siは脱酸と強度を確保するため0.05%以上添加する。0.50%を超えて添加すると溶接性、靭性が劣化するため、0.05〜0.50%、好ましくは0.10〜0.40%とする。
Si
Si is added in an amount of 0.05% or more to ensure deoxidation and strength. If added over 0.50%, weldability and toughness deteriorate, so 0.05 to 0.50%, preferably 0.10 to 0.40%.

Mn
Mnは焼入れ性の増加により、強度、靭性を確保させるため、0.5%以上添加する。2.0%を超えると全伸びが低下するとともに溶接性を劣化させるため、0.5〜2.0%、好ましくは0.8〜1.6%を添加する。
Mn
Mn is added in an amount of 0.5% or more in order to ensure strength and toughness by increasing hardenability. If it exceeds 2.0%, the total elongation is lowered and the weldability is deteriorated, so 0.5 to 2.0%, preferably 0.8 to 1.6% is added.


Pは不純物で、靭性を劣化させるため、その含有量は少ないほど良く、製造コスト上、0.05%以下、好ましくは0.03%以下とする。
P
P is an impurity and degrades toughness. Therefore, its content is preferably as small as possible, and is 0.05% or less, preferably 0.03% or less in terms of manufacturing cost.


Sは不純物で、靭性を劣化させるため、その含有量は少ないほど良く、製造コスト上、0.02%以下、好ましくは0.01%以下とする。
S
Since S is an impurity and degrades toughness, the content is preferably as small as possible, and is 0.02% or less, preferably 0.01% or less in terms of manufacturing cost.

Ceq(={C}+{Mn}/6+{Cu+Ni}/15+{Cr+Mo+V}/5、但し、各元素は含有量(質量%)):0.3〜0.4
Ceq(={C}+{Mn}/6+{Cu+Ni}/15+{Cr+Mo+V}/5、但し、各元素は含有量(質量%))は、本願で対象としている、圧延と加速冷却制御によるオンラインプロセスにより、疲労き裂伝播抵抗性に優れた厚鋼板を製造するに際し、500MPa級の強度を確保するために規定する。Ceqが0.3未満であると500MPa級の強度を確保するのが困難になり、一方0.4を超えると強度の不必要な上昇と全伸びの劣化を招く。
Ceq (= {C} + {Mn} / 6 + {Cu + Ni} / 15 + {Cr + Mo + V} / 5, where each element is contained (mass%)): 0.3 to 0.4
Ceq (= {C} + {Mn} / 6 + {Cu + Ni} / 15 + {Cr + Mo + V} / 5, where each element is a content (% by mass)), which is the subject of the present application, depends on rolling and accelerated cooling control When producing a thick steel plate having excellent fatigue crack propagation resistance by an online process, it is specified in order to ensure a strength of 500 MPa class. When Ceq is less than 0.3, it becomes difficult to secure a strength of 500 MPa, while when it exceeds 0.4, an unnecessary increase in strength and deterioration of the total elongation are caused.

以上が本発明に係る鋼の基本成分組成であるが、更に強度、靭性、溶接性および耐候性を向上させたり、付与する場合、Cu,Ni、Cr,Mo、Nb,V,Ti,Bの一種または二種以上を添加する。   The above is the basic component composition of the steel according to the present invention. In the case of further improving or imparting strength, toughness, weldability and weather resistance, Cu, Ni, Cr, Mo, Nb, V, Ti, B Add one or two or more.

Cu
Cuは固溶により強度を上昇させ、また耐候性を向上させるので、所望する特性に応じて添加する。添加する場合、0.4%を超えると溶接性が損なわれ、鋼材製造時に疵が生じやすくなるので添加する場合は、0.4%以下とし、好ましくは、0.3%以下とする。
Cu
Cu increases the strength by solid solution and improves the weather resistance, so it is added according to the desired properties. When added, if it exceeds 0.4%, the weldability is impaired, and flaws are likely to occur during the manufacture of the steel material. Therefore, when added, the content is made 0.4% or less, preferably 0.3% or less.

Ni
Niは低温靭性や耐候性を向上させ、またCuを添加した場合の熱間脆性を改善するので、所望する特性に応じて添加する。0.8%を超えると溶接性が損なわれ、鋼材コストが上昇するので添加する場合は、0.8%以下とし、好ましくは、0.6%以下とする。
Ni
Ni improves low-temperature toughness and weather resistance, and improves hot brittleness when Cu is added, so it is added according to desired characteristics. If it exceeds 0.8%, the weldability is impaired and the steel material cost increases, so when added, the content is made 0.8% or less, preferably 0.6% or less.

Cr
Crは強度を上昇させ、また耐候性を向上させるので、所望する特性に応じて添加する。0.4%を超えると溶接性と靭性が損なわれるので添加する場合は、0.4%以下とし、好ましくは、0.3%以下とする。
Cr
Cr increases the strength and improves the weather resistance, so it is added according to the desired properties. If over 0.4%, weldability and toughness are impaired, so when added, the content is made 0.4% or less, preferably 0.3% or less.

Mo
Moは強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.4%を超えると溶接性と靭性が損なわれるので添加する場合は0.4%以下とし、好ましくは、0.2%以下とする。
Mo
Since Mo increases strength, it is added according to desired characteristics. When added, if it exceeds 0.4%, weldability and toughness are impaired, so when added, the content is made 0.4% or less, preferably 0.2% or less.

Nb
Nbは圧延時のオーステナイト再結晶を抑制し細粒化を図ると同時に、加速冷却後の空冷時に析出し強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.05%を超えると靭性が損なわれるので0.05%以下とし、好ましくは0.03%以下とする。
Nb
Nb suppresses austenite recrystallization during rolling to achieve finer grains, and at the same time, precipitates during air cooling after accelerated cooling and increases strength. Therefore, Nb is added according to desired characteristics. When added, if it exceeds 0.05%, the toughness is impaired, so 0.05% or less, preferably 0.03% or less.


Vは、加速冷却後の空冷時に析出し強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.05%を超えると溶接性と靭性が損なわれるので0.05%以下、好ましくは0.03%以下とする。
V
V precipitates during air cooling after accelerated cooling and increases the strength, so it is added according to the desired characteristics. When added, if it exceeds 0.05%, weldability and toughness are impaired, so 0.05% or less, preferably 0.03% or less.

Ti
Tiは、強度を上昇させ、溶接部靭性を向上させるので、所望する特性に応じて添加する。添加する場合、0.03%を超えると鋼材コストが上昇するので0.03%%以下、好ましくは0.02%以下とする。
Ti
Ti increases strength and improves weld toughness, so it is added according to desired properties. When adding, if it exceeds 0.03%, the steel material cost increases, so 0.03% or less, preferably 0.02% or less.


Bは焼入れ性を高め、強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.003%%を超えると溶接性が低下するので、0.003%以下、好ましくは0.002%以下とする。
B
B increases the hardenability and increases the strength, so it is added according to the desired properties. When adding, if it exceeds 0.003%, weldability deteriorates, so 0.003% or less, preferably 0.002% or less.

Ca
Caは硫化物形態制御を通して鋼鈑の靭性などを改善する目的で添加する。添加する場合、0.005%を超えるとその効果が飽和するため、上限を0.005%とする。
Ca
Ca is added for the purpose of improving the toughness of the steel plate through the sulfide form control. When adding, if the content exceeds 0.005%, the effect is saturated, so the upper limit is made 0.005%.

[製造条件]
本発明に係る鋼材は上記に記載の成分の鋼を、1000℃以上、1250℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行いAr点以上で圧延を終了した後、Ar−10℃からからAr−80℃の温度域より600℃以下300℃以上まで、10℃/s以上で加速冷却することにより得られる。
[Production conditions]
Steel components according to the steel according to the present invention described above, 1000 ° C. or higher, then heated to 1250 ° C. or less to complete the rolling at a cumulative reduction of 50% or more of the rolling performed Ar 3 point or more by Ar 3 or more points Thereafter, it is obtained by accelerated cooling at a rate of 10 ° C./s or higher from Ar 3 −10 ° C. to a temperature range of Ar 3 −80 ° C. to 600 ° C. or lower and 300 ° C. or higher.

1.加熱温度
加熱温度は圧延温度を確保するため1000℃以上とする。1250℃を超えると鋼の結晶粒が粗大化するので上限を1250℃以下とする。
1. Heating temperature The heating temperature is set to 1000 ° C. or higher in order to secure the rolling temperature. If the temperature exceeds 1250 ° C, the crystal grains of the steel become coarse, so the upper limit is set to 1250 ° C or less.

2.圧延条件
圧延終了温度がAr点を下回る場合、二相域圧延となり、全伸びが劣化する。また、Ar点以上の累積圧下率が50%を下回る場合、オーステナイト粒の微細化を通じたフェライト粒の微細化や組織微細化が不十分となり鋼板の基本性能である靭性が劣化する。
2. Rolling conditions When the rolling end temperature is lower than the Ar 3 point, the rolling becomes two-phase region and the total elongation deteriorates. Moreover, when the cumulative rolling reduction of 3 or more points of Ar is less than 50%, the refinement | miniaturization of a ferrite grain and refinement | miniaturization of a microstructure through refinement | miniaturization of an austenite grain become inadequate, and toughness which is the basic performance of a steel plate deteriorates.

3.加速冷却条件
加速冷却開始温度は、初析フェライトを析出させて疲労き裂伝播抵抗性を向上させるためにAr−10℃以下とする。また、過剰なフェライト析出による強度低下を避けるため、加速冷却開始温度の下限をAr点−80℃とする。
3. Accelerated cooling condition The accelerated cooling start temperature is set to Ar 3 -10 ° C. or lower in order to precipitate pro-eutectoid ferrite and improve fatigue crack propagation resistance. Moreover, in order to avoid strength reduction due to excessive ferrite precipitation, the lower limit of the accelerated cooling start temperature is set to Ar 3 point-80 ° C.

加速冷却停止温度は、未変態オーステナイトを硬質相に変態させるため、600℃以下、300℃以上とする。加速冷却停止温度が600℃を超える場合、疲労き裂伝播抵抗性が劣化するようになり、十分な強度、具体的には490MPa以上の強度が得られない場合がある。   The accelerated cooling stop temperature is set to 600 ° C. or lower and 300 ° C. or higher in order to transform untransformed austenite into a hard phase. When the accelerated cooling stop temperature exceeds 600 ° C., fatigue crack propagation resistance is deteriorated, and sufficient strength, specifically, a strength of 490 MPa or more may not be obtained.

一方、加速冷却停止温度が300℃を下回る場合、上述した成分系の鋼板では十分な全伸び、具体的には全厚引張試験(試験片形状JIS1A号)で15%の伸びが得られなくなる。冷却速度は、冷却中に疲労き裂伝播特性を劣化させるフェライトの粗大化やこれを通じた組織の粗大化を防ぐために10℃/s以上とする。   On the other hand, when the accelerated cooling stop temperature is lower than 300 ° C., the above-described component steel plate cannot achieve a sufficient total elongation, specifically, a 15% elongation cannot be obtained in a full thickness tensile test (test piece shape JIS1A). The cooling rate is set to 10 ° C./s or more in order to prevent coarsening of ferrite that deteriorates fatigue crack propagation characteristics during cooling and coarsening of the structure through this.

冷却速度の推奨範囲は、十分な粗大化抑制効果を得るために30℃/s以上、鋼板の残留応力低減のため60℃/s以下である。   The recommended range of the cooling rate is 30 ° C./s or more for obtaining a sufficient coarsening suppression effect, and 60 ° C./s or less for reducing the residual stress of the steel sheet.

なお、上記温度は鋼材の表面温度とし、冷却速度は鋼材の厚さ方向の平均冷却速度とする。また、Ar点はAr(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo(但し、元素記号は鋼材中の各元素の質量%での含有量を表す。)等で求めることができる。 The above temperature is the surface temperature of the steel material, and the cooling rate is the average cooling rate in the thickness direction of the steel material. The Ar 3 point is determined by Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (where the element symbol represents the content in mass% of each element in the steel). be able to.

上述した成分組成と製造条件の組合わせにより、全伸びに優れ、かつ高い疲労き裂伝播抵抗性を有した板厚20mm以下の厚鋼鈑が得られる。   By the combination of the above-described component composition and manufacturing conditions, a thick steel plate having a thickness of 20 mm or less having excellent total elongation and high fatigue crack propagation resistance can be obtained.

表1に示す成分組成の鋼片を使い、表2に示す製造条件にて板厚12mmの鋼板を作成し、得られた鋼板の機械的性質を調査した。   Using steel slabs having the composition shown in Table 1, steel sheets having a thickness of 12 mm were prepared under the production conditions shown in Table 2, and the mechanical properties of the obtained steel sheets were investigated.

疲労き裂伝播特性は、図1に示す片側切欠単純引張型疲労試験片にて、板厚方向にき裂が進展する時の疲労き裂伝播挙動を調査した。試験条件は、ASTM E647に準拠し、応力比0.1、周波数15Hz,室温大気中にて実施した。   With regard to fatigue crack propagation characteristics, the fatigue crack propagation behavior when a crack propagates in the plate thickness direction was investigated using a single-side notched simple tensile fatigue test piece shown in FIG. The test conditions were based on ASTM E647, and the stress ratio was 0.1, the frequency was 15 Hz, and the room temperature atmosphere was used.

引張強度は板幅方向に採取したJISZ2201 1A号の全厚試験片を用いた引張試験により求めた。靭性はシャルピー衝撃試験により0℃の吸収エネルギー:vE0(J)を求めた。シャルピー衝撃試験片(JISZ2202)は板厚中心より、圧延方向に平行に採取した。   The tensile strength was determined by a tensile test using a full thickness test piece of JISZ2201 1A sampled in the plate width direction. As for toughness, the absorbed energy at 0 ° C .: vE0 (J) was determined by Charpy impact test. A Charpy impact test piece (JISZ2202) was taken in parallel to the rolling direction from the center of the plate thickness.

引張、シャルピー、疲労き裂伝播試験結果を同じ表2に示す。成分、製造方法を本発明規定範囲内とした板番No.3〜No.6、No.15、17、18の鋼板は、いずれにおいてもΔK=15MPa√mでの疲労き裂伝播速度8.75x10−9m/cycle以下とであり、耐疲労き裂伝播抵抗に優れる。 Table 2 shows the results of tensile, Charpy, and fatigue crack propagation tests. The plate number No. in which the components and the production method are within the specified range of the present invention. 3-No. 6, no. The steel sheets of 15, 17, and 18 all have a fatigue crack propagation rate of 8.75 × 10 −9 m / cycle or less at ΔK = 15 MPa√m, and are excellent in resistance to fatigue crack propagation.

また、TSが490MPa以上、伸びが15%以上、また構造用鋼板の基本特性としてvE0(J)が200J以上を満足し、優れた全伸びと耐疲労き裂伝播抵抗を示し、かつ、構造用鋼として適当な強度、靭性を確保していることが認められた。   In addition, TS is 490 MPa or more, elongation is 15% or more, vE0 (J) is 200 J or more as a basic characteristic of structural steel sheet, excellent overall elongation and resistance to fatigue crack propagation, and for structural use It was confirmed that the steel had adequate strength and toughness.

一方、C添加量が本発明範囲を超える鋼種A、Bを使った実施例No.1、2の鋼板は、疲労き裂伝播速度は本発明例程度と優れているものの、全伸びが低い。   On the other hand, Example No. using steel types A and B in which the addition amount of C exceeds the range of the present invention. The steel sheets 1 and 2 have excellent fatigue crack propagation speeds of the order of the present invention, but the total elongation is low.

Ceqが本発明範囲に満たない鋼種Gを使った実施例No.7の鋼板は、50キロ級鋼として必要な強度が得られていない。Ceqが本発明範囲を超える鋼種Hを使った実施例No.8の鋼板は、強度が高すぎて全伸びが劣化する。   Example No. using steel grade G with Ceq less than the scope of the present invention. The steel plate No. 7 does not have the required strength as 50 kg class steel. Example No. using steel grade H with Ceq exceeding the range of the present invention. The steel plate No. 8 has too high strength and deteriorates in total elongation.

Mn添加量が本発明範囲を超える鋼種Iを使った実施例No.9の鋼板も、実施例8の鋼板と同様の傾向にある。   Example No. using steel type I in which the amount of Mn added exceeds the range of the present invention. The steel plate 9 has the same tendency as the steel plate of Example 8.

実施例No10から14および16,19は、鋼種Eをさまざまな製造条件で製造したものである。実施例10は、スラブ加熱温度が本発明範囲を超えており、オーステナイト粒径が粗大化したため、圧延後鋼板の靭性が劣化している。   In Examples Nos. 10 to 14, 16 and 19, steel type E was manufactured under various manufacturing conditions. In Example 10, the slab heating temperature exceeded the range of the present invention, and the austenite grain size was coarsened, so that the toughness of the steel sheet after rolling was deteriorated.

Ar点以上の圧下率が本発明規定値:50%を下回るNo.11の鋼板も、オーステナイトの再結晶が十分でなく、冷却後に粗い組織となっているため、靭性が劣化している。 Ar No. 3 Rolling ratio of 3 points or more is less than 50% of the present invention specified value. Steel No. 11 also has poor toughness because austenite is not sufficiently recrystallized and has a rough structure after cooling.

圧延終了温度がAr点を下回る(二相域圧延)No.12の鋼板は、全伸びが劣化している。加速冷却開始温度がAr点を上回るNo.13の鋼板は初析フェライトが析出せず、疲労き裂伝播抵抗が劣る。 Rolling finish temperature is below Ar 3 point (two-phase rolling) No. 12 steel plate has deteriorated in total elongation. The accelerated cooling start temperature is higher than the Ar 3 point. In No. 13, the pro-eutectoid ferrite does not precipitate, and the fatigue crack propagation resistance is inferior.

冷却速度が本発明範囲から外れるNo.14の鋼板は、強度が低下するとともに、組織の粗大化により靭性が劣化、また疲労き裂伝播抵抗も低下している。加速冷却時の停止温度が本発明範囲を超えるNo.16の鋼板は、優れた全伸びを示すものの、疲労き裂伝播抵抗に劣る。   The cooling rate deviates from the scope of the present invention. In the steel plate No. 14, the strength decreases, the toughness deteriorates due to the coarsening of the structure, and the fatigue crack propagation resistance also decreases. No. in which the stop temperature during accelerated cooling exceeds the range of the present invention. Steel plate No. 16 exhibits excellent total elongation, but is inferior in fatigue crack propagation resistance.

加速冷却時の停止温度が本発明範囲よりも低いNo.19の鋼板は、優れた疲労き裂伝播抵抗を示すものの、全伸びに劣る。   No. in which the stop temperature during accelerated cooling is lower than the range of the present invention. No. 19 steel plate exhibits excellent fatigue crack propagation resistance but is inferior in total elongation.

Figure 2008248314
Figure 2008248314

Figure 2008248314
Figure 2008248314

片側切欠単純引張型疲労試験片の形状を示す図。The figure which shows the shape of a one-side notch simple tension type fatigue test piece.

Claims (2)

質量%で、C:0.03%以上、0.10%未満、Si:0.05〜0.50%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Ceq(={C}+{Mn}/6+{Cu+Ni}/15+{Cr+Mo+V}/5、但し、各元素は含有量(質量%)):0.3〜0.4、残部が実質的にFeからなる鋼を、1000℃以上、1250℃以下に加熱し、Ar点以上で累積圧下率50%以上、圧延終了温度Ar点以上の圧延後、Ar−10℃からAr−80℃の温度域より600℃以下300℃以上まで、10℃/s以上で加速冷却することを特徴とする、全伸びと疲労き裂伝播抵抗性に優れた厚鋼板の製造方法。 C: 0.03% or more, less than 0.10%, Si: 0.05 to 0.50%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02% or less, Ceq (= {C} + {Mn} / 6 + {Cu + Ni} / 15 + {Cr + Mo + V} / 5, where each element is contained (mass%)): 0.3 to 0.4 the steel balance being substantially Fe, 1000 ° C. or higher, then heated to 1250 ° C. or less, the cumulative rolling reduction of 50% or more at Ar 3 point or more, after rolling over the rolling end temperature Ar 3 point, Ar 3 -10 Production of a thick steel plate excellent in total elongation and fatigue crack propagation resistance, characterized by accelerated cooling at a rate of 10 ° C / s or higher from a temperature range of from 3 ° C to Ar 3-80 ° C to 600 ° C or lower and 300 ° C or higher Method. 更に、鋼成分として、質量%で、Cu:0.4%以下、Ni:0.8%以下、Cr:0.4%以下、Mo:0.4%以下、Nb:0.05%以下、V:0.10%以下、Ti:0.03%以下、B:0.003%以下、Ca:0.005%以下の一種または二種以上を含有することを特徴とする請求項1記載の全伸びと疲労き裂伝播抵抗性に優れた厚鋼板の製造方法。   Further, as a steel component, in mass%, Cu: 0.4% or less, Ni: 0.8% or less, Cr: 0.4% or less, Mo: 0.4% or less, Nb: 0.05% or less, 2. V: 0.10% or less, Ti: 0.03% or less, B: 0.003% or less, Ca: 0.005% or less. A method for producing thick steel plates with excellent total elongation and fatigue crack propagation resistance.
JP2007090617A 2007-03-30 2007-03-30 Manufacturing method of thick steel plate with excellent total elongation and fatigue crack propagation resistance Active JP5157220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090617A JP5157220B2 (en) 2007-03-30 2007-03-30 Manufacturing method of thick steel plate with excellent total elongation and fatigue crack propagation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090617A JP5157220B2 (en) 2007-03-30 2007-03-30 Manufacturing method of thick steel plate with excellent total elongation and fatigue crack propagation resistance

Publications (2)

Publication Number Publication Date
JP2008248314A true JP2008248314A (en) 2008-10-16
JP5157220B2 JP5157220B2 (en) 2013-03-06

Family

ID=39973608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090617A Active JP5157220B2 (en) 2007-03-30 2007-03-30 Manufacturing method of thick steel plate with excellent total elongation and fatigue crack propagation resistance

Country Status (1)

Country Link
JP (1) JP5157220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196109A (en) * 2009-02-25 2010-09-09 Jfe Steel Corp Method for manufacturing thick steel plate superior in total elongation and fatigue crack propagation resistance
JP2010222701A (en) * 2009-02-26 2010-10-07 Jfe Steel Corp Steel for crude oil tanker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217418A (en) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JPH06322477A (en) * 1993-05-11 1994-11-22 Sumitomo Metal Ind Ltd Steel excellent in fatigue crack propagating property in wet hydrogen sulfide environment
JP2002105534A (en) * 2000-09-27 2002-04-10 Nippon Steel Corp Method for manufacturing high-tensile steel having excellent fracture resistance
JP2005314812A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk Method for producing steel having reduced difference in strength in sheet thickness direction and having excellent fatigue crack propagation property
JP2005314811A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk Method for producing steel having excellent ductility and fatigue crack propagation resistance
JP2006274372A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk High strength high deformability steel sheet having excellent ductile crack generation resistance, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217418A (en) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JPH06322477A (en) * 1993-05-11 1994-11-22 Sumitomo Metal Ind Ltd Steel excellent in fatigue crack propagating property in wet hydrogen sulfide environment
JP2002105534A (en) * 2000-09-27 2002-04-10 Nippon Steel Corp Method for manufacturing high-tensile steel having excellent fracture resistance
JP2005314812A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk Method for producing steel having reduced difference in strength in sheet thickness direction and having excellent fatigue crack propagation property
JP2005314811A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk Method for producing steel having excellent ductility and fatigue crack propagation resistance
JP2006274372A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk High strength high deformability steel sheet having excellent ductile crack generation resistance, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196109A (en) * 2009-02-25 2010-09-09 Jfe Steel Corp Method for manufacturing thick steel plate superior in total elongation and fatigue crack propagation resistance
JP2010222701A (en) * 2009-02-26 2010-10-07 Jfe Steel Corp Steel for crude oil tanker

Also Published As

Publication number Publication date
JP5157220B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP4721956B2 (en) Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics
JP2009270197A (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and production methods thereof
JP4670371B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP4770235B2 (en) Manufacturing method of steel with excellent ductility and fatigue crack propagation characteristics
WO1996010654A1 (en) Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
JP4687122B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP2014095146A (en) Steel sheet for welded structure excellent in fatigue crack propagation resistance and its manufacturing method
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
JP5151079B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP5050423B2 (en) Steel with excellent fatigue crack propagation resistance
JP5266836B2 (en) Method of manufacturing a steel material excellent in fatigue crack propagation resistance and ductility
JP6981546B2 (en) Thick steel plate and its manufacturing method
JP2008240033A (en) High strength low yield ratio steel material having excellent toughness in weld heat-affected zone
JP4741715B2 (en) High strength steel pipe and manufacturing method thereof
JP2006118007A (en) High strength steel having excellent toughness in weld heat affected zone
JP2014095145A (en) Steel sheet for welded structure excellent in weldability and fatigue crack propagation resistance and its manufacturing method
JP5157220B2 (en) Manufacturing method of thick steel plate with excellent total elongation and fatigue crack propagation resistance
JP5470904B2 (en) TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate
RU2269587C1 (en) Cold-resistant steel with enhanced strength
JP4956907B2 (en) High-strength, high-deformability thick steel plate with excellent ductile crack initiation characteristics and its manufacturing method
JP4314962B2 (en) Composite steel sheet with excellent fatigue characteristics and method for producing the same
JP4419572B2 (en) Method for producing a composite steel sheet having excellent fatigue properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5157220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250