JP2008244403A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2008244403A
JP2008244403A JP2007086800A JP2007086800A JP2008244403A JP 2008244403 A JP2008244403 A JP 2008244403A JP 2007086800 A JP2007086800 A JP 2007086800A JP 2007086800 A JP2007086800 A JP 2007086800A JP 2008244403 A JP2008244403 A JP 2008244403A
Authority
JP
Japan
Prior art keywords
insulating film
upper electrode
forming
semiconductor device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007086800A
Other languages
Japanese (ja)
Inventor
Hironobu Kayazono
広宣 仮屋園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007086800A priority Critical patent/JP2008244403A/en
Publication of JP2008244403A publication Critical patent/JP2008244403A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device in which the capacity of an MOS type capacitor can be increased without increasing the area of the MOS type capacitor. <P>SOLUTION: This semiconductor device provided with the MOS type capacitor is provided with an insulating film 3 formed on a semiconductor substrate 1, an upper electrode 40 formed on the insulating layer 3, a plurality of openings 42 formed on the upper electrode 40, and an impurity region 7 formed on the semiconductor substrate 1 positioned below each of the openings 42. The openings 42 and the impurity regions 7 are preferably disposed in a staggered way. The semiconductor device is further provided with an element isolation film 2 for isolating the element region where the MOS capacitor is formed, and the insulating film 3 and the upper electrode 40 are formed on the entire surface of the semiconductor substrate 1 positioned in the element region. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、MOS型キャパシタを具備する半導体装置及びその製造方法に関する。特に本発明は、MOS型キャパシタの面積を増やさずにMOS型キャパシタの容量を増やすことができる半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device having a MOS capacitor and a method for manufacturing the same. In particular, the present invention relates to a semiconductor device capable of increasing the capacitance of a MOS capacitor without increasing the area of the MOS capacitor and a method for manufacturing the same.

図4(A)は、従来のMOS型キャパシタ120の構成を説明するための断面図である。本図に示すMOS型キャパシタ120は、シリコン基板101に形成された第1導電型のウェル101a、絶縁膜103、ポリシリコン電極である上部電極104、及び第1導電型の不純物領域107を有している。絶縁膜103はウェル101a上に位置しており、上部電極104は絶縁膜103上に位置している。不純物領域107は、上部電極104の周囲を取り囲むように形成されており、下部電極として機能するウェル101aに電位を与える為に設けられている。   FIG. 4A is a cross-sectional view for explaining the configuration of a conventional MOS capacitor 120. The MOS capacitor 120 shown in this figure has a first conductivity type well 101a formed on a silicon substrate 101, an insulating film 103, an upper electrode 104 which is a polysilicon electrode, and a first conductivity type impurity region 107. ing. The insulating film 103 is located on the well 101 a and the upper electrode 104 is located on the insulating film 103. The impurity region 107 is formed so as to surround the periphery of the upper electrode 104, and is provided to apply a potential to the well 101a functioning as the lower electrode.

上記した構成を有するMOS型キャパシタ120において、容量を大きくすることを目的として大面積化した場合、上部電極104及び下部電極であるウェル101aを十分に低抵抗化しないと周波数特性(応答性)が低下する。上部電極104の低抵抗化は、十分な量の不純物を導入したり、タングステンシリサイドを形成したりするなどにより比較的簡単に達成できるが、ウェル101aの低抵抗化は困難である。ウェル101aがある程度の大きさの抵抗値を有する場合、ウェル101aのうち上部電極104の中心部の下方に位置する部分は、不純物領域107からの距離が長くなる為、不純物領域107の電位変化に追従することができなくなる。   In the MOS capacitor 120 having the above-described configuration, when the area is increased for the purpose of increasing the capacity, the frequency characteristics (responsiveness) must be reduced unless the resistance of the upper electrode 104 and the well 101a which is the lower electrode is sufficiently lowered. descend. Reducing the resistance of the upper electrode 104 can be achieved relatively easily by introducing a sufficient amount of impurities or forming tungsten silicide, but it is difficult to reduce the resistance of the well 101a. In the case where the well 101a has a certain resistance value, a portion of the well 101a located below the central portion of the upper electrode 104 has a longer distance from the impurity region 107, so that the potential of the impurity region 107 changes. It becomes impossible to follow.

このため、図4(B)に示すように従来は、MOS型キャパシタの容量を大きくしたい場合、上部電極104がある大きさ以下のMOS型キャパシタ120を複数形成し、これらMOS型キャパシタ120を並列に接続していた(例えば特許文献1)。   Therefore, as shown in FIG. 4B, conventionally, when it is desired to increase the capacitance of a MOS capacitor, a plurality of MOS capacitors 120 having a size equal to or smaller than a certain size are formed, and these MOS capacitors 120 are connected in parallel. (For example, Patent Document 1).

特開2002−217304号公報JP 2002-217304 A

上記したように、MOS型キャパシタの容量を大きくすることを目的として、上部電極がある大きさ以下のMOS型キャパシタを複数形成した場合、MOS型キャパシタの面積のうち、ウェルに電位を与える為の不純物領域が占める割合が大きくなる。これは、不純物領域の外周のうち上部電極側の部分しかウェルに電位を与える作用を行っていない為である。このため、MOS型キャパシタの面積が大きくなっていた。   As described above, in order to increase the capacitance of the MOS capacitor, when a plurality of MOS capacitors having an upper electrode of a certain size or less are formed, the potential for applying a potential to the well out of the area of the MOS capacitor The ratio occupied by the impurity region is increased. This is because only the portion on the upper electrode side of the outer periphery of the impurity region acts to apply a potential to the well. For this reason, the area of the MOS capacitor has been increased.

本発明は上記のような事情を考慮してなされたものであり、その目的は、MOS型キャパシタの面積を増やさずにMOS型キャパシタの容量を増やすことができる半導体装置及びその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device capable of increasing the capacitance of the MOS capacitor without increasing the area of the MOS capacitor and a method for manufacturing the same. There is.

上記課題を解決するため、本発明に係る半導体装置は、MOS型キャパシタを具備する半導体装置であって、
前記MOS型キャパシタは、
半導体基板に形成され、下部電極として機能する第1の不純物領域と、
前記第1の不純物領域上に形成された絶縁膜と、
前記絶縁膜上に形成された上部電極と、
前記上部電極に形成された複数の開口部と、
前記複数の開口部それぞれの下方に位置する前記第1の不純物領域に形成され、前記第1の不純物領域より不純物濃度が高い第2の不純物領域と、
を具備する。
In order to solve the above problems, a semiconductor device according to the present invention is a semiconductor device including a MOS capacitor,
The MOS type capacitor is
A first impurity region formed on the semiconductor substrate and functioning as a lower electrode;
An insulating film formed on the first impurity region;
An upper electrode formed on the insulating film;
A plurality of openings formed in the upper electrode;
A second impurity region formed in the first impurity region located below each of the plurality of openings and having an impurity concentration higher than that of the first impurity region;
It comprises.

この半導体装置によれば、前記開口部の下方に位置する前記第1の不純物領域には、下部電極である前記第1の不純物領域に電位を与える為の前記第2の不純物領域が形成されている。前記第2の不純物領域は、全周が前記第1の不純物領域に囲まれているため、全周が前記第2の不純物領域に電位を与える作用を行う。このため、従来と比較して前記第2の不純物領域の面積を小さくすることができ、その結果、MOS型キャパシタの面積を増やさずにMOS型キャパシタの容量を増やすことができる。前記複数の開口部及び前記複数の第2の不純物領域が千鳥状に配置されている場合、特にこの効果が大きくなる。   According to this semiconductor device, the second impurity region for applying a potential to the first impurity region which is the lower electrode is formed in the first impurity region located below the opening. Yes. Since the entire circumference of the second impurity region is surrounded by the first impurity region, the entire circumference acts to apply a potential to the second impurity region. Therefore, the area of the second impurity region can be reduced as compared with the conventional case, and as a result, the capacitance of the MOS capacitor can be increased without increasing the area of the MOS capacitor. This effect is particularly great when the plurality of openings and the plurality of second impurity regions are arranged in a staggered manner.

前記MOSキャパシタが形成されている素子領域を分離する素子分離膜を更に具備し、前記絶縁膜及び前記上部電極は、前記素子領域内に位置する前記半導体基板の全面に形成されているのが好ましい。   It is preferable that the device further includes an element isolation film for isolating the element region where the MOS capacitor is formed, and the insulating film and the upper electrode are formed on the entire surface of the semiconductor substrate located in the element region. .

前記上部電極上に位置する層間絶縁膜と、前記層間絶縁膜に形成され、前記不純物領域それぞれ上に位置する複数の接続孔と、前記複数の接続孔それぞれ内に埋め込まれた導電体と、前記層間絶縁膜上に形成され、前記複数の導電体を介して前記複数の不純物領域に接続する導電パターンとを具備し、前記導電パターンは、前記素子領域全ての上方に形成されていてもよい。   An interlayer insulating film positioned on the upper electrode; a plurality of connection holes formed in the interlayer insulating film and positioned on each of the impurity regions; a conductor embedded in each of the plurality of connection holes; A conductive pattern formed on an interlayer insulating film and connected to the plurality of impurity regions via the plurality of conductors, and the conductive pattern may be formed above all of the element regions.

本発明に係る半導体装置の製造方法は、半導体基板に素子分離膜を形成し、素子領域を分離する工程と、
前記素子領域に位置する前記半導体基板の全面に絶縁膜を形成する工程と、
前記絶縁膜上及び前記素子分離膜上に導電膜を形成する工程と、
前記導電膜を選択的に除去することにより、前記絶縁膜の全面上に上部電極を形成し、かつ前記上部電極に複数の開口部を形成する工程と、
前記開口部内に位置する前記半導体基板に不純物領域を形成する工程とを具備する。
A method for manufacturing a semiconductor device according to the present invention includes a step of forming an element isolation film on a semiconductor substrate and isolating an element region;
Forming an insulating film on the entire surface of the semiconductor substrate located in the element region;
Forming a conductive film on the insulating film and the element isolation film;
Forming the upper electrode on the entire surface of the insulating film by selectively removing the conductive film, and forming a plurality of openings in the upper electrode;
Forming an impurity region in the semiconductor substrate located in the opening.

前記不純物領域を形成する工程の後に、前記素子分離膜上、前記上部電極上及び前記複数の不純物領域上に層間絶縁膜を形成する工程と、前記層間絶縁膜に、前記複数の不純物領域それぞれ上に位置する接続孔を形成する工程と、前記複数の接続孔それぞれ内に導電体を埋め込む工程と、前記層間絶縁膜上及び前記導電体上に、前記上部電極の上方に位置する導電パターンを形成する工程とを具備してもよい。   After the step of forming the impurity region, a step of forming an interlayer insulating film on the element isolation film, the upper electrode, and the plurality of impurity regions; and a plurality of impurity regions on the interlayer insulating film. Forming a connection hole located in each of the plurality of connection holes, embedding a conductor in each of the plurality of connection holes, and forming a conductive pattern located above the upper electrode on the interlayer insulating film and on the conductor. You may comprise the process to do.

以下、図面を参照して本発明の実施形態について説明する。図1(A),(B)、図2(A),(B)、及び図3(A)の各図は、本発明の実施形態に係る半導体装置の製造方法を説明するための断面図である。図1(C)、図2(C)、及び図3(B)は、それぞれ図1(B)、図2(B)、及び図3(A)のA−A´断面図である。本図に示す半導体装置は、MOS型キャパシタを有している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1A, 1 </ b> B, 2 </ b> A, 2 </ b> B, and 3 </ b> A are cross-sectional views for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. It is. FIGS. 1C, 2C, and 3B are cross-sectional views taken along line AA ′ of FIGS. 1B, 2B, and 3A, respectively. The semiconductor device shown in this figure has a MOS capacitor.

まず図1(A)に示すように、シリコン基板1に第1導電型の不純物を導入し、MOS型キャパシタが形成される素子領域にウェル1aを形成する。ウェル1aは、MOS型キャパシタの下部電極として機能する。次いで、シリコン基板1に素子分離膜2を形成し、素子領域を他の領域から分離する。次いで、シリコン基板1を熱酸化する。これにより、素子領域に位置するシリコン基板1の全面に絶縁膜3が形成される。次いで、絶縁膜3上及び素子分離膜2上に、ポリシリコン膜4をCVD法により形成する。   First, as shown in FIG. 1A, a first conductivity type impurity is introduced into a silicon substrate 1, and a well 1a is formed in an element region where a MOS type capacitor is formed. The well 1a functions as a lower electrode of the MOS capacitor. Next, an element isolation film 2 is formed on the silicon substrate 1 to isolate the element region from other regions. Next, the silicon substrate 1 is thermally oxidized. Thereby, the insulating film 3 is formed on the entire surface of the silicon substrate 1 located in the element region. Next, a polysilicon film 4 is formed on the insulating film 3 and the element isolation film 2 by a CVD method.

次いで図1(B)に示すように、ポリシリコン膜4上にフォトレジスト膜を塗布し、このフォトレジスト膜を露光及び現像する。これによりポリシリコン膜4上にはレジストパターン50が形成される。次いで、レジストパターン50をマスクとして、ポリシリコン膜4をエッチングする。これにより、MOS型キャパシタの上部電極40が形成される。   Next, as shown in FIG. 1B, a photoresist film is applied on the polysilicon film 4, and this photoresist film is exposed and developed. As a result, a resist pattern 50 is formed on the polysilicon film 4. Next, the polysilicon film 4 is etched using the resist pattern 50 as a mask. Thereby, the upper electrode 40 of the MOS capacitor is formed.

図1(B),(C)に示すように、上部電極40は、絶縁膜3の全面上及びその周囲の素子分離膜2上に位置しており、絶縁膜3上に位置する部分に、複数の開口部42を有している。複数の開口部42は、絶縁膜3の全面上に、千鳥状に配置されている。開口部42は、互いの距離が略同じように配置されるのが好ましい。   As shown in FIGS. 1B and 1C, the upper electrode 40 is located on the entire surface of the insulating film 3 and on the element isolation film 2 around it, and in a portion located on the insulating film 3, A plurality of openings 42 are provided. The plurality of openings 42 are arranged in a staggered pattern on the entire surface of the insulating film 3. The openings 42 are preferably arranged so that their distances are substantially the same.

その後、図2(A)に示すようにレジストパターン50を除去する。次いで、上部電極40及び素子分離膜2をマスクとして、シリコン基板1に第1導電型の不純物を導入する。これにより開口部42の下方に位置するシリコン基板1には、それぞれウェル1aより不純物濃度が高い不純物領域7が形成される。不純物領域7はウェル1aに所定の電位を与える機能を有しており、素子領域に位置するウェル1aの全面に、千鳥状に配置されている。開口部42が互いの距離が略同じように配置されている場合、不純物領域7も互いの距離が略同じになるように配置される。   Thereafter, the resist pattern 50 is removed as shown in FIG. Next, a first conductivity type impurity is introduced into the silicon substrate 1 using the upper electrode 40 and the element isolation film 2 as a mask. As a result, impurity regions 7 each having an impurity concentration higher than that of the well 1a are formed in the silicon substrate 1 located below the opening 42. The impurity regions 7 have a function of applying a predetermined potential to the well 1a, and are arranged in a staggered manner on the entire surface of the well 1a located in the element region. When the openings 42 are arranged so that their distances are substantially the same, the impurity regions 7 are also arranged so that their distances are substantially the same.

次いで、図2(B),(C)に示すように、上部電極40上及び開口部42内を含む全面上に、層間絶縁膜8をCVD法により形成する。次いで、層間絶縁膜8上にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして層間絶縁膜8をエッチングする。これにより層間絶縁膜8及び絶縁膜3には、上部電極40上に位置する複数の接続孔8a、及び不純物領域7それぞれ上に位置する接続孔8bが形成される。複数の接続孔8aは、上部電極40のうち素子分離膜2上に位置する部分の上に位置しており、絶縁膜3を取り囲むように配置されている。その後、レジストパターンを除去する。   Next, as shown in FIGS. 2B and 2C, the interlayer insulating film 8 is formed on the entire surface including the upper electrode 40 and the inside of the opening 42 by the CVD method. Next, a resist pattern (not shown) is formed on the interlayer insulating film 8, and the interlayer insulating film 8 is etched using this resist pattern as a mask. As a result, a plurality of connection holes 8 a located on the upper electrode 40 and connection holes 8 b located on the impurity regions 7 are formed in the interlayer insulating film 8 and the insulating film 3. The plurality of connection holes 8 a are located on the portion of the upper electrode 40 that is located on the element isolation film 2, and are disposed so as to surround the insulating film 3. Thereafter, the resist pattern is removed.

次いで、図3(A),(B)に示すように、層間絶縁膜8上及び接続孔8a,8b内にタングステン膜をCVD法により形成する。次いで、層間絶縁膜8上に位置するタングステン膜をCMP法により除去する。これにより、接続孔8a内にはタングステンプラグ9aが埋め込まれ、接続孔8b内にはタングステンプラグ9bが埋め込まれる。   Next, as shown in FIGS. 3A and 3B, a tungsten film is formed by CVD on the interlayer insulating film 8 and in the connection holes 8a and 8b. Next, the tungsten film located on the interlayer insulating film 8 is removed by the CMP method. Thereby, the tungsten plug 9a is embedded in the connection hole 8a, and the tungsten plug 9b is embedded in the connection hole 8b.

次いで、タングステンプラグ9a,9b上及び層間絶縁膜8上にAl合金膜を形成する。次いで、このAl合金膜上にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとしてAl合金膜をエッチングする。これにより、層間絶縁膜8上には、複数のタングステンプラグ9aを相互に接続する導電パターン10a、及び複数のタングステンプラグ9bを相互に接続する導電パターン10bが形成される。導電パターン10bは、平面形状が略正方形又は長方形である。導電パターン10aは、平面形状が略ロ字状であり、導電パターン10bの周囲を囲むように配置されている。   Next, an Al alloy film is formed on the tungsten plugs 9 a and 9 b and the interlayer insulating film 8. Next, a resist pattern (not shown) is formed on the Al alloy film, and the Al alloy film is etched using the resist pattern as a mask. As a result, a conductive pattern 10a for connecting the plurality of tungsten plugs 9a to each other and a conductive pattern 10b for connecting the plurality of tungsten plugs 9b to each other are formed on the interlayer insulating film 8. The conductive pattern 10b has a substantially square or rectangular planar shape. The conductive pattern 10a has a substantially square shape in plan view, and is disposed so as to surround the periphery of the conductive pattern 10b.

以上、本発明の実施形態によれば、上部電極40には複数の開口部42が形成されており、開口部42の下方に位置するシリコン基板1には、下部電極であるウェル1aに電位を与える為の不純物領域7が形成されている。不純物領域7は、全周が上部電極40に囲まれているため、全周がウェルに電位を与える作用を行う。このため、従来と比較して不純物領域7の面積を小さくすることができ、その結果、MOS型キャパシタの面積を増やさずにMOS型キャパシタの容量を増やすことができる。この効果は、複数の不純物領域7の相互間隔が略同じである場合、特に大きくなる。   As described above, according to the embodiment of the present invention, the upper electrode 40 has a plurality of openings 42, and the silicon substrate 1 located below the openings 42 has a potential applied to the well 1 a that is the lower electrode. Impurity regions 7 are provided for application. Since the entire periphery of the impurity region 7 is surrounded by the upper electrode 40, the entire periphery performs an action of applying a potential to the well. For this reason, the area of the impurity region 7 can be reduced as compared with the prior art, and as a result, the capacitance of the MOS capacitor can be increased without increasing the area of the MOS capacitor. This effect is particularly great when the intervals between the plurality of impurity regions 7 are substantially the same.

なお、上部電極40は、絶縁膜3の全面及び複数の不純物領域7それぞれの上方に配置されていてもよい。上部電極40、層間絶縁膜8、及び導電パターン10bの積層構造もキャパシタとして機能するが、上部電極40、及び導電パターン10bそれぞれが、素子領域の全面の上方に位置すると、このキャパシタの容量も従来と比較して大きくなる。   The upper electrode 40 may be disposed on the entire surface of the insulating film 3 and above each of the plurality of impurity regions 7. The laminated structure of the upper electrode 40, the interlayer insulating film 8, and the conductive pattern 10b also functions as a capacitor. However, when each of the upper electrode 40 and the conductive pattern 10b is located above the entire surface of the element region, the capacitance of this capacitor is also conventional. Compared to

尚、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。例えば層間絶縁膜8を形成する前に、開口部42内に位置する絶縁膜3は除去されていても良い。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the insulating film 3 located in the opening 42 may be removed before the interlayer insulating film 8 is formed.

(A),(B)は本発明の実施形態に係る半導体装置の製造方法を説明するための断面図、(C)は(B)のA−A´断面図。(A), (B) is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on embodiment of this invention, (C) is AA 'sectional drawing of (B). (A),(B)は図1の次の工程を説明するための断面図、(C)は(B)のA−A´断面図。(A), (B) is sectional drawing for demonstrating the next process of FIG. 1, (C) is AA 'sectional drawing of (B). (A)は図2の次の工程を説明するための断面図、(B)は(A)のA−A´断面図。(A) is sectional drawing for demonstrating the next process of FIG. 2, (B) is AA 'sectional drawing of (A). 従来のMOS型キャパシタ120の構成を説明するための図であり、(A)は断面図、(B)は平面図。It is a figure for demonstrating the structure of the conventional MOS type | mold capacitor 120, (A) is sectional drawing, (B) is a top view.

符号の説明Explanation of symbols

1,101…シリコン基板、1a,101a…ウェル、2…素子分離膜、3,103…絶縁膜、4,104…ポリシリコン膜、7,107…不純物領域、8…層間絶縁膜、8a,8b…接続孔、9a,9b…タングステンプラグ、10a,10b…導電パターン、40…上部電極、42…開口部、50…レジストパターン、120…MOS型キャパシタ DESCRIPTION OF SYMBOLS 1,101 ... Silicon substrate, 1a, 101a ... Well, 2 ... Element isolation film, 3,103 ... Insulating film, 4,104 ... Polysilicon film, 7, 107 ... Impurity region, 8 ... Interlayer insulating film, 8a, 8b ... Connection hole, 9a, 9b ... Tungsten plug, 10a, 10b ... conductive pattern, 40 ... upper electrode, 42 ... opening, 50 ... resist pattern, 120 ... MOS type capacitor

Claims (6)

MOS型キャパシタを具備する半導体装置であって、
前記MOS型キャパシタは、
半導体基板に形成され、下部電極として機能する第1の不純物領域と、
前記第1の不純物領域上に形成された絶縁膜と、
前記絶縁膜上に形成された上部電極と、
前記上部電極に形成された複数の開口部と、
前記複数の開口部それぞれの下方に位置する前記第1の不純物領域に形成され、前記第1の不純物領域より不純物濃度が高い第2の不純物領域と、
を具備する半導体装置。
A semiconductor device comprising a MOS capacitor,
The MOS type capacitor is
A first impurity region formed on the semiconductor substrate and functioning as a lower electrode;
An insulating film formed on the first impurity region;
An upper electrode formed on the insulating film;
A plurality of openings formed in the upper electrode;
A second impurity region formed in the first impurity region located below each of the plurality of openings and having an impurity concentration higher than that of the first impurity region;
A semiconductor device comprising:
前記複数の開口部及び前記複数の第2の不純物領域は千鳥状に配置されている請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the plurality of openings and the plurality of second impurity regions are arranged in a staggered manner. 前記MOSキャパシタが形成されている素子領域を分離する素子分離膜を更に具備し、
前記絶縁膜及び前記上部電極は、一枚の電極として前記素子領域内に位置する前記半導体基板の全面に形成されている請求項1又は2に記載の半導体装置。
An element isolation film for isolating the element region where the MOS capacitor is formed;
The semiconductor device according to claim 1, wherein the insulating film and the upper electrode are formed on the entire surface of the semiconductor substrate located in the element region as one electrode.
前記上部電極上及び前記複数の開口部内に位置する層間絶縁膜と、
前記層間絶縁膜に形成され、前記不純物領域それぞれ上に位置する複数の接続孔と、
前記複数の接続孔それぞれ内に埋め込まれた導電体と、
前記層間絶縁膜上に形成され、前記複数の導電体を介して前記複数の不純物領域に接続する導電パターンと、
を具備し、
前記導電パターンは、前記素子領域全ての上方に形成されている請求項3に記載の半導体装置。
An interlayer insulating film located on the upper electrode and in the plurality of openings;
A plurality of connection holes formed in the interlayer insulating film and positioned on each of the impurity regions;
A conductor embedded in each of the plurality of connection holes;
A conductive pattern formed on the interlayer insulating film and connected to the plurality of impurity regions via the plurality of conductors;
Comprising
The semiconductor device according to claim 3, wherein the conductive pattern is formed above all the element regions.
半導体基板に素子分離膜を形成し、素子領域を分離する工程と、
前記素子領域に位置する前記半導体基板の全面に絶縁膜を形成する工程と、
前記絶縁膜上及び前記素子分離膜上に導電膜を形成する工程と、
前記導電膜を選択的に除去することにより、前記絶縁膜の全面上に上部電極を形成し、かつ前記上部電極に複数の開口部を形成する工程と、
前記開口部内に位置する前記半導体基板に不純物領域を形成する工程と、
を具備する半導体装置の製造方法。
Forming an element isolation film on a semiconductor substrate and isolating an element region;
Forming an insulating film on the entire surface of the semiconductor substrate located in the element region;
Forming a conductive film on the insulating film and the element isolation film;
Forming the upper electrode on the entire surface of the insulating film by selectively removing the conductive film, and forming a plurality of openings in the upper electrode;
Forming an impurity region in the semiconductor substrate located in the opening;
A method for manufacturing a semiconductor device comprising:
前記不純物領域を形成する工程の後に、
前記素子分離膜上、前記上部電極上及び前記複数の不純物領域上に層間絶縁膜を形成する工程と、
前記層間絶縁膜に、前記複数の不純物領域それぞれ上に位置する接続孔を形成する工程と、
前記複数の接続孔それぞれ内に導電体を埋め込む工程と、
前記層間絶縁膜上及び前記導電体上に、前記上部電極の上方に位置する導電パターンを形成する工程と、
を具備する請求項5に記載の半導体装置の製造方法。
After the step of forming the impurity region,
Forming an interlayer insulating film on the element isolation film, on the upper electrode and on the plurality of impurity regions;
Forming a connection hole located on each of the plurality of impurity regions in the interlayer insulating film;
Embedding a conductor in each of the plurality of connection holes;
Forming a conductive pattern located above the upper electrode on the interlayer insulating film and the conductor;
A method for manufacturing a semiconductor device according to claim 5.
JP2007086800A 2007-03-29 2007-03-29 Semiconductor device and manufacturing method thereof Withdrawn JP2008244403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086800A JP2008244403A (en) 2007-03-29 2007-03-29 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086800A JP2008244403A (en) 2007-03-29 2007-03-29 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008244403A true JP2008244403A (en) 2008-10-09

Family

ID=39915322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086800A Withdrawn JP2008244403A (en) 2007-03-29 2007-03-29 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008244403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324710B2 (en) 2010-03-24 2012-12-04 Kabushiki Kaisha Toshiba Capacitor, integrated device, radio frequency switching device, and electronic apparatus
US8749022B2 (en) 2010-08-19 2014-06-10 Samsung Electronics Co., Ltd. Capacitor device and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324710B2 (en) 2010-03-24 2012-12-04 Kabushiki Kaisha Toshiba Capacitor, integrated device, radio frequency switching device, and electronic apparatus
US8749022B2 (en) 2010-08-19 2014-06-10 Samsung Electronics Co., Ltd. Capacitor device and method of fabricating the same

Similar Documents

Publication Publication Date Title
JP5563186B2 (en) Semiconductor device and manufacturing method thereof
JP2000196038A5 (en)
KR20100098134A (en) Method of fabricating semiconductor device having capacitor under bitline structure
US6255697B1 (en) Integrated circuit devices including distributed and isolated dummy conductive regions
KR20170103147A (en) Photomask layout, methods of forming fine patterns and methods of manufacturing semiconductor devices
JP2007324332A (en) Semiconductor device and its manufacturing method
JP2008244403A (en) Semiconductor device and manufacturing method thereof
JP2005354046A (en) Method of manufacturing semiconductor device
TWI770804B (en) Memory device and method for manufacturing the same
JP5515245B2 (en) Semiconductor device and manufacturing method thereof
JP3185747B2 (en) Semiconductor device and manufacturing method thereof
JP2006294979A (en) Semiconductor device and its manufacturing method
JP2006134939A (en) Semiconductor device
US9349813B2 (en) Method for fabricating semiconductor device
JP2014086492A (en) Semiconductor device manufacturing method
JP2005072176A (en) Semiconductor device and manufacturing method therefor
JP2009170637A (en) Method of manufacturing semiconductor storage device,and the semiconductor storage device
KR101185947B1 (en) Semiconductor device and method for forming the same
KR100694996B1 (en) Method for manufacturing capacitor in semiconductor device
JP2004235246A (en) Semiconductor device and its wiring connecting structure
JP2008277434A (en) Semiconductor device, and manufacturing method thereof
JP2016111206A (en) Method for manufacturing semiconductor device
JP2006339383A (en) Semiconductor device and manufacturing method thereof
US20080217789A1 (en) Semiconductor device and method of forming metal line of semiconductor device
TW202220111A (en) Semiconductor structure and method of manufacturing thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601