JP2008244390A - Vapor growth system and vapor growth method - Google Patents

Vapor growth system and vapor growth method Download PDF

Info

Publication number
JP2008244390A
JP2008244390A JP2007086578A JP2007086578A JP2008244390A JP 2008244390 A JP2008244390 A JP 2008244390A JP 2007086578 A JP2007086578 A JP 2007086578A JP 2007086578 A JP2007086578 A JP 2007086578A JP 2008244390 A JP2008244390 A JP 2008244390A
Authority
JP
Japan
Prior art keywords
wafer
temperature
heater
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007086578A
Other languages
Japanese (ja)
Other versions
JP4870604B2 (en
Inventor
Hideki Ito
英樹 伊藤
Shinichi Mitani
慎一 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2007086578A priority Critical patent/JP4870604B2/en
Priority to US12/053,657 priority patent/US7837794B2/en
Publication of JP2008244390A publication Critical patent/JP2008244390A/en
Application granted granted Critical
Publication of JP4870604B2 publication Critical patent/JP4870604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/90Apparatus characterized by composition or treatment thereof, e.g. surface finish, surface coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor growth system and a vapor growth method which can improve the uniformity of a temperature distribution in the plane of a heated wafer and can evenly generate a crystal film. <P>SOLUTION: The vapor growth system includes a chamber 101, a holder 104 having a susceptor 103 on which a wafer 102 stored in the chamber 101 is placed, an inner heater 105 and an outer heater 106 which are provided in the holder 104 to heat the wafer 102 from the backside, airpipes 107 which faces the inner heater 105 and inject cooling gas, and a temperature measuring part 108 which is provided outside the chamber 101 to measure the surface temperature of the wafer 102. Thus it is possible to locate the singular point of a temperature in an error portion of a temperature distribution on the wafer 102. Further, it is possible to improve the uniformity of the temperature distribution in the plane of the wafer 102 by locally cooling the singular point of the temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は気相成長装置及び気相成長方法に係り、特にエピタキシャル成長装置において加熱されるシリコンウェハの全面において均一な面内温度分布を得ることによって、生成されるエピタキシャル成長膜の膜厚の均一性を向上させるための手段に関する。   The present invention relates to a vapor phase growth apparatus and a vapor phase growth method, and in particular, by obtaining a uniform in-plane temperature distribution over the entire surface of a silicon wafer heated in the epitaxial growth apparatus, the uniformity of the film thickness of the produced epitaxial growth film is improved. It relates to means for improving.

超高速バイポーラ、超高速CMOS等の半導体素子の製造において、不純物の濃度や膜厚の制御された単結晶のエピタキシャル成長技術は半導体素子の性能を向上させる上で不可欠なものとなっている。
ウェハに単結晶薄膜を生成させるエピタキシャル成長には一般に常圧化学気相成長法が用いられ、場合によっては減圧化学気相成長(LPCVD)法が用いられる。チャンバ内にウェハを収容し、チャンバ内を常圧(0.1Mpa(760Torr))か、或いは所定の真空度の真空雰囲気に保持した状態でウェハを加熱し回転させながら、シリコン源とボロン化合物、リン化合物、或いは砒素化合物等のドーパントとを混合したプロセスガスを供給する。そして加熱されたウェハの表面でプロセスガスの熱分解反応或いは水素還元反応を行なって、ボロン(B)、リン(P)、或いは砒素(As)がドープされた結晶膜を生成させることにより製造する。
In the manufacture of semiconductor devices such as ultra-high speed bipolar and ultra-high speed CMOS, single crystal epitaxial growth technology with controlled impurity concentration and film thickness is indispensable for improving the performance of semiconductor devices.
In general, an atmospheric pressure chemical vapor deposition method is used for epitaxial growth for forming a single crystal thin film on a wafer, and a low pressure chemical vapor deposition (LPCVD) method is used in some cases. The wafer is accommodated in the chamber, and the silicon source and boron compound are heated and rotated while the chamber is maintained at normal pressure (0.1 Mpa (760 Torr)) or in a vacuum atmosphere of a predetermined degree of vacuum. A process gas mixed with a dopant such as a phosphorus compound or an arsenic compound is supplied. Then, a thermal decomposition reaction of a process gas or a hydrogen reduction reaction is performed on the surface of the heated wafer to produce a crystal film doped with boron (B), phosphorus (P), or arsenic (As). .

また、エピタキシャル成長技術は、たとえばIGBT(絶縁ゲートバイポーラトランジスタ)等、高性能な半導体素子を製造するためには高品質の結晶膜を均一に、尚且つ厚く生成することが求められている。たとえば、単純なMOSデバイス等においては数μm以下の膜厚しか必要ではないのに対し、IGBT等においては数μmから百数十μmもの膜厚が必要とされる。このため、ウェハを高速で回転させることによって新たなガスを順次接触させて結晶膜の成長速度を高め、そしてウェハが均一に加熱されることによって生成される膜厚の面内均一性を高めている。   Further, the epitaxial growth technique is required to produce a high-quality crystal film uniformly and thickly in order to manufacture a high-performance semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor). For example, in a simple MOS device or the like, only a film thickness of several μm or less is required, whereas in an IGBT or the like, a film thickness of several μm to several tens of μm is required. Therefore, by rotating the wafer at a high speed, a new gas is sequentially brought into contact to increase the growth rate of the crystal film, and the in-plane uniformity of the film thickness generated by uniformly heating the wafer is increased. Yes.

図7は、ウェハを均一に加熱するために複数のヒータを設けた気相成長装置を示す概念図であり、図8はインヒータ305及びアウトヒータ306を温度計測部308が計測する温度情報に基づいて制御しながら、ウェハ302を加熱する様子を示す概念図である。この装置のインヒータ305及びアウトヒータ306の双方を用いてウェハ302を加熱する場合、ウェハ302の中央部はインヒータ305からの輻射熱を受けることにより加熱される。そして、ウェハ302の外縁部はアウトヒータ306に加熱されたサセプタ303を介した伝導熱としてウェハ302に与えられることによって加熱される。すると、インヒータ305からの輻射熱と、サセプタ303を介したアウトヒータ306からの伝導熱の双方の影響を受け、ウェハ302の中央部や外縁部に比べ、温度が高い部分がウェハ302面内に生じてしまう(温度の特異点)。結果として、ウェハ302の温度の特異点の周囲に生成される結晶膜の膜厚に誤差を生じさせてしまう。   FIG. 7 is a conceptual diagram showing a vapor phase growth apparatus provided with a plurality of heaters for uniformly heating the wafer, and FIG. 8 is based on temperature information measured by the temperature measuring unit 308 for the in-heater 305 and the out-heater 306. It is a conceptual diagram which shows a mode that the wafer 302 is heated, controlling it. When the wafer 302 is heated using both the in-heater 305 and the out-heater 306 of this apparatus, the central portion of the wafer 302 is heated by receiving radiant heat from the in-heater 305. The outer edge of the wafer 302 is heated by being applied to the wafer 302 as conduction heat through the susceptor 303 heated by the out heater 306. Then, under the influence of both radiant heat from the in-heater 305 and conduction heat from the out-heater 306 via the susceptor 303, a portion having a higher temperature than the central portion or outer edge portion of the wafer 302 is generated in the surface of the wafer 302. (Temperature singularity). As a result, an error is caused in the film thickness of the crystal film generated around the singular point of the temperature of the wafer 302.

従来、気相成長反応を行なう場合、ウェハ302の外縁部とサセプタ303とを接触させた状態でウェハ302を載置する。すると、ウェハ302の外縁部からサセプタ303へと熱が伝導して逃げやすい。これに対処し、複数のヒータを設けてウェハ302の外縁部を補助的に加熱することで、ウェハ302の外縁部の温度低下を抑止させた。しかし、これによって今度はウェハ302面内の他の部分にさらなる温度誤差を生じさせてしまう状態を招いてしまった。
そのため、いずれか、或いはヒータの全体の出力を制御することでウェハ302面内の温度分布の誤差を修正しようとしても、結局さらに他の部分に温度分布の誤差を生じさせてしまう。
結果としてウェハ302全面において温度分布を均一にすることができず、生成させる結晶膜の膜厚を均一にすることも叶わなかった。
さらに、気相成長反応時のウェハ302面内の温度分布に誤差が生じていると、生成される結晶膜に結晶欠陥が生じてしまい、高性能の半導体素子を製造するために用いることができる品質のウェハを生産できなくなってしまう(特許文献1参照)。
Conventionally, when performing a vapor phase growth reaction, the wafer 302 is placed in a state where the outer edge of the wafer 302 and the susceptor 303 are in contact with each other. As a result, heat is conducted from the outer edge portion of the wafer 302 to the susceptor 303 so that it can easily escape. In response to this, a plurality of heaters are provided to supplementarily heat the outer edge portion of the wafer 302, thereby suppressing a temperature drop at the outer edge portion of the wafer 302. However, this in turn has caused a state in which a further temperature error is caused in other portions of the wafer 302 surface.
For this reason, even if an error in the temperature distribution in the wafer 302 surface is corrected by controlling the output of either or the entire heater, an error in the temperature distribution is eventually generated in another part.
As a result, the temperature distribution cannot be made uniform over the entire surface of the wafer 302, and the film thickness of the crystal film to be produced cannot be made uniform.
Further, if an error occurs in the temperature distribution in the wafer 302 during the vapor phase growth reaction, crystal defects are generated in the generated crystal film, which can be used to manufacture a high-performance semiconductor element. Quality wafers cannot be produced (see Patent Document 1).

したがって、ヒータの出力を制御してウェハ302の温度を調節するのではなく、インヒータ305或いはアウトヒータ306の温度を局所的に調整することによってウェハ302面内に生じる温度分布の誤差を解消しなければ、この問題を克服することはできない。
特開2001−345271号公報
Therefore, the temperature distribution error generated in the surface of the wafer 302 must be eliminated by locally adjusting the temperature of the in-heater 305 or the out-heater 306 rather than adjusting the temperature of the wafer 302 by controlling the output of the heater. This problem cannot be overcome.
JP 2001-345271 A

上述したように、従来の気相成長装置では、構造上、ウェハ面内の温度分布を十分に均一にすることができず、ウェハ表面に生成させる結晶膜の膜厚の均一性を高めることができなかった。   As described above, in the conventional vapor phase growth apparatus, the temperature distribution in the wafer surface cannot be made sufficiently uniform due to the structure, and the uniformity of the film thickness of the crystal film formed on the wafer surface can be improved. could not.

本発明は、かかる問題点を克服し、加熱されるウェハ面内の温度分布の均一性を向上させ、ウェハ表面に生成させる結晶膜の膜厚の均一性を高めることができる気相成長装置及び気相成長方法を提供する。   The present invention overcomes such problems, improves the uniformity of the temperature distribution in the heated wafer surface, and can improve the uniformity of the film thickness of the crystal film formed on the wafer surface, and A vapor deposition method is provided.

本発明の気相成長装置は、
チャンバと、
チャンバ内に収容され、ウェハを載置するサセプタを有するホルダと、
ホルダ内に設けられ、サセプタに載置されたウェハを加熱するヒータと、
ヒータに対向して設けられ、ヒータに向けて冷却ガスを噴射する送気管と、
チャンバ外に設けられ、ウェハの表面の温度を計測する温度計測部と、
を備えることを特徴とする。
The vapor phase growth apparatus of the present invention is
A chamber;
A holder housed in a chamber and having a susceptor for mounting a wafer;
A heater provided in the holder for heating the wafer placed on the susceptor;
An air supply pipe that is provided facing the heater and injects a cooling gas toward the heater;
A temperature measurement unit that is provided outside the chamber and measures the temperature of the surface of the wafer;
It is characterized by providing.

送気管は、ヒータのウェハを過熱する部分に対向して設けられることが好適である。   It is preferable that the air supply pipe is provided to face a portion of the heater overheating the wafer.

送気管は、ウェハの回転円周上に位置するように略等間隔に複数個設けられることが好適である。   It is preferable that a plurality of air supply tubes are provided at substantially equal intervals so as to be positioned on the rotation circumference of the wafer.

送気管は、温度計測部が計測したウェハの表面温度に基づいて流量が制御される冷却ガスを噴射することが好適である。   It is preferable that the air supply pipe injects a cooling gas whose flow rate is controlled based on the surface temperature of the wafer measured by the temperature measuring unit.

本発明の気相成長方法は、
チャンバ内に収容されたホルダのサセプタにウェハを載置し、このウェハにプロセスガスを供給するとともに、ホルダ内に設けられたヒータによりウェハを加熱することによって気相成長反応を行なう気相成長方法であって、
ウェハの表面温度を、温度計測部を用いて計測し、ウェハの表面温度を所定の温度に均一になるようにヒータに冷却ガスを噴射してウェハの温度を制御することを特徴とする。
The vapor phase growth method of the present invention comprises:
A vapor phase growth method in which a wafer is placed on a susceptor of a holder accommodated in a chamber, a process gas is supplied to the wafer, and the wafer is heated by a heater provided in the holder to perform a vapor phase growth reaction. Because
The surface temperature of the wafer is measured using a temperature measuring unit, and the temperature of the wafer is controlled by injecting a cooling gas to the heater so that the surface temperature of the wafer becomes uniform at a predetermined temperature.

本発明によれば、ヒータのウェハを過熱している部分を局所的に冷却し、面内の温度分布の均一性を向上させることができる。そのため、生成させる結晶膜の膜厚の分布も均一にさせることができる。   According to the present invention, the portion of the heater overheating the wafer can be locally cooled, and the uniformity of the in-plane temperature distribution can be improved. Therefore, the thickness distribution of the crystal film to be generated can be made uniform.

また、新たなヒータを別に設けてウェハの温度制御を行なおうとすると、新たにウェハ面内に温度の特異点を生じ、ウェハの面内の温度を均一にすることを更に困難にさせてしまう。そのため、気相成長反応を行なうウェハにおいて均一な温度分布を得ることに対する根本的な問題の解決には至らない。
さらに、局所的にヒータを冷却して、ウェハの過熱部分をなくすことによって表面温度を制御することは、新たなヒータを別に設けることでウェハの温度を制御する方式等に比べて、実施、導入することが容易であることも有用性の一部である。
In addition, if a new heater is provided separately to control the temperature of the wafer, a new singular point of temperature is newly generated in the wafer surface, which makes it more difficult to make the temperature in the wafer surface uniform. . Therefore, the fundamental problem for obtaining a uniform temperature distribution in a wafer undergoing vapor phase growth reaction cannot be solved.
In addition, controlling the surface temperature by locally cooling the heater and eliminating the overheated part of the wafer is implemented and introduced compared to methods that control the wafer temperature by providing a new heater. Easy to do is also part of the usefulness.

上述したように、本発明を利用すれば、ウェハに生成させる結晶膜の膜厚分布の均一性の高いウェハを製造できる気相成長装置及び気相成長方法を提供することができる。   As described above, by using the present invention, it is possible to provide a vapor phase growth apparatus and a vapor phase growth method that can manufacture a wafer having a highly uniform film thickness distribution of a crystal film generated on the wafer.

(実施形態1)
まず、実施形態1について、図に基づいて詳細に説明する。
図1における気相成長装置100には、チャンバ101と、チャンバ101内に収容されるウェハ102が載置されるサセプタ103を有するホルダ104と、ホルダ104内に設けられ、ウェハ102を裏面から加熱するインヒータ105及びアウトヒータ106と、インヒータ105に対向して設けられた冷却ガスを噴射する送気管107と、チャンバ101外に設けられた、ウェハ102の表面温度を計測する温度計測部108とが備えられている。
ここで、ウェハ102表面に結晶膜を生成させるために必要な各部材のうち、実施形態1を説明する上で必要な構成以外は省略する。また、図1に示した各部材の縮尺等は実物とは一致させていない。以下、各図面において同様である。
(Embodiment 1)
First, the first embodiment will be described in detail based on the drawings.
A vapor phase growth apparatus 100 in FIG. 1 is provided with a chamber 101, a holder 104 having a susceptor 103 on which a wafer 102 accommodated in the chamber 101 is placed, and the wafer 102 heated from the back surface. An in-heater 105 and an out-heater 106, an air supply pipe 107 for injecting a cooling gas provided facing the in-heater 105, and a temperature measuring unit 108 for measuring the surface temperature of the wafer 102 provided outside the chamber 101. Is provided.
Here, among the members necessary for generating the crystal film on the surface of the wafer 102, the components other than those necessary for explaining the first embodiment are omitted. Further, the scales and the like of the members shown in FIG. Hereinafter, the same applies to each drawing.

ウェハ102はホルダ104の上部に設けられた円形の板状のサセプタ103に形成された凹部に載置される。この凹部の中央には貫通した開口部が形成されており、ホルダ104内に設けられたインヒータ105及びアウトヒータ106からの輻射熱を直接受けることができるように配置されている。インヒータ105は、円形の抵抗体材料板に導電路を形成するようにスリットが設けられた所定の略円形の輪郭に形成された熱源である。このインヒータ105がウェハ102の中央部を加熱する。そして、アウトヒータ106は同じく円形の抵抗体材料板に、導電路を形成するようにスリットが設けられ、リング状に形成された熱源である。このアウトヒータ106がウェハ102の外縁部をサセプタ103もろとも加熱する。これによって、サセプタ103に接触しているために熱が逃げやすいウェハ102の外縁部の加熱を補助し、温度低下を抑止することが可能となる。   The wafer 102 is placed in a recess formed in a circular plate-like susceptor 103 provided on the upper portion of the holder 104. A penetrating opening is formed at the center of the recess, and is arranged so as to be able to directly receive radiant heat from the in-heater 105 and the out-heater 106 provided in the holder 104. The in-heater 105 is a heat source formed in a predetermined substantially circular outline provided with a slit so as to form a conductive path in a circular resistor material plate. The in-heater 105 heats the central portion of the wafer 102. The outheater 106 is a heat source formed in a ring shape by providing slits in the same circular resistor material plate so as to form conductive paths. The outheater 106 heats the outer edge of the wafer 102 together with the susceptor 103. As a result, it is possible to assist the heating of the outer edge portion of the wafer 102 where heat easily escapes because it is in contact with the susceptor 103, and to suppress the temperature drop.

しかしながら、上述のような温度制御方法では、インヒータ105とアウトヒータ106からの輻射熱と、サセプタ103からの伝導熱を双方ともに受ける範囲がウェハ102面内に生じてしまう。このウェハ102の外縁部から5mm〜20mmの範囲に、他の部分に比べて温度が高くなりすぎてしまう点(温度の特異点)が生じていた。そのため、この温度の特異点を中心とした所定の範囲はウェハ102の他の部分よりも過熱され、ウェハ102面内の温度分布に誤差を生じさせてしまっていた。   However, in the temperature control method as described above, a range in which both the radiant heat from the in-heater 105 and the out-heater 106 and the conduction heat from the susceptor 103 are received occurs in the wafer 102 surface. In the range of 5 mm to 20 mm from the outer edge portion of the wafer 102, a point (temperature singularity) in which the temperature becomes too high compared to other portions has occurred. For this reason, the predetermined range centered on the singular point of this temperature is overheated compared to other portions of the wafer 102, causing an error in the temperature distribution in the wafer 102 plane.

これを克服し、ウェハ102の面内の温度分布の均一性を向上するため、実施形態1では、インヒータ105を局所的に冷却する機構を設けることでウェハ102を間接的に冷却する。
図2は、サセプタ103にウェハ102を載置していない状態のホルダ104と、その内部の構造を示す一部欠截した斜視図であり、図3は図2に示したホルダ104内の底面部を上方から示した概念図である。
図2に示すように、ホルダ104の下部の回転胴110はチャンバ101外に設けられた図示しない回転機構に繋がっており、回転させることができる。そして、図3に示すように、回転胴110の内部を通っている送気管107はインヒータ105に対向して冷却ガスを噴射するように、回転胴110の水平断面の同一円周上の90°ごとに等間隔に配置されている。これによって、ウェハ102の回転円周上を加熱するインヒータ105の4点が局所的に冷却されるように、送気管107から冷却ガスが噴射される。
In order to overcome this and improve the uniformity of the temperature distribution in the surface of the wafer 102, in the first embodiment, the wafer 102 is indirectly cooled by providing a mechanism for locally cooling the in-heater 105.
2 is a perspective view of the holder 104 in a state where the wafer 102 is not placed on the susceptor 103 and a partially cutaway perspective view showing the internal structure of the holder 104. FIG. 3 is a bottom view of the holder 104 shown in FIG. It is the conceptual diagram which showed the part from upper direction.
As shown in FIG. 2, the rotating drum 110 below the holder 104 is connected to a rotating mechanism (not shown) provided outside the chamber 101 and can be rotated. Then, as shown in FIG. 3, 90 ° on the same circumference of the horizontal cross section of the rotating drum 110 so that the air supply pipe 107 passing through the inside of the rotating drum 110 injects the cooling gas so as to face the in-heater 105. They are arranged at equal intervals. Thus, the cooling gas is injected from the air supply pipe 107 so that the four points of the in-heater 105 that heats the rotation circumference of the wafer 102 are locally cooled.

ウェハ102はホルダ104の回転に付随して回転する。このため、ウェハ102の回転円周上の直下にあたるインヒータ105の等間隔の4点が冷却されると、ウェハ102の回転円周上の部分が等しく冷却される。つまり、送気管107が配置される位置は、ウェハ102の周方向における位置については問わず、ウェハ102の回転円周上に対向する部分が均等に冷却されるよう、送気管107同士の間隔が等しく設けられてあれば良い。
尚、実施形態1においては送気管107を4箇所設けたが、設置する数はこれに限るものではなく、ウェハ102を所定の温度にまで十分に冷却できるようにインヒータ105に冷却ガスを噴出できる状態にあればよい。また、送気管107の材質は、石英や炭化ケイ素(SiC)など、チャンバ101内に対する金属汚染やパーティクル汚染等の影響を与える虞のないものであれば良い。
The wafer 102 rotates as the holder 104 rotates. For this reason, when the four equally spaced points of the in-heater 105 that are directly below the rotation circumference of the wafer 102 are cooled, the portions on the rotation circumference of the wafer 102 are equally cooled. That is, the position where the air supply pipes 107 are arranged is not limited with respect to the position in the circumferential direction of the wafer 102, and the interval between the air supply pipes 107 is set so that the portions facing the rotation circumference of the wafer 102 are evenly cooled. It is sufficient if they are equally provided.
In the first embodiment, four air supply pipes 107 are provided. However, the number of air supply pipes 107 is not limited to this, and a cooling gas can be jetted to the in-heater 105 so that the wafer 102 can be sufficiently cooled to a predetermined temperature. If it is in a state. Further, the material of the air supply pipe 107 may be any material that does not have the possibility of affecting the inside of the chamber 101 such as metal contamination or particle contamination, such as quartz or silicon carbide (SiC).

図4はインヒータ105及びアウトヒータ106がウェハ102を加熱する様子と、ウェハ102に生じた温度の特異点の温度分布の誤差を、ウェハ102の回転円周上に当たるインヒータ105の部分を局所的に冷却することによって間接的にウェハ102を冷却する様子を示した概念図である。
インヒータ105の下面から5mm〜30mm下方に先端が位置するように配置された送気管107は、ウェハ102の温度の特異点の回転円周上を加熱しているインヒータ105の部分を冷却するように冷却ガスを噴出する。
ここで、送気管107から噴射される冷却ガスは常温の水素(H)等、チャンバ101内の気相成長反応の環境を乱す虞のないものであれば良い。また、冷却ガスの流量は100SCCM(Standard
Cubic Centimeter per Minutes)1.69×10−1Pam3/S〜5SLM(Standard
Liter per Minutes)8.45Pam3/Sであると好適である。
かかる状態で、所定の流量の冷却ガスをインヒータ105の所定の位置に対して噴射して冷却することで、ウェハ102に生じる温度の特異点に対するインヒータ105からの輻射熱による加熱を局所的に抑制する。
この結果、冷却ガスを噴射することによって間接的に、且つ局所的にウェハ102を冷却することができ、ウェハ102面内の温度分布の均一性を高めることができる。
FIG. 4 shows how the in-heater 105 and the out-heater 106 heat the wafer 102 and the error of the temperature distribution at the singular point of the temperature generated on the wafer 102. The portion of the in-heater 105 that hits the rotation circumference of the wafer 102 is locally shown. It is the conceptual diagram which showed a mode that the wafer 102 was cooled indirectly by cooling.
The air supply tube 107 disposed so that the tip is located 5 mm to 30 mm below the lower surface of the inheater 105 cools the portion of the inheater 105 that is heating on the rotation circumference of the singular point of the temperature of the wafer 102. Cooling gas is blown out.
Here, the cooling gas injected from the air supply tube 107 may be any gas that does not disturb the environment of the vapor phase growth reaction in the chamber 101, such as room temperature hydrogen (H 2 ). The cooling gas flow rate is 100 SCCM (Standard
Cubic Centimeter per Minutes) 1.69 × 10 −1 Pam 3 / S-5SLM (Standard
Liter per Minutes) 8.45 Pam 3 / S is preferred.
In such a state, a cooling gas having a predetermined flow rate is injected and cooled to a predetermined position of the in-heater 105 to locally suppress heating due to radiant heat from the in-heater 105 with respect to a temperature singular point generated in the wafer 102. .
As a result, by injecting the cooling gas, the wafer 102 can be cooled indirectly and locally, and the uniformity of the temperature distribution in the wafer 102 surface can be improved.

ここで、インヒータ105はウェハ102を1100℃以上に加熱するために、インヒータ105自体は1400℃〜1500℃程度まで発熱した状態になっている。このため、常温のH等を直接噴射して冷却したとしてもインヒータ105自体の発する熱量が大きいため、熱応力によってインヒータ105が破損してしまうほど急激に温度が変化してしまうことはない。したがって、冷却ガスの供給部に特段の温度調節機構を設ける必要性はなく、常温のまま供給すれば良い。 Here, since the in-heater 105 heats the wafer 102 to 1100 ° C. or higher, the in-heater 105 itself is in a state of generating heat up to about 1400 ° C. to 1500 ° C. Therefore, since the amount of heat generated by the inner heater 105 itself even when cooled by direct injection at normal temperature H 2 or the like is large, not the temperature is abruptly changed as inner heater 105 is damaged by thermal stress. Therefore, there is no need to provide a special temperature adjusting mechanism in the cooling gas supply unit, and it may be supplied at room temperature.

チャンバ101の上面には窓109が設けられており、チャンバ101内を視認することができる。窓109を介してウェハ102の表面に対向するように温度計測部108が設けられ、ウェハ102の表面の温度を計測する。温度計測部108は複数の放射温度計を有し、それぞれを連動させてウェハ102の表面温度を計測するように制御される。実施形態1では、3基の放射温度計を備えている。
ここで、放射温度計118は、インヒータ105からの輻射熱によって加熱されるウェハ102の中央部の温度を計測するように配置される。そして、計測された温度情報を基にインヒータ105の出力を制御し、ウェハ102の中央部の温度を調整する。
また、放射温度計128は、アウトヒータ106からの輻射熱と、加熱されたサセプタ103からの伝導熱によって加熱される部分であるウェハ102の外縁部の温度を計測するように配置する。そして、計測された温度情報を基にアウトヒータ106の出力を制御し、ウェハ102外縁部の温度を調整する。
そして、放射温度計138はウェハ102面内の温度の特異点の温度を計測するように配置する。
ここで、ウェハ102面内で温度の特異点が生じている位置を特定するために、予めウェハ102とインヒータ105、アウトヒータ106との関係の熱解析を行なっておく。そして、この結果から特定される温度の特異点の温度変動を捕捉できる位置に放射温度計138を配置する。
上述のようにして計測された温度情報を基に、ウェハ102面内の温度分布が均一になるように、所定の流量に制御された冷却ガスを送気管107からインヒータ105に噴射する。
これによって、ウェハ102の過熱部分を加熱しているインヒータ105を所定の温度に冷却することができ、間接的にウェハ102を冷却することができる。そして、これによってウェハ102に生じている温度の特異点を中心とした温度分布の誤差を解消することができる。
A window 109 is provided on the upper surface of the chamber 101 so that the inside of the chamber 101 can be seen. A temperature measurement unit 108 is provided so as to face the surface of the wafer 102 through the window 109, and measures the temperature of the surface of the wafer 102. The temperature measurement unit 108 has a plurality of radiation thermometers, and is controlled to measure the surface temperature of the wafer 102 in conjunction with each other. In the first embodiment, three radiation thermometers are provided.
Here, the radiation thermometer 118 is arranged so as to measure the temperature of the central portion of the wafer 102 heated by the radiant heat from the in-heater 105. Then, the output of the in-heater 105 is controlled based on the measured temperature information, and the temperature of the central portion of the wafer 102 is adjusted.
Further, the radiation thermometer 128 is arranged so as to measure the temperature of the outer edge portion of the wafer 102 which is a portion heated by the radiant heat from the outheater 106 and the conduction heat from the heated susceptor 103. Then, the output of the outheater 106 is controlled based on the measured temperature information, and the temperature of the outer edge portion of the wafer 102 is adjusted.
The radiation thermometer 138 is arranged so as to measure the temperature of a singular point of the temperature in the wafer 102 plane.
Here, in order to specify the position where the temperature singularity occurs in the wafer 102 surface, a thermal analysis of the relationship between the wafer 102 and the in-heater 105 and the out-heater 106 is performed in advance. And the radiation thermometer 138 is arrange | positioned in the position which can capture the temperature fluctuation of the singular point of the temperature specified from this result.
Based on the temperature information measured as described above, a cooling gas controlled at a predetermined flow rate is injected from the air supply pipe 107 to the in-heater 105 so that the temperature distribution in the wafer 102 surface is uniform.
Thus, the in-heater 105 that is heating the overheated portion of the wafer 102 can be cooled to a predetermined temperature, and the wafer 102 can be indirectly cooled. As a result, the temperature distribution error centered on the singular point of the temperature generated in the wafer 102 can be eliminated.

上述したように、ウェハ102面内の3点の温度制御を行なうことによって、ウェハ102の中央部から外縁部にわたって均一な温度分布を得ることができる。
そして、かかる状態のウェハ102に結晶膜を生成する原料成分を含んだプロセスガスを供給する。するとウェハ102表面で熱分解反応或いは水素還元反応が行なわれ、膜厚が均一に制御された結晶膜を生成させることができる。
この結果、本実施形態における気相成長装置及び気相成長方法を用いれば、高性能な半導体素子を製造するために必要とされる、膜厚が均一に制御され、尚且つ結晶欠陥のない高品質のウェハを製造することができる。
As described above, by performing temperature control at three points in the surface of the wafer 102, a uniform temperature distribution can be obtained from the center portion to the outer edge portion of the wafer 102.
Then, a process gas containing a raw material component for generating a crystal film is supplied to the wafer 102 in such a state. Then, a thermal decomposition reaction or a hydrogen reduction reaction is performed on the surface of the wafer 102, so that a crystal film having a uniformly controlled film thickness can be generated.
As a result, if the vapor phase growth apparatus and the vapor phase growth method in the present embodiment are used, the film thickness required for manufacturing a high-performance semiconductor element can be uniformly controlled, and there is no crystal defect. Quality wafers can be manufactured.

尚、本実施形態で供給するプロセスガスは、例えば、シリコン成膜ガスであるモノシラン(SiH)、ジクロロシラン(SiHCl)、トリクロロシラン(SiHCl)等のうちいずれか一つとキャリアガスとなるHとの混合ガスに所定のドーパントガスを添加することにより構成される。
ドーパントガスはボロン系のジボラン(B)、リン系のホスフィン(PH)等が用いられる。ジボランを添加すればp型、ホスフィンを添加すればn型の導電性を示す結晶膜を生成することができる。
The process gas supplied in this embodiment is, for example, any one of monosilane (SiH 4 ), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), etc., which are silicon film forming gases, and a carrier gas. It formed by adding a predetermined dopant gas to a mixed gas of H 2 as a.
As the dopant gas, boron-based diborane (B 2 H 6 ), phosphorus-based phosphine (PH 3 ), or the like is used. When diborane is added, a p-type crystal film can be formed, and when phosphine is added, a n-type crystal film can be formed.

(実施形態2)
次に、実施形態2について図に基づいて詳細に説明する。
図5は気相成長反応の環境或いは部材の変更等によってウェハ202に生じる温度の特異点の位置が変動した場合に、インヒータ205の冷却する部分を移動させることができる送気管207を備えた気相成長装置200を示す概念図である。
(Embodiment 2)
Next, Embodiment 2 will be described in detail based on the drawings.
FIG. 5 shows an air pipe 207 that can move a portion to be cooled of the in-heater 205 when the position of the singular point of the temperature generated in the wafer 202 changes due to the environment of the vapor phase growth reaction or the change of members. 1 is a conceptual diagram showing a phase growth apparatus 200. FIG.

ウェハ202に生じる温度の特異点は、ウェハ202とインヒータ205、アウトヒータ206との距離の違いによる輻射熱と伝導熱のバランス、サセプタ203の大きさ、厚みなどによる熱容量の違い等、種々の条件によっても生じる位置が変動する。
本実施形態では、いずれの条件下においても温度の特異点の位置を温度計測部208が把握し、これに応じて送気管207の位置を移動させて冷却ガスを噴出させることができる気相成長装置について説明する。
The singularity of the temperature generated on the wafer 202 depends on various conditions such as the balance between radiant heat and conduction heat due to the difference in distance between the wafer 202 and the in-heater 205 and out-heater 206, and the difference in heat capacity due to the size and thickness of the susceptor 203. The position where this occurs also varies.
In the present embodiment, the vapor phase growth in which the temperature measuring unit 208 grasps the position of the temperature singularity under any condition and can move the position of the air supply pipe 207 in accordance with this to eject the cooling gas. The apparatus will be described.

チャンバ201の上面に設けられた窓209を介して、温度計測部208がウェハ202の表面温度を計測する。このとき、放射温度計218はインヒータ205に加熱されるウェハ202の中央部の温度を計測し、放射温度計228はインヒータ205及びアウトヒータ206の輻射熱と、サセプタ203からの伝導熱とに加熱されるウェハ202の外縁部の温度を計測する。計測された温度の情報を基に、インヒータ205及びアウトヒータ206の出力は制御される。
そして、放射温度計238は、ウェハ202面内の放射温度計218が計測する部分から放射温度計228が計測する部分の間の所定の距離を径方向に移動しながらウェハ202の温度を計測する。
放射温度計218、228、238が計測したウェハ202の3つの温度情報を取得することによって、ウェハ202面内の径方向の温度分布を把握することができる。この結果、ウェハ202面内において温度の特異点が生じている部分を検知することができ、ウェハ202面内に生じる温度の特異点の位置の変動を捕捉させることができる。
A temperature measurement unit 208 measures the surface temperature of the wafer 202 through a window 209 provided on the upper surface of the chamber 201. At this time, the radiation thermometer 218 measures the temperature of the central portion of the wafer 202 heated by the in-heater 205, and the radiation thermometer 228 is heated by the radiation heat of the in-heater 205 and the out-heater 206 and the conduction heat from the susceptor 203. The temperature of the outer edge of the wafer 202 is measured. Based on the measured temperature information, the outputs of the in-heater 205 and the out-heater 206 are controlled.
The radiation thermometer 238 measures the temperature of the wafer 202 while moving in a radial direction a predetermined distance between a portion measured by the radiation thermometer 218 and a portion measured by the radiation thermometer 228 in the wafer 202 plane. .
By acquiring three pieces of temperature information of the wafer 202 measured by the radiation thermometers 218, 228, 238, the temperature distribution in the radial direction within the wafer 202 surface can be grasped. As a result, it is possible to detect a portion where a singular point of temperature occurs in the surface of the wafer 202, and it is possible to capture a change in the position of the singular point of temperature generated in the surface of the wafer 202.

そして、ウェハ202の温度の特異点を加熱するインヒータ205の部分に冷却ガスを噴出する位置に送気管207を移動させる。
かかる状態で、ウェハ202面内の温度分布が均一になるような所定の流量の冷却ガスを送気管207から噴出して、インヒータ205を冷却する。
結果として、インヒータ205が冷却されることによって間接的にウェハ202を冷却することができる。
Then, the air supply pipe 207 is moved to a position where the cooling gas is ejected to the portion of the in-heater 205 that heats the singular point of the temperature of the wafer 202.
In such a state, the in-heater 205 is cooled by ejecting a cooling gas having a predetermined flow rate from the air supply pipe 207 so that the temperature distribution in the surface of the wafer 202 becomes uniform.
As a result, the wafer 202 can be indirectly cooled by cooling the in-heater 205.

図6はホルダ204内において、ウェハ202の径方向に対して、たとえば207aに示す外縁部の直下から207bに示す中央部の直下までの間で送気管207が所定の距離を移動することができる様子を示す概念図である。
温度計測部208がウェハ202面内の温度の特異点を捕捉すると、送気管207は温度の特異点を加熱するインヒータ205の位置に4本全てが同期して等距離を移動し、ウェハ202の回転円周上にあたるインヒータ205の位置を冷却するように配置される。
これによって、ウェハ202に生じる温度の特異点の温度の誤差を解消することができ、均一な面内の温度分布が得られる。
FIG. 6 shows that in the holder 204, the air supply pipe 207 can move a predetermined distance with respect to the radial direction of the wafer 202, for example, from directly below the outer edge portion shown at 207a to directly below the central portion shown at 207b. It is a conceptual diagram which shows a mode.
When the temperature measuring unit 208 captures the temperature singularity in the wafer 202 plane, the four air supply pipes 207 are moved equidistantly in synchronism with the position of the in-heater 205 that heats the temperature singularity. It arrange | positions so that the position of the in-heater 205 which hits a rotation circumference may be cooled.
Thereby, the temperature error at the singular point of the temperature generated in the wafer 202 can be eliminated, and a uniform in-plane temperature distribution can be obtained.

ここで、かかる状態のウェハ202にプロセスガスを供給することで結晶膜を生成することや、ホルダ204が図示しない回転機構によって回転され、付随してウェハ202が回転することなど、図1から図4に基づいて説明した内容と重複する内容については説明を省略する。   Here, the process gas is supplied to the wafer 202 in such a state to generate a crystal film, the holder 204 is rotated by a rotation mechanism (not shown), and the wafer 202 is rotated accompanying the rotation, etc. The description overlapping with the content described based on 4 is omitted.

以上、具体例を参照しつつ実施形態について説明した。本発明は上述した実施形態に限定されるものではなく、要旨を逸脱しない範囲で種々変形して実施することができる。   The embodiment has been described above with reference to specific examples. The present invention is not limited to the above-described embodiments, and can be variously modified and implemented without departing from the scope of the invention.

たとえば、実施形態2において、可動式の放射温度計238を設けることによって温度の特異点が変動した場合でもその位置を補足できるとした。しかし、上述したような複数の放射温度計を有する温度計測部208ではなく、ウェハの径方向に対して所定の幅をもってスキャンする方式の放射温度計を用いることもできる。
この方式であれば、放射温度計を1基配置するだけでウェハの径方向における温度分布を把握することができる。また、このウェハの径方向の温度分布の把握を行なえば、インヒータ及びアウトヒータの出力制御のための温度計測と、ウェハ上の温度の特異点の捕捉のための温度計測とを同時に行なうことができる。
For example, in the second embodiment, by providing the movable radiation thermometer 238, the position can be supplemented even when the temperature singularity fluctuates. However, instead of the temperature measurement unit 208 having a plurality of radiation thermometers as described above, a radiation thermometer that scans with a predetermined width in the radial direction of the wafer can also be used.
With this method, the temperature distribution in the radial direction of the wafer can be grasped only by arranging one radiation thermometer. If the temperature distribution in the radial direction of the wafer is grasped, the temperature measurement for controlling the output of the in-heater and the out-heater and the temperature measurement for capturing the singular point of the temperature on the wafer can be performed simultaneously. it can.

さらに、実施形態2において可動式の送気管の移動を同期させることでウェハの同一回転円周上を冷却できるとしたが、たとえば、複数の送気管のうち、ホルダ204の中心点に対称の位置に設けられている2本ずつを呼応させ、同期させて移動させることで、ウェハの径方向における2点を均等に冷却することもできる。
これによってウェハ上に温度の特異点が複数生じてしまった場合においても順次送気管を移動させて温度の誤差を修正することで、より均一なウェハ面内の温度分布が得られる。
Furthermore, in the second embodiment, the same rotation circumference of the wafer can be cooled by synchronizing the movement of the movable air supply tube. For example, among the plurality of air supply tubes, a position symmetrical to the center point of the holder 204 is used. The two points provided in the wafer can be made to respond to each other and moved in synchronization, so that two points in the radial direction of the wafer can be cooled uniformly.
As a result, even when a plurality of temperature singularities are generated on the wafer, the temperature error can be corrected by moving the air supply tube sequentially to obtain a more uniform temperature distribution within the wafer surface.

また、本発明は気相成長装置の一例としてエピタキシャル成長装置について説明したが、これに限るものではなく、ウェハ表面に所定の結晶膜を生成させるための装置であれば構わない。たとえば、ポリシリコン膜を成長させることを目的とした装置等であってもよい。   In the present invention, the epitaxial growth apparatus has been described as an example of the vapor phase growth apparatus. However, the present invention is not limited to this, and any apparatus for generating a predetermined crystal film on the wafer surface may be used. For example, an apparatus for the purpose of growing a polysilicon film may be used.

さらに、装置の構成や制御の手法等、本発明に直接必要としない部分などについては記載を省略したが、必要とされる装置の構成や制御の手法などを適宜選択して用いることができる。   In addition, although description of parts that are not directly required for the present invention, such as the configuration of the apparatus and the control method, is omitted, the required apparatus configuration, control method, and the like can be appropriately selected and used.

その他、本発明の要素を具備し、当業者が適宜設計変更しうるすべての気相成長装置、及び各部材の形状は、本発明の範囲に包含される。   In addition, all the vapor phase growth apparatuses that include the elements of the present invention and can be appropriately modified by those skilled in the art, and the shapes of the respective members are included in the scope of the present invention.

本発明の実施形態1における気相成長装置の構成を説明するために示す概念図である。It is a conceptual diagram shown in order to demonstrate the structure of the vapor phase growth apparatus in Embodiment 1 of this invention. 本発明の実施形態1におけるホルダの内部の構成を説明するために示す一部欠截した斜視図である。It is the partially broken perspective view shown in order to demonstrate the structure inside the holder in Embodiment 1 of this invention. 本発明の実施形態1におけるホルダの底面部を上方から示す概念図である。It is a conceptual diagram which shows the bottom face part of the holder in Embodiment 1 of this invention from upper direction. 本発明の実施形態1におけるウェハをヒータが加熱する様子及び送気管から噴出する冷却ガスがヒータを冷却する様子を示す概念図である。It is a conceptual diagram which shows a mode that a heater heats the wafer in Embodiment 1 of this invention, and a mode that the cooling gas ejected from an air supply pipe cools a heater. 本発明の実施形態2における気相成長装置の構成を説明するために示す概念図である。It is a conceptual diagram shown in order to demonstrate the structure of the vapor phase growth apparatus in Embodiment 2 of this invention. 本発明の実施形態2におけるホルダの底面部と、可動式の送気管を上方から示す概念図である。It is a conceptual diagram which shows the bottom face part of the holder in Embodiment 2 of this invention, and a movable air supply pipe | tube from upper direction. 従来の気相成長装置の構成を説明するために示す概念図である。It is a conceptual diagram shown in order to demonstrate the structure of the conventional vapor phase growth apparatus. 従来の気相成長装置においてウェハ上に温度の特異点が生じる様子を示す概念図である。It is a conceptual diagram which shows a mode that the specific point of temperature arises on a wafer in the conventional vapor phase growth apparatus.

符号の説明Explanation of symbols

100、200…気相成長装置
101、201…チャンバ
102、202…ウェハ
103、203…サセプタ
104、204…ホルダ
105、205…インヒータ
106、206…アウトヒータ
107、207…送気管
108、208…温度計測部
109…窓
110…回転胴
118、128、138、218、228、238…放射温度計
100, 200 ... Vapor growth apparatus 101, 201 ... Chamber 102, 202 ... Wafer 103, 203 ... Susceptor 104, 204 ... Holder 105, 205 ... Inheater 106, 206 ... Outheater 107, 207 ... Air supply pipe 108, 208 ... Temperature Measuring unit 109 ... Window 110 ... Rotating drum 118, 128, 138, 218, 228, 238 ... Radiation thermometer

Claims (5)

チャンバと、
前記チャンバ内に収容され、ウェハを載置するサセプタを有するホルダと、
前記ホルダ内に設けられ、前記サセプタに載置されたウェハを加熱するヒータと、
前記ヒータに対向して設けられ、前記ヒータに向けて冷却ガスを噴射する送気管と、
前記チャンバ外に設けられ、前記ウェハの表面の温度を計測する温度計測部と、
を備えることを特徴とする気相成長装置。
A chamber;
A holder housed in the chamber and having a susceptor on which a wafer is placed;
A heater provided in the holder for heating a wafer placed on the susceptor;
An air supply pipe that is provided facing the heater and injects a cooling gas toward the heater;
A temperature measuring unit that is provided outside the chamber and measures the temperature of the surface of the wafer;
A vapor phase growth apparatus comprising:
前記送気管は、前記ヒータの前記ウェハを過熱する部分に対向して設けられることを特徴とする請求項1記載の気相成長装置。   2. The vapor phase growth apparatus according to claim 1, wherein the air supply pipe is provided to face a portion of the heater overheating the wafer. 前記送気管は、前記ウェハの回転円周上に位置するように略等間隔に複数個設けられることを特徴とする請求項1記載または請求項2記載の気相成長装置。   3. The vapor phase growth apparatus according to claim 1, wherein a plurality of the air supply tubes are provided at substantially equal intervals so as to be positioned on a rotation circumference of the wafer. 前記送気管は、前記温度計測部が計測した前記ウェハの表面温度に基づいて流量が制御される冷却ガスを噴射するものであることを特徴とする請求項1記載乃至請求項3のいずれか1項に記載の気相成長装置。   4. The air supply pipe according to claim 1, wherein the air supply pipe injects a cooling gas whose flow rate is controlled based on a surface temperature of the wafer measured by the temperature measurement unit. The vapor phase growth apparatus according to item. チャンバ内に収容されたホルダのサセプタにウェハを載置し、このウェハにプロセスガスを供給するとともに、前記ホルダ内に設けられたヒータによりウェハを加熱することによって気相成長反応を行なう気相成長方法であって、
前記ウェハの表面温度を、温度計測部を用いて計測し、前記ウェハの表面温度を所定の温度に均一になるように前記ヒータに冷却ガスを噴射して前記ウェハの温度を制御することを特徴とする気相成長方法。
Vapor phase growth in which a wafer is placed on a susceptor of a holder accommodated in a chamber, a process gas is supplied to the wafer, and the wafer is heated by a heater provided in the holder to perform a vapor phase growth reaction. A method,
The surface temperature of the wafer is measured using a temperature measuring unit, and the temperature of the wafer is controlled by injecting a cooling gas to the heater so that the surface temperature of the wafer becomes uniform at a predetermined temperature. Vapor phase growth method.
JP2007086578A 2007-03-29 2007-03-29 Vapor growth equipment Expired - Fee Related JP4870604B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007086578A JP4870604B2 (en) 2007-03-29 2007-03-29 Vapor growth equipment
US12/053,657 US7837794B2 (en) 2007-03-29 2008-03-24 Vapor phase growth apparatus and vapor phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086578A JP4870604B2 (en) 2007-03-29 2007-03-29 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2008244390A true JP2008244390A (en) 2008-10-09
JP4870604B2 JP4870604B2 (en) 2012-02-08

Family

ID=39792107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086578A Expired - Fee Related JP4870604B2 (en) 2007-03-29 2007-03-29 Vapor growth equipment

Country Status (2)

Country Link
US (1) US7837794B2 (en)
JP (1) JP4870604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517204A (en) * 2012-04-04 2015-06-18 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Apparatus for depositing layers on a semiconductor wafer by vapor deposition
US9093484B2 (en) 2009-08-12 2015-07-28 Nuflare Technology, Inc. Manufacturing apparatus and method for semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865354B1 (en) * 2005-03-17 2016-03-16 Hamamatsu Photonics K.K. Microscopic image capturing device
JP4870604B2 (en) * 2007-03-29 2012-02-08 株式会社ニューフレアテクノロジー Vapor growth equipment
EP3514700A1 (en) * 2013-02-20 2019-07-24 Hartford Steam Boiler Inspection and Insurance Company Dynamic outlier bias reduction system and method
JP6918642B2 (en) * 2017-08-25 2021-08-11 東京エレクトロン株式会社 A member having a flow path for a refrigerant, a control method for a member having a flow path for a refrigerant, and a substrate processing device.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045822A (en) * 1990-04-23 1992-01-09 Sumitomo Electric Ind Ltd Apparatus and method for lamp annealing
JP2001168022A (en) * 1999-09-30 2001-06-22 Tokyo Electron Ltd Device and method for heating treatment
JP2002198297A (en) * 2000-12-27 2002-07-12 Kyocera Corp Wafer heating equipment
JP2003526940A (en) * 2000-03-17 2003-09-09 マットソン サーマル プロダクツ インコーポレイテッド Local heating and local cooling of substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345534A (en) * 1993-03-29 1994-09-06 Texas Instruments Incorporated Semiconductor wafer heater with infrared lamp module with light blocking means
JP2001345271A (en) 2000-05-31 2001-12-14 Shibaura Mechatronics Corp Method of wafer heating control
JP3877157B2 (en) * 2002-09-24 2007-02-07 東京エレクトロン株式会社 Substrate processing equipment
JP3887291B2 (en) * 2002-09-24 2007-02-28 東京エレクトロン株式会社 Substrate processing equipment
JP4642349B2 (en) * 2003-12-26 2011-03-02 東京エレクトロン株式会社 Vertical heat treatment apparatus and low temperature region temperature convergence method
TWI327339B (en) * 2005-07-29 2010-07-11 Nuflare Technology Inc Vapor phase growing apparatus and vapor phase growing method
JP2007210875A (en) * 2005-07-29 2007-08-23 Nuflare Technology Inc Vapor phase deposition apparatus and vapor phase deposition method
JP4870604B2 (en) * 2007-03-29 2012-02-08 株式会社ニューフレアテクノロジー Vapor growth equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045822A (en) * 1990-04-23 1992-01-09 Sumitomo Electric Ind Ltd Apparatus and method for lamp annealing
JP2001168022A (en) * 1999-09-30 2001-06-22 Tokyo Electron Ltd Device and method for heating treatment
JP2003526940A (en) * 2000-03-17 2003-09-09 マットソン サーマル プロダクツ インコーポレイテッド Local heating and local cooling of substrate
JP2002198297A (en) * 2000-12-27 2002-07-12 Kyocera Corp Wafer heating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093484B2 (en) 2009-08-12 2015-07-28 Nuflare Technology, Inc. Manufacturing apparatus and method for semiconductor device
JP2015517204A (en) * 2012-04-04 2015-06-18 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Apparatus for depositing layers on a semiconductor wafer by vapor deposition

Also Published As

Publication number Publication date
US20080236477A1 (en) 2008-10-02
US7837794B2 (en) 2010-11-23
JP4870604B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4870604B2 (en) Vapor growth equipment
US20130084390A1 (en) Film-forming apparatus and film-forming method
US8888360B2 (en) Methods and systems for in-situ pyrometer calibration
US7699604B2 (en) Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device
KR20080081823A (en) Microbatch deposition chamber with radiant heating
US9194056B2 (en) Film-forming apparatus and method
KR101322217B1 (en) Epitaxially growing equipment
JP5446760B2 (en) Epitaxial growth method
TWI706048B (en) Furnace for seeded sublimation of wide band gap crystals
JP2006261612A (en) Silicon carbide semiconductor, its manufacturing method and manufacturing apparatus
CN110998787B (en) Epitaxial coated semiconductor wafer made of monocrystalline silicon and method for producing the same
US8257499B2 (en) Vapor phase deposition apparatus and vapor phase deposition method
JP6474047B2 (en) Vapor growth apparatus and epitaxial wafer manufacturing method
JP2013098340A (en) Deposition apparatus and deposition method
JP2008211109A (en) Vapor phase growth system and vapor phase epitaxial growth method
JP2007224375A (en) Vapor deposition apparatus
JP5712782B2 (en) Susceptor support shaft for epitaxial wafer growth apparatus and epitaxial growth apparatus
JP5032828B2 (en) Vapor growth equipment
JP2009038294A (en) Output adjustment method, manufacturing method of silicon epitaxial wafer, and susceptor
JP2003257873A (en) Semiconductor manufacturing method and apparatus thereof
JP2008066652A (en) Vapor deposition system, and vapor deposition method
JP4874842B2 (en) Vapor growth equipment
JP2014166957A (en) Silicon carbide semiconductor, and method and device for manufacturing the same
JP2014166957A5 (en)
JP5896346B2 (en) Silicon carbide semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees