JP2008244302A - Compound semiconductor light-emitting element, lighting device using the same, and production method of the compound semiconductor light-emitting element - Google Patents

Compound semiconductor light-emitting element, lighting device using the same, and production method of the compound semiconductor light-emitting element Download PDF

Info

Publication number
JP2008244302A
JP2008244302A JP2007085078A JP2007085078A JP2008244302A JP 2008244302 A JP2008244302 A JP 2008244302A JP 2007085078 A JP2007085078 A JP 2007085078A JP 2007085078 A JP2007085078 A JP 2007085078A JP 2008244302 A JP2008244302 A JP 2008244302A
Authority
JP
Japan
Prior art keywords
layer
substrate
compound semiconductor
insulator
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007085078A
Other languages
Japanese (ja)
Inventor
Masaharu Yasuda
正治 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007085078A priority Critical patent/JP2008244302A/en
Publication of JP2008244302A publication Critical patent/JP2008244302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of a compound semiconductor light-emitting element wherein a nanocolumn is formed on a conductive substrate, insulation between nanololumns and between a p-type layer and an n-type layer is ensured therebetween and an insulator which protects a light-emitting layer is buried. <P>SOLUTION: In a compound semiconductor element, a fine particle 41 consisting of a material which is chargeable, such as, silicon and becomes insulating by thermal oxidation is used as a material of an insulator 4, a positive voltage is applied from a power supply 13 to a substrate 2 wherein a nanocolumn is planted and the fine particle 41 is provided with negative charge on colliding with electron and is subjected to electrostatic attraction to the substrate 2 (a) to (c). Thereafter, the fine particle 41 changes to insulating properties through heat treatment under an oxygen atmosphere, and is dissolved and solidified, and is immobilized as an oxide layer between nanocolumns 3 (d). Accordingly, it is possible to embed the insulator 4 readily and uniformly, without having to break down the nanocolumn 3 such as spin coat, thus improving the reliability of the element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、III−V族化合物半導体などの化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法に関し、特に半導体素子としては、基板上にナノコラムやナノロッドなどと称される柱径がナノメータサイズの柱状結晶構造体が形成されて成るものに関する。   The present invention relates to a compound semiconductor light emitting element such as a III-V group compound semiconductor, a lighting device using the same, and a method for manufacturing the compound semiconductor light emitting element. In particular, the semiconductor element includes a column called a nanocolumn or a nanorod on a substrate. The present invention relates to a structure in which a columnar crystal structure having a nanometer size is formed.

近年、窒化物半導体もしくは酸化物半導体で構成された発光層を有する化合物半導体発光素子が注目されている。この発光素子の構造は、一例として、サファイア基板を成長基板に用い、発光層の下部にシリコン(Si)がドーピングされたn−GaN層から成るn−クラッド層およびコンタクト層、発光層の上部にマグネシウム(Mg)がドーピングされたp−AlGa1−xNから成る電子ブロック層、電子ブロック層の上部にp−GaNのコンタクト層がそれぞれ形成されて構成されている。これらのいわゆるバルク結晶を用いる発光素子は、基板のサファイアと、窒化物や酸化物の半導体層との格子定数が大きく異なり、かつ基板上に薄膜として形成されるので、結晶内に非常に多くの貫通転位を含んでおり、発光素子の効率を増加させるのは困難であった。 In recent years, compound semiconductor light emitting devices having a light emitting layer composed of a nitride semiconductor or an oxide semiconductor have attracted attention. As an example of the structure of this light emitting element, an n-cladding layer and a contact layer composed of an n + -GaN layer in which a sapphire substrate is used as a growth substrate and silicon (Si) is doped below the light emitting layer, an upper portion of the light emitting layer An electron block layer made of p-Al x Ga 1-x N doped with magnesium (Mg) and a p-GaN contact layer on the electron block layer are formed. In these light-emitting elements using so-called bulk crystals, the lattice constants of the sapphire substrate and the nitride or oxide semiconductor layer are greatly different and are formed as a thin film on the substrate. Since threading dislocations are included, it is difficult to increase the efficiency of the light emitting element.

そこで、このような問題を解決する手法の従来例として、特許文献1が知られている。この従来例では、サファイア基板上に、n型電極となるn型GaNバッファ層を形成した後、アレイ状に配列された多数の前記柱状結晶構造体(ナノコラム)を形成しており、そのGaNナノコラム間に、SOG(Spin-on-Glass)、SiOまたはエポキシ樹脂といった透明絶縁物層を埋め込み、p型電極となる透明電極および電極パッドが成膜されて発光素子が構成されている。特にGaNナノコラムは、n型GaNナノコラム、発光層となるInGaN量子井戸、p型GaNナノコラムから構成されている。このナノコラムを用いれば、前述のバルク結晶が有する貫通転位をほとんど無くすまでに低減することができ、前記貫通転位による非発光再結合が減少して、発光効率を向上することができる。 Therefore, Patent Document 1 is known as a conventional example of a technique for solving such a problem. In this conventional example, an n-type GaN buffer layer serving as an n-type electrode is formed on a sapphire substrate, and then a large number of the columnar crystal structures (nanocolumns) arranged in an array are formed. A light-emitting element is configured by embedding a transparent insulating layer such as SOG (Spin-on-Glass), SiO 2, or epoxy resin and forming a transparent electrode and an electrode pad to be a p-type electrode. In particular, the GaN nanocolumn includes an n-type GaN nanocolumn, an InGaN quantum well serving as a light emitting layer, and a p-type GaN nanocolumn. If this nanocolumn is used, it is possible to reduce the threading dislocations of the bulk crystal to be almost eliminated, and non-radiative recombination due to the threading dislocations can be reduced, so that the light emission efficiency can be improved.

一方、特許文献2は、同様にナノコラムを用いた発光素子であるが、ナノコラムの外周にドーピング物質を吸着させて、電子や正孔を吸い出してp,nそれぞれの極性にするという珍しい構造の発光素子が提案されている。詳しくは、先ず基板上に電極となる金属層を形成した後、ZnOなどのナノコラムを形成する。続いて、ドーピングで下側のドーピング物質を吸着させ、スピンコートでコラム間に絶縁性ポリマーを充填した後、上側半分位をウエットエッチングで剥がし、薄いフォトレジストをスピンコートしてその部分のナノコラムを真正(発光)層とする。さらにドーピングで上側のドーピング物質を吸着させ、スピンコートで絶縁性ポリマーを充填した後、もう1つの電極を形成するというものである。
特開2005−228936号公報 特開2005−303300号公報
On the other hand, Patent Document 2 is a light-emitting element using a nanocolumn, but it emits light with an unusual structure in which a doping substance is adsorbed on the outer periphery of the nanocolumn and electrons and holes are sucked out to have respective polarities of p and n. Devices have been proposed. Specifically, first, a metal layer to be an electrode is formed on a substrate, and then a nanocolumn such as ZnO is formed. Subsequently, the lower doping substance is adsorbed by doping, and an insulating polymer is filled between the columns by spin coating, then the upper half is peeled off by wet etching, and a thin photoresist is spin-coated to remove the nanocolumns in that portion. Authentic (light emitting) layer. Further, the upper doping substance is adsorbed by doping, and after filling the insulating polymer by spin coating, another electrode is formed.
JP 2005-228936 A JP 2005-303300 A

上述のような従来技術では、隣接するナノコラムを保護したり、隣接するナノコラム同士の絶縁性を確保するために、コラム間に前記透明絶縁物を埋め込むにあたって、ウエハ上にSOGなどの塗布を行って、ウエハを回転させてスピンコートを行うことが一般的であり、スピンコート時に加わる力に耐え切れず、ナノコラムが倒れて破壊することがあったり、ナノコラム間の隙間、特に基板側の奥底深くまでに透明絶縁物を充填させることが難しいという問題がある。前記透明絶縁物が確実かつ均一に充填されていなければ、間隙内に他の不純物元素が混入してショートが発生したり、発光層が保護されず、ナノコラム表面のリーク電流の原因になるなど、信頼性に課題を有する。   In the prior art as described above, in order to protect adjacent nanocolumns or to ensure insulation between adjacent nanocolumns, when the transparent insulator is embedded between the columns, application of SOG or the like is performed on the wafer. In general, spin coating is performed by rotating the wafer, the force applied during spin coating cannot be withstood, the nanocolumns may fall down and break down, or the gap between the nanocolumns, especially deep inside the substrate side. There is a problem that it is difficult to fill with transparent insulator. If the transparent insulator is not reliably and uniformly filled, other impurity elements are mixed in the gap to cause a short circuit, the light emitting layer is not protected, and causes leakage current on the nanocolumn surface, etc. There is a problem in reliability.

本発明の目的は、絶縁物を柱状結晶構造体による極微細間隙へ確実かつ均一に充填することで素子の信頼性を向上することができる化合物半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a compound semiconductor light-emitting element capable of improving the reliability of the element by reliably and uniformly filling an insulator into a very fine gap formed by a columnar crystal structure, an illumination device using the same, and a semiconductor light-emitting element It is to provide a manufacturing method.

本発明の化合物半導体発光素子は、導電性基板上にナノスケールの柱状結晶構造体を有し、前記柱状結晶構造体間には絶縁物が埋込まれて成る化合物半導体発光素子において、前記絶縁物は、静電吸着によって埋込まれた微粒子が熱酸化されることで絶縁性となった酸化層から成ることを特徴とする。   The compound semiconductor light-emitting device of the present invention is a compound semiconductor light-emitting device having a nanoscale columnar crystal structure on a conductive substrate, and an insulator is embedded between the columnar crystal structures. Is characterized in that it consists of an oxide layer that becomes insulating by thermal oxidation of the fine particles embedded by electrostatic adsorption.

また、本発明の化合物半導体発光素子の製造方法は、導電性基板上にナノスケールの柱状結晶構造体を有し、前記柱状結晶構造体間には絶縁物が埋込まれて成る化合物半導体発光素子の製造方法において、前記柱状結晶構造体を成長させた基板に一方の極性の電圧を加えるとともに、帯電可能で、かつ熱酸化により絶縁性となる材料から成る微粒子に、他方の極性を帯電させて前記基板に付着させる工程と、酸素雰囲気下で熱処理を行うことで、前記微粒子を絶縁性の酸化層として前記柱状結晶構造体間に埋込む工程とを含むことを特徴とする。   The method for producing a compound semiconductor light emitting device of the present invention includes a compound semiconductor light emitting device having a nanoscale columnar crystal structure on a conductive substrate, and an insulator embedded between the columnar crystal structures. In this manufacturing method, a voltage of one polarity is applied to the substrate on which the columnar crystal structure is grown, and the other polarity is charged to fine particles made of a material that can be charged and becomes insulating by thermal oxidation. And a step of attaching the fine particles as an insulating oxide layer between the columnar crystal structures by performing a heat treatment in an oxygen atmosphere.

上記の構成によれば、導電性および好ましくは発光波長に対して透光性を有する基板、たとえばSiCやZnO上に、ナノコラムやナノロッドなどと称されるナノスケールの柱状結晶構造体が形成され、さらに前記柱状結晶構造体間には該柱状結晶構造体間および該柱状結晶構造体のp型層とn型層との絶縁を確保し、発光層を保護するための絶縁物が埋込まれて成る化合物半導体発光素子およびその製造方法において、前記絶縁物には、帯電可能で、かつ熱酸化により絶縁性となる材料から成る微粒子、たとえばアルミ、チタン、ニッケル、特に好ましくはシリコンの粉末を用い、前記柱状結晶構造体を成長させた基板に一方の極性の電圧を加え、前記微粒子に他方の極性を帯電させて前記基板に前記微粒子を静電吸着させることで、前記柱状結晶構造体間の基板側の奥底深くまで絶縁物を埋込めるようにする。そして、埋込んだ絶縁物は、酸素雰囲気下で熱処理を行うことで、前記のように絶縁性に変化し、かつ溶融・固化して前記柱状結晶構造体間に酸化層として固定化される。   According to the above configuration, a nanoscale columnar crystal structure called a nanocolumn or a nanorod is formed on a substrate having conductivity and preferably translucency with respect to the emission wavelength, for example, SiC or ZnO, In addition, an insulator is embedded between the columnar crystal structures to ensure insulation between the columnar crystal structures and between the p-type layer and the n-type layer of the columnar crystal structure, and to protect the light emitting layer. In the compound semiconductor light emitting device and the manufacturing method thereof, the insulator is made of fine particles made of a material that can be charged and becomes insulating by thermal oxidation, such as aluminum, titanium, nickel, particularly preferably silicon powder, Applying a voltage of one polarity to the substrate on which the columnar crystal structure is grown, charging the other polarity to the fine particles, and electrostatically adsorbing the fine particles to the substrate, Deep depths of the substrate side between Jo crystal structure so as put embedding an insulator. Then, the embedded insulator is subjected to heat treatment in an oxygen atmosphere to change into insulation as described above, and is melted and solidified to be fixed as an oxide layer between the columnar crystal structures.

したがって、前記柱状結晶構造体による極微細間隙に絶縁物を埋込むにあたって、スピンコートなどのように柱状結晶構造体を破壊してしまうことなく、簡単かつ均一に前記奥底深くまで絶縁物を埋込むことができ、素子の信頼性を向上することができる。   Therefore, when the insulator is embedded in the very fine gap formed by the columnar crystal structure, the insulator is easily and uniformly embedded deeply into the depth without damaging the columnar crystal structure like spin coating. And the reliability of the element can be improved.

さらにまた、本発明の化合物半導体発光素子では、前記酸化層は、前記柱状結晶構造体における発光層よりも基板側に形成される第1の絶縁体層と、前記第1の絶縁体層上で、かつ前記発光層よりも基板側に形成される反射層と、前記反射層上に形成され、前記発光層の発光波長に対して透光性を有する第2の絶縁体層とを備えて構成されることを特徴とする。   Furthermore, in the compound semiconductor light emitting device of the present invention, the oxide layer is formed on the first insulator layer formed on the substrate side with respect to the light emitting layer in the columnar crystal structure, and on the first insulator layer. And a reflective layer formed on the substrate side of the light emitting layer, and a second insulator layer formed on the reflective layer and having translucency with respect to the light emission wavelength of the light emitting layer. It is characterized by being.

また、本発明の化合物半導体発光素子の製造方法は、前記微粒子を基板に付着させる工程と、前記熱処理の工程とを少なくとも3回繰返し、1回目の繰返し工程では、前記柱状結晶構造体における発光層よりも基板側に第1の絶縁体層を形成し、2回目の繰返し工程では、前記第1の絶縁体層上で、かつ前記発光層よりも基板側に反射層を形成し、3回目の繰返し工程では、前記反射層上に、前記発光層の発光波長に対して透光性を有する第2の絶縁体層を形成することを特徴とする。   In the method for producing a compound semiconductor light emitting device of the present invention, the step of adhering the fine particles to the substrate and the heat treatment step are repeated at least three times. In the first repetition step, the light emitting layer in the columnar crystal structure is obtained. The first insulator layer is formed on the substrate side, and in the second repeating step, the reflective layer is formed on the first insulator layer and on the substrate side with respect to the light emitting layer, and the third time In the repeating step, a second insulator layer having translucency with respect to the emission wavelength of the light emitting layer is formed on the reflective layer.

上記の構成によれば、前記酸化層を、基板側から順に、第1の絶縁体層と、反射層と、第2の絶縁体層との3層構造とし、p型層、発光層、n型層の順で、或いはその逆に積層されて成る前記柱状結晶構造体における発光層よりも基板側に、前記第1の絶縁体層および反射層を形成するとともに、前記第2の絶縁体層が発光層の発光波長に対して透光性を有することで、前記反射層によって前記p型層とn型層との間を短絡してしまうことなく、かつ発光層で発生して柱状結晶構造体の外周面から放射された光を前記反射層で基板とは反対側に反射させて効率良く取出すことができる。   According to the above configuration, the oxide layer has a three-layer structure of the first insulator layer, the reflective layer, and the second insulator layer in order from the substrate side, and includes a p-type layer, a light emitting layer, and n The first insulator layer and the reflective layer are formed on the substrate side of the light emitting layer in the columnar crystal structure that is laminated in the order of the mold layer or vice versa, and the second insulator layer Has a light-transmitting property with respect to the emission wavelength of the light-emitting layer, so that the reflective layer does not short-circuit the p-type layer and the n-type layer, and is generated in the light-emitting layer and has a columnar crystal structure. The light radiated from the outer peripheral surface of the body can be efficiently extracted by reflecting the light on the side opposite to the substrate by the reflective layer.

さらにまた、本発明の化合物半導体発光素子は、前記第2の絶縁体層内に、蛍光体層をさらに備えることを特徴とする。   Furthermore, the compound semiconductor light emitting device of the present invention is further characterized by further comprising a phosphor layer in the second insulator layer.

上記の構成によれば、前記蛍光体層によって、白色化等、前記発光層による発光波長を、容易に任意の波長に変換することができる。   According to said structure, the light emission wavelength by the said light emitting layer, such as whitening, can be easily converted into arbitrary wavelengths by the said fluorescent substance layer.

また、本発明の化合物半導体発光素子では、前記基板は、透光性を有する材料から成り、該基板における前記柱状結晶構造体が形成される側とは反対側には、反射膜が形成されていることを特徴とする。   In the compound semiconductor light emitting device of the present invention, the substrate is made of a light-transmitting material, and a reflective film is formed on the side of the substrate opposite to the side on which the columnar crystal structure is formed. It is characterized by being.

上記の構成によれば、前記発光層から柱状結晶構造体内を基板側へ放射された光を、基板の裏面に設けた反射膜で、光取出し方向である柱状結晶構造体側の面に向けて反射するので、光取出し効率を向上することができる。   According to said structure, the light radiated | emitted from the said light emitting layer to the substrate side in the columnar crystal structure is reflected toward the columnar crystal structure side surface which is a light extraction direction with the reflecting film provided in the back surface of the substrate. Therefore, the light extraction efficiency can be improved.

さらにまた、本発明の照明装置は、前記の化合物半導体発光素子を用いることを特徴とする。   Furthermore, the lighting device of the present invention is characterized by using the compound semiconductor light emitting element.

上記の構成によれば、発光素子の信頼性を向上することができる照明装置を実現することができる。   According to said structure, the illuminating device which can improve the reliability of a light emitting element is realizable.

また、本発明の化合物半導体発光素子の製造方法は、前記微粒子を前記基板に付着させる工程において、前記基板を振動させていることを特徴とする。   In the method for producing a compound semiconductor light emitting device of the present invention, the substrate is vibrated in the step of attaching the fine particles to the substrate.

上記の構成によれば、振動させていることで、前記微粒子を柱状結晶構造体間の前記奥底深くまで均一に埋込むことができる。   According to said structure, by making it vibrate, the said microparticles | fine-particles can be uniformly embedded to the said deep bottom between columnar crystal structures.

さらにまた、本発明の化合物半導体発光素子の製造方法は、前記微粒子を前記基板に付着させる工程において、前記微粒子に与える前記他方の極性の電圧が、前記柱状結晶構造体のバンドギャップエネルギー以下であることを特徴とする。   Furthermore, in the method for producing a compound semiconductor light emitting device of the present invention, in the step of attaching the fine particles to the substrate, the voltage of the other polarity applied to the fine particles is equal to or less than the band gap energy of the columnar crystal structure. It is characterized by that.

上記の構成によれば、微粒子が前記柱状結晶構造体の先端側に付着してしまうことを防止し、前記奥底深くまで均一に埋込むことができる。   According to said structure, it can prevent that microparticles | fine-particles adhere to the front end side of the said columnar crystal structure, and it can embed uniformly to the said deep bottom.

本発明の化合物半導体発光素子およびその製造方法は、以上のように、導電性および好ましくは発光波長に対して透光性を有する基板上に、ナノコラムやナノロッドなどと称されるナノスケールの柱状結晶構造体が形成され、さらに前記柱状結晶構造体間には該柱状結晶構造体間および該柱状結晶構造体のp型層とn型層との絶縁を確保し、発光層を保護するための絶縁物が埋込まれて成る化合物半導体発光素子およびその製造方法において、前記絶縁物には、帯電可能で、かつ熱酸化により絶縁性となる材料から成る微粒子を用い、前記柱状結晶構造体を成長させた基板に一方の極性の電圧を加え、前記微粒子に他方の極性を帯電させて前記基板に前記微粒子を静電吸着させた後、酸素雰囲気下で熱処理を行うことで、前記微粒子を絶縁性に変化させ、かつ溶融・固化させて前記柱状結晶構造体間に酸化層として固定化する。   As described above, the compound semiconductor light emitting device of the present invention and the manufacturing method thereof are formed on a substrate having conductivity and preferably translucency with respect to the emission wavelength, and nanoscale columnar crystals called nanocolumns and nanorods. Structures are formed, and insulation between the columnar crystal structures is ensured between the columnar crystal structures and between the p-type layer and the n-type layer of the columnar crystal structure, and to protect the light emitting layer. In the compound semiconductor light-emitting device in which an object is embedded and a method for manufacturing the compound semiconductor light-emitting element, the columnar crystal structure is grown by using fine particles made of a material that can be charged and becomes insulating by thermal oxidation as the insulator. A voltage of one polarity is applied to the substrate, the other particle is charged with the other polarity, and the fine particles are electrostatically adsorbed on the substrate, and then heat treatment is performed in an oxygen atmosphere, thereby insulating the fine particles. Varied, and immobilized as oxide layer between the melted and solidified columnar crystal structure.

それゆえ、前記柱状結晶構造体による極微細間隙に絶縁物を埋込むにあたって、スピンコートなどのように柱状結晶構造体を破壊してしまうことなく、簡単かつ均一に前記奥底深くまで絶縁物を埋込むことができ、素子の信頼性を向上することができる。   Therefore, when the insulator is embedded in the ultrafine gap formed by the columnar crystal structure, the insulator is embedded deeply and deeply easily and uniformly without destroying the columnar crystal structure as in spin coating. Therefore, the reliability of the element can be improved.

さらにまた、本発明の化合物半導体発光素子およびその製造方法は、以上のように、前記酸化層を、基板側から順に、第1の絶縁体層と、反射層と、第2の絶縁体層との3層構造とし、p型層、発光層、n型層の順で、或いはその逆に積層されて成る前記柱状結晶構造体における発光層よりも基板側に、前記第1の絶縁体層および反射層を形成するとともに、前記第2の絶縁体層が発光層の発光波長に対して透光性を有する。   Furthermore, in the compound semiconductor light-emitting device and the method for manufacturing the same according to the present invention, as described above, the oxide layer is arranged in order from the substrate side, the first insulator layer, the reflective layer, and the second insulator layer. The first insulator layer and the light emitting layer in the columnar crystal structure formed by stacking the p-type layer, the light emitting layer, and the n type layer in this order, or vice versa. In addition to forming a reflective layer, the second insulator layer is translucent to the emission wavelength of the light emitting layer.

それゆえ、前記反射層によって前記p型層とn型層との間を短絡してしまうことなく、かつ発光層で発生して柱状結晶構造体の外周面から放射された光を前記反射層で基板とは反対側に反射させて効率良く取出すことができる。   Therefore, the light that is generated in the light emitting layer and emitted from the outer peripheral surface of the columnar crystal structure is not reflected in the reflective layer without short-circuiting the p-type layer and the n-type layer by the reflective layer. It can be efficiently taken out by being reflected on the opposite side of the substrate.

さらにまた、本発明の化合物半導体発光素子は、以上のように、前記第2の絶縁体層内に、蛍光体層をさらに備える。   Furthermore, the compound semiconductor light emitting device of the present invention further includes a phosphor layer in the second insulator layer as described above.

それゆえ、白色化等、前記発光層による発光波長を、容易に任意の波長に変換することができる。   Therefore, the emission wavelength of the light emitting layer, such as whitening, can be easily converted to an arbitrary wavelength.

また、本発明の化合物半導体発光素子は、以上のように、前記基板を透光性とするとともに、該基板における前記柱状結晶構造体が形成される側とは反対側に反射膜を形成する。   In the compound semiconductor light emitting device of the present invention, as described above, the substrate is translucent and a reflective film is formed on the side of the substrate opposite to the side on which the columnar crystal structure is formed.

それゆえ、前記発光層から柱状結晶構造体内を基板側へ放射された光を、前記反射膜で光取出し方向である柱状結晶構造体側の面に向けて反射し、光取出し効率を向上することができる。   Therefore, the light radiated from the light emitting layer to the substrate side in the columnar crystal structure is reflected toward the surface of the columnar crystal structure side which is the light extraction direction by the reflective film, so that the light extraction efficiency can be improved. it can.

さらにまた、本発明の照明装置は、以上のように、前記の化合物半導体発光素子を用いる。   Furthermore, the lighting device of the present invention uses the compound semiconductor light emitting element as described above.

それゆえ、発光素子の信頼性を向上することができる照明装置を実現することができる。   Therefore, an illuminating device that can improve the reliability of the light-emitting element can be realized.

また、本発明の化合物半導体発光素子の製造方法は、以上のように、前記微粒子を前記基板に付着させる工程において、前記基板を振動させる。   Moreover, the manufacturing method of the compound semiconductor light-emitting device of the present invention vibrates the substrate in the step of attaching the fine particles to the substrate as described above.

それゆえ、前記微粒子を柱状結晶構造体間の前記奥底深くまで均一に埋込むことができる。   Therefore, the fine particles can be uniformly embedded to the deep depth between the columnar crystal structures.

さらにまた、本発明の化合物半導体発光素子の製造方法は、以上のように、前記微粒子を前記基板に付着させる工程において、前記微粒子に与える前記他方の極性の電圧を、前記柱状結晶構造体のバンドギャップエネルギー以下とする。   Furthermore, in the method for producing a compound semiconductor light emitting device of the present invention, as described above, in the step of attaching the fine particles to the substrate, the voltage of the other polarity applied to the fine particles is set to a band of the columnar crystal structure. Below the gap energy.

それゆえ、前記微粒子が前記柱状結晶構造体の先端側に付着してしまうことを防止し、前記奥底深くまで均一に埋込むことができる。   Therefore, the fine particles can be prevented from adhering to the tip side of the columnar crystal structure, and can be uniformly embedded deeply into the depth.

[実施の形態1]
図1は、本発明の実施の第1の形態に係る化合物半導体発光素子である発光ダイオード1の構造を模式的に示す断面図である。この発光ダイオード1は、透光性および導電性を有するSiCやZnOなどの基板2上に、多数のナノコラム3が植立され、さらにそれらの間に絶縁物4が埋込まれた後、前記ナノコラム3上には透明電極5からボンディング用電極6が積層され、前記基板2のナノコラム3とは反対側の表面には反射電極7が積層されて構成されている。
[Embodiment 1]
FIG. 1 is a cross-sectional view schematically showing the structure of a light-emitting diode 1 which is a compound semiconductor light-emitting element according to the first embodiment of the present invention. The light-emitting diode 1 has a structure in which a plurality of nanocolumns 3 are planted on a substrate 2 made of SiC or ZnO having translucency and conductivity, and an insulator 4 is embedded between them. 3, a bonding electrode 6 is laminated from a transparent electrode 5, and a reflective electrode 7 is laminated on the surface of the substrate 2 on the side opposite to the nanocolumn 3.

前記ナノコラム3は、n型窒化物半導体層3a、発光層3bおよびp型窒化物半導体層3cが、基板2側から順次積層されて構成されている。前記発光層3bをn型InGaN、AlInGaNもしくはAlGaNで形成する場合、InとAlとの組成比を適宜調整したり、或いはSi、Ge、S等のn型不純物やZn、Mg等のp型不純物を適宜ドープしたりすることによって、発光色を、紫外〜青色の範囲で所望の色に調節可能である。このようなナノコラム3の作成方法については、前記特許文献1や、本件出願人による特開2007−49062号公報などを一例として用いることができる。ナノコラム3の成長には、有機金属気相成長(MOCVD)を始めとして、分子線エピタキシー(MBE)やハイドライド気相成長(HVPE)法等を用いることができる。   The nanocolumn 3 includes an n-type nitride semiconductor layer 3a, a light emitting layer 3b, and a p-type nitride semiconductor layer 3c, which are sequentially stacked from the substrate 2 side. When the light emitting layer 3b is formed of n-type InGaN, AlInGaN, or AlGaN, the composition ratio of In and Al is appropriately adjusted, or n-type impurities such as Si, Ge, and S, and p-type impurities such as Zn and Mg. The light emission color can be adjusted to a desired color in the range of ultraviolet to blue by appropriately doping. As a method for creating such a nanocolumn 3, for example, the above-mentioned Patent Document 1 and Japanese Patent Application Laid-Open No. 2007-49062 filed by the present applicant can be used as examples. For the growth of the nanocolumn 3, molecular metal epitaxy (MBE), hydride vapor phase epitaxy (HVPE), etc. can be used, including metal organic chemical vapor deposition (MOCVD).

注目すべきは、この発光ダイオード1では、前記絶縁物4が、静電吸着によって埋込まれた微粒子が熱酸化されることで絶縁性となった酸化層から成ることである。具体的には、図2は前記発光ダイオード1における前記絶縁物4の作成方法を模式的に示す断面図であり、図3はその絶縁物4の埋込みに使用される装置11の構造を模式的に示す図である。ナノコラム3の成長された基板2は、装置11のステージ12上に載置され、電源13から所定のプラスの電圧が印加されている。一方、前記絶縁物4となる微粒子41は、帯電可能で、かつ熱酸化により絶縁性となり、しかも前記発光層3bの発光波長に対して透光性となる材料、たとえばアルミ、チタン、ニッケル、特に好ましくはシリコンの、粒径が数nm〜数μmの微粉末から成り、前記ステージ12上に配置される格納容器14に予め収められており、そこから散布される。このとき、微粒子41は、エレクトロン発生装置15で発生された電子16との衝突によって、所定のマイナス電荷を持つように帯電されている。   It should be noted that in the light-emitting diode 1, the insulator 4 is made of an oxide layer that becomes insulating by thermally oxidizing fine particles embedded by electrostatic adsorption. Specifically, FIG. 2 is a cross-sectional view schematically showing a method for producing the insulator 4 in the light emitting diode 1, and FIG. 3 schematically shows the structure of the device 11 used for embedding the insulator 4. FIG. The substrate 2 on which the nanocolumn 3 has been grown is placed on the stage 12 of the apparatus 11, and a predetermined positive voltage is applied from the power supply 13. On the other hand, the fine particles 41 to be the insulator 4 are materials that can be charged, become insulating by thermal oxidation, and are transparent to the emission wavelength of the light emitting layer 3b, such as aluminum, titanium, nickel, Preferably, silicon is made of fine powder having a particle size of several nanometers to several micrometers, and is preliminarily stored in a storage container 14 disposed on the stage 12, and is sprayed therefrom. At this time, the fine particles 41 are charged so as to have a predetermined negative charge by collision with the electrons 16 generated by the electron generator 15.

これによって、図2(a)で示すように基板2上に散布された微粒子41は、基板2に静電吸着される。ここで、前記電源13から印加される電圧を、ナノコラム3のバンドギャップエネルギー、たとえばGaNで3.4eV以下とすると、主に帯電する領域はn型窒化物半導体層3aになるので、基板2と反対の極性に帯電させた酸化性金属の微粒子41は、ナノコラム3の先端側に付着して後に到達する微粒子がナノコラム3間の底部側に入ってゆくことを阻止するようなことはなく、図2(b)で示すように、前記n型窒化物半導体層3aの側面から基板2の表面上に、すなわちナノコラム3間の基板2側の奥底側から堆積してゆく。またこのとき、ステージ12を振動させておくことで、前記微粒子41を、前記奥底深くまで、より均一に堆積させることができる。   As a result, as shown in FIG. 2A, the fine particles 41 dispersed on the substrate 2 are electrostatically attracted to the substrate 2. Here, if the voltage applied from the power source 13 is the band gap energy of the nanocolumn 3, for example, 3.4 eV or less for GaN, the region to be mainly charged is the n-type nitride semiconductor layer 3a. Oxidizing metal fine particles 41 charged to the opposite polarity do not prevent fine particles that arrive after the nanocolumns 3 from adhering to the tip side of the nanocolumns 3 and enter the bottom side between the nanocolumns 3. As shown by 2 (b), the n-type nitride semiconductor layer 3a is deposited on the surface of the substrate 2 from the side surface, that is, from the bottom side on the substrate 2 side between the nanocolumns 3. Further, at this time, by allowing the stage 12 to vibrate, the fine particles 41 can be deposited more uniformly to the deep depth.

こうして、図2(c)で示すように、前記微粒子41がナノコラム3の高さまで、少なくとも発光層3bを超えてp型窒化物半導体層3cの部分を覆うように堆積されると、該微粒子41の散布が終了され、その後、酸素雰囲気下で熱処理が行われることで、前記微粒子41は絶縁性に変化し、かつ溶融・固化して、図2(d)で示すように、前記ナノコラム3間に酸化層として固定化される。   Thus, as shown in FIG. 2C, when the fine particles 41 are deposited up to the height of the nanocolumn 3 so as to cover at least the light emitting layer 3b and cover the p-type nitride semiconductor layer 3c, the fine particles 41 are deposited. 2 is finished, and then heat treatment is performed in an oxygen atmosphere, whereby the fine particles 41 change to insulating properties and melt and solidify, and as shown in FIG. To be fixed as an oxide layer.

その後、前記絶縁物4から露出したナノコラム3のp型窒化物半導体層3c上に、前記透明電極5およびボンディング用電極6が積層され、前記基板2のナノコラム3とは反対側の表面に反射電極7が積層されることで、図1で示すような発光ダイオード1が完成する。そして前記ボンディング用電極6にプラス電圧を、反射電極7にマイナス電圧を加えると、前記発光層3b内で電子とホールとが結合して、青色もしくは紫外の光が発生し、図1において矢符F1で示すように前記発光層3bから直接、或いは矢符F2で示すように、透光性の基板2を通過して適宜反射電極7で反射され、再度透光性の基板2を通過して、光取出し側の透明電極5から外部へ放射される。   Thereafter, the transparent electrode 5 and the bonding electrode 6 are laminated on the p-type nitride semiconductor layer 3c of the nanocolumn 3 exposed from the insulator 4, and a reflective electrode is formed on the surface of the substrate 2 opposite to the nanocolumn 3 By laminating 7, the light emitting diode 1 as shown in FIG. 1 is completed. When a positive voltage is applied to the bonding electrode 6 and a negative voltage is applied to the reflective electrode 7, electrons and holes are combined in the light emitting layer 3b to generate blue or ultraviolet light. Directly from the light emitting layer 3b as indicated by F1, or as indicated by an arrow F2, the light passes through the transparent substrate 2 and is appropriately reflected by the reflective electrode 7, and then passes through the transparent substrate 2 again. The light is emitted from the transparent electrode 5 on the light extraction side to the outside.

このように構成することで、ナノコラム3間に該ナノコラム3間およびn型窒化物半導体層3aとp型窒化物半導体層3cとの絶縁を確保し、発光層3bを保護するための絶縁物4を埋込むにあたって、スピンコートなどのようにナノコラム3を破壊してしまうことなく、簡単かつ均一にナノコラム3間の奥底深くまで絶縁物4を埋込むことができ、素子の信頼性を向上することができる。また、ナノコラム3間に均一に絶縁物4を埋込むことができ、前記透明電極5の形成を容易にでき、歩留まりを向上することができる。さらにまた、このように発光素子の信頼性を向上することができる該発光ダイオード1は、照明装置に極めて好適である。   With this configuration, an insulator 4 is provided between the nanocolumns 3 to secure insulation between the nanocolumns 3 and between the n-type nitride semiconductor layer 3a and the p-type nitride semiconductor layer 3c, and to protect the light emitting layer 3b. In order to improve the reliability of the device, the insulator 4 can be embedded deeply between the nanocolumns 3 easily and uniformly without damaging the nanocolumns 3 such as spin coating. Can do. In addition, the insulator 4 can be uniformly embedded between the nanocolumns 3, the transparent electrode 5 can be easily formed, and the yield can be improved. Furthermore, the light-emitting diode 1 that can improve the reliability of the light-emitting element as described above is extremely suitable for a lighting device.

[実施の形態2]
図4は、本発明の実施の第2の形態に係る化合物半導体発光素子である発光ダイオード21の構造を模式的に示す断面図である。この発光ダイオード21は、前述の発光ダイオード1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この発光ダイオード21では、絶縁物4’が、前記発光層3bよりも基板2側に形成される第1の絶縁体層4aと、前記第1の絶縁体層4a上で、かつ前記発光層3bよりも基板2側に形成される反射層4bと、前記反射層4b上に形成され、前記発光層3bの発光波長に対して透光性を有する第2の絶縁体層4cとを備えて構成されることである。
[Embodiment 2]
FIG. 4 is a cross-sectional view schematically showing the structure of a light-emitting diode 21 which is a compound semiconductor light-emitting element according to the second embodiment of the present invention. The light-emitting diode 21 is similar to the light-emitting diode 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in the light emitting diode 21, the insulator 4 ′ is formed on the first insulator layer 4a formed on the substrate 2 side with respect to the light emitting layer 3b, and on the first insulator layer 4a. In addition, the reflective layer 4b formed on the substrate 2 side of the light emitting layer 3b, and the second insulator layer 4c formed on the reflective layer 4b and having translucency with respect to the emission wavelength of the light emitting layer 3b. It is comprised with.

図5は、その発光ダイオード1における絶縁物4’の作成方法の一部を模式的に示す断面図である。先ず、前述の図2(a)から図2(b)で示すように、前記n型窒化物半導体層3aの側面から基板2の表面上に微粒子41を堆積させてゆくことは同様である。この工程で、前記微粒子41が発光層3bよりも低い所定の高さまで堆積された後、一旦前記熱処理が行われることで、図5(a)で示すように、前記第1の絶縁体層4aが積層される。   FIG. 5 is a cross-sectional view schematically showing a part of a method for producing the insulator 4 ′ in the light emitting diode 1. First, as shown in FIG. 2A to FIG. 2B, it is the same that the fine particles 41 are deposited on the surface of the substrate 2 from the side surface of the n-type nitride semiconductor layer 3a. In this step, after the fine particles 41 are deposited to a predetermined height lower than that of the light emitting layer 3b, the heat treatment is performed once, and as shown in FIG. 5A, the first insulator layer 4a. Are stacked.

続いて、図5(b)で示すように、前記電源13から基板2に加えられる電圧を前記バンドギャップエネルギー以上とする一方、該基板2と同じのプラスの極性に帯電させた反射金属の微粒子42を、発光層3bよりも低い所定の高さまで付着させると、発光層3bやp型窒化物半導体層3cの側面には付着せず、既に形成してある透明の第1の絶縁体層4a上にしか堆積されない。その後、再び熱処理が行われることで、図5(c)で示すように、n型窒化物半導体層3aとp型窒化物半導体層3cとを短絡してしまうことなく、前記第1の絶縁体層4a上のみに反射層4bが形成される。   Subsequently, as shown in FIG. 5B, the voltage applied to the substrate 2 from the power source 13 is equal to or higher than the band gap energy, while the reflective metal fine particles are charged to the same positive polarity as the substrate 2. When 42 is attached to a predetermined height lower than that of the light emitting layer 3b, it does not adhere to the side surfaces of the light emitting layer 3b and the p-type nitride semiconductor layer 3c, and the transparent first insulator layer 4a that has already been formed. Only deposited on top. Thereafter, by performing heat treatment again, as shown in FIG. 5C, the first insulator is not short-circuited between the n-type nitride semiconductor layer 3a and the p-type nitride semiconductor layer 3c. The reflective layer 4b is formed only on the layer 4a.

さらに、前記図2(a)と同様に、基板2と反対の極性に帯電させた酸化性金属の微粒子41を積層させて、酸素雰囲気下で熱処理を行うことで、図5(d)で示すように、前記ナノコラム3間に均一に、第1の絶縁体層4a、反射層4bおよび第2の絶縁体層4cの3層から成る絶縁物4’を埋込むことができる。   Further, as in FIG. 2A, the oxide metal fine particles 41 charged in the opposite polarity to the substrate 2 are stacked, and heat treatment is performed in an oxygen atmosphere. As described above, the insulator 4 ′ composed of the three layers of the first insulator layer 4a, the reflective layer 4b, and the second insulator layer 4c can be embedded uniformly between the nanocolumns 3.

このように微粒子41,42を基板2に付着させる工程と熱処理の工程とを3回繰返し、絶縁物4’を前記の3層から構成することで、図4において矢符F3で示すように、発光層3bで発生してナノコラム3の外周面から放射された光は、前記反射層4bで基板2とは反対側に反射され、隣接するナノコラム3に吸収される割合を小さくして、効率良く取出すことができる。   Thus, by repeating the process of attaching the fine particles 41 and 42 to the substrate 2 and the process of heat treatment three times, and forming the insulator 4 ′ from the three layers, as shown by the arrow F3 in FIG. The light emitted from the outer peripheral surface of the nanocolumn 3 generated in the light emitting layer 3b is reflected to the opposite side of the substrate 2 by the reflective layer 4b, and the proportion absorbed by the adjacent nanocolumn 3 is reduced efficiently. Can be taken out.

[実施の形態3]
図6は、本発明の実施の第3の形態に係る化合物半導体発光素子である発光ダイオード31の構造を模式的に示す断面図である。この発光ダイオード31は、前述の発光ダイオード21に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この発光ダイオード31では、絶縁物4”が、前記絶縁物4’に加えて、第2の絶縁体層4c中に、蛍光体層4dをさらに備えることである。
[Embodiment 3]
FIG. 6 is a cross-sectional view schematically showing the structure of a light-emitting diode 31 which is a compound semiconductor light-emitting element according to the third embodiment of the present invention. The light-emitting diode 31 is similar to the light-emitting diode 21 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this light emitting diode 31, the insulator 4 ″ further includes a phosphor layer 4d in the second insulator layer 4c in addition to the insulator 4 ′.

このように構成することで、前記蛍光体層4dによって、白色化等、前記発光層3bによる発光波長を、容易に任意の波長に変換することができる。   By comprising in this way, the light emission wavelength by the said light emitting layer 3b, such as whitening, can be easily converted into arbitrary wavelengths by the said fluorescent substance layer 4d.

本発明の実施の第1の形態に係る化合物半導体発光素子である発光ダイオードの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light emitting diode which is a compound semiconductor light emitting element concerning the 1st Embodiment of this invention. 図1で示す発光ダイオードにおける絶縁物の作成方法を模式的に示す断面図である。It is sectional drawing which shows typically the production method of the insulator in the light emitting diode shown in FIG. 図2で示す絶縁物の埋込みに使用される装置の構造を模式的に示す図である。It is a figure which shows typically the structure of the apparatus used for embedding the insulator shown in FIG. 本発明の実施の第2の形態に係る化合物半導体発光素子である発光ダイオードの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light emitting diode which is a compound semiconductor light emitting element concerning the 2nd Embodiment of this invention. 図4で示す発光ダイオードにおける絶縁物の作成方法の一部を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a part of a method for producing an insulator in the light emitting diode shown in FIG. 4. 本発明の実施の第3の形態に係る化合物半導体発光素子である発光ダイオードの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light emitting diode which is a compound semiconductor light emitting element concerning the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1,21,31 発光ダイオード
2 基板
3 ナノコラム
3a n型窒化物半導体層
3b 発光層
3c p型窒化物半導体層
4,4’,4” 絶縁物
4a 第1の絶縁体層
4b 反射層
4c 第2の絶縁体層
4d 蛍光体層
5 透明電極
6 ボンディング用電極
7 反射電極
11 装置
12 ステージ
13 電源
14 格納容器
15 エレクトロン発生装置
16 電子
41,42 微粒子
1, 21 and 31 Light-emitting diode 2 Substrate 3 Nanocolumn 3a n-type nitride semiconductor layer 3b light-emitting layer 3c p-type nitride semiconductor layer 4, 4 ′, 4 ″ insulator 4a first insulator layer 4b reflective layer 4c second Insulator layer 4d Phosphor layer 5 Transparent electrode 6 Bonding electrode 7 Reflective electrode 11 Device 12 Stage 13 Power supply 14 Containment vessel 15 Electron generator 16 Electron 41, 42 Fine particles

Claims (9)

導電性基板上にナノスケールの柱状結晶構造体を有し、前記柱状結晶構造体間には絶縁物が埋込まれて成る化合物半導体発光素子において、
前記絶縁物は、静電吸着によって埋込まれた微粒子が熱酸化されることで絶縁性となった酸化層から成ることを特徴とする化合物半導体発光素子。
In a compound semiconductor light emitting device having a nanoscale columnar crystal structure on a conductive substrate, and an insulator embedded between the columnar crystal structures,
The compound semiconductor light emitting device, wherein the insulator is formed of an oxide layer that becomes insulating by thermally oxidizing fine particles embedded by electrostatic adsorption.
前記酸化層は、
前記柱状結晶構造体における発光層よりも基板側に形成される第1の絶縁体層と、
前記第1の絶縁体層上で、かつ前記発光層よりも基板側に形成される反射層と、
前記反射層上に形成され、前記発光層の発光波長に対して透光性を有する第2の絶縁体層とを備えて構成されることを特徴とする請求項1記載の化合物半導体発光素子。
The oxide layer is
A first insulator layer formed on the substrate side of the light emitting layer in the columnar crystal structure;
A reflective layer formed on the first insulator layer and closer to the substrate than the light emitting layer;
The compound semiconductor light-emitting element according to claim 1, further comprising: a second insulator layer formed on the reflective layer and having translucency with respect to an emission wavelength of the light-emitting layer.
前記第2の絶縁体層内に、蛍光体層をさらに備えることを特徴とする請求項2記載の化合物半導体発光素子。   The compound semiconductor light-emitting element according to claim 2, further comprising a phosphor layer in the second insulator layer. 前記基板は、透光性を有する材料から成り、該基板における前記柱状結晶構造体が形成される側とは反対側には、反射膜が形成されていることを特徴とする請求項1〜3のいずれか1項に記載の化合物半導体発光素子。   The said board | substrate consists of the material which has translucency, and the reflecting film is formed in the opposite side to the side in which the said columnar crystal structure is formed in this board | substrate. The compound semiconductor light-emitting device according to any one of the above. 前記請求項1〜4のいずれか1項に記載の化合物半導体発光素子を用いることを特徴とする照明装置。   An illumination device using the compound semiconductor light-emitting element according to claim 1. 導電性基板上にナノスケールの柱状結晶構造体を有し、前記柱状結晶構造体間には絶縁物が埋込まれて成る化合物半導体発光素子の製造方法において、
前記柱状結晶構造体を成長させた基板に一方の極性の電圧を加えるとともに、帯電可能で、かつ熱酸化により絶縁性となる材料から成る微粒子に、他方の極性を帯電させて前記基板に付着させる工程と、
酸素雰囲気下で熱処理を行うことで、前記微粒子を絶縁性の酸化層として前記柱状結晶構造体間に埋込む工程とを含むことを特徴とする化合物半導体発光素子の製造方法。
In a method for manufacturing a compound semiconductor light emitting device having a nanoscale columnar crystal structure on a conductive substrate, and an insulator embedded between the columnar crystal structures,
A voltage of one polarity is applied to the substrate on which the columnar crystal structure has been grown, and the other polarity is charged to a fine particle made of a material that can be charged and becomes insulative by thermal oxidation to adhere to the substrate. Process,
And a step of embedding the fine particles as an insulating oxide layer between the columnar crystal structures by performing a heat treatment in an oxygen atmosphere.
前記微粒子を基板に付着させる工程と、前記熱処理の工程とを少なくとも3回繰返し、
1回目の繰返し工程では、前記柱状結晶構造体における発光層よりも基板側に第1の絶縁体層を形成し、
2回目の繰返し工程では、前記第1の絶縁体層上で、かつ前記発光層よりも基板側に反射層を形成し、
3回目の繰返し工程では、前記反射層上に、前記発光層の発光波長に対して透光性を有する第2の絶縁体層を形成することを特徴とする請求項6記載の化合物半導体発光素子の製造方法。
Repeating the step of attaching the fine particles to the substrate and the step of the heat treatment at least three times;
In the first repeating step, a first insulator layer is formed on the substrate side of the light emitting layer in the columnar crystal structure,
In the second repeating step, a reflective layer is formed on the first insulator layer and on the substrate side of the light emitting layer,
7. The compound semiconductor light emitting element according to claim 6, wherein in the third repeating step, a second insulator layer having translucency with respect to the emission wavelength of the light emitting layer is formed on the reflective layer. Manufacturing method.
前記微粒子を前記基板に付着させる工程において、前記基板を振動させていることを特徴とする請求項6または7記載の化合物半導体発光素子の製造方法。   8. The method of manufacturing a compound semiconductor light-emitting element according to claim 6, wherein in the step of attaching the fine particles to the substrate, the substrate is vibrated. 前記微粒子を前記基板に付着させる工程において、前記微粒子に与える前記他方の極性の電圧が、前記柱状結晶構造体のバンドギャップエネルギー以下であることを特徴とする請求項6〜8のいずれか1項に記載の化合物半導体発光素子の製造方法。   9. The method according to claim 6, wherein in the step of attaching the fine particles to the substrate, the voltage of the other polarity applied to the fine particles is equal to or lower than the band gap energy of the columnar crystal structure. The manufacturing method of the compound semiconductor light-emitting device of description.
JP2007085078A 2007-03-28 2007-03-28 Compound semiconductor light-emitting element, lighting device using the same, and production method of the compound semiconductor light-emitting element Pending JP2008244302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085078A JP2008244302A (en) 2007-03-28 2007-03-28 Compound semiconductor light-emitting element, lighting device using the same, and production method of the compound semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085078A JP2008244302A (en) 2007-03-28 2007-03-28 Compound semiconductor light-emitting element, lighting device using the same, and production method of the compound semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JP2008244302A true JP2008244302A (en) 2008-10-09

Family

ID=39915241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085078A Pending JP2008244302A (en) 2007-03-28 2007-03-28 Compound semiconductor light-emitting element, lighting device using the same, and production method of the compound semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JP2008244302A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994643B1 (en) 2009-01-21 2010-11-15 주식회사 실트론 Manufacturing method of compound semiconductor substrate using spherical balls, compound semiconductor substrate and compound semiconductor device using the same
JP2011187909A (en) * 2010-03-09 2011-09-22 Samsung Mobile Display Co Ltd Quantum dot organic electroluminescent element and method for forming the same
US20110256651A1 (en) * 2010-04-16 2011-10-20 Invenlux Corporation Method for fabricating light-emitting devices with vertical light-extraction mechanism
KR101563157B1 (en) 2009-02-03 2015-10-26 삼성전자주식회사 Light emitting device comprising micro-rod and manufacturing method of the same
JP2016518708A (en) * 2013-03-28 2016-06-23 アレディア Light emitting device including active nanowire and contact nanowire and manufacturing method thereof
JP2017501573A (en) * 2013-12-19 2017-01-12 アルディア Optoelectronic device comprising a light emitting diode with enhanced light extraction
JP2019054127A (en) * 2017-09-15 2019-04-04 セイコーエプソン株式会社 Light-emitting device, method for manufacturing the same, and projector
US11508873B2 (en) 2019-03-26 2022-11-22 Seiko Epson Corporation Light emitting device and projector

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994643B1 (en) 2009-01-21 2010-11-15 주식회사 실트론 Manufacturing method of compound semiconductor substrate using spherical balls, compound semiconductor substrate and compound semiconductor device using the same
KR101563157B1 (en) 2009-02-03 2015-10-26 삼성전자주식회사 Light emitting device comprising micro-rod and manufacturing method of the same
JP2011187909A (en) * 2010-03-09 2011-09-22 Samsung Mobile Display Co Ltd Quantum dot organic electroluminescent element and method for forming the same
JP2012146689A (en) * 2010-03-09 2012-08-02 Samsung Mobile Display Co Ltd Method for forming quantum dot organic electroluminescent element
US20110256651A1 (en) * 2010-04-16 2011-10-20 Invenlux Corporation Method for fabricating light-emitting devices with vertical light-extraction mechanism
US8137998B2 (en) * 2010-04-16 2012-03-20 Invenlux Limited Method for fabricating light-emitting devices with vertical light-extraction mechanism
JP2016518708A (en) * 2013-03-28 2016-06-23 アレディア Light emitting device including active nanowire and contact nanowire and manufacturing method thereof
US10453991B2 (en) 2013-03-28 2019-10-22 Aledia Light-emitting device comprising active nanowires and contact nanowires and method of fabrication
JP2017501573A (en) * 2013-12-19 2017-01-12 アルディア Optoelectronic device comprising a light emitting diode with enhanced light extraction
JP2019169735A (en) * 2013-12-19 2019-10-03 アルディア Optoelectronic device including light emitting diode with enhanced light extraction
JP2019195077A (en) * 2013-12-19 2019-11-07 アルディア Optoelectronic device including light emitting diode with enhanced light extraction
JP2019054127A (en) * 2017-09-15 2019-04-04 セイコーエプソン株式会社 Light-emitting device, method for manufacturing the same, and projector
US11508873B2 (en) 2019-03-26 2022-11-22 Seiko Epson Corporation Light emitting device and projector

Similar Documents

Publication Publication Date Title
KR100966367B1 (en) Light emitting device and manufacturing method for the same
TWI538247B (en) Nanowire led structure and method for manufacturing the same
US9385266B2 (en) Method of manufacturing a nanostructure light emitting device by planarizing a surface of the device
JP2008244302A (en) Compound semiconductor light-emitting element, lighting device using the same, and production method of the compound semiconductor light-emitting element
CN103229316B (en) Light-emitting device and manufacture method thereof
US8471268B2 (en) Light emitting device
TW200905908A (en) Semiconductor light-emitting element and process for making the same
JP2010251714A (en) White light-emitting diode
KR20180018659A (en) Micro-LED display without transmission
TW201214772A (en) Method of forming a light emitting diode structure and a light emitting diode structure
KR20110054318A (en) Light emitting device and method of manufacturing the same
JP2020503691A (en) Optoelectronic device with light emitting diode
JP2009010012A (en) Semiconductor light emitting element and manufacturing method thereof, and light emitting device
EP3011605A1 (en) Removal of 3d semiconductor structures by dry etching
TWI493747B (en) Light emitting diodes and manufacture thereof
JP2021513741A (en) Emitters, light emitting devices and related display screens and manufacturing methods
JP2020503695A (en) Optoelectronic device with light emitting diode
KR101373398B1 (en) Method for preparing high efficiency Light Emitting Diode thereof
JP2016510502A (en) Optoelectronic semiconductor chip
JP2010087453A (en) Light-emitting device and method of manufacturing the same
JP5247109B2 (en) Semiconductor light emitting device, illumination device using the same, and method for manufacturing semiconductor light emitting device
JP2009140975A (en) Semiconductor light-emitting device and lighting device using it and manufacturing process of semiconductor light-emitting device
JP2009049195A (en) Semiconductor light emitting element and light emitting device
US20220037558A1 (en) Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
Soh et al. Fabrication of a nano-cone array on a p-GaN surface for enhanced light extraction efficiency from GaN-based tunable wavelength LEDs