JP2008243919A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2008243919A
JP2008243919A JP2007078887A JP2007078887A JP2008243919A JP 2008243919 A JP2008243919 A JP 2008243919A JP 2007078887 A JP2007078887 A JP 2007078887A JP 2007078887 A JP2007078887 A JP 2007078887A JP 2008243919 A JP2008243919 A JP 2008243919A
Authority
JP
Japan
Prior art keywords
film
sio
ozone
cvd
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007078887A
Other languages
Japanese (ja)
Other versions
JP4823952B2 (en
Inventor
Kazumasa Kawase
和雅 河瀬
Seiji Noda
清治 野田
Narihisa Miura
成久 三浦
Keiko Sakai
景子 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007078887A priority Critical patent/JP4823952B2/en
Publication of JP2008243919A publication Critical patent/JP2008243919A/en
Application granted granted Critical
Publication of JP4823952B2 publication Critical patent/JP4823952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device that easily forms the thickness of an SiO<SB>2</SB>film in approximately 20 to 100 nm by reducing an interface-level density close to an SiO<SB>2</SB>/SiC interface while increasing the density of the SiO<SB>2</SB>film, when manufacturing the semiconductor device having the SiO<SB>2</SB>film on an SiC board. <P>SOLUTION: The method has (a) a deposition step of supplying the upper section of the SiC board with the raw material gas of silicon and oxygen and depositing the SiO<SB>2</SB>film. The manufacturing method further has (b) an oxidation step of setting the SiC board depositing the SiO<SB>2</SB>film at a temperature from 200°C to 700°C and radical-oxidizing the SiC board by generating oxygen radicals. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、SiC基板を用いた半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device using a SiC substrate.

高耐圧化、小型化への強い要求があるパワーデバイスは、現在、主にSi基板を用いて製造されているが、Siの物性に起因する性能限界に近づいている。そこで期待されているのが、SiC基板を用いたパワーデバイスである。SiCはSiの約3倍の大きな禁制帯幅を持つため、絶縁破壊電界が1桁大きい。つまり1/10の厚さで同じ耐圧を得ることができる。また、扱える電流密度も大きくなるため、全体的に小型化することができる。パワーデバイスがMOSFETである場合、SiC基板を用いると電力変換時の損失は、Siよりも2桁以上小さくできる。また、熱伝導率がSiの約3倍大きいため、熱放散が良好で、機器の冷却が簡易化できる。すなわち、Si基板に代わりSiC基板を用いることにより小型、低損失、高効率、簡易冷却などの大きなメリットがある。   Power devices with strong demands for high withstand voltage and miniaturization are currently manufactured mainly using Si substrates, but they are approaching the performance limit due to the physical properties of Si. Therefore, a power device using a SiC substrate is expected. Since SiC has a forbidden band that is about three times as large as Si, the breakdown electric field is an order of magnitude larger. That is, the same breakdown voltage can be obtained with a thickness of 1/10. In addition, since the current density that can be handled is increased, the overall size can be reduced. If the power device is a MOSFET, the loss during power conversion can be reduced by two orders of magnitude or more compared to Si when a SiC substrate is used. Moreover, since the thermal conductivity is about 3 times larger than that of Si, the heat dissipation is good and the cooling of the equipment can be simplified. In other words, using a SiC substrate instead of a Si substrate has significant advantages such as small size, low loss, high efficiency, and simple cooling.

MOSFETなどのトランジスタのゲート絶縁膜には、高い絶縁特性が求められるため、Siパワーデバイスでは熱酸化膜が用いられている。熱酸化膜は、Si基板をO2、H2O、N2O、NOなどの酸化性ガス雰囲気中で高温アニールすることにより、Si基板を熱的に酸化し、その表面にSiO2膜を形成する方法である。一般には、700〜1200℃程度の高温が必要であり、絶縁特性に優れ、SiO2膜/Si界面準位密度が非常に小さい。また、100nm以上の厚い膜も形成可能である。 Since a gate insulating film of a transistor such as a MOSFET is required to have high insulating characteristics, a thermal oxide film is used in a Si power device. Thermal oxide film, Si substrate O 2, H 2 O, N 2 O, by high-temperature annealing in an oxidizing gas atmosphere such as NO, is oxidized to the Si substrate thermally, the SiO 2 film on the surface thereof It is a method of forming. In general, a high temperature of about 700 to 1200 ° C. is necessary, the insulating properties are excellent, and the SiO 2 film / Si interface state density is very small. A thick film of 100 nm or more can also be formed.

しかし、SiCパワーデバイスのゲート絶縁膜に熱酸化を適用した場合、Siパワーデバイスにはなかった問題が発生する。SiC基板を熱酸化すると、SiCが酸化されSiO2膜を形成すると同時に、Cも酸化されてCO2、COなどを生成する。生成されたCO2、COはSiO2膜の外に排出されるが、一部のCが酸化されずに、SiO2膜/SiC界面近傍のSiO2膜中に残留したC起因欠陥となり、界面準位密度を増加させる。このため、キャリア移動度を十分高くすることができない問題や、チャネル抵抗の増大による電力ロスが生じる。また、ゲート絶縁膜に必要な20〜100nmの厚い膜を得るのに十分な酸化レートを得るためには、900〜1200℃の非常に高い温度が必要になる。よってSiパワーデバイスよりも生産にかかるコストが高くなる問題があり、酸化温度の低温下も要求の一つである。 However, when thermal oxidation is applied to the gate insulating film of a SiC power device, a problem not found in the Si power device occurs. When a SiC substrate is thermally oxidized, SiC is oxidized to form a SiO 2 film, and at the same time, C is also oxidized to generate CO 2 , CO, and the like. The generated CO 2, CO is discharged to the outside of the SiO 2 film, without a portion of the C is oxidized, becomes C induced defects remaining on the SiO 2 film of SiO 2 film / SiC interface area, the interface Increase level density. For this reason, the problem that carrier mobility cannot be made high enough and the power loss by increase in channel resistance arise. In order to obtain an oxidation rate sufficient to obtain a 20-100 nm thick film necessary for the gate insulating film, a very high temperature of 900-1200 ° C. is required. Therefore, there is a problem that the production cost is higher than that of the Si power device, and the low oxidation temperature is one of the requirements.

この対策として、熱酸化後にNO、N2O、NH3ガスなどを用いて熱窒化する方法が検討されている。熱窒化によりSiO2膜/SiC界面近傍にNを導入することで、C起因欠陥を不活性化し、界面準位密度が低減される(例えば下記非特許文献1参照)。 As a countermeasure against this, a method of thermal nitridation using NO, N 2 O, NH 3 gas or the like after thermal oxidation has been studied. By introducing N in the vicinity of the SiO 2 film / SiC interface by thermal nitridation, defects caused by C are deactivated and the interface state density is reduced (see, for example, Non-Patent Document 1 below).

また、熱酸化以外にも様々な方法でSiO2膜を形成することができるが、以下のような制約条件を満たす必要がある。(1)C起因欠陥が少ないSiO2膜を形成できること。(2)未酸化欠陥(酸素欠損欠陥)が少ないSiO2膜を形成できること。(3)20〜100nmの厚い膜が形成できること。(4)SiO2膜に新たに欠陥を形成しない方法であること。 In addition to the thermal oxidation, the SiO 2 film can be formed by various methods, but the following constraints must be satisfied. (1) An SiO 2 film with few C-induced defects can be formed. (2) A SiO 2 film with few unoxidized defects (oxygen deficiency defects) can be formed. (3) A thick film of 20 to 100 nm can be formed. (4) A method in which no new defect is formed in the SiO 2 film.

熱酸化以外の酸化方法として代表的な方法には、オゾンの分解、プラズマの分解等によって発生した酸素ラジカルを用いたラジカル酸化法や、CVD法やスパッタ法によりSiO2膜を堆積させる堆積法がある。 Typical oxidation methods other than thermal oxidation include radical oxidation methods using oxygen radicals generated by ozone decomposition, plasma decomposition, etc., and deposition methods that deposit SiO 2 films by CVD or sputtering. is there.

ラジカル酸化法に用いられる酸素ラジカルは極めて強い酸化力を有しているため、SiCを酸化する際にCの除去効果が極めて高く、C起因欠陥を熱酸化よりも大幅に低減することができる。また、熱酸化と同様に未酸化欠陥の少ない良質な酸化膜を形成できる。   Since the oxygen radical used in the radical oxidation method has a very strong oxidizing power, the effect of removing C is extremely high when oxidizing SiC, and defects caused by C can be greatly reduced as compared with thermal oxidation. In addition, a high-quality oxide film with few unoxidized defects can be formed as in thermal oxidation.

また、堆積法は、熱酸化法やラジカル酸化法とは異なりSiO2膜中のSiとOをSiC基板外からSiC基板表面に供給する方法である。SiとOの供給形態によって種々の方法があり、例えば、CVD法、スパッタ法、PVD法、蒸着法などがある。堆積法の中では特にCVD法が最も欠陥の少ないSiO2膜を形成することができ、また量産にも適した方法である。 The deposition method is a method in which Si and O in the SiO 2 film are supplied from the outside of the SiC substrate to the surface of the SiC substrate, unlike the thermal oxidation method and the radical oxidation method. There are various methods depending on the supply form of Si and O, such as CVD, sputtering, PVD, and vapor deposition. Among the deposition methods, the CVD method can form an SiO 2 film with the fewest defects and is also suitable for mass production.

また、他の方法として、SiC上にCVD-SiO2膜を形成した後、700℃以上かつ900℃以下でSiC基板表面のSi原子1層のみを熱酸化する方法が提案されている。O2やH2Oによる熱酸化の酸化レートの温度依存性がSiとSiCで異なることを利用してSiCの酸化を抑制し、Si原子1層のみを熱酸化させる。実用的な酸化レートが得られる温度は、Siの場合約700℃以上であるが、SiCの場合約900℃以上である。したがって、700〜900℃の温度範囲内では、SiCの酸化を抑制し、Siを熱酸化させることができる(例えば下記特許文献1参照)。 As another method, a method in which a CVD-SiO 2 film is formed on SiC and then only one Si atom layer on the surface of the SiC substrate is thermally oxidized at 700 ° C. or more and 900 ° C. or less is proposed. Utilizing the fact that the temperature dependence of the oxidation rate of thermal oxidation by O 2 and H 2 O differs between Si and SiC, the oxidation of SiC is suppressed, and only one Si atom layer is thermally oxidized. The temperature at which a practical oxidation rate can be obtained is about 700 ° C. or higher for Si, but about 900 ° C. or higher for SiC. Therefore, in the temperature range of 700 to 900 ° C., it is possible to suppress the oxidation of SiC and to thermally oxidize Si (for example, see Patent Document 1 below).

特開2003−124208号公報JP 2003-124208 A N.Kimizuka,K.Yamaguchi,K.Imai,T.Iisuka,C.T.Liu,R.C.Keller and T.Horiuchi、Symp.VLSI Technology、2000、p.92.N. Kimizuka, K. Yamaguchi, K. Imai, T. Iisuka, C. T. Liu, R. C. Keller and T. Horiuchi, Symp. VLSI Technology, 2000, p. 92.

SiO2膜/SiC界面近傍の界面準位密度の低減に際して、熱酸化法は、上記の(2)〜(4)については満たしているが、上記の(1)が問題となっている。 In reducing the interface state density in the vicinity of the SiO 2 film / SiC interface, the thermal oxidation method satisfies the above (2) to (4), but the above (1) is a problem.

また、熱酸化後に熱窒化する方法では、Nが導入されると、逆にN起因の欠陥を生成して上記(4)が問題となり、窒化による界面準位低減効果には限界がある。   Also, in the method of thermal nitriding after thermal oxidation, when N is introduced, defects due to N are generated and the above (4) becomes a problem, and the effect of reducing the interface state by nitriding is limited.

また、ラジカル酸化法においては、酸素ラジカルは不対電子を持ち、極めて活性であるため、SiO2膜中を通過する際に、Si-Oネットワークの散乱を受けてすぐに失活してしまう。また、別の酸素ラジカルと衝突して再結合し、O2分子となるため、寿命が非常に短い。したがってSiO2膜中での拡散長が非常に短く、5nm以上の厚い膜を形成するのは困難であり、上記(3)が問題となる。SiCパワーデバイスでは扱う電圧が高いため、20〜100nm程度の膜厚が必要であり、このままでは適用できない。 Further, in the radical oxidation method, oxygen radicals have unpaired electrons and are extremely active, so when passing through the SiO 2 film, they are immediately deactivated due to scattering of the Si—O network. It also has a very short lifetime because it collides with another oxygen radical and recombines to form O 2 molecules. Therefore, the diffusion length in the SiO 2 film is very short, and it is difficult to form a thick film of 5 nm or more, and the above (3) becomes a problem. Since the SiC power device handles a high voltage, a film thickness of about 20 to 100 nm is necessary and cannot be applied as it is.

一方、代表的な堆積法であるCVD法は、20〜100nm以上の厚い膜を形成するのは容易である。しかし、熱酸化やオゾン酸化では、密度の高いSiC中にOが導入され、密度の高いSiO2膜が形成されるのに対して、堆積法では、SiとOが外部から供給され基板上に堆積されたSiO2膜の密度は、熱酸化膜やオゾン酸化膜と比較して明らかに低い。隙間が広く、リングサイズの大きいSi-O結合ネットワークには大気中のH2Oが吸蔵され、Si-HやSi-OHなどの欠陥を生成する問題や、Si-O-Si結合角が通常より大きく歪んだSi-O結合や、Siダングリングボンドが存在する。このため、欠陥密度が高く、絶縁耐圧やリーク電流などの絶縁特性は、熱酸化膜やラジカル酸化膜より1桁以上悪い。特に成膜の初期段階ではSiソースガスとOソースガスの流量比が安定しないため、Si-Si結合、Siダングリングボンド、Si-H、Si-OHなどの未酸化欠陥が多く生成し、上記(2)が問題となり、SiO2膜/Si界面準位密度が非常に高くなる。堆積酸化膜の中でもCVD法により形成されたSiO2膜は、比較的絶縁特性に優れているが、熱酸化膜やオゾン酸化膜とは比較にならないほど劣る。 On the other hand, a CVD method, which is a typical deposition method, can easily form a thick film of 20 to 100 nm or more. However, in thermal oxidation and ozone oxidation, O is introduced into high-density SiC to form a high-density SiO 2 film, whereas in the deposition method, Si and O are supplied from the outside and applied to the substrate. The density of the deposited SiO 2 film is clearly lower than that of the thermal oxide film or the ozone oxide film. The Si-O bond network with wide gaps and large ring size occludes H 2 O in the atmosphere, which usually causes defects such as Si-H and Si-OH, and the Si-O-Si bond angle There are more strained Si-O bonds and Si dangling bonds. For this reason, the defect density is high, and the insulation characteristics such as the withstand voltage and the leakage current are worse by one digit or more than the thermal oxide film and the radical oxide film. In particular, since the flow ratio of Si source gas to O source gas is not stable at the initial stage of film formation, many unoxidized defects such as Si-Si bonds, Si dangling bonds, Si-H, and Si-OH are generated. (2) becomes a problem, and the SiO 2 film / Si interface state density becomes very high. Among the deposited oxide films, the SiO 2 film formed by the CVD method is relatively excellent in insulating properties, but is inferior to a thermal oxide film or an ozone oxide film as compared with the deposited oxide film.

また、特許文献1に記載の方法によれば、C起因欠陥および未酸化欠陥が少なく、新たな欠陥生成もない1層のSiO2膜をSiO2膜/SiC界面に持ち、かつ、20〜100nmの厚い膜が形成することが可能になる。しかし、この方法ではC起因欠陥や未酸化欠陥などの欠陥が少ないのはSiO2膜/SiC界面近傍の1層のみであり、界面から1層以上離れた部分には、多量に未酸化欠陥が存在して上記(2)が問題となる。これらの欠陥によるキャリアのクーロン散乱の影響が無視できないため、十分な対策とは言えない。 Further, according to the method described in Patent Document 1, a single layer of SiO 2 film with few C-induced defects and unoxidized defects and no new defect generation is provided at the SiO 2 film / SiC interface, and 20-100 nm. It is possible to form a thick film. However, this method has few defects such as C-induced defects and unoxidized defects in only one layer in the vicinity of the SiO 2 film / SiC interface, and a large amount of unoxidized defects are present in a portion one or more layers away from the interface. The above (2) becomes a problem. Since the influence of Coulomb scattering of carriers due to these defects cannot be ignored, it cannot be said to be a sufficient countermeasure.

そこで本発明はかかる問題を解決するためになされたものであり、SiC基板上にSiO2膜を有する半導体装置の製造に際して、そのSiO2膜/SiC界面近傍の界面準位密度を低減するとともにSiO2膜の密度を高め、かつ、そのSiO2膜の厚みを20〜100nm程度とすることが容易である半導体装置の製造方法を提供することを目的としている。 Accordingly, the present invention has been made to solve such a problem. In manufacturing a semiconductor device having a SiO 2 film on a SiC substrate, the interface state density in the vicinity of the SiO 2 film / SiC interface is reduced and SiO 2 is reduced. It is an object of the present invention to provide a method for manufacturing a semiconductor device in which the density of the two films is increased and the thickness of the SiO 2 film is easily set to about 20 to 100 nm.

本発明における半導体装置の製造方法は、(a)SiC基板上に珪素および酸素の原料ガスを供給してSiO2膜を堆積する堆積工程と、(b)前記SiO2膜を堆積した前記SiC基板を200℃以上かつ700℃未満の温度に設定し、酸素ラジカルを発生してラジカル酸化する酸化工程とを備える。 The method of manufacturing a semiconductor device according to the present invention includes: (a) a deposition step in which a source gas of silicon and oxygen is supplied onto a SiC substrate to deposit a SiO 2 film; and (b) the SiC substrate in which the SiO 2 film is deposited. Is set to a temperature of 200 ° C. or higher and lower than 700 ° C., and an oxygen radical is generated to oxidize the radical.

請求項1に記載のように、珪素および酸素の原料ガスを供給してSiC基板上にSiO2膜を堆積するので、膜厚を20〜100nm程度と大きくすることが容易である。また、200℃以上700℃未満の温度で酸化するので、酸素分子によるSiCの熱酸化がほとんどなく、かつオゾンの熱分解による酸素ラジカルの生成効率が高い。よって、SiO2膜とSiCとの界面が、酸素ラジカルのみによって酸化されてSiO2膜となるので、C欠陥の少ないSiO2膜とSiCとの界面となる。また、同時に珪素および酸素の原料ガスを供給して堆積したSiO2膜も酸素ラジカルによって高密度化される。 As described in claim 1, since the SiO 2 film is deposited on the SiC substrate by supplying the source gases of silicon and oxygen, it is easy to increase the film thickness to about 20 to 100 nm. Moreover, since it oxidizes at the temperature of 200 degreeC or more and less than 700 degreeC, there is almost no thermal oxidation of SiC by an oxygen molecule, and the generation efficiency of the oxygen radical by the thermal decomposition of ozone is high. Therefore, the interface between the SiO 2 film and SiC is oxidized by only oxygen radicals to become the SiO 2 film, and thus becomes the interface between the SiO 2 film and SiC with few C defects. At the same time, the SiO 2 film deposited by supplying source gases of silicon and oxygen is also densified by oxygen radicals.

[実施の形態1]
図1は本発明の実施の形態1によるSiO2膜の形成方法を示す図であり、以下に説明する。まず、図1(a)に示す洗浄後のSiC基板1上に珪素および酸素の原料ガスを供給してSiO2膜を堆積する堆積工程を行う(図1(b))。この堆積する工程はCVD法、PVD法、スパッタ法、蒸着法などを用いることができるが、最も欠陥が少なく、量産にも適した方法はCVD法であり、CVD-SiO2膜3(未改質のCVD-SiO2膜)を堆積することが好ましい。
[Embodiment 1]
FIG. 1 is a diagram showing a method of forming a SiO 2 film according to Embodiment 1 of the present invention, which will be described below. First, a deposition step of depositing a SiO 2 film by supplying source gases of silicon and oxygen on the cleaned SiC substrate 1 shown in FIG. 1A is performed (FIG. 1B). For this deposition process, CVD, PVD, sputtering, vapor deposition, etc. can be used, but the CVD method is the least suitable and suitable for mass production. The CVD-SiO 2 film 3 (unmodified) It is preferable to deposit a high quality CVD-SiO 2 film).

Siソースガスには、Cを含まないシラン系ガス、例えばSiCl2H2(ジクロロシラン),SiH4(シラン),SiCl3H(トリクロロシラン),SiCl4(テトラクロロシラン),Si2H6(ジシラン)などを用いる。これによりCVD-SiO2膜3中にC起因欠陥が生成するのを避けることができる。Oソースガスには、N20,O2オゾンなどの酸化性ガスを用いる。ジクロロシランとN2Oを用いたCVD-SiO2膜3は特に未酸化欠陥が少ない膜を形成できるため好ましい。 Si source gases include silane-based gases that do not contain C, such as SiCl 2 H 2 (dichlorosilane), SiH 4 (silane), SiCl 3 H (trichlorosilane), SiCl 4 (tetrachlorosilane), Si 2 H 6 ( Disilane) or the like is used. Thereby, it is possible to avoid the generation of C-induced defects in the CVD-SiO 2 film 3. An oxidizing gas such as N 2 0, O 2 ozone is used as the O source gas. The CVD-SiO 2 film 3 using dichlorosilane and N 2 O is particularly preferable because a film with few unoxidized defects can be formed.

CVD法には、熱CVD,プラズマCVD、cat-CVDなどいろいろな方法を用いることができるが、プラズマダメージなどの影響のない熱CVD法が好ましい。処理温度は室温から900℃以下で行うが、SiC表面上にクリーンルーム大気から吸着した有機物汚染を燃焼し除去するため、400℃以上が好ましい。また、CVD-SiO2成膜時の雰囲気によりSiCが熱酸化するのを防ぐため、700℃未満にするのが好ましい。 Although various methods such as thermal CVD, plasma CVD, and cat-CVD can be used for the CVD method, the thermal CVD method that is not affected by plasma damage or the like is preferable. The treatment temperature is from room temperature to 900 ° C. or lower, but 400 ° C. or higher is preferable in order to burn and remove organic contaminants adsorbed on the SiC surface from the clean room atmosphere. Further, in order to prevent SiC from being thermally oxidized due to the atmosphere during film formation of CVD-SiO 2 , the temperature is preferably less than 700 ° C.

このようにしてCVD-SiO2膜3を形成した後、SiC基板1を200℃以上かつ700℃未満の温度に設定し、酸素ラジカルを発生してCVD-SiO2膜3越しにSiC基板1をラジカル酸化する酸化工程を行う(図1(c))。酸素ラジカルの発生方法としては、プラズマにより酸素分子やオゾンを分解させる方法、UV照射により酸素分子やオゾンを分解させる方法、オゾンの熱分解を用いる方法などがあるが、プラズマダメージやUV照射によるSi-O結合の切断、すなわち新たな未酸化欠陥4の生成を防ぐために、オゾンの熱分解を用いるのが好ましい。 After the CVD-SiO 2 film 3 is formed in this way, the SiC substrate 1 is set to a temperature of 200 ° C. or higher and lower than 700 ° C., and oxygen radicals are generated to pass the SiC substrate 1 over the CVD-SiO 2 film 3. An oxidation step for radical oxidation is performed (FIG. 1 (c)). Methods for generating oxygen radicals include a method of decomposing oxygen molecules and ozone by plasma, a method of decomposing oxygen molecules and ozone by UV irradiation, and a method of using thermal decomposition of ozone. In order to prevent the breakage of the -O bond, that is, the formation of new unoxidized defects 4, it is preferable to use thermal decomposition of ozone.

オゾンの分解効率を高めるためには、処理温度を200℃以上とし、オゾンの熱分解を促進させるのが好ましい。オゾンの分解効率やSiO2膜中での拡散長は、処理温度が高い方が大きくなるが、オゾンの熱分解や酸素ラジカルの再結合により、必ず02分子が生成するので、O2によるSiC基板1の熱酸化を防止するため700℃未満で行う。また、SiC基板1および基板ステージのみを加熱するコールドウォール方式の炉を用いる。炉内壁の温度は少なくとも200℃以下好ましくは室温に近い温度にする。これはオゾン分子がSiC基板1上で初めて熱を得て熱分解するようにし、SiC基板1上に供給される酸素ラジカルの濃度をできるだけ高くするためである。 In order to increase the decomposition efficiency of ozone, it is preferable to increase the treatment temperature to 200 ° C. or higher and promote the thermal decomposition of ozone. Diffusion length of the decomposition efficiency and SiO 2 film of ozone, although better process temperature is higher increases, by recombination of pyrolysis and oxygen radicals ozone, since always 0 2 molecule is produced, SiC by O 2 In order to prevent thermal oxidation of the substrate 1, it is performed at less than 700 ° C. Further, a cold wall furnace for heating only the SiC substrate 1 and the substrate stage is used. The temperature of the inner wall of the furnace is at least 200 ° C. or less, preferably close to room temperature. This is because ozone molecules obtain heat for the first time on the SiC substrate 1 so as to be thermally decomposed so that the concentration of oxygen radicals supplied onto the SiC substrate 1 is as high as possible.

CVD-SiO2膜3表面で生成した酸素ラジカルは、CVD-SiO2膜3表面の有機物汚染を容易に酸化し分解し除去する。また、CVD-SiO2膜3中を拡散し、CVD-SiO2膜3中の未酸化欠陥4を酸化し、消滅させる。酸素ラジカルはさらに深くまで拡散し、CVD-SiO2膜3/SiC界面近傍に存在する未酸化欠陥5の一つである成膜初期欠陥を酸化し、消滅させてCVD-SiO2膜6(改質されたCVD-SiO2膜)を形成する。また、CVD-SiO2膜3成膜時の温度を700℃以上で実施した場合、CVDのOソースガスによりSiCが一部熱酸化し、C起因欠陥を生成しているが、酸素ラジカルはこのC起因欠陥も消滅させる。 Oxygen radicals generated by the CVD-SiO 2 film 3 surface is easily oxidized to decompose to remove the organic contamination of CVD-SiO 2 film 3 surface. Furthermore, to spread the CVD-SiO 2 film 3 medium oxidizes unoxidized defects 4 in the CVD-SiO 2 film 3, to extinguish. Oxygen radicals diffused to deeper, CVD-SiO 2 film 3 / oxidizing the deposited initial defect is one of the unoxidized defects 5 that is present in SiC near the interface, and is extinguished CVD-SiO 2 film 6 (Kai Formed CVD-SiO 2 film). In addition, when the CVD-SiO 2 film 3 is formed at a temperature of 700 ° C. or higher, SiC is partially thermally oxidized by the CVD O source gas to generate C-induced defects. C-induced defects are also eliminated.

酸素ラジカルはさらにSiC基板1もラジカル酸化し、ラジカル酸化膜(オゾン酸化SiO2膜2)をCVD-SiO2膜6/SiC界面に形成する。このラジカル酸化膜(オゾン酸化SiO2膜2)はC起因欠陥や未酸化欠陥4が極めて少ない。酸素ラジカルの生成はオゾンの熱分解を利用しており、UV光照射やプラズマを用いていないため、これらによるダメージが無く、新たな欠陥生成はない。ただし、膜厚は約5nm程度である。しかし、オゾン酸化後にCVD-SiO2膜3を積み足した場合と異なり、CVD-SiO2膜6/オゾン酸化SiO2膜2界面の成膜初期欠陥は大幅に低減されている。有機物汚染による欠陥もなく、CVD-SiO2膜3中の未酸化欠陥4も低減されている。このため、欠陥によるキャリアのクーロン散乱の影響はほとんどない。 The oxygen radicals also radically oxidize the SiC substrate 1 to form a radical oxide film (ozone oxidized SiO 2 film 2) at the CVD-SiO 2 film 6 / SiC interface. This radical oxide film (ozone oxidized SiO 2 film 2) has very few C-induced defects and unoxidized defects 4. Oxygen radical generation uses thermal decomposition of ozone, and UV light irradiation and plasma are not used, so there is no damage caused by these, and no new defects are generated. However, the film thickness is about 5 nm. However, unlike the case where the CVD-SiO 2 film 3 is added after ozone oxidation, the initial film formation defects at the interface between the CVD-SiO 2 film 6 and the ozone-oxidized SiO 2 film 2 are greatly reduced. There are no defects due to organic contamination, and unoxidized defects 4 in the CVD-SiO 2 film 3 are also reduced. For this reason, there is almost no influence of carrier Coulomb scattering due to defects.

オゾン処理によりSiC基板1が酸化され新たにオゾン酸化SiO2膜2が形成されるが、その厚さは少なくとも2原子層以上、すなわち0.8nm以上できるだけ厚く実施するとよい。SiC基板1が酸化されてオゾン酸化SiO2膜2となる厚さを調整するには、オゾン酸化によるオゾン酸化SiO2膜2形成速度から処理時間を制御することにより調整する。このオゾン酸化SiO2膜2形成速度はあらかじめCVD膜の厚みを測定後に、一定時間のオゾン酸化後に再度膜厚を測定することによって求めることができる。膜厚はX線反射率法を用いることにより正確に求めることができる。オゾン酸化によるオゾン酸化SiO2膜2を0.8nm以上とすることにより、C起因欠陥を充分に低減することが可能となる。 The SiC substrate 1 is oxidized by ozone treatment and a new ozone-oxidized SiO 2 film 2 is formed. The thickness is preferably at least as thick as 2 atomic layers, that is, 0.8 nm or more. In order to adjust the thickness at which the SiC substrate 1 is oxidized to become the ozone-oxidized SiO 2 film 2, the thickness is adjusted by controlling the processing time from the formation rate of the ozone-oxidized SiO 2 film 2 by ozone oxidation. The formation rate of the ozone-oxidized SiO 2 film 2 can be obtained by measuring the thickness of the CVD film in advance and then measuring the film thickness again after ozone oxidation for a predetermined time. The film thickness can be accurately obtained by using the X-ray reflectivity method. By setting the ozone-oxidized SiO 2 film 2 by ozone oxidation to 0.8 nm or more, defects caused by C can be sufficiently reduced.

以上のように、オゾン酸化後にCVD-SiO2膜3を積み足すのではなく、CVD-SiO2膜3堆積後にCVD-SiO2膜3越しにSiCを酸化することにより、大きな改善効果が得られる。すなわち、C起因欠陥、未酸化欠陥4(UVやプラズマによるダメージ含む)、成膜初期欠陥などの欠陥が少なく、20〜100nmの充分厚いSiO2膜を生産性よく形成することが可能になり、SiCパワーデバイスのロスを低減することができる。 As described above, rather than adding the CVD-SiO 2 film 3 after ozone oxidation, a great improvement effect can be obtained by oxidizing SiC through the CVD-SiO 2 film 3 after deposition of the CVD-SiO 2 film 3. . That is, defects such as C-induced defects, unoxidized defects 4 (including damage caused by UV and plasma), and initial film formation defects can be reduced, and a sufficiently thick SiO 2 film of 20 to 100 nm can be formed with high productivity. Loss of SiC power devices can be reduced.

なお、本発明は、オゾン処理によりSiO2膜中の未酸化欠陥4や成膜初期欠陥を酸化により消滅させているが、CVD-SiO2膜3形成時のOソースガスにオゾンを用いて酸化力を高めた場合について説明する。CVD-SiO2膜3形成時のOソースガスにオゾンを用いて酸化力を高めれば、本発明のように2段階の処理が不要になり、初めから欠陥の少ないCVD-SiO2膜3が作成できると想像できる。また、実際にオゾンを数%含んだ酸素とオゾンの混合ガスがOソースガスとして用いられている。 The present invention has an unoxidized defects 4 or film formation initial defect in the SiO 2 film is eliminated by oxidation by ozone treatment, oxidation with ozone to O source gas during CVD-SiO 2 film 3 formed A case where the power is increased will be described. If the oxidizing power is increased by using ozone as the O source gas when forming the CVD-SiO 2 film 3, the two-step process is not required as in the present invention, and the CVD-SiO 2 film 3 with few defects is created from the beginning. I can imagine that I can do it. Further, a mixed gas of oxygen and ozone containing several percent of ozone is actually used as the O source gas.

しかし、オゾンをさらに高濃度化し、酸化力を高めることにより、初めから欠陥の少ないCVD-SiO2膜3を形成するのは極めて困難である。何故なら、CVD-SiO2膜3の成膜には、SiO2膜中の欠陥を低減するだけではなく、厚さを面内均一にすることや、パーティクルの発生を防ぐことなど非常に多くの要求があるからである。酸化性ガスの酸化力を高めたり、濃度を高くすると、SiソースガスとOソースガスの反応が促進されるため、基板に到達する前に反応し、基板上にSiO2のパーティクルを生じる可能性が高くなる。また、面内均一性の確保も難しくなる。したがって、本方法のように、2段階で処理することにより、パーティクルの生成がなく、膜厚面内均一性が高く、かつ未酸化欠陥4が少ないSiO2膜を形成することが可能になる。 However, it is extremely difficult to form the CVD-SiO 2 film 3 with few defects from the beginning by further increasing the concentration of ozone and increasing the oxidizing power. This is because the CVD-SiO 2 film 3 is formed not only by reducing defects in the SiO 2 film but also by making the thickness in-plane uniform and preventing the generation of particles. Because there is a demand. If the oxidizing power of the oxidizing gas is increased or the concentration is increased, the reaction between the Si source gas and the O source gas is promoted, so it may react before reaching the substrate and generate SiO 2 particles on the substrate. Becomes higher. It also becomes difficult to ensure in-plane uniformity. Therefore, by performing the treatment in two stages as in the present method, it is possible to form a SiO 2 film that does not generate particles, has high in-plane film thickness uniformity, and has few unoxidized defects 4.

また、未酸化欠陥4が酸素ラジカルにより低減されると、Si-Oネットワーク構造が緻密化し、膜の密度が増加することがわかっている。これは、X線反射率解析を行うことにより調べることができる。図3に異なる厚さのCVD-SiO2膜3のX線反射率スペクトルを示す。図4にオゾン処理されたCVD-SiO2膜6のX線反射率スペクトルを示す。図5に図3のスペクトルからフィッティング解析により求めたCVD-SiO2膜3の深さ方向密度分布を示す。図6に図4のスペクトルからフィッティング解析により求めたオゾン処理されたCVD-SiO2膜6の深さ方向密度分布を示す。 Further, it is known that when the unoxidized defects 4 are reduced by oxygen radicals, the Si-O network structure is densified and the film density is increased. This can be examined by performing an X-ray reflectivity analysis. FIG. 3 shows X-ray reflectance spectra of the CVD-SiO 2 films 3 having different thicknesses. FIG. 4 shows the X-ray reflectivity spectrum of the ozone-treated CVD-SiO 2 film 6. FIG. 5 shows the density distribution in the depth direction of the CVD-SiO 2 film 3 obtained by fitting analysis from the spectrum of FIG. FIG. 6 shows the density distribution in the depth direction of the ozone-treated CVD-SiO 2 film 6 obtained by the fitting analysis from the spectrum of FIG.

オゾン処理をする前のCVD-SiO2膜3の密度は2.0〜2.1g/cm3程度と低いが、オゾン処理後にはSiO2膜表面に密度2.1〜2.2g/cm3の高密度な層と、SiO2膜/基板界面に密度2.2〜2.3g/cm3の高密度な層が形成されている。SiO2膜表面の高密度層は明らかにCVD-SiO2膜3が高密度化したものである。解析には密度が急峻に変化する単純なモデルを用いたが、実際には、表面ほど高密度で深くなるにつれ低密度に連続的変化していると考えられる。すなわち表面側ほど、酸素ラジカルが通過する量が多いため、Si-Oネットワーク構造の再構成による高密度化が顕著であると考えられる。一方、界面の高密度層は、基板がラジカル酸化されて形成したオゾン酸化SiO2膜2と考えられることから、酸素ラジカルはCVD-SiO2膜3/SiC界面まで到達し、CVD-SiO2膜3全てに行き渡り、CVD-SiO2膜3中の未酸化欠陥4をラジカル酸化により低減していると考えられる。 Although lower and the density of the CVD-SiO 2 film 3 is 2.0~2.1g / cm 3 degree before the ozone treatment, density 2.1~2.2g / cm 3 to SiO 2 membrane surface after ozonation And a high-density layer having a density of 2.2 to 2.3 g / cm 3 are formed at the SiO 2 film / substrate interface. The high-density layer on the surface of the SiO 2 film is clearly a densified CVD-SiO 2 film 3. In the analysis, a simple model in which the density changes sharply is used. However, in reality, it is considered that the density changes continuously as the surface becomes denser and deeper. In other words, since the amount of oxygen radicals passing through the surface is larger, it is considered that the densification due to the reconstruction of the Si-O network structure is remarkable. On the other hand, since the high-density layer at the interface is considered to be the ozone-oxidized SiO 2 film 2 formed by radical oxidation of the substrate, oxygen radicals reach the CVD-SiO 2 film 3 / SiC interface, and the CVD-SiO 2 film It is considered that the unoxidized defects 4 in the CVD-SiO 2 film 3 are reduced by radical oxidation.

また、図7はSiC基板1のO2分子による熱酸化の酸化レートの温度依存性と、オゾンの熱分解による酸素ラジカル生成効率の温度依存性を示すグラフである。700℃以上の温度では、O2分子による熱酸化の酸化レートが温度と共に増加する。O2分子による熱酸化では、数nm程度もしくは原子レベルの酸化でもC起因欠陥の形成が起きるため、温度はできるだけ低い方がよい。700℃未満であれば、1100℃と比較して2桁以上、O2分子による熱酸化の酸化レートが小さくなり、C起因欠陥の生成は充分防止することができる。 FIG. 7 is a graph showing the temperature dependence of the oxidation rate of the thermal oxidation by O 2 molecules of the SiC substrate 1 and the temperature dependence of the oxygen radical generation efficiency by the thermal decomposition of ozone. At a temperature of 700 ° C. or higher, the oxidation rate of thermal oxidation by O 2 molecules increases with temperature. In thermal oxidation with O 2 molecules, formation of C-induced defects occurs even with oxidation of several nanometers or at the atomic level, so the temperature should be as low as possible. If it is lower than 700 ° C., the oxidation rate of thermal oxidation by O 2 molecules is reduced by two orders of magnitude or more compared to 1100 ° C., and the generation of defects caused by C can be sufficiently prevented.

一方、酸素ラジカルの生成効率も温度と共に増加する。200℃では10sec以下の極めて短時間でほとんど全てのオゾン分子が熱分解し、酸素ラジカルを生成することができるので、200℃以上で実施するのが好ましい。600℃以上になると温度上昇に伴う酸素ラジカルの生成効率の増加率は低下し、700℃以上では飽和傾向が顕著になるため、700℃以上の高温にする必要性は低い。   On the other hand, the generation efficiency of oxygen radicals increases with temperature. At 200 ° C., almost all ozone molecules can be thermally decomposed in a very short time of 10 seconds or less and oxygen radicals can be generated. When the temperature is 600 ° C. or higher, the rate of increase in the generation efficiency of oxygen radicals accompanying a rise in temperature is reduced. When the temperature is 700 ° C. or higher, the saturation tendency becomes prominent.

したがって、O2分子による熱酸化をできるだけ防止し、酸素ラジカルによる酸化をできるだけ促進させるためには、200℃以上700℃未満の処理条件が最も良い。よって本発明では200℃以上700℃未満でオゾン処理を行うことにより、最も効果的に欠陥を低減することができる。 Therefore, in order to prevent thermal oxidation by O 2 molecules as much as possible and promote oxidation by oxygen radicals as much as possible, the treatment conditions of 200 ° C. or higher and lower than 700 ° C. are the best. Therefore, in the present invention, defects can be most effectively reduced by performing ozone treatment at 200 ° C. or higher and lower than 700 ° C.

[実施の形態2]
図2は本発明の実施の形態2におけるSiO2膜の形成方法を示す図であり、以下に説明する。実施の形態1と同様に図2(a)に示す洗浄後のSiC基板1上にSiO2を堆積する工程(図2(b))と、オゾン酸化工程(図2(c))を行う。その後、所定の厚みのSiO2膜を堆積する工程(図2(d))、オゾン酸化工程(図2(e))を複数回繰り返す(図2(f),(g))。
[Embodiment 2]
FIG. 2 is a diagram showing a method of forming a SiO 2 film in the second embodiment of the present invention, which will be described below. Similar to the first embodiment, the step of depositing SiO 2 on the cleaned SiC substrate 1 shown in FIG. 2A (FIG. 2B) and the ozone oxidation step (FIG. 2C) are performed. Thereafter, a step of depositing a SiO 2 film having a predetermined thickness (FIG. 2 (d)) and an ozone oxidation step (FIG. 2 (e)) are repeated a plurality of times (FIGS. 2 (f) and (g)).

CVD-SiO2膜3が厚いほど、オゾン処理時間を長くしなければならず、生産性をより向上できる方法が望まれる。CVD-SiO2膜3の密度はオゾン酸化膜や熱酸化膜よりも低く、Si-Oネットワークの隙間が広く、酸素ラジカルの拡散長が長い。しかし、図6に示したように厚い膜になるほど、CVD-SiO2膜6中での酸素ラジカル濃度が低下してくる。そこで、CVD-SiO2膜3の堆積とオゾン処理を複数回繰り返し、最終的に20〜100nmのSiO2膜を形成する方法が有効である。すなわち一度に20〜100nmのSiO2膜を堆積するのではなく、50nm以下で例えば15nmのCVD-SiO2膜3を堆積した後、一定時間オゾン処理を行い、再度CVD-SiO2膜3を15nm堆積し、再度オゾン処理を実施する。これを複数回繰り返し、最終的に20〜100nmのSiO2膜を形成する。オゾン処理の時間は、SiC表面に直接オゾン酸化した場合に1〜5nmの酸化膜が形成する程度の時間でよい。 The thicker the CVD-SiO 2 film 3, the longer the ozone treatment time must be, and a method that can further improve productivity is desired. The density of the CVD-SiO 2 film 3 is lower than that of the ozone oxide film or the thermal oxide film, the gap between the Si-O networks is wide, and the diffusion length of oxygen radicals is long. However, as the film becomes thicker as shown in FIG. 6, the oxygen radical concentration in the CVD-SiO 2 film 6 decreases. Therefore, it is effective to repeat the deposition of the CVD-SiO 2 film 3 and the ozone treatment a plurality of times, and finally form a 20 to 100 nm SiO 2 film. That rather than deposit the SiO 2 film of 20~100nm at a time, after depositing a CVD-SiO 2 film 3, for example 15nm of at 50nm or less, with constant time ozone treatment, 15nm a CVD-SiO 2 film 3 again Deposited and again ozone treatment. This is repeated a plurality of times to finally form a 20 to 100 nm SiO 2 film. The time for the ozone treatment may be a time enough to form an oxide film having a thickness of 1 to 5 nm when ozone is directly oxidized on the SiC surface.

この方法は、CVD-SiO2膜3の堆積とオゾン処理を同一の炉で連続的に切り替えて行うことにより、充分な生産性を確保することができる。以上により、C起因欠陥、未酸化欠陥4が非常に少ない20〜100nmの厚さのSiO2膜を形成することができる。よって、トランジスタのチャネルにおける電子の移動を妨げる欠陥がないため電力ロスが非常に小さく、かつ充分な耐圧を確保することができる。 In this method, sufficient productivity can be ensured by continuously switching the deposition of the CVD-SiO 2 film 3 and the ozone treatment in the same furnace. As described above, a SiO 2 film having a thickness of 20 to 100 nm can be formed with very few C-induced defects and unoxidized defects 4. Therefore, since there is no defect that hinders the movement of electrons in the channel of the transistor, the power loss is extremely small and a sufficient breakdown voltage can be ensured.

また、実施の形態1,2に記載のSiC基板1はバルク単結晶のSiC基板1だけでなく、バルク単結晶のSiC基板1や異種材料の基板表面の少なくとも一部にSiC膜を形成したようなSiC基板1を用いても同様な効果が得られる。   In addition, the SiC substrate 1 described in the first and second embodiments is not limited to the bulk single crystal SiC substrate 1 but may be formed by forming a SiC film on at least a part of the bulk single crystal SiC substrate 1 or the substrate surface of a different material. The same effect can be obtained even if a simple SiC substrate 1 is used.

本発明の実施の形態1におけるSiO2膜の形成方法を示す図である。It is a diagram showing a method of forming the SiO 2 film in the first embodiment of the present invention. 本発明の実施の形態2におけるSiO2膜の形成方法を示す図である。It is a diagram showing a method of forming the SiO 2 film in the second embodiment of the present invention. CVD-SiO2膜のX線反射率スペクトルを示す図である。It shows an X-ray reflectivity spectra of CVD-SiO 2 film. オゾン処理されたCVD-SiO2膜のX線反射率スペクトルを示す図である。It shows an X-ray reflectivity spectra of ozonated CVD-SiO 2 film. CVD-SiO2膜の深さ方向密度分布を示す図である。It is a diagram showing a depth direction density distribution of CVD-SiO 2 film. オゾン処理されたCVD-SiO2膜の深さ方向密度分布を示す図である。It is a diagram showing a depth direction density distribution of ozonated CVD-SiO 2 film. SiC基板のO2分子による熱酸化の酸化レートの温度依存性と、オゾンの熱分解による酸素ラジカル生成効率の温度依存性を示す図である。It illustrates the temperature dependence of the oxidation rate of the thermal oxidation by O 2 molecules of the SiC substrate, the temperature dependence of oxygen radical generation efficiency by the thermal decomposition of the ozone.

符号の説明Explanation of symbols

1 SiC基板、2 オゾン酸化SiO2膜、3 CVD-SiO2膜(未改質)、4 未酸化欠陥(膜中)、5 未酸化欠陥(成膜初期)、6,7,8 CVD-SiO2膜(改質)。 1 SiC substrate, 2 ozone-oxidized SiO 2 film, 3 CVD-SiO 2 film (unmodified), 4 unoxidized defect (in the film), 5 unoxidized defect (initial film formation), 6, 7, 8 CVD-SiO 2 membranes (modified).

Claims (5)

(a)SiC基板上に珪素および酸素の原料ガスを供給してSiO2膜を堆積する堆積工程と、
(b)200℃以上かつ700℃未満の温度で、前記SiO2膜及び前記SiO2膜を堆積した前記SiC基板に酸素ラジカルを供給し、ラジカル酸化する酸化工程と、を備える半導体装置の製造方法。
(A) a deposition step of depositing a SiO 2 film by supplying silicon and oxygen source gases on a SiC substrate;
(B) a method of manufacturing a semiconductor device comprising: an oxidizing step of supplying oxygen radicals to the SiC substrate on which the SiO 2 film and the SiO 2 film are deposited at a temperature of 200 ° C. or higher and lower than 700 ° C. to perform radical oxidation .
前記(a)工程と、前記(b)工程とを複数回繰り返す請求項1記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the step (a) and the step (b) are repeated a plurality of times. 前記(a)工程はCVD法で実行され、
前記CVD法で使用する珪素の原料ガスは、SiCl2H2(ジクロロシラン),SiH4(シラン),SiCl3H(トリクロロシラン),SiCl4(テトラクロロシラン),Si2H6(ジシラン)のうち少なくともいずれかである請求項1または2記載の半導体装置の製造方法。
The step (a) is performed by a CVD method,
The source gas of silicon used in the CVD method is SiCl 2 H 2 (dichlorosilane), SiH 4 (silane), SiCl 3 H (trichlorosilane), SiCl 4 (tetrachlorosilane), Si 2 H 6 (disilane). The method for manufacturing a semiconductor device according to claim 1, wherein the method is at least one of them.
前記酸素ラジカルは、オゾンの自己分解、オゾンの熱分解、オゾンのプラズマによる分解、オゾンのUV照射による分解、酸素分子のプラズマによる分解、酸素分子のUV照射による分解、のうち少なくともいずれか1つ以上により発生させたものである請求項1から3のいずれかに記載の半導体装置の製造方法。   The oxygen radical is at least one of ozone self-decomposition, ozone thermal decomposition, ozone plasma decomposition, ozone UV irradiation decomposition, oxygen molecule plasma decomposition, oxygen molecule UV irradiation decomposition. 4. The method for manufacturing a semiconductor device according to claim 1, wherein the method is generated as described above. 前記(b)工程は、内壁の温度が200℃以下であるコールドウォール方式の炉を用いて実行される請求項1から4のいずれかに記載の半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 1, wherein the step (b) is performed using a cold wall type furnace having an inner wall temperature of 200 ° C. or less.
JP2007078887A 2007-03-26 2007-03-26 Manufacturing method of semiconductor device Active JP4823952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078887A JP4823952B2 (en) 2007-03-26 2007-03-26 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078887A JP4823952B2 (en) 2007-03-26 2007-03-26 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008243919A true JP2008243919A (en) 2008-10-09
JP4823952B2 JP4823952B2 (en) 2011-11-24

Family

ID=39914939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078887A Active JP4823952B2 (en) 2007-03-26 2007-03-26 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4823952B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125837A (en) * 2011-12-14 2013-06-24 Mitsubishi Electric Corp Heat treatment method in semiconductor device manufacturing
WO2013145022A1 (en) * 2012-03-30 2013-10-03 株式会社日立製作所 Method for manufacturing silicon carbide semiconductor device
JP2014086711A (en) * 2012-10-29 2014-05-12 Meidensha Corp Semiconductor device manufacturing method and semiconductor device
JP2016063111A (en) * 2014-09-19 2016-04-25 株式会社東芝 Semiconductor device and manufacturing method of the same
JP2018129420A (en) * 2017-02-09 2018-08-16 株式会社東芝 Semiconductor device, manufacturing method thereof, inverter circuit, driving device, vehicle, and elevator
JP2020536385A (en) * 2017-10-03 2020-12-10 マトソン テクノロジー インコーポレイテッドMattson Technology, Inc. Surface treatment of carbon-containing membranes using organic radicals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180226A (en) * 1990-11-15 1992-06-26 Handotai Process Kenkyusho:Kk Semiconductor manufacturing apparatus and manufacture of semiconductor device
JP2002237599A (en) * 2001-02-08 2002-08-23 Seiko Epson Corp Manufacturing method of thin-film transistor
JP2003086792A (en) * 2001-09-10 2003-03-20 National Institute Of Advanced Industrial & Technology Manufacturing method for semiconductor device
JP2007027453A (en) * 2005-07-19 2007-02-01 Osaka Univ Method of forming oxide film, semiconductor device equipped therewith, and method of manufacturing semiconductor device
WO2007086196A1 (en) * 2006-01-30 2007-08-02 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
JP2008047884A (en) * 2006-07-21 2008-02-28 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device, and manufacturing method for nonvolatile semiconductor memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180226A (en) * 1990-11-15 1992-06-26 Handotai Process Kenkyusho:Kk Semiconductor manufacturing apparatus and manufacture of semiconductor device
JP2002237599A (en) * 2001-02-08 2002-08-23 Seiko Epson Corp Manufacturing method of thin-film transistor
JP2003086792A (en) * 2001-09-10 2003-03-20 National Institute Of Advanced Industrial & Technology Manufacturing method for semiconductor device
JP2007027453A (en) * 2005-07-19 2007-02-01 Osaka Univ Method of forming oxide film, semiconductor device equipped therewith, and method of manufacturing semiconductor device
WO2007086196A1 (en) * 2006-01-30 2007-08-02 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
JP2008047884A (en) * 2006-07-21 2008-02-28 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device, and manufacturing method for nonvolatile semiconductor memory device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125837A (en) * 2011-12-14 2013-06-24 Mitsubishi Electric Corp Heat treatment method in semiconductor device manufacturing
WO2013145022A1 (en) * 2012-03-30 2013-10-03 株式会社日立製作所 Method for manufacturing silicon carbide semiconductor device
JP2014086711A (en) * 2012-10-29 2014-05-12 Meidensha Corp Semiconductor device manufacturing method and semiconductor device
JP2016063111A (en) * 2014-09-19 2016-04-25 株式会社東芝 Semiconductor device and manufacturing method of the same
US9893153B2 (en) 2014-09-19 2018-02-13 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2018129420A (en) * 2017-02-09 2018-08-16 株式会社東芝 Semiconductor device, manufacturing method thereof, inverter circuit, driving device, vehicle, and elevator
US10580874B2 (en) 2017-02-09 2020-03-03 Kabushiki Kaisha Toshiba Semiconductor device with silicon oxide layer having element double bonded to oxygen, semiconductor device manufacturing method, inverter circuit, driving device, vehicle, and elevator
JP2020536385A (en) * 2017-10-03 2020-12-10 マトソン テクノロジー インコーポレイテッドMattson Technology, Inc. Surface treatment of carbon-containing membranes using organic radicals
JP6991323B2 (en) 2017-10-03 2022-01-12 マトソン テクノロジー インコーポレイテッド Surface treatment of carbon-containing membranes using organic radicals

Also Published As

Publication number Publication date
JP4823952B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US20220076946A1 (en) FORMATION OF SiOCN THIN FILMS
US6025280A (en) Use of SiD4 for deposition of ultra thin and controllable oxides
KR100660890B1 (en) Method for forming silicon dioxide film using atomic layer deposition
KR101528832B1 (en) Manufacturing method of flowable dielectric layer
JP4685104B2 (en) Low temperature silicon compound deposition
TWI398925B (en) Boron nitride and boron nitride-derived materials deposition method
JP4823952B2 (en) Manufacturing method of semiconductor device
KR101569377B1 (en) Method of forming silicon oxide film
TWI232588B (en) A method for making a semiconductor device having an ultra-thin high-k gate dielectric
WO2017070192A1 (en) METHODS OF DEPOSITING FLOWABLE FILMS COMPRISING SiO and SiN
WO2009012067A1 (en) Boron derived materials deposition method
KR20130135392A (en) Low temperature silicon oxide conversion
JP2013232653A (en) Dielectric layer formation by uv support for device having strained germanium-containing layer
TWI361464B (en) Process for forming oxidized film and device thereof
JP2005539367A (en) Semiconductor-based UV-enhanced oxynitridation
JP2009064955A (en) Manufacturing method for silicon carbide semiconductor device
JP4032889B2 (en) Insulating film formation method
JP5088773B2 (en) Film forming method and film forming material
JP2008258614A (en) Method of growing thin oxynitride film on substrate
JP5975460B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4876375B2 (en) Semiconductor device and manufacturing method thereof
CN114999907B (en) Manufacturing method of grid oxide layer and manufacturing method of field effect transistor
KR100329745B1 (en) A method for forming gate dielectric layer using alumina
CN109461646B (en) Annealing method for SiC MOSFET gate oxide layer
CN107785270B (en) Nitridation method of MOSFET device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Ref document number: 4823952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250