JP2008243781A - Solid polymer electrolyte fuel cell and membrane electrode assembly thereof - Google Patents

Solid polymer electrolyte fuel cell and membrane electrode assembly thereof Download PDF

Info

Publication number
JP2008243781A
JP2008243781A JP2007086923A JP2007086923A JP2008243781A JP 2008243781 A JP2008243781 A JP 2008243781A JP 2007086923 A JP2007086923 A JP 2007086923A JP 2007086923 A JP2007086923 A JP 2007086923A JP 2008243781 A JP2008243781 A JP 2008243781A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
layer
anode
catalyst
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086923A
Other languages
Japanese (ja)
Inventor
Naoya Ogawa
直也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2007086923A priority Critical patent/JP2008243781A/en
Publication of JP2008243781A publication Critical patent/JP2008243781A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance output density of a cell by improving fuel, diffusibility, reactivity or the like of an oxidant, especially, at an anode and cathode electrodes of a membrane electrolyte assembly (MEA), in order to provide one solution for improving the cell performance of a solid polymer electrolyte fuel cell. <P>SOLUTION: The MEA has a polymer electrolyte membrane 1, and the anode electrode 2 and the cathode electrode 3 formed on the surface of the polymer electrolyte membrane 1, and the anode electrode 2 and the cathode electrode 3 alike are constituted with a two-layer structure of dense inner catalyst layers 2A and 3A, and rough outer catalyst layers 2b and 3B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、固体高分子電解質型燃料電池の膜電極接合体(以下、MEAと記述することがある。)に関し、アノードおよびカソード電極の触媒層を複層構造とし、高分子電解質膜側にある電極の触媒層を密とし、拡散層側に向かうにつれて個々の層を徐々に粗とし、セル性能を高めるようにしたものである。   The present invention relates to a membrane / electrode assembly (hereinafter sometimes referred to as MEA) of a solid polymer electrolyte fuel cell, and the catalyst layer of an anode and a cathode electrode has a multilayer structure and is located on the polymer electrolyte membrane side. The electrode catalyst layer is made dense, and each layer is gradually roughened toward the diffusion layer side to improve cell performance.

図3は、固体高分子電解質型燃料電池の反応部であるMEAの一例を示すものである。図3において、符号1は、高分子電解質膜を示す。
この高分子電解質膜1の一方の表面には、厚さ10μm程度の膜状のアノード電極2が、他方の表面には厚さ10μm程度の膜状のカソード電極3が接合、一体化されて設けられ、これらアノード電極2、カソード電極3の表面には、それぞれ図示しないカーボンペーパーなどからなる拡散層が設けられて、MEAとなっている。
FIG. 3 shows an example of an MEA that is a reaction part of a solid polymer electrolyte fuel cell. In FIG. 3, the code | symbol 1 shows a polymer electrolyte membrane.
A membrane-like anode electrode 2 having a thickness of about 10 μm is joined to one surface of the polymer electrolyte membrane 1 and a membrane-like cathode electrode 3 having a thickness of about 10 μm is joined and integrated on the other surface. A diffusion layer made of carbon paper or the like (not shown) is provided on the surfaces of the anode electrode 2 and the cathode electrode 3 to form an MEA.

前記高分子電解質膜1には、厚さ30〜70μm程度のパーフルオロスルホン酸系ポリマーなどからなるフィルムが用いられている。
また、前記アノード電極2およびカソード電極3には、径2〜5nm程度の白金微粒子などを径数十nmのカーボン粒子などに担持した担持触媒粒子を、アイオノマー、水、イソプロパノールなどからなる高分子電解質溶液に分散させ、この分散液を拡散層となるカーボンペーパーなどの上に塗布し、乾燥したものが用いられている。
As the polymer electrolyte membrane 1, a film made of a perfluorosulfonic acid polymer having a thickness of about 30 to 70 μm is used.
The anode electrode 2 and the cathode electrode 3 are made of polymer electrolytes made of ionomer, water, isopropanol, etc., with supported catalyst particles in which platinum particles having a diameter of about 2 to 5 nm are supported on carbon particles having a diameter of several tens of nm. Dispersed in a solution, this dispersion is applied onto carbon paper or the like that becomes a diffusion layer, and dried.

このアノード電極2およびカソード電極3の高分子電解質膜1への接合は、アノード電極2およびカソード電極3の拡散層が外側となるように配置されて熱圧着などによって接合される。
また、アノードおよびカソード電極における触媒量は、出力密度とコストとの関係から1〜3mg/cm程度となっているが、白金使用量の低減の努力がなされ、0.1〜0.5mg/cm程度にまで減少させることができるとの提案もある。
The anode electrode 2 and the cathode electrode 3 are joined to the polymer electrolyte membrane 1 by arranging the diffusion layers of the anode electrode 2 and the cathode electrode 3 to be outside and joining them by thermocompression bonding or the like.
The amount of catalyst in the anode and cathode electrodes is about 1 to 3 mg / cm 2 because of the relationship between the power density and cost. There is also a proposal that it can be reduced to about cm 2 .

また、燃料として、改質水素、メタノール、ジメチルエーテル(DME)などを用いる場合には、これら燃料に含まれる一酸化炭素による触媒の被毒の恐れがあることから、アノード電極2に含まれる触媒として、白金/ルテニウム合金触媒が用いられている。   Further, when reformed hydrogen, methanol, dimethyl ether (DME) or the like is used as the fuel, there is a risk of poisoning of the catalyst by carbon monoxide contained in these fuels. Platinum / ruthenium alloy catalysts are used.

この固体高分子電解質型燃料電池の動作原理は、以下のようである。アノード電極2に供給された水素は、ここでの触媒反応により水素イオンとなって高分子電解質膜1中を移動し、カソード電極3に至り、カソード電極3での触媒反応によりここに供給された酸素と反応して水になる。アノード電極2において生成した電子は図示しないセパレータを介して外部回路に流れ、カソード電極3に移動する。
燃料として、メタノールやジメチルエーテルなどを用いた場合には、アノード電極2において触媒反応により、直接メタノールやジメチルエーテルなどが酸化されて、二酸化炭素と水素イオンと電子が生成し、水素イオンが高分子電解質膜1中を移動することになる。
The principle of operation of this solid polymer electrolyte fuel cell is as follows. Hydrogen supplied to the anode electrode 2 is converted into hydrogen ions by the catalytic reaction here, moves through the polymer electrolyte membrane 1, reaches the cathode electrode 3, and is supplied here by the catalytic reaction at the cathode electrode 3. It reacts with oxygen to become water. Electrons generated in the anode electrode 2 flow to an external circuit via a separator (not shown) and move to the cathode electrode 3.
When methanol, dimethyl ether, or the like is used as the fuel, methanol or dimethyl ether is directly oxidized by a catalytic reaction at the anode electrode 2 to generate carbon dioxide, hydrogen ions, and electrons, and the hydrogen ions are converted into a polymer electrolyte membrane. It will move in 1.

このような固体高分子電解質型燃料電池の出力密度などのセル性能を向上させる研究開発が盛んに進められており、多くの特許出願がなされている。
特表2002−532833号公報 特表2003−502827号公報 特開平9−27326号公報 特開2006−140134号公報 特開2005−197195号公報 特開2005−56583号公報 特開2005−174620号公報
Research and development for improving the cell performance such as the output density of such a solid polymer electrolyte fuel cell has been actively promoted, and many patent applications have been filed.
Japanese translation of PCT publication No. 2002-532833 Japanese translation of PCT publication No. 2003-502827 JP-A-9-27326 JP 2006-140134 A JP 2005-197195 A JP 2005-56583 A JP 2005-174620 A

本発明における課題は、固体高分子電解質型燃料電池のセル性能を向上させるための1つの解決策を提供することにあり、特にMEAのアノードおよびカソード電極での燃料、酸化剤の拡散性、反応性などを改善してセルの出力密度を高めるようにすることにある。   An object of the present invention is to provide one solution for improving the cell performance of a solid polymer electrolyte fuel cell, and in particular, fuel, oxidant diffusibility, reaction at the anode and cathode electrodes of MEA. The purpose is to improve the power density of the cell by improving the properties.

かかる課題を解決するため、
請求項1にかかる発明は、高分子電解質膜と、この高分子電解質膜の表面に形成されたアノードおよびカソードと、これらアノードおよびカソード電極の表面に設けられた拡散層を備えた膜電極接合体であって、
前記アノードおよびカソード電極のいずれか一方または両方が複層構造とされ、これら複数層のうち、前記高分子電解質膜側にある電極の触媒層が密とされ、前記拡散層側に向かうにつれて個々の層が徐々に粗とされていることを特徴とする固体高分子電解質型燃料電池の膜電極接合体である。
To solve this problem,
The invention according to claim 1 is a membrane electrode assembly comprising a polymer electrolyte membrane, an anode and a cathode formed on the surface of the polymer electrolyte membrane, and a diffusion layer provided on the surfaces of the anode and the cathode electrode Because
Either one or both of the anode and the cathode electrode have a multilayer structure, and among these layers, the catalyst layer of the electrode on the polymer electrolyte membrane side is made dense, and each of the anode and cathode electrodes becomes more individual toward the diffusion layer side. A membrane electrode assembly of a solid polymer electrolyte fuel cell, characterized in that the layer is gradually roughened.

請求項2にかかる発明は、請求項1に記載の膜電極接合体を備えたことを特徴とする固体高分子電解質型燃料電池である。   The invention according to claim 2 is a solid polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 1.

本来ならば、MEAのアノード、カソード電極は、緻密で空隙、ボイドなどが存在しない方が、触媒担持粒子が連結してその電気抵抗が低く、電気伝導性も良好であり、高分子電解質の連結も良くなってプロトン伝導性が良好になって好ましいが、緻密になりすぎるとアノードおよびカソード電極での燃料供給、酸化剤供給、排ガスの排出、水分供給、生成水排出の点で不都合が生じる。   Originally, the anode and cathode electrodes of MEA are dense and have no voids or voids, so that the catalyst-supported particles are connected, the electric resistance is low, the electrical conductivity is good, and the polymer electrolyte is connected. The proton conductivity is improved, and the proton conductivity is preferably improved. However, if it is too dense, there are disadvantages in terms of fuel supply at the anode and cathode electrodes, oxidant supply, exhaust gas discharge, moisture supply, and generated water discharge.

一方、アノードおよびカソード電極に空隙が存在すると、実質的な表面積が増加し、空隙に存在する触媒の利用率が高くなる。また、燃料供給、酸化剤供給、排ガスの排出、水分供給、生成水排出の点で有利となるが、電気伝導性、プロトン伝導性が低下する。
本発明のように、高分子電解質膜側にある層が密とされ、前記拡散層側に向かうにつれて個々の層が徐々に粗とされた構造では、両者の利点をうまく生かすことができ、全体としてセル特性を向上させることができる。
On the other hand, if voids exist in the anode and cathode electrodes, the substantial surface area increases, and the utilization rate of the catalyst present in the voids increases. Further, it is advantageous in terms of fuel supply, oxidant supply, exhaust gas discharge, moisture supply, and generated water discharge, but electrical conductivity and proton conductivity are reduced.
As in the present invention, in the structure in which the layer on the polymer electrolyte membrane side is dense and the individual layers are gradually roughened toward the diffusion layer side, the advantages of both can be utilized well. As a result, cell characteristics can be improved.

図1は、本発明のMEAの一例を示すものである。この例のMEAにあっては、アノード電極2およびカソード電極3の触媒が2層構造となっている。
すなわち、アノード電極2の高分子電解質膜1側の内層2Aとこの内層2Aの外側の外層2Bと外層2Bの表面の図示しない拡散層とから構成され、カソード電極3の高分子電解質膜1側の内層3Aとこの内層3Aの外側の外層3Bと外層3Bの表面の図示しない拡散層とから構成されている。
FIG. 1 shows an example of the MEA of the present invention. In the MEA of this example, the catalyst for the anode electrode 2 and the cathode electrode 3 has a two-layer structure.
That is, the anode 2 is composed of an inner layer 2A on the polymer electrolyte membrane 1 side, an outer layer 2B outside the inner layer 2A, and a diffusion layer (not shown) on the surface of the outer layer 2B, and the cathode electrode 3 on the polymer electrolyte membrane 1 side. The inner layer 3A includes an outer layer 3B outside the inner layer 3A and a diffusion layer (not shown) on the surface of the outer layer 3B.

そして、アノード電極2の触媒内層2Aは密となっており、外層2Bの電極触媒は粗となっており、同様にカソード電極3の内層3Aは密となっており、外層3Bは粗となっている点が本発明の特徴である。
内層2A、3Aにおける密とは、層全体が緻密で、ひび割れ、空隙、ボイド、気泡などがなく、担持触媒粒子と高分子電解質とが均一に分散され、実密な状態を言う。
外層2B、3Bにおける粗とは、層全体に微細な亀裂、空隙が多く形成され、表面に微小な開口が形成されている状態であり、担持触媒粒子と高分子電解質とが凝集し、その凝集粒子間に空隙が存在する状態でもある。
The catalyst inner layer 2A of the anode electrode 2 is dense, the electrode catalyst of the outer layer 2B is coarse, and similarly, the inner layer 3A of the cathode electrode 3 is dense and the outer layer 3B is coarse. This is a feature of the present invention.
The denseness in the inner layers 2A and 3A refers to a dense state in which the entire layer is dense and free from cracks, voids, voids, bubbles, etc., and the supported catalyst particles and the polymer electrolyte are uniformly dispersed.
The roughness in the outer layers 2B and 3B is a state in which many fine cracks and voids are formed in the entire layer and minute openings are formed on the surface. The supported catalyst particles and the polymer electrolyte are aggregated, and the aggregation It is also a state where voids exist between the particles.

内層2A、3Aと外層2B、3Bとの厚さの割合は、全体の10〜50%を内層2A、3Aが占め、残部の50〜90%を外層2B、3Bが占めるようにすることが好ましい。内層2A、3Aはその厚さが厚くなるとガス透過性が低下するので、10μm以下とする必要がある。
なお、内層2A、3Aと外層2B、3Bとに含まれる触媒の種類は、同一でもよく、互いに異なった種類の触媒を用いてもよい。アノード電極2では、内層2Aには白金触媒を、外層2Bには、白金/ルテニウム合金触媒を用いることで、燃料としてメタノール、ジメチルエーテルなどを用いた際の一酸化炭素による触媒被毒による触媒性能の劣化を防止できる。
The thickness ratio between the inner layers 2A and 3A and the outer layers 2B and 3B is preferably such that the inner layers 2A and 3A occupy 10 to 50% of the whole, and the outer layers 2B and 3B occupy the remaining 50 to 90%. . The inner layers 2A and 3A need to have a thickness of 10 μm or less because the gas permeability decreases as the thickness increases.
Note that the types of catalysts contained in the inner layers 2A and 3A and the outer layers 2B and 3B may be the same, or different types of catalysts may be used. In the anode electrode 2, a platinum catalyst is used for the inner layer 2A, and a platinum / ruthenium alloy catalyst is used for the outer layer 2B, so that catalytic performance due to catalyst poisoning by carbon monoxide when methanol, dimethyl ether, or the like is used as a fuel. Deterioration can be prevented.

前述の密な内層2A、3Aの作製は、例えば白金触媒などを担持した触媒担持微粒子とアイオノマー、水、イソプロパノールなどからなる高分子電解質溶液に分散したインク様の触媒分散液を高分子電解質膜1や離型紙にスプレーによって塗布する際、スプレーの噴霧量を増加させて非常に細かい液滴をスプレーし、薄い層を何層にも積層する方法で行うことができる。この時、前記触媒分散液の粘度を下げておき、スプレー噴霧により小さな液滴が形成されるようにする。触媒分散液の粘度は、用いる溶媒の種類、使用量を調整することで調整することができる。   The above-mentioned dense inner layers 2A and 3A are prepared by, for example, using a catalyst-supported fine particle supporting a platinum catalyst or the like and an ink-like catalyst dispersion liquid dispersed in a polymer electrolyte solution made of ionomer, water, isopropanol, etc. When applying to a release paper by spraying, it is possible to increase the amount of spray sprayed to spray very fine droplets and to stack a number of thin layers. At this time, the viscosity of the catalyst dispersion is lowered so that small droplets are formed by spraying. The viscosity of the catalyst dispersion can be adjusted by adjusting the type and amount of solvent used.

また、粗な外層2B、3Bの作製には2種の方法があり、第1の方法は、前記触媒分散液を拡散層となるカーボンペーパーや離型紙に塗布し、乾燥する際に、塗布条件、乾燥条件を制御して層に多数のひび割れを形成する方法である。   In addition, there are two types of methods for producing the rough outer layers 2B and 3B. The first method is to apply the catalyst dispersion liquid to carbon paper or release paper serving as a diffusion layer and dry the coating conditions. This is a method of forming a large number of cracks in the layer by controlling the drying conditions.

触媒分散液の塗布は、スプレー法、ドクターブレード法、スクリーン印刷などによって行われるが、この際その塗布量を多目にして塗布直後に触媒分散液が液状で保持され、ある時間液面が形成されるようにする。
塗布量が少ないと、触媒分散液がすぐに乾燥して担持触媒粒子が塗布された位置に固定されて、担持触媒粒子が均一に配置され、その結果担持触媒粒子間の凝集が起こらず、意図するひび割れが生じにくい。
The catalyst dispersion is applied by spraying, doctor blade method, screen printing, etc .. At this time, the amount of coating is taken into account, and the catalyst dispersion is held in a liquid state immediately after application, forming a liquid surface for a certain period of time. To be.
If the coating amount is small, the catalyst dispersion is immediately dried and fixed at the position where the supported catalyst particles are applied, so that the supported catalyst particles are evenly arranged. It is difficult to crack.

つぎに、乾燥を行うが、この時には液層となっている触媒分散液の表面にのみ熱を加えるようにする。例えば、白熱電球などのランプの光を触媒分散液の液面に照射する。加熱炉などの全体が加熱されるものでも可能であるが、表面のみに熱を加えた方が好ましい。
触媒分散液の表層の加熱により、触媒分散液の溶媒である水、イソプロパノールなどが揮発していくが、イソプロパノールの沸点が低いので早く揮発し、塗布された触媒分散液の表面側に存在する担持触媒粒子が初期の凝集を形成する。
Next, drying is performed. At this time, heat is applied only to the surface of the catalyst dispersion that is a liquid layer. For example, light from a lamp such as an incandescent lamp is irradiated on the liquid level of the catalyst dispersion. Although it is possible to heat the entire heating furnace or the like, it is preferable to apply heat only to the surface.
By heating the surface of the catalyst dispersion, water, isopropanol, etc., which are the solvent of the catalyst dispersion, volatilize. However, since the boiling point of isopropanol is low, it volatilizes quickly and is present on the surface side of the applied catalyst dispersion. The catalyst particles form an initial agglomeration.

そして、初期凝集した担持触媒粒子は、未だ完全に乾燥していないが、時間とともに水も揮発するので、触媒分散液の表面側では担持触媒粒子が乾燥固定され、下層側では若干流動性を持つ状態となる。
乾燥は、表面層から内層に進行するため、表面層に初めに形成されたひび割れはクサビのように内層側のひび割れを引き起こすきっかけとなり、乾燥して得られた触媒層全体にひび割れが生じた状態となる。
The initially agglomerated supported catalyst particles are not yet completely dried, but water also volatilizes with time, so that the supported catalyst particles are dried and fixed on the surface side of the catalyst dispersion, and slightly fluid on the lower layer side. It becomes a state.
Since the drying proceeds from the surface layer to the inner layer, the cracks initially formed in the surface layer trigger the cracks on the inner layer side like wedges, and the entire catalyst layer obtained by drying has cracked. It becomes.

このようにして形成された触媒層の断面を観察すると、触媒層の厚さ方向にひび割れが生じた状態となる。
このひび割れは、触媒分散液に含まれる2種以上の沸点の異なる溶媒の混合割合、溶媒の含有量、塗布後の加熱温度等を変化させることにより、その個数、形状、大きさなどを制御することができる。
When the cross section of the catalyst layer thus formed is observed, a crack is generated in the thickness direction of the catalyst layer.
This number of cracks is controlled by changing the mixing ratio of two or more solvents having different boiling points contained in the catalyst dispersion, the solvent content, the heating temperature after coating, and the like. be able to.

第2の方法は、触媒分散液として、溶媒の使用量を減らした粘度の高いものを使用する。溶媒には、揮発速度の早いイソプロパノールなど使用し、水を極力少なくすることが好ましい。この粘度の高い触媒分散液をスプレー噴霧量の少ない状態で噴霧する。そうすると、スプレーノズルからは比較的大きな液滴が吐出し、塗布される。この液滴は、溶媒量が少ないので大きなまま速やかに固化して大きな粒子となり、粒子間の隙間を埋めることなく、空隙が大きな状態で次々と粒子が形成することとなり、空隙が無数生じた粗の層となる。   In the second method, a catalyst dispersion having a high viscosity with a reduced amount of solvent used is used. As the solvent, it is preferable to use isopropanol having a high volatilization rate to reduce water as much as possible. This highly viscous catalyst dispersion is sprayed in a state where the spray amount is small. Then, relatively large droplets are ejected from the spray nozzle and applied. Since these droplets have a small amount of solvent, they quickly solidify as they become large and become large particles, and without forming gaps between the particles, particles are formed one after another with large voids. It becomes the layer of.

このようなMEAでは、アノード電極2およびカソード電極3がともに粗な外層2A、3Aと密な内層2B、3Bとから構成されているので、アノードおよびカソード電極での燃料、酸化剤の供給が容易に行われ、生成したガス、水の排出が容易で、水分の供給が円滑になるとともに外層での触媒反応に実際に関与する表面積が増加して触媒の利用率が高いものとなる。また、内層では、電気伝導性、プロトン伝導性が高くなる。
このため、このようなMEAを備えた固体高分子電解質型燃料電池では、出力密度等のセル特性の高いものとなる。
In such an MEA, since both the anode electrode 2 and the cathode electrode 3 are composed of the rough outer layers 2A and 3A and the dense inner layers 2B and 3B, it is easy to supply fuel and oxidant at the anode and cathode electrodes. Thus, the generated gas and water can be easily discharged, the water can be smoothly supplied, and the surface area actually involved in the catalytic reaction in the outer layer is increased, resulting in a high utilization rate of the catalyst. In the inner layer, electrical conductivity and proton conductivity are increased.
For this reason, a solid polymer electrolyte fuel cell equipped with such an MEA has high cell characteristics such as power density.

なお、以上説明した例では、アノードおよびカソード電極が2層構造である例を示したが、3層以上の複層構造としてもよく、この場合には拡散層側に向けて徐々に粗の度合いを大きくするようにし、高分子電解質膜1に接する層は、必ず密な層とすることが必要である。   In the example described above, an example in which the anode and the cathode electrode have a two-layer structure is shown. However, a multilayer structure having three or more layers may be used. In this case, the degree of roughness gradually increases toward the diffusion layer. The layer in contact with the polymer electrolyte membrane 1 must be a dense layer.

本発明の固体高分子電解質型燃料電池は、上述のMEAを備えたものである。すなわち、前記MEAと、カーボンなどからなり、その両面に燃料または酸化剤が流れる流路が形成された板状のセパレータ(バイポーラプレート)をガスケットを介して組み合わせたセルを有するものである。
この固体高分子電解質型燃料電池では、したがってその性能が高いものとなる。
The solid polymer electrolyte fuel cell of the present invention comprises the above-mentioned MEA. That is, it has a cell in which a plate-like separator (bipolar plate) made of the MEA and carbon or the like and having a flow path through which fuel or oxidant flows is formed through a gasket.
Therefore, this solid polymer electrolyte fuel cell has high performance.

以下、具体例を示す。
(実施例1)
平均粒径3nmの白金粒子を平均一次粒径30nmのケッチェンブラックに50質量%担時させた担持触媒粒子を用いた。この担持触媒粒子をイソプロパノールと水(重量比4:1)との溶媒に分散したのち、高分子電解質であるNafion溶液(デュポン社製、商品名)5重量%を混合して触媒分散液を作製した。
Specific examples are shown below.
Example 1
Supported catalyst particles were used in which 50% by mass of platinum particles having an average particle size of 3 nm was supported on ketjen black having an average primary particle size of 30 nm. After dispersing the supported catalyst particles in a solvent of isopropanol and water (4: 1 by weight), 5% by weight of a polymer electrolyte Nafion solution (manufactured by DuPont, trade name) is mixed to prepare a catalyst dispersion. did.

前記触媒分散液をスプレー装置にて、カーボンペーパー上に塗布した。触媒分散液は、カーボンペーパー上に薄い液体で存在できる程度に比較的多量に塗布した。その後、白熱ライト(200W)を用いて、白熱光を塗布面から1〜3分照射し、触媒分散液を完全に乾燥させ、溶媒を揮発させた。
乾燥後の塗布面を観察したところ、多数のひび割れが生じていた。このひび割れは、カーボンペーパー側に向かってひび割れの幅が小さくなっているものであった。
The catalyst dispersion was applied onto carbon paper with a spray device. The catalyst dispersion was applied in a relatively large amount to such an extent that it could exist as a thin liquid on the carbon paper. Thereafter, using an incandescent light (200 W), incandescent light was irradiated from the coated surface for 1 to 3 minutes to completely dry the catalyst dispersion and volatilize the solvent.
When the coated surface after drying was observed, many cracks were generated. This crack was one in which the width of the crack became smaller toward the carbon paper side.

この塗布層イの上に、さらに同様の触媒分散液を塗布、乾燥して別の塗布層ロを形成した。塗布層ロの作製は、塗布層イの上にスプレー噴霧する際、1回の塗布量を少なくし、5回に分けて塗布し、加熱炉にて乾燥して行った。この塗布層ロは、表面が平滑でひび割れ等は認められなかった。
この塗布層イと塗布層ロとから2層構造のものをアノードおよびカソード電極として、ホットプレスにより高分子電解質膜に接合してMEAとした。
On this coating layer (a), the same catalyst dispersion was further coated and dried to form another coating layer (b). The coating layer B was prepared by spraying onto the coating layer a by reducing the amount of coating once, coating the coating layer in five times, and drying in a heating furnace. The coating layer B had a smooth surface and no cracks were observed.
The coating layer A and the coating layer B having a two-layer structure were used as an anode and a cathode electrode, and joined to the polymer electrolyte membrane by hot pressing to form an MEA.

このように作製したMEAをカーボン製のセパレータで挟み込み、セルとした。セパレータには、燃料および酸化剤が流れる流路が刻み込まれた構造のものである。
このセルに燃料として水素を、酸化剤として空気を供給し、セル温度80℃とし、触媒量を1mg/cmとして出力密度を測定した。
結果を図2のグラフの曲線Aで示す。
The MEA produced in this way was sandwiched between carbon separators to form a cell. The separator has a structure in which a flow path through which fuel and oxidant flow is engraved.
Hydrogen was supplied as fuel to the cell, air was supplied as the oxidant, the cell temperature was 80 ° C., the catalyst amount was 1 mg / cm 2 , and the output density was measured.
The result is shown by curve A in the graph of FIG.

比較として、同様の触媒分散液を用い、カーボンペーパーにスプレー噴霧する際、1回の塗布量を少なくし、10回に分けて塗布し、加熱炉にて乾燥して得られた単層構造のアノードおよびカソードを作製し、これを用いてMEAを作製した。このMEAのアノードおよびカソード電極の表面は平滑で、ひび割れ等は認められなかった。先と同様にセルを作製し、その出力密度を同様にして測定した。
結果を図2のグラフの曲線Bで示す。
図2のグラフから、粗密構造を有するMEAを用いたものでは、セル性能が改善されていることがわかる。
As a comparison, when spraying on carbon paper using the same catalyst dispersion, the amount of coating is reduced once, the coating is divided into 10 times, and dried in a heating furnace. An anode and a cathode were produced, and an MEA was produced using the anode and the cathode. The surface of the anode and cathode electrode of this MEA was smooth and no cracks were observed. A cell was prepared in the same manner as described above, and the output density was measured in the same manner.
The result is shown by curve B in the graph of FIG.
From the graph of FIG. 2, it is understood that the cell performance is improved in the case of using the MEA having the dense structure.

本発明のMEAの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of MEA of this invention. 実施例の結果を示す図表である。It is a graph which shows the result of an Example. 従来のMEAを示す概略断面図である。It is a schematic sectional drawing which shows the conventional MEA.

符号の説明Explanation of symbols

1・・高分子電解質膜、2・・アノード電極、2A・・内層触媒層、2B・・外層触媒層、3・・カソード電極、内層3A、外層3B 1 ·· Polymer electrolyte membrane, 2 ·· Anode electrode, 2A ·· Inner catalyst layer, 2B ·· Outer catalyst layer, 3 ·· Cathode electrode, inner layer 3A, outer layer 3B

Claims (2)

高分子電解質膜と、この高分子電解質膜の表面に形成されたアノードおよびカソード電極と、これらアノードおよびカソード電極の表面に設けられた拡散層を備えた膜電極接合体であって、
前記アノードおよびカソード電極のいずれか一方または両方が複層構造とされ、これら複数層のうち、前記高分子電解質膜側にある電極の触媒層が密とされ、前記拡散層側に向かうにつれて個々の層が徐々に粗とされていることを特徴とする固体高分子電解質型燃料電池の膜電極接合体。
A membrane electrode assembly comprising a polymer electrolyte membrane, an anode and a cathode electrode formed on the surface of the polymer electrolyte membrane, and a diffusion layer provided on the surface of the anode and cathode electrode,
Either one or both of the anode and the cathode electrode have a multilayer structure, and among these layers, the catalyst layer of the electrode on the polymer electrolyte membrane side is made dense, and each of the anode and cathode electrodes becomes more individual toward the diffusion layer side. A membrane electrode assembly for a solid polymer electrolyte fuel cell, wherein the layer is gradually roughened.
請求項1に記載の膜電極接合体を備えたことを特徴とする固体高分子電解質型燃料電池。   A solid polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 1.
JP2007086923A 2007-03-29 2007-03-29 Solid polymer electrolyte fuel cell and membrane electrode assembly thereof Pending JP2008243781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086923A JP2008243781A (en) 2007-03-29 2007-03-29 Solid polymer electrolyte fuel cell and membrane electrode assembly thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086923A JP2008243781A (en) 2007-03-29 2007-03-29 Solid polymer electrolyte fuel cell and membrane electrode assembly thereof

Publications (1)

Publication Number Publication Date
JP2008243781A true JP2008243781A (en) 2008-10-09

Family

ID=39914833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086923A Pending JP2008243781A (en) 2007-03-29 2007-03-29 Solid polymer electrolyte fuel cell and membrane electrode assembly thereof

Country Status (1)

Country Link
JP (1) JP2008243781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243450A (en) * 2011-05-17 2012-12-10 Toshiba Fuel Cell Power Systems Corp Solid polymer fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303596A (en) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell and manufacturing method thereof
JP2004186049A (en) * 2002-12-04 2004-07-02 Honda Motor Co Ltd Electrode structure for solid polymer fuel cell and its manufacturing method
JP2005056583A (en) * 2002-07-09 2005-03-03 Matsushita Electric Ind Co Ltd Electrolyte membrane-electrode assembly for fuel cell, fuel cell using it, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303596A (en) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell and manufacturing method thereof
JP2005056583A (en) * 2002-07-09 2005-03-03 Matsushita Electric Ind Co Ltd Electrolyte membrane-electrode assembly for fuel cell, fuel cell using it, and its manufacturing method
JP2004186049A (en) * 2002-12-04 2004-07-02 Honda Motor Co Ltd Electrode structure for solid polymer fuel cell and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243450A (en) * 2011-05-17 2012-12-10 Toshiba Fuel Cell Power Systems Corp Solid polymer fuel cell

Similar Documents

Publication Publication Date Title
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP2006216559A (en) Fuel cell
US20190280307A1 (en) Composite electrode layer for polymer electrolyte fuel cell
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP2005026174A (en) Solid polymer type fuel cell
JP2008243768A (en) Solid polymer electrolyte fuel cell and membrane electrode assembly thereof
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP2006344517A (en) Manufacturing method of fuel cell
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
JP5362008B2 (en) Fuel cell
JP2008300347A (en) Method of manufacturing five-layer mea with electrical conductivity improved
JP2007329072A (en) Method of manufacturing electrode for fuel cell
JP2006185800A (en) Transfer sheet for manufacturing electrode-polyelectrolyte membrane junction, electrode-polyelectrolyte membrane junction and their manufacturing methods
JP2001076742A (en) Solid polymer fuel cell
KR100612233B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
JP2006085984A (en) Mea for fuel cell and fuel cell using this
KR20100068028A (en) Catalyst layer for fuel cell and method for preparing the same
JP2010021114A (en) Direct oxidation type fuel cell
JP5672645B2 (en) Electrocatalyst ink for fuel cell
JP2008243781A (en) Solid polymer electrolyte fuel cell and membrane electrode assembly thereof
JP5501044B2 (en) Membrane electrode assembly and fuel cell
JP2010225560A (en) Separator for fuel cell, fuel cell, and method of manufacturing separator for fuel cell
JP5345870B2 (en) Method for producing membrane-electrode assembly
JP2005108550A (en) Catalyst film for solid polymer fuel cells, its manufacturing method and fuel cell using the same
JP7052576B2 (en) Manufacturing method of electrode catalyst layer for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204