JP2008242098A - Polarizing rotary element - Google Patents

Polarizing rotary element Download PDF

Info

Publication number
JP2008242098A
JP2008242098A JP2007082944A JP2007082944A JP2008242098A JP 2008242098 A JP2008242098 A JP 2008242098A JP 2007082944 A JP2007082944 A JP 2007082944A JP 2007082944 A JP2007082944 A JP 2007082944A JP 2008242098 A JP2008242098 A JP 2008242098A
Authority
JP
Japan
Prior art keywords
electrode
electro
crystal
electric field
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082944A
Other languages
Japanese (ja)
Other versions
JP4506772B2 (en
Inventor
Hideetsu Kudo
秀悦 工藤
Hiroshi Azechi
宏 疇地
Noriaki Miyanaga
憲明 宮永
Takahisa Jitsuno
孝久 實野
Tadashi Kanabe
忠 金邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2007082944A priority Critical patent/JP4506772B2/en
Publication of JP2008242098A publication Critical patent/JP2008242098A/en
Application granted granted Critical
Publication of JP4506772B2 publication Critical patent/JP4506772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a longitudinal electric field type polarizing rotary element which has rectangularly sectioned electrooptical crystal, and can improve uniformity of an electric field distribution in a cross section of the electrooptical crystal when a high voltage is applied with a simple structure. <P>SOLUTION: On flanks of large-sized optical crystal 1 except two surfaces perpendicular to an optical axis, an A electrode 2 and a B electrode 3 are formed. The A electrode 2 and B electrode 3 are formed so as to have a small electrode width on an end side of each flank and a large electrode width at the center part of the flank to enclose a circumference of the large-sized optical crystal 1. One of edges of the A electrode 2 and B electrode 3 is linear and the other is in a mountain shape such that the electrode width smoothly varies according to a curve or straight line, a fixed spacing being provided between the A electrode 2 and B electrode 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は偏光回転素子に関し、特に、矩形断面を有する縦電界型の偏光回転素子に関する。   The present invention relates to a polarization rotation element, and more particularly to a vertical electric field type polarization rotation element having a rectangular cross section.

近年、ビーム断面の形状が矩形のレーザ光を出射するレーザ装置について、その大口径化・高出力化が進められている。このようなレーザ装置は、例えば高出力パルスレーザ装置等として利用される。これらの用途においては、レーザ装置の大口径化に伴い、大口径の矩形ビームに対応した大型の偏光回転素子も必要となってきている。   2. Description of the Related Art In recent years, laser devices that emit laser light having a rectangular beam cross section have been increasing in diameter and output. Such a laser device is used as, for example, a high-power pulse laser device. In these applications, as the diameter of the laser apparatus is increased, a large-sized polarization rotation element that supports a large-diameter rectangular beam is also required.

従来、ポッケルス効果のような電気光学効果を利用した縦電界型の偏光回転素子に対しては、一般にビーム断面が円形であるレーザ光が使用されていた。このため、偏光回転素子には円形断面を有する電気光学結晶が用いられていた。なお、本明細書において縦電界とは、偏光回転素子に印加される電界の方向が素子に入射するレーザ光の光軸と平行であることをいう。   Conventionally, a laser beam having a circular beam cross section has been generally used for a vertical electric field type polarization rotation element using an electro-optic effect such as the Pockels effect. For this reason, an electro-optic crystal having a circular cross section has been used for the polarization rotation element. In the present specification, the vertical electric field means that the direction of the electric field applied to the polarization rotation element is parallel to the optical axis of the laser light incident on the element.

図3は、従来の偏光回転素子を示す斜視図である。図3に示すように、円形断面の電気光学結晶7を有する偏光回転素子を矩形ビーム断面5の入射光に対応させるためには、電気光学結晶7の断面直径を少なくとも矩形ビーム断面5の対角線の長さ以上とする必要がある。また、結晶の切り出し方位の関係から、実際に母材となる結晶は更に大型のものが必要となる。   FIG. 3 is a perspective view showing a conventional polarization rotation element. As shown in FIG. 3, in order to make the polarization rotation element having the electro-optic crystal 7 having a circular cross section correspond to the incident light of the rectangular beam section 5, the cross-sectional diameter of the electro-optic crystal 7 is at least a diagonal line of the rectangular beam section 5. It must be longer than the length. In addition, due to the relationship between crystal cutout orientations, crystals that are actually the base material must be larger.

しかし、大型結晶には、その成長速度及びコスト等による制約のため、製作が困難であるという問題点があった。そこで、電気光学結晶の形状を矩形断面の四角柱とすることが考えられた。これにより、入射光ビームの形状に対して最小限の断面寸法で電気光学結晶を成長させることができるため、電気光学結晶を小型化しその製作期間を短縮することができる。   However, the large crystal has a problem that it is difficult to manufacture due to limitations due to its growth rate and cost. In view of this, it has been considered that the shape of the electro-optic crystal is a rectangular column having a rectangular cross section. Accordingly, since the electro-optic crystal can be grown with a minimum cross-sectional dimension with respect to the shape of the incident light beam, the electro-optic crystal can be reduced in size and the manufacturing period thereof can be shortened.

一方、縦電界型の電気光学結晶を利用する光学装置の例として、例えば特許文献1には光軸方向に電極層が積層されている光学装置が開示されている。また、図3に示すように、電気光学結晶7の周囲を巻回するように電気光学結晶7の側面上に電極対8が形成されている場合もある。   On the other hand, as an example of an optical device using a longitudinal electric field type electro-optic crystal, for example, Patent Document 1 discloses an optical device in which an electrode layer is laminated in the optical axis direction. Further, as shown in FIG. 3, the electrode pair 8 may be formed on the side surface of the electro-optic crystal 7 so as to be wound around the electro-optic crystal 7.

特開2005−181503号公報JP-A-2005-181503

しかしながら、矩形断面の電気光学結晶を有する偏光回転素子に対して図3に示すような電極対を設ける場合、以下に示すような問題点があった。図3に示す円形断面の電気光学結晶7においては、1対の電極対8を光軸方向4の方向に並べて形成することにより、偏光回転素子に高電圧を印加した際に電気光学結晶7の内部に縦電界(電界方向6)が発生する。ここで、電極対8の各電極の幅を一定にすることにより、電気光学結晶7の円形断面内の電界分布は良好な均一性が得られる。また、特許文献1等の電極層を積層するタイプに比べて構造が簡素化する等の利点を有している。しかしながら、このような結晶の周囲に巻回するタイプの電極を矩形断面の電気光学結晶に適用した場合、円形断面の場合と同様に一定幅の帯状電極対を形成すると、高電圧を印加した際の矩形断面内の電界分布が均一とならないという問題点があった。このため、電気光学結晶の断面内において矩形ビームの入射光に対する出射光の偏光回転特性が不均一となっていた。   However, when an electrode pair as shown in FIG. 3 is provided for a polarization rotation element having an electro-optic crystal having a rectangular cross section, there are the following problems. In the electro-optic crystal 7 having a circular cross section shown in FIG. 3, by forming a pair of electrodes 8 side by side in the direction of the optical axis direction 4, when a high voltage is applied to the polarization rotator, A vertical electric field (electric field direction 6) is generated inside. Here, by making the width of each electrode of the electrode pair 8 constant, the electric field distribution in the circular cross section of the electro-optic crystal 7 can be obtained with good uniformity. Further, it has advantages such as simplification of the structure as compared with the type in which the electrode layers of Patent Document 1 are laminated. However, when an electrode of the type wound around the crystal is applied to an electro-optic crystal having a rectangular cross section, a band electrode pair having a constant width is formed as in the case of a circular cross section. There has been a problem that the electric field distribution in the rectangular cross section of the film is not uniform. For this reason, the polarization rotation characteristic of the outgoing light with respect to the incident light of the rectangular beam is not uniform within the cross section of the electro-optic crystal.

本発明はかかる問題点に鑑みてなされたものであって、矩形断面の電気光学結晶を有する縦電界型の偏光回転素子において、簡素な構造で高電圧を印加した際に入射光の光軸に垂直な断面内における電界分布の均一性を向上させることができる偏光回転素子を提供することを目的とする。   The present invention has been made in view of such problems, and in a vertical electric field type polarization rotation element having a rectangular cross-section electro-optic crystal, when a high voltage is applied with a simple structure, the optical axis of incident light is applied. An object of the present invention is to provide a polarization rotation element capable of improving the uniformity of electric field distribution in a vertical cross section.

本発明に係る偏光回転素子は、入射光に対して矩形の断面形状を有する電気光学結晶と、前記電気光学結晶の前記入射光の光軸に平行な4面上に前記入射光の光軸を中心として前記電気光学結晶の周囲を巻回するように形成された1対の電極対と、を有し、前記4面のうち少なくとも1対の対向する面上における各電極の形状は、その面の端部側の電極幅が小さくその面の中央部の電極幅が大きくなるような形状を有することを特徴とする。   The polarization rotator according to the present invention includes an electro-optic crystal having a rectangular cross section with respect to incident light, and the optical axis of the incident light on four surfaces parallel to the optical axis of the incident light of the electro-optic crystal. A pair of electrodes formed so as to be wound around the electro-optic crystal as a center, and the shape of each electrode on at least one pair of opposed surfaces of the four surfaces is the surface The electrode has a shape in which the electrode width on the end side is small and the electrode width at the center of the surface is large.

本発明においては、電気光学結晶の入射光の光軸に平行な4面(側面)に形成される電極が、少なくとも1対の側面においてその面の端部側の電極幅が小さくその面の中央部の電極幅が大きくなるように形成されている。これにより、電極に高電圧を印加した際に電気光学結晶断面内の電界分布の均一性を向上させることができる。このため、本発明によれば、矩形ビームの入射光に対する出射光について良好な均一性の偏光回転特性が得られる。   In the present invention, the electrodes formed on the four surfaces (side surfaces) parallel to the optical axis of the incident light of the electro-optic crystal have at least one pair of side surfaces with a small electrode width on the end side of the surface and the center of the surface. The electrode width of the portion is formed to be large. Thereby, when a high voltage is applied to the electrode, the uniformity of the electric field distribution in the cross section of the electro-optic crystal can be improved. For this reason, according to the present invention, it is possible to obtain a polarization rotation characteristic with good uniformity for the outgoing light with respect to the incident light of the rectangular beam.

この場合に、前記電気光学結晶は、KD*P結晶であるように構成することができる。   In this case, the electro-optic crystal can be configured to be a KD * P crystal.

また、前記電気光学結晶は、前記入射光の光軸に平行な縦電界が印加されることにより、電気光学効果を示すように構成することができる。この場合に、前記電気光学効果は、ポッケルス効果とすることができる。   The electro-optic crystal can be configured to exhibit an electro-optic effect when a longitudinal electric field parallel to the optical axis of the incident light is applied. In this case, the electro-optic effect can be a Pockels effect.

本発明によれば、矩形断面の電気光学結晶を有する縦電界型の偏光回転素子において、簡素な構造で高電圧を印加した際に入射光の光軸に垂直な断面内における電界分布の均一性を向上させることができる。   According to the present invention, in a vertical electric field type polarization rotation element having an electro-optic crystal having a rectangular cross section, the uniformity of the electric field distribution in the cross section perpendicular to the optical axis of incident light when a high voltage is applied with a simple structure. Can be improved.

以下、本発明の実施形態について添付の図面を参照して具体的に説明する。図1は、本実施形態に係る偏光回転素子を光軸に垂直な方向から見た側面図であり、図2は、本実施形態に係る偏光回転素子を示す斜視図である。なお、以下において特に断りの無い限り、光軸は入射光の光軸をいい、断面は入射光の光軸に垂直な断面をいう。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a side view of the polarization rotator according to the present embodiment as viewed from a direction perpendicular to the optical axis, and FIG. 2 is a perspective view showing the polarization rotator according to the present embodiment. In the following description, unless otherwise specified, the optical axis refers to the optical axis of incident light, and the cross section refers to a cross section perpendicular to the optical axis of incident light.

図1に示すように、大型光学結晶1が設けられている。大型光学結晶1は四角柱の形状を有しており、図示しないレーザ装置の内部でレーザ光が大型光学結晶1に垂直に入射するように配置されている。大型光学結晶1としては、電気光学効果を利用する結晶、例えばポッケルス効果を利用するKD*P(KDPO)結晶が用いられる。 As shown in FIG. 1, a large optical crystal 1 is provided. The large optical crystal 1 has a quadrangular prism shape, and is arranged so that laser light is perpendicularly incident on the large optical crystal 1 inside a laser device (not shown). As the large optical crystal 1, a crystal using an electro-optical effect, for example, a KD * P (KD 2 PO 4 ) crystal using a Pockels effect is used.

大型光学結晶1の光軸方向4に垂直な2面を除く側面には、A電極2及びB電極3が設けられている。A電極2及びB電極3の材質は限定されないが、例えばAu等の金属が用いられ、大型光学結晶1上に蒸着及び圧着等の手法により形成されている。A電極2は大型光学結晶1の周囲を巻回するように設けられており、各側面においてその面の端部側の電極幅が小さくその面の中央部の電極幅が大きくなるように形成されている。A電極2の縁部の一方は直線状であり、他方は曲線及び直線により電極幅が滑らかに変化するような山形の形状をなしている。電極幅の寸法は、大型光学結晶1の寸法及び印加される電圧等の条件に基づいて定められる。また、B電極3は、大型光学結晶1内の光軸に垂直なある断面に対してA電極2と対称となるように形成されており、A電極2とB電極3との間には一定の間隔が設けられている。なお、A電極2及びB電極3の膜厚は各部において夫々一定である。   An A electrode 2 and a B electrode 3 are provided on the side surfaces of the large optical crystal 1 except for two surfaces perpendicular to the optical axis direction 4. The material of the A electrode 2 and the B electrode 3 is not limited, but a metal such as Au is used, for example, and is formed on the large optical crystal 1 by a technique such as vapor deposition and pressure bonding. The A electrode 2 is provided so as to be wound around the large-sized optical crystal 1 and is formed so that the electrode width at the end of the surface is small and the electrode width at the center of the surface is large on each side surface. ing. One of the edge portions of the A electrode 2 is linear, and the other has a mountain shape in which the electrode width changes smoothly according to the curve and the straight line. The dimensions of the electrode width are determined based on the dimensions of the large optical crystal 1 and conditions such as applied voltage. The B electrode 3 is formed so as to be symmetric with respect to the A electrode 2 with respect to a certain cross section perpendicular to the optical axis in the large optical crystal 1, and is constant between the A electrode 2 and the B electrode 3. Is provided. The film thicknesses of the A electrode 2 and the B electrode 3 are constant in each part.

次に、上述の如く構成された本実施形態の偏光回転素子の動作について説明する。図2に示すように、A電極2及びB電極3に高電圧を印加すると、大型光学結晶1の断面において光軸に平行(電界方向6)に縦電界が発生する。この状態で、大型光学結晶1に対して光軸方向4の方向に直線偏光のレーザ光を入射させると、大型光学結晶1を通過するレーザ光はポッケルス効果による複屈折性のため楕円偏光に変化する。この性質を利用して、条件により例えば偏光方向を90度回転させることが可能である。ポッケルス効果は電界の強さに比例して屈折率が変化する性質を有しているため、偏光回転素子に印加する電圧により入射光の偏光回転を制御することができる。   Next, the operation of the polarization rotation element of the present embodiment configured as described above will be described. As shown in FIG. 2, when a high voltage is applied to the A electrode 2 and the B electrode 3, a vertical electric field is generated parallel to the optical axis (electric field direction 6) in the cross section of the large optical crystal 1. In this state, when linearly polarized laser light is incident on the large optical crystal 1 in the direction of the optical axis 4, the laser light passing through the large optical crystal 1 changes to elliptically polarized light due to birefringence due to the Pockels effect. To do. Using this property, for example, the polarization direction can be rotated by 90 degrees depending on conditions. Since the Pockels effect has the property that the refractive index changes in proportion to the strength of the electric field, the polarization rotation of incident light can be controlled by the voltage applied to the polarization rotation element.

本実施形態の偏光回転素子では、大型光学結晶1の周囲に巻回されるA電極2及びB電極3が、各側面においてその面の端部側の電極幅が小さくその面の中央部の電極幅が大きくなるように形成されている。これにより、大型光学結晶1の断面内の各部における電界分布について良好な均一性が得られる。そのため、本実施形態では大型光学結晶1の断面の大きさに近い大型の矩形ビーム断面5のレーザ光が入射した場合でも、出射光について良好な均一性の偏光回転特性を得ることができる。また、本実施形態の偏光回転素子では例えば電気光学結晶と透明電極とを光軸方向に複数層積層して形成する必要がなく、電極を電気光学結晶の側面に形成するため簡素な構造とすることができる。   In the polarization rotation element of the present embodiment, the A electrode 2 and the B electrode 3 wound around the large optical crystal 1 have a small electrode width on the end side of the surface on each side surface, and an electrode in the center of the surface. The width is formed to be large. Thereby, good uniformity is obtained for the electric field distribution in each part in the cross section of the large optical crystal 1. For this reason, in this embodiment, even when laser light having a large rectangular beam cross section 5 close to the cross section of the large optical crystal 1 is incident, it is possible to obtain polarization rotation characteristics with good uniformity for the emitted light. Further, in the polarization rotation element of this embodiment, for example, it is not necessary to form a plurality of layers of electro-optic crystals and transparent electrodes in the optical axis direction, and the electrodes are formed on the side surfaces of the electro-optic crystals, so that the structure is simple. be able to.

なお、上述した本実施形態について、図1に示すような偏光回転素子を試作した。大型光学結晶1として125mm角の立方体状のKD*P結晶を使用した。大型光学結晶1の各側面におけるA電極2及びB電極3の寸法については、電圧等の条件に基づき電界強度分布のシミュレーションを行うことにより決定した。この試作品に対して大型光学結晶1の断面寸法に略等しい矩形ビームを入射した結果、断面内各部において良好な均一性の電界分布となるため、出射されたビームはビーム断面の縁部まで良好な均一性の偏光回転特性が得られた。   For the above-described embodiment, a polarization rotation element as shown in FIG. 1 was prototyped. As the large optical crystal 1, a 125 mm square cubic KD * P crystal was used. The dimensions of the A electrode 2 and the B electrode 3 on each side surface of the large optical crystal 1 were determined by simulating the electric field strength distribution based on conditions such as voltage. As a result of injecting a rectangular beam substantially equal to the cross-sectional dimension of the large optical crystal 1 into this prototype, the electric field distribution with good uniformity is obtained in each part in the cross-section, so that the emitted beam is good up to the edge of the beam cross-section. Uniform polarization rotation characteristics were obtained.

以上説明したように、本実施形態によれば、矩形断面を有する縦電界型の偏光回転素子において、簡素な構造で高電圧を印加した際に光軸に垂直な断面内の電界分布の均一性を向上させることができる。   As described above, according to the present embodiment, in the vertical electric field type polarization rotation element having a rectangular cross section, the uniformity of the electric field distribution in the cross section perpendicular to the optical axis when a high voltage is applied with a simple structure. Can be improved.

なお、上述の本実施形態では、ポッケルス効果を利用した偏光回転素子により入射光の偏光回転を制御することとしているが、本発明はこれに限定されるものではない。例えば、電気光学カー効果等電界の強さとの関係による他の電気光学効果を利用した素子に対しても本発明を適用することが可能である。   In the above-described embodiment, the polarization rotation of incident light is controlled by the polarization rotation element using the Pockels effect, but the present invention is not limited to this. For example, the present invention can be applied to an element using another electro-optic effect due to the relationship with the electric field strength such as the electro-optic Kerr effect.

また、上述の本実施形態では、大型光学結晶1としてKD*P結晶を使用しているが、本発明はこれに限定されるものではない。例えば、BBO結晶等ポッケルス効果又は上述の他の電気光学効果を得られる他の電気光学結晶を使用することとしてもよい。   Further, in the above-described embodiment, the KD * P crystal is used as the large-sized optical crystal 1, but the present invention is not limited to this. For example, another electro-optic crystal that can obtain the Pockels effect such as a BBO crystal or the other electro-optic effect described above may be used.

更に、上述の本実施形態では、A電極2及びB電極3は大型光学結晶1のある断面に対して対象であるように形成することとしているが、本発明はこれに限定されるものではない。例えば、大型光学結晶1の寸法及び所望の電界分布の均一性等の条件により、必ずしも全ての側面の電極幅を変化させる必要はなく、対向する1対の側面のみについて電極幅を変化させることとしてもよい。   Furthermore, in the above-described embodiment, the A electrode 2 and the B electrode 3 are formed so as to be targeted with respect to a cross section of the large optical crystal 1, but the present invention is not limited to this. . For example, it is not necessary to change the electrode width on all the side surfaces depending on conditions such as the size of the large optical crystal 1 and the desired electric field distribution uniformity, and the electrode width is changed only on a pair of opposing side surfaces. Also good.

本発明は、例えば高出力パルスレーザ装置に好適に利用することができる。   The present invention can be suitably used for, for example, a high-power pulse laser apparatus.

本発明の実施形態に係る偏光回転素子を示す側面図である。It is a side view which shows the polarization rotation element which concerns on embodiment of this invention. 本発明の実施形態に係る偏光回転素子を示す斜視図である。It is a perspective view which shows the polarization rotation element which concerns on embodiment of this invention. 従来の偏光回転素子を示す斜視図である。It is a perspective view which shows the conventional polarization rotation element.

符号の説明Explanation of symbols

1;大型光学結晶
2;A電極
3;B電極
4;光軸方向
5;矩形ビーム断面
6;電界方向
7;電気光学結晶
8;電極対
DESCRIPTION OF SYMBOLS 1; Large optical crystal 2; A electrode 3; B electrode 4; Optical axis direction 5; Rectangular beam cross section 6; Electric field direction 7;

Claims (4)

入射光に対して矩形の断面形状を有する電気光学結晶と、前記電気光学結晶の前記入射光の光軸に平行な4面上に前記入射光の光軸を中心として前記電気光学結晶の周囲を巻回するように形成された1対の電極対と、を有し、前記4面のうち少なくとも1対の対向する面上における各電極の形状は、その面の端部側の電極幅が小さくその面の中央部の電極幅が大きくなるような形状を有することを特徴とする偏光回転素子。 An electro-optic crystal having a rectangular cross-section with respect to incident light, and a periphery of the electro-optic crystal around the optical axis of the incident light on four surfaces parallel to the optical axis of the incident light of the electro-optic crystal. A pair of electrodes formed so as to be wound, and the shape of each electrode on at least one pair of opposing surfaces of the four surfaces is such that the electrode width on the end side of the surface is small A polarization rotation element characterized by having a shape in which the electrode width at the center of the surface is increased. 前記電気光学結晶は、KD*P結晶であることを特徴とする請求項1に記載の偏光回転素子。 The polarization rotator according to claim 1, wherein the electro-optic crystal is a KD * P crystal. 前記電気光学結晶は、前記入射光の光軸に平行な縦電界が印加されることにより、電気光学効果を示すことを特徴とする請求項1又は2に記載の偏光回転素子。 The polarization rotator according to claim 1, wherein the electro-optic crystal exhibits an electro-optic effect when a longitudinal electric field parallel to the optical axis of the incident light is applied. 前記電気光学効果は、ポッケルス効果であることを特徴とする請求項3に記載の偏光回転素子。 The polarization rotation element according to claim 3, wherein the electro-optic effect is a Pockels effect.
JP2007082944A 2007-03-27 2007-03-27 Polarization rotation element Active JP4506772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082944A JP4506772B2 (en) 2007-03-27 2007-03-27 Polarization rotation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082944A JP4506772B2 (en) 2007-03-27 2007-03-27 Polarization rotation element

Publications (2)

Publication Number Publication Date
JP2008242098A true JP2008242098A (en) 2008-10-09
JP4506772B2 JP4506772B2 (en) 2010-07-21

Family

ID=39913539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082944A Active JP4506772B2 (en) 2007-03-27 2007-03-27 Polarization rotation element

Country Status (1)

Country Link
JP (1) JP4506772B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148923A (en) * 1985-12-23 1987-07-02 Nec Corp Polarization control device
JPS62269113A (en) * 1986-05-16 1987-11-21 Nec Corp Polarization control device
JPS6374029A (en) * 1986-09-18 1988-04-04 Nec Corp Polarization control device
JPS63246720A (en) * 1987-04-01 1988-10-13 Nec Corp Polarization control device
JPH08116122A (en) * 1994-10-18 1996-05-07 Sony Corp Continuous-wave ultraviolet laser apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148923A (en) * 1985-12-23 1987-07-02 Nec Corp Polarization control device
JPS62269113A (en) * 1986-05-16 1987-11-21 Nec Corp Polarization control device
JPS6374029A (en) * 1986-09-18 1988-04-04 Nec Corp Polarization control device
JPS63246720A (en) * 1987-04-01 1988-10-13 Nec Corp Polarization control device
JPH08116122A (en) * 1994-10-18 1996-05-07 Sony Corp Continuous-wave ultraviolet laser apparatus

Also Published As

Publication number Publication date
JP4506772B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US6798960B2 (en) Optical device
KR100619199B1 (en) Polarizing plate and liquid cristal display device using thereof
JP4878210B2 (en) Optical waveguide structure
US10551688B2 (en) Electrode structure and liquid crystal display panel
US20140300963A1 (en) Optical Isolator
JP2012173672A (en) Liquid crystal panel and liquid crystal display device
JP2009192609A (en) Polarization control element
JP2008233412A (en) Liquid crystal display element
Arkhipova et al. Observation of linear and nonlinear light localization at the edges of moiré arrays
US20130148921A1 (en) Electro-optical phase modulator
JP5451986B2 (en) Liquid crystal lens and vision correction device using the same
JP5343321B2 (en) Liquid crystal display element
JP4506772B2 (en) Polarization rotation element
JP4792310B2 (en) Electro-optic element
JP6015749B2 (en) Optical waveguide device and method for manufacturing optical waveguide device
JP4984389B2 (en) Horizontal electric field drive liquid crystal cell and wavelength tunable filter using the same
CN102279478A (en) Optical isolator
WO2010016284A1 (en) Vertically aligned liquid crystal display device
KR20140085132A (en) Light Control Cell And Image Display Device Including The Same
JP5305386B2 (en) Magneto-optic light modulator
JP2007121515A (en) Optical element substrate and wavelength conversion device using substrate
US20210364864A1 (en) Optical device
JP2003107475A (en) Liquid crystal device
JP5725211B2 (en) Variable optical attenuator
TWI575274B (en) Optical coupler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250