JP2007121515A - Optical element substrate and wavelength conversion device using substrate - Google Patents

Optical element substrate and wavelength conversion device using substrate Download PDF

Info

Publication number
JP2007121515A
JP2007121515A JP2005311185A JP2005311185A JP2007121515A JP 2007121515 A JP2007121515 A JP 2007121515A JP 2005311185 A JP2005311185 A JP 2005311185A JP 2005311185 A JP2005311185 A JP 2005311185A JP 2007121515 A JP2007121515 A JP 2007121515A
Authority
JP
Japan
Prior art keywords
optical element
element substrate
ferroelectric
domain
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005311185A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sato
康弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005311185A priority Critical patent/JP2007121515A/en
Publication of JP2007121515A publication Critical patent/JP2007121515A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element substrate capable of forming a polarization inversion structure of high accuracy even when a ferroelectric crystal wherein current easily flows in a region where the polarization inversion structure is formed is used and to provide a wavelength conversion device using the substrate. <P>SOLUTION: In the optical element substrate 1 comprising a ferroelectric material for manufacturing the wavelength conversion device having a structure (the polarization inversion structure) wherein a spontaneous polarization direction of the ferroelectric crystal having a secondary nonlinear effect is periodically inverted, a charge movement limiting layer 3 for limiting a movement amount of a charge moved along the spontaneous polarization direction when the polarization inversion structure is formed, is provided on one surface orthogonal to spontaneous polarization of a ferroelectric layer 2 of the optical element substrate 1 wherein the polarization inversion structure is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フォトプリンター、ディスプレー、テラヘルツレーザー光源等に用いられる、光学素子基板、及び、該基板を用いた波長変換デバイスに関する。   The present invention relates to an optical element substrate used in a photo printer, a display, a terahertz laser light source, and the like, and a wavelength conversion device using the substrate.

LiNbO3やLiTiO3等の強誘電体結晶は、強い非線形光学効果を持つことからレーザー光の波長変換素子に利用されている。特に、分極方向を周期的に反転させ擬似的に位相整合条件(QPM)を満たすようにした光学素子は大きい非線形定数を利用できるため波長変換効率が高く、分極反転構造の周期を変化させることで広い波長範囲のレーザー光に対して第二高調波発生(SHG)や光パラメトリック発振(OPO)を行えるため様々な検討が行われている。 Ferroelectric crystals such as LiNbO 3 and LiTiO 3 have a strong nonlinear optical effect and are used for laser light wavelength conversion elements. In particular, an optical element that periodically inverts the polarization direction and satisfies the phase matching condition (QPM) in a pseudo manner can use a large nonlinear constant, and therefore has high wavelength conversion efficiency. By changing the period of the polarization inversion structure, Various studies have been made since second harmonic generation (SHG) and optical parametric oscillation (OPO) can be performed on laser light in a wide wavelength range.

このような波長変換素子の作製は、例えば、特許文献1に開示されるように、主に分極方向が揃った誘電体結晶基板の両面(+Z面と−Z面、又は、+C面と−C面と呼ばれる。)に所定の電極パターンを形成し、電圧を印加して電極に挟まれた部分の分極方向を反転させることで行われている。しかし、波長変換効率の高い素子を作製するためには設計値に対して高い精度で反転領域を形成しなければならない。特にバルク型では導波路型より大きい入射ビーム径を想定しているため、厚い基板を広い範囲にわたって均一に分極反転させる必要がある。これらの課題に対して様々な方法が検討されている。   For example, as disclosed in Patent Document 1, such a wavelength conversion element can be manufactured by using both surfaces (+ Z plane and −Z plane, or + C plane and −C plane) of a dielectric crystal substrate whose polarization direction is mainly aligned. This is performed by forming a predetermined electrode pattern on the surface and reversing the polarization direction of the portion sandwiched between the electrodes by applying a voltage. However, in order to fabricate an element with high wavelength conversion efficiency, the inversion region must be formed with high accuracy with respect to the design value. In particular, since an incident beam diameter larger than that of the waveguide type is assumed in the bulk type, it is necessary to uniformly reverse the polarization of a thick substrate over a wide range. Various methods have been studied for these problems.

例えば、特許文献2では、電場を印加するための+Z面側の電極を、目的とする周期より広い周期の複数のセグメントに分けて、個別に電場を印加することで微細な周期の分極反転構造を形成している。特許文献3では、所定のパターンを持つ電極が形成された+Z面側を真空にしておくことで電極間の放電を防ぎ、−Z面側は大気圧にしてコロナ帯電させて電場を印加することで微細周期の分極反転構造を形成している。特許文献4では、+Z面表面の結晶性を劣化させることにより不要な部分の分極反転を抑制し、短周期の分極反転構造を形成し易くしている。   For example, in Patent Document 2, an electrode on the + Z plane side for applying an electric field is divided into a plurality of segments having a period wider than the target period, and an electric field is individually applied to the domain-inverted structure with a fine period. Is forming. In Patent Document 3, the discharge between the electrodes is prevented by maintaining a vacuum on the + Z plane side on which electrodes having a predetermined pattern are formed, and an electric field is applied by corona charging with the atmospheric pressure on the −Z plane side. Thus, a domain-inverted structure with a fine period is formed. In Patent Document 4, by degrading the crystallinity of the + Z plane surface, polarization reversal of unnecessary portions is suppressed, and a short-period polarization reversal structure is easily formed.

これらの方法による分極反転構造の形成には、LiNbO3、LiTaO3等の非線形効果を有する強誘電体結晶が用いられている。中でもLiNbO3、LiTaO3は非線形効果が高く、分極反転構造も安定性が高いため検討が進んでいるが、特にLiNbO3、LiTaO3に不純物としてMgO をドープした結晶(以下、MgO:LN、MgO:LT)は、波長変換により発生した可視光と基本波の相互作用による基本波の吸収(Green Induced IR Absorption: GRIIRA)の問題がなく、高出力の可視光発生用波長変換デバイスとして期待されている。
特許第3277515号公報 特開2003−307758号公報 特開平7−72521号公報 特開2000−147584号公報
Ferroelectric crystals having a non-linear effect such as LiNbO 3 and LiTaO 3 are used for forming the domain-inverted structure by these methods. Among them LiNbO 3, LiTaO 3 has a high nonlinear effect, but consideration has high stability domain inversion structure is advanced, particularly LiNbO 3, crystal MgO-doped to LiTaO 3 as an impurity (hereinafter, MgO: LN, MgO : LT) is expected to be a high-power wavelength conversion device for visible light generation without the problem of fundamental absorption due to the interaction between visible light and fundamental wave generated by wavelength conversion (Green Induced IR Absorption: GRIIRA). Yes.
Japanese Patent No. 3277515 JP 2003-307758 A JP-A-7-72521 JP 2000-147484 A

しかし、特にMgO:LNでは、分極反転した部分の抵抗率が低下し電流が流れ易くなるため、先に分極反転構造が生じた部分が加熱され分極反転構造のムラが発生したり、他の部分へ所定の電界が印加されなくなるため分極反転構造の形成が電界印加の途中で停止するという問題があった。   However, in particular, in MgO: LN, the resistivity of the part where the polarization is reversed decreases and the current flows easily, so that the part where the domain-inverted structure is generated first is heated to cause unevenness of the domain-inverted structure, and other parts. There is a problem that the formation of the domain-inverted structure stops in the middle of the application of the electric field because a predetermined electric field is not applied.

本発明は、上記のような問題点に鑑み、分極反転構造の形成領域に電流が流れ易くなるような強誘電体結晶を用いた場合であっても、高精度の分極反転構造を形成可能とした、光学素子基板、及び、該基板を用いた波長変換デバイスを提供することを目的とする。   In view of the above-described problems, the present invention can form a highly accurate domain-inverted structure even when a ferroelectric crystal is used so that a current easily flows in the region where the domain-inverted structure is formed. An object of the present invention is to provide an optical element substrate and a wavelength conversion device using the substrate.

請求項1に記載の発明は、2次の非線形効果を持つ強誘電体結晶の自発分極方向を周期的に反転させた構造(分極反転構造)を有する波長変換デバイスを作製するための、強誘電体材料からなる光学素子基板であって、前記分極反転構造が形成される前記光学素子基板の強誘電体層の自発分極と直交する面の一方に対して、分極反転構造形成時に自発分極方向に沿って移動する電荷の移動量を制限する電荷移動制限層を備えた光学素子基板としたことを特徴とする。   The invention according to claim 1 is a ferroelectric for producing a wavelength conversion device having a structure (polarization inversion structure) in which the spontaneous polarization direction of a ferroelectric crystal having a second-order nonlinear effect is periodically reversed. An optical element substrate made of a body material, wherein one of the surfaces perpendicular to the spontaneous polarization of the ferroelectric layer of the optical element substrate on which the polarization reversal structure is formed has a spontaneous polarization direction when the polarization reversal structure is formed. The optical element substrate includes a charge transfer limiting layer that limits the amount of movement of charges moving along.

請求項2に記載の発明は、前記電荷移動制限層は、前記光学素子基板に対して、Mg、Zn、Se、Inのうち少なくともいずれか1つの不純物を添加又は除去することにより形成される請求項1記載の光学素子基板としたことを特徴とする。   According to a second aspect of the present invention, the charge transfer limiting layer is formed by adding or removing at least one impurity of Mg, Zn, Se, and In to the optical element substrate. Item 1 is an optical element substrate according to Item 1.

請求項3に記載の発明は、前記電荷移動制限層は、前記光学素子基板を形成する前記強誘電体材料と比較して、異なる不純物濃度を有する前記強誘電体材料からなる請求項1記載の光学素子基板としたことを特徴とする。   According to a third aspect of the present invention, the charge transfer limiting layer is made of the ferroelectric material having a different impurity concentration compared to the ferroelectric material forming the optical element substrate. An optical element substrate is provided.

請求項4に記載の発明は、前記強誘電体層と前記電荷移動制限層とは熱拡散接合により接合される請求項3記載の光学素子基板としたことを特徴とする。   The invention according to claim 4 is the optical element substrate according to claim 3, wherein the ferroelectric layer and the charge transfer limiting layer are bonded by thermal diffusion bonding.

請求項5に記載の発明は、前記強誘電体層の反転抗電界をE1、前記強誘電体層の厚さをd1、前記電荷移動制限層の反転抗電界をE2、電荷移動制限層の厚さをd2とすると、
E1・(d1+d2)<=E2・d2・・・式(1)を満たす請求項1から4のいずれか1項に記載の光学素子基板としたことを特徴とする。
According to a fifth aspect of the present invention, the inversion coercive field of the ferroelectric layer is E1, the thickness of the ferroelectric layer is d1, the inversion coercive field of the charge transfer limiting layer is E2, and the thickness of the charge transfer limiting layer is If d2 is,
E1 · (d1 + d2) <= E2 · d2... An optical element substrate according to any one of claims 1 to 4 satisfying the formula (1) is provided.

請求項6に記載の発明は、請求項1から5のいずれか1項に記載の光学素子基板を用いた波長変換デバイスとしたことを特徴とする。   The invention according to claim 6 is a wavelength conversion device using the optical element substrate according to any one of claims 1 to 5.

本発明によれば、光学素子基板、及び、該基板を用いた波長変換デバイスにおいて、分極反転構造の形成領域に、電流が流れ易くなるような強誘電体結晶を用いた場合であっても、高精度の分極反転構造を形成可能とすることができる。   According to the present invention, in the optical element substrate and the wavelength conversion device using the substrate, even when a ferroelectric crystal that makes it easy for current to flow is used in the region where the domain-inverted structure is formed, A highly accurate domain-inverted structure can be formed.

本発明を実施するための最良の形態は、2次の非線形効果を持つ強誘電体結晶の自発分極方向を周期的に反転させた構造(分極反転構造)を有する波長変換デバイスを作製するための、強誘電体材料からなる光学素子基板において、分極反転構造が形成される光学素子基板の強誘電体層の自発分極と直交する面の一方に対して、分極反転構造形成時に自発分極方向に沿って移動する電荷の移動量を制限する電荷移動制限層を設ける。   The best mode for carrying out the present invention is to produce a wavelength conversion device having a structure (polarization inversion structure) in which the spontaneous polarization direction of a ferroelectric crystal having a second-order nonlinear effect is periodically inverted. In the optical element substrate made of a ferroelectric material, along the spontaneous polarization direction at the time of forming the domain-inverted structure with respect to one of the surfaces orthogonal to the spontaneous polarization of the ferroelectric layer of the optical element substrate on which the domain-inverted structure is formed A charge transfer limiting layer is provided for limiting the amount of charge transfer.

以下に、本発明の好適な実施形態を添付図面に基づいて詳細に説明する。尚、以下に述べる実施形態は本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise described, the present invention is not limited to these embodiments.

(実施形態1)
本実施形態の光学素子基板は、所定の位置に分極反転構造が形成された後は電流が流れないように電荷の移動を制限する構造である電荷移動制限層を設けたことを特徴とする。この電荷移動制限層により、MgO:LNのような、分極反転領域の抵抗率が低下し電流による加熱で分極反転領域のムラが発生しやすい強誘電体結晶においても、高精度の分極反転構造が形成可能となる。以下に具体的に本実施形態の光学素子基板について説明する。
(Embodiment 1)
The optical element substrate of the present embodiment is characterized in that a charge transfer limiting layer having a structure for limiting charge transfer is provided so that no current flows after the polarization inversion structure is formed at a predetermined position. This charge transfer limiting layer reduces the resistivity of the domain-inverted region, such as MgO: LN, and even in a ferroelectric crystal in which unevenness of the domain-inverted region is likely to occur due to heating by a current, a highly accurate domain-inverted structure is provided. It can be formed. The optical element substrate of this embodiment will be specifically described below.

図1は、本実施形態の光学素子基板1の構造を示した断面図である。図1の強誘電体層2は、分極反転構造が形成される部分で、背景技術の欄で述べたように、MgO:LN、MgO:LT等が用いられる。図1に示す強誘電体層2は、−Z面側から+Z面側に向かって分極方向が揃っており、電荷移動制限層3は−Z面側に形成される。   FIG. 1 is a cross-sectional view showing the structure of the optical element substrate 1 of the present embodiment. The ferroelectric layer 2 in FIG. 1 is a portion where a domain-inverted structure is formed, and MgO: LN, MgO: LT or the like is used as described in the background art section. The ferroelectric layer 2 shown in FIG. 1 has a uniform polarization direction from the −Z plane side to the + Z plane side, and the charge transfer limiting layer 3 is formed on the −Z plane side.

上記電荷移動制限層3に用いる材料としては、分極反転前の強誘電体層2より抵抗値が低く、分極反転後の強誘電体層2より抵抗値が高い材料や、所定の電荷が移動するまで電荷を流した後は電荷の移動を停止させる材料(実施形態2に記載)を用いることができる。   As a material used for the charge transfer limiting layer 3, a material having a resistance value lower than that of the ferroelectric layer 2 before polarization inversion and higher than that of the ferroelectric layer 2 after polarization inversion, or a predetermined charge moves. A material (described in Embodiment Mode 2) that stops the movement of the charge after flowing the charge up to can be used.

例えば、電荷移動制限層3は、不純物濃度が互いに異なる材料であって、強誘電体層2を形成する強誘電体材料と同じ強誘電体材料を用いることができる。また、電荷移動制限層3は、光学素子基板1に対して、Mg、Zn、Se、Inのうちの少なくともいずれか1つの不純物を添加又は除去することにより形成することができる。   For example, the charge transfer limiting layer 3 can be made of the same ferroelectric material as the ferroelectric material forming the ferroelectric layer 2, which are materials having different impurity concentrations. The charge transfer limiting layer 3 can be formed by adding or removing at least one impurity of Mg, Zn, Se, and In to the optical element substrate 1.

次に、本実施形態の光学素子基板1との比較のため、図4(a)〜(d)を用いて従来の光学素子基板を分極反転させる場合の動作(分極反転構造の形成過程)を説明する。図4(a)〜(d)は、従来の光学素子基板5を分極反転させる場合の動作(分極反転構造の形成過程)を説明するための断面図である。   Next, for comparison with the optical element substrate 1 of the present embodiment, the operation (polarization inversion structure forming process) in the case of polarization inversion of the conventional optical element substrate using FIGS. explain. 4A to 4D are cross-sectional views for explaining the operation (the process of forming the polarization inversion structure) in the case of polarization inversion of the conventional optical element substrate 5.

尚、図4(a)〜(d)に示す光学素子基板6では、+Z面側に櫛状の電極(+電極4)、−Z面側にベタ電極(−電極5)を形成して光学素子基板6の分極方向と逆の電界を印加している。また、本説明における光学素子基板6は、MgOをドーピングしたLiNbO3(MgO:LN)を用いて形成されているものとする。 In the optical element substrate 6 shown in FIGS. 4A to 4D, a comb-like electrode (+ electrode 4) is formed on the + Z plane side, and a solid electrode (−electrode 5) is formed on the −Z plane side. An electric field opposite to the polarization direction of the element substrate 6 is applied. The optical element substrate 6 in this description is formed using LiNbO 3 (MgO: LN) doped with MgO.

まず、+Z面側の電極(+電極4)及び−Z面側の電極(−電極5)を介して、光学素子基板6に電界を印加すると、図4(a)に示すように、+Z面側の電極(+電極4)のエッジ部分から分極反転領域7が発生する。電界印加時間が進むに従って、図4(b)、図4(c)に示すように、分極反転領域7は−Z面に向かって成長していくが、成長速度は場所によって異なっている。   First, when an electric field is applied to the optical element substrate 6 through the + Z plane side electrode (+ electrode 4) and the −Z plane side electrode (−electrode 5), as shown in FIG. A domain-inverted region 7 is generated from the edge portion of the side electrode (+ electrode 4). As the electric field application time advances, the domain-inverted region 7 grows toward the -Z plane as shown in FIGS. 4B and 4C, but the growth rate differs depending on the location.

この間、電流はほとんど流れず、分極反転領域7の一部が−Z面に達して、図4(c)に示すような分極反転構造が形成される。なぜならば、分極反転領域7は横方向に少しずつ広がっていくが、その速度は縦方向の成長に比べて非常に遅いため、他の分極反転領域7が主に縦方向に成長するからである。   During this time, almost no current flows, and a part of the domain-inverted region 7 reaches the -Z plane to form a domain-inverted structure as shown in FIG. This is because the domain-inverted region 7 gradually expands in the horizontal direction, but its speed is very slow compared with the growth in the vertical direction, so that the other domain-inverted regions 7 mainly grow in the vertical direction. .

そして、図4(c)に示すような分極反転領域7が形成されると、分極反転に伴って分極反転領域7の面積に比例した電流が流れる。しかしながら、MgOをドーピングしたLiNbO3では分極反転領域7と未反転領域の界面を通って電流が流れ続けるため、貫通した分極反転領域7の周囲が加熱され分極反転に必要な電界強度(反転抗電界)が低下して分極反転領域7が横方向へ成長しやすくなるため、図4(d)に示すように貫通した分極反転領域7が横方向に大きく広がってしまい、分極反転領域7の一部が消滅するため問題である。 When the domain-inverted region 7 as shown in FIG. 4C is formed, a current proportional to the area of the domain-inverted region 7 flows along with the domain-inverted region. However, in LiNbO 3 doped with MgO, current continues to flow through the interface between the domain-inverted region 7 and the non-inverted region. ) Decreases and the domain-inverted region 7 is likely to grow in the lateral direction, so that the penetrated domain-inverted region 7 greatly spreads in the lateral direction as shown in FIG. Is a problem because disappears.

次に、図2(a)〜(d)を用いて本実施形態の光学素子基板1を分極反転させる場合の動作(分極反転構造の形成過程)を説明する。図2(a)〜(d)は、本実施形態の光学素子基板1を分極反転させる場合の動作(分極反転構造の形成過程)を説明するための断面図である。尚、図2(a)〜(d)に示す光学素子基板1では、+Z面側に櫛状の電極(+電極4)、−Z面側にベタ電極(−電極5)を形成して光学素子基板1の分極方向と逆の電界を印加している。   Next, the operation (polarization inversion structure forming process) when the optical element substrate 1 of this embodiment is inverted in polarization will be described with reference to FIGS. FIGS. 2A to 2D are cross-sectional views for explaining an operation (a process of forming a domain-inverted structure) when the optical element substrate 1 of the present embodiment is domain-inverted. In the optical element substrate 1 shown in FIGS. 2A to 2D, a comb-like electrode (+ electrode 4) is formed on the + Z plane side, and a solid electrode (−electrode 5) is formed on the −Z plane side. An electric field opposite to the polarization direction of the element substrate 1 is applied.

まず、図2(a)〜(c)では、図4(a)〜(c)を用いて上述した従来の場合と同じように分極反転領域7が成長する。しかし、図2(c)、図2(d)に示すように、分極反転領域7が電界移動制限層3に達した後は分極反転領域7の成長が止まり、反転領域の界面を通る電流が抑制されるため分極反転領域7周辺の加熱が起こらない。従って、先に電荷移動制限層3に達した分極反転領域7が横方向に広がる前に他の分極反転領域7が−Z面に達することが可能となり、従来に比べて均一な分極反転構造が形成できるようになる。   First, in FIGS. 2A to 2C, the domain-inverted region 7 grows in the same manner as in the conventional case described above with reference to FIGS. However, as shown in FIGS. 2C and 2D, after the domain-inverted region 7 reaches the electric field transfer limiting layer 3, the growth of the domain-inverted region 7 stops, and the current passing through the interface of the domain-inverted region is reduced. Since it is suppressed, heating around the domain-inverted region 7 does not occur. Accordingly, before the domain-inverted region 7 that has reached the charge transfer limiting layer 3 spreads in the lateral direction, the other domain-inverted regions 7 can reach the −Z plane, and a uniform domain-inverted structure compared to the prior art can be obtained. It becomes possible to form.

以上説明したように、本実施形態によれば、分極反転構造が形成される光学素子基板の自発分極と直交する面の一方に対して、分極反転構造形成時に自発分極方向に沿って移動する電荷の移動量を制限するための電荷移動制限層が形成されているため、分極反転領域のムラの発生を抑えて分極反転構造の均一性を高めることができる。<請求項1>
また、本実施形態の光学素子基板を利用することにより、高い効率で波長変換が行える波長変換デバイスを供給することが可能となる。<請求項6>
As described above, according to this embodiment, the charge that moves along the direction of spontaneous polarization when the domain-inverted structure is formed with respect to one of the surfaces orthogonal to the spontaneous polarization of the optical element substrate on which the domain-inverted structure is formed. Since the charge transfer limiting layer for limiting the amount of movement is formed, it is possible to suppress the occurrence of unevenness in the domain-inverted region and improve the uniformity of the domain-inverted structure. <Claim 1>
In addition, by using the optical element substrate of the present embodiment, it is possible to supply a wavelength conversion device that can perform wavelength conversion with high efficiency. <Claim 6>

(実施形態2)
本実施形態は、実施形態1の応用例である。従って、実施形態1と共通する部分(構成及び効果)は説明を省略し、特徴部分のみ、添付図面に基づいて以下に説明する。図3は、本実施形態における光学素子基板1の構造を示した断面図である。図3に示すように、本実施形態では、光学素子基板1の強誘電体層2として、5mol%のMgOをドープしたLiNbO3基板、電荷移動制限層3として、ノンドープLiNbO3基板(以下、ノンドープLN)が用いられる。
(Embodiment 2)
The present embodiment is an application example of the first embodiment. Therefore, description of parts (configuration and effects) common to the first embodiment will be omitted, and only characteristic parts will be described below based on the attached drawings. FIG. 3 is a cross-sectional view showing the structure of the optical element substrate 1 in the present embodiment. As shown in FIG. 3, in this embodiment, a LiNbO 3 substrate doped with 5 mol% of MgO is used as the ferroelectric layer 2 of the optical element substrate 1, and a non-doped LiNbO 3 substrate (hereinafter referred to as non-doped) is used as the charge transfer limiting layer 3. LN) is used.

MgO:LN基板(5mol%のMgOをドープしたLiNbO3基板)は分極反転領域7の抵抗値が低下するが、上記ノンドープLiNbO3基板は分極反転した面積に応じた電荷が移動するだけでそれ以上の電流は流れないため、電荷移動制限層3として利用することができる。5mol%のMgO:LNの反転抗電界は室温で約5KV/mm、一方、ノンドープLNの反転抗電界は約21KV/mmである。 The MgO: LN substrate (LiNbO 3 substrate doped with 5 mol% MgO) decreases the resistance value of the domain-inverted region 7, but the non-doped LiNbO 3 substrate is more than the amount of charge that moves according to the domain-inverted area. Since no current flows, it can be used as the charge transfer limiting layer 3. The inversion coercive field of 5 mol% MgO: LN is about 5 KV / mm at room temperature, while the inversion coercive field of non-doped LN is about 21 KV / mm.

MgO:LN部分が分極反転した領域ではMgO:LNの抵抗値が低下し、印加された電圧に応じた電界は一時的にノンドープLN部分に集中する。従って、ノンドープLN部分が過剰な電解印加によって破壊され、抵抗値が低下するのを避けるためには、MgO:LNの厚さをd1、反転抗電界をE1、ノンドープLNの厚さをd2、反転抗電界をE2として、以下に示す式(1)を満たすようにしておけばよい。
E1・(d1+d2)<=E2・d2・・・式(1)
In the region where the MgO: LN portion is inverted in polarization, the resistance value of MgO: LN decreases, and the electric field corresponding to the applied voltage is temporarily concentrated on the non-doped LN portion. Therefore, in order to prevent the non-doped LN portion from being destroyed by excessive electrolysis and reducing the resistance value, the MgO: LN thickness is d1, the inversion coercive electric field is E1, and the non-doped LN thickness is d2. The coercive electric field is set to E2, and the following formula (1) may be satisfied.
E1 · (d1 + d2) <= E2 · d2 (1)

ところで、本実施形態の光学素子基板1は、強誘電体層2と電荷移動制限層3はドーパントであるMgOの有無以外の違いがないため、熱拡散接合を用いて作製することが好ましい。なぜならば、この熱拡散接合は接着剤を使う必要がないため、接合界面の均一性が高く、接合界面状態のムラによる分極反転構造形成への悪影響を避けることができるからである。   By the way, the optical element substrate 1 of the present embodiment is preferably manufactured using thermal diffusion bonding because the ferroelectric layer 2 and the charge transfer limiting layer 3 have no difference other than the presence or absence of MgO as a dopant. This is because this thermal diffusion bonding does not require the use of an adhesive, so the uniformity of the bonding interface is high, and adverse effects on the formation of the domain-inverted structure due to unevenness of the bonding interface state can be avoided.

以上説明したように、本実施形態によれば、電荷移動制限層3は強誘電体層2に対してMg、Zn、Se、In等の不純物が異なる濃度で添加、若しくは添加されている点において相違するのみであり、材料特性の違いが少ないため、熱拡散接合により光学素子基板を容易に作成することができる。また、本実施形態によれば、電荷移動制限層と強誘電体層は熱拡散接合により接合されているため、接合界面の均一性が高く、接合界面状態のムラによる分極反転構造形成への悪影響を避けることができる。<請求項4>   As described above, according to the present embodiment, the charge transfer limiting layer 3 is different in that impurities such as Mg, Zn, Se, and In are added or added to the ferroelectric layer 2 at different concentrations. The only difference is that there is little difference in material properties, so that the optical element substrate can be easily formed by thermal diffusion bonding. In addition, according to the present embodiment, since the charge transfer limiting layer and the ferroelectric layer are bonded by thermal diffusion bonding, the uniformity of the bonding interface is high, and the adverse effect on the polarization inversion structure formation due to uneven bonding interface state Can be avoided. <Claim 4>

更に、本実施形態によれば、強誘電体層の反転抗電界をE1、強誘電体層の厚さをd1、電荷移動制限層の反転抗電界をE2、電荷移動制限層の厚さをd2とすると、
E1・(d1+d2)<=E2・d2・・・式(1)
上記式(1)を満たしているため、電荷移動制限層が過剰な電界印加によって破壊されて抵抗値が低下することを避けることができる。<請求項5>
Furthermore, according to this embodiment, the inversion coercive electric field of the ferroelectric layer is E1, the thickness of the ferroelectric layer is d1, the inversion coercive field of the charge transfer limiting layer is E2, and the thickness of the charge transfer limiting layer is d2. Then,
E1 · (d1 + d2) <= E2 · d2 (1)
Since the above formula (1) is satisfied, it can be avoided that the charge transfer limiting layer is destroyed by application of an excessive electric field and the resistance value decreases. <Claim 5>

第1の実施形態における光学素子基板の構造を示した断面図である。It is sectional drawing which showed the structure of the optical element substrate in 1st Embodiment. (a)〜(d)は、本実施形態の光学素子基板を分極反転させる場合の動作(分極反転構造の形成過程)を説明するための断面図である。(A)-(d) is sectional drawing for demonstrating the operation | movement (formation process of a polarization inversion structure) in the case of carrying out polarization inversion of the optical element substrate of this embodiment. 第2の実施形態における光学素子基板の構造を示した断面図である。It is sectional drawing which showed the structure of the optical element substrate in 2nd Embodiment. (a)〜(d)は、従来の光学素子基板を分極反転させる場合の動作(分極反転構造の形成過程)を説明するための断面図である。(A)-(d) is sectional drawing for demonstrating the operation | movement (formation process of a polarization inversion structure) in the case of carrying out polarization inversion of the conventional optical element substrate.

符号の説明Explanation of symbols

1 光学素子基板
2 強誘電体層
3 電荷移動制限層
4 +電極
5 −電極
6 光学素子基板(従来)
7 分極反転領域
DESCRIPTION OF SYMBOLS 1 Optical element board | substrate 2 Ferroelectric layer 3 Charge transfer limiting layer 4 + Electrode 5-Electrode 6 Optical element board | substrate (conventional)
7 Polarization inversion region

Claims (6)

2次の非線形効果を持つ強誘電体結晶の自発分極方向を周期的に反転させた構造(分極反転構造)を有する波長変換デバイスを作製するための、強誘電体材料からなる光学素子基板であって、
前記分極反転構造が形成される前記光学素子基板の強誘電体層の自発分極と直交する面の一方に対して、分極反転構造形成時に自発分極方向に沿って移動する電荷の移動量を制限する電荷移動制限層を備えたことを特徴とする光学素子基板。
An optical element substrate made of a ferroelectric material for producing a wavelength conversion device having a structure (polarization inversion structure) in which the spontaneous polarization direction of a ferroelectric crystal having a second-order nonlinear effect is periodically reversed. And
Limiting the amount of movement of charges that move along the direction of spontaneous polarization when the domain-inverted structure is formed with respect to one of the surfaces orthogonal to the spontaneous polarization of the ferroelectric layer of the optical element substrate on which the domain-inverted structure is formed An optical element substrate comprising a charge transfer limiting layer.
前記電荷移動制限層は、前記光学素子基板に対して、Mg、Zn、Se、Inのうち少なくともいずれか1つの不純物を添加又は除去することにより形成されることを特徴とする請求項1記載の光学素子基板。   2. The charge transfer limiting layer is formed by adding or removing at least one impurity of Mg, Zn, Se, and In to the optical element substrate. Optical element substrate. 前記電荷移動制限層は、前記光学素子基板を形成する前記強誘電体材料と比較して、異なる不純物濃度を有する前記強誘電体材料からなることを特徴とする請求項1記載の光学素子基板。   2. The optical element substrate according to claim 1, wherein the charge transfer limiting layer is made of the ferroelectric material having a different impurity concentration as compared with the ferroelectric material forming the optical element substrate. 前記強誘電体層と前記電荷移動制限層とは熱拡散接合により接合されることを特徴とする請求項3記載の光学素子基板。   4. The optical element substrate according to claim 3, wherein the ferroelectric layer and the charge transfer limiting layer are bonded by thermal diffusion bonding. 前記強誘電体層の反転抗電界をE1、前記強誘電体層の厚さをd1、前記電荷移動制限層の反転抗電界をE2、電荷移動制限層の厚さをd2とすると、
E1・(d1+d2)<=E2・d2・・・式(1)を満たすことを特徴とする請求項1から4のいずれか1項に記載の光学素子基板。
When the inversion coercive field of the ferroelectric layer is E1, the thickness of the ferroelectric layer is d1, the inversion coercive field of the charge transfer limiting layer is E2, and the thickness of the charge transfer limiting layer is d2.
E1 * (d1 + d2) <= E2 * d2 ... Formula (1) is satisfy | filled, The optical element substrate of any one of Claim 1 to 4 characterized by the above-mentioned.
請求項1から5のいずれか1項に記載の光学素子基板を用いた波長変換デバイス。   A wavelength conversion device using the optical element substrate according to claim 1.
JP2005311185A 2005-10-26 2005-10-26 Optical element substrate and wavelength conversion device using substrate Withdrawn JP2007121515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311185A JP2007121515A (en) 2005-10-26 2005-10-26 Optical element substrate and wavelength conversion device using substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311185A JP2007121515A (en) 2005-10-26 2005-10-26 Optical element substrate and wavelength conversion device using substrate

Publications (1)

Publication Number Publication Date
JP2007121515A true JP2007121515A (en) 2007-05-17

Family

ID=38145444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311185A Withdrawn JP2007121515A (en) 2005-10-26 2005-10-26 Optical element substrate and wavelength conversion device using substrate

Country Status (1)

Country Link
JP (1) JP2007121515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8120842B2 (en) 2007-03-26 2012-02-21 Ricoh Company, Ltd. Wavelength conversion device, laser apparatus, image forming apparatus, and display apparatus
JP2014026158A (en) * 2012-07-27 2014-02-06 C2C Link Corp Method for manufacturing laser module
US9197027B2 (en) 2012-07-05 2015-11-24 C2C Link Corporation Method for making laser module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8120842B2 (en) 2007-03-26 2012-02-21 Ricoh Company, Ltd. Wavelength conversion device, laser apparatus, image forming apparatus, and display apparatus
US9197027B2 (en) 2012-07-05 2015-11-24 C2C Link Corporation Method for making laser module
JP2014026158A (en) * 2012-07-27 2014-02-06 C2C Link Corp Method for manufacturing laser module

Similar Documents

Publication Publication Date Title
Tovstonog et al. High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate
US20200225408A1 (en) Optical device and method for manufacturing optical device
WO2011045893A1 (en) Method for manufacturing optical element
TWI297802B (en) Method of fabricating two-dimensional ferroelectric nonlinear crystals with periodically inverted domains
JP4646333B2 (en) Harmonic generator
JP2007121515A (en) Optical element substrate and wavelength conversion device using substrate
US6952307B2 (en) Electric field poling of ferroelectric materials
JPWO2009107473A1 (en) Wavelength conversion element
JP2008268547A (en) Laser device, wavelength conversion element, and manufacturing method thereof
CN116125726A (en) Design and preparation method of on-chip entanglement source based on X-cut periodic polarization lithium niobate thin film
KR101407842B1 (en) Wavelength converting devices
JP2007003885A (en) Method for manufacturing substrate having periodical polarization inversion region
JP2006259338A (en) Method and device for fabricating polarization reversal structure
JP2002006353A (en) Polarization reversal crystal
JP2007310116A (en) Method of forming orientation film, method of manufacturing liquid crystal panel and method of manufacturing electronic equipment
Kwon et al. The ridge waveguide fabrication with periodically poled MgO-doped lithium niobate for green laser
JP2003307757A (en) Method for manufacturing domain inversion part
JP2004070207A (en) Method of manufacturing polarization reversal crystal
JP4792309B2 (en) Electro-optic element
JP2002277915A (en) Polarization inversion forming method and light wavelength converting element
JP2008158017A (en) Electrode for manufacturing polarization inversion structure, method for manufacturing the electrode, apparatus and method for manufacturing the polarization inversion structure
Kwon et al. Influence of annealing temperature on domain shape of periodically poled LiNbO3 for Ti: LN waveguides
JP2001330866A (en) Method for manufacturing optical wavelength conversion element
Kaul et al. Fabrication of periodically poled lithium niobate chips for optical parametric oscillators
JP2005148203A (en) Polarization inversion method by defect density control and optical wavelength conversion element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106