JP2008242030A - Manufacturing method of liquid crystal panel - Google Patents

Manufacturing method of liquid crystal panel Download PDF

Info

Publication number
JP2008242030A
JP2008242030A JP2007081774A JP2007081774A JP2008242030A JP 2008242030 A JP2008242030 A JP 2008242030A JP 2007081774 A JP2007081774 A JP 2007081774A JP 2007081774 A JP2007081774 A JP 2007081774A JP 2008242030 A JP2008242030 A JP 2008242030A
Authority
JP
Japan
Prior art keywords
substrates
liquid crystal
vapor deposition
substrate
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007081774A
Other languages
Japanese (ja)
Other versions
JP4912933B2 (en
Inventor
Haruki Amakawa
晴輝 天川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2007081774A priority Critical patent/JP4912933B2/en
Publication of JP2008242030A publication Critical patent/JP2008242030A/en
Application granted granted Critical
Publication of JP4912933B2 publication Critical patent/JP4912933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a liquid crystal panel with less variation in alignment direction when manufacturing the liquid crystal panel using an inorganic vapor-deposited film represented by an SiO obliquely vapor-deposited film as an alignment film. <P>SOLUTION: The manufacturing method includes: a vapor-deposition step of preparing a plurality of large-sized substrates 31a and 31b having a plurality of cell substrates and subjecting the plurality of large-sized substrates 31a and 31b to vapor deposition; a large-sized substrate division step of obtaining a plurality of divided substrates by dividing the large-sized substrates 31a and 31b along a vapor position center line by which a direction of projection of a vapor deposition beam for vapor deposition of the large-sized substrates into the large-sized substrates is parallel with end sides of the large-sized substrates, or a line parallel with it; and a sticking step of selecting two divided substrates disposed in positions in the same direction from a vapor deposition source 23 with respect to the vapor deposition center line, from among two different large-sized substrates and sticking the two divided substrates to each other as a pair of divided substrates so that their vapor-deposited surfaces face each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、無機蒸着膜を配向膜として有する液晶パネルの製造方法において、配向方向のバラツキの少ない液晶パネルの製造方法に関するものである。   The present invention relates to a method for manufacturing a liquid crystal panel having a variation in alignment direction in a method for manufacturing a liquid crystal panel having an inorganic vapor deposition film as an alignment film.

液晶の配向方法の一つとして、無機蒸着膜による配向法が古くから研究されてきた。特に近年、プロジェクタなどに代表されるような大光量を扱う液晶パネルにおいて、耐光性からの要請により、無機蒸着膜を利用した配向方法を利用したアプリケーションが増えている。また、高速応答性やメモリ性を有することを特徴とする強誘電性液晶の配向法においても、より安定したメモリ性を達成するためには無機蒸着膜による水平配向が有効であることが知られている。   As one of liquid crystal alignment methods, an alignment method using an inorganic vapor deposition film has been studied for a long time. In particular, in recent years, in liquid crystal panels that handle a large amount of light as typified by projectors and the like, an application using an alignment method using an inorganic vapor deposition film is increasing due to a demand from light resistance. In addition, in the alignment method of ferroelectric liquid crystals characterized by high-speed response and memory characteristics, it is known that horizontal alignment with an inorganic vapor deposition film is effective for achieving more stable memory performance. ing.

図2は一般的なSiOまたはSiO2による斜方蒸着法と蒸着基板を組み合わせたパネルについて示した図である。パネルには双安定性を示す強誘電性液晶を注入し、水平配向している。   FIG. 2 is a view showing a panel combining a general oblique deposition method using SiO or SiO2 and a deposition substrate. A ferroelectric liquid crystal exhibiting bistability is injected into the panel and is horizontally aligned.

図2の(c)で示すように、真空条件下において、蒸着源23(SiO等の無機酸化物)に対し、透明電極等必要な要素を含んだ基板を蒸着角25(a:80-87度)にセットして蒸着を行う。図2の(a)は、そのように蒸着された一対の基板(21a、21b)を互いに平行になるように組み合わせた液晶パネルの断面図である。一般的な液晶パネルの製造法と同じように図示しないスペーサーを介して、液晶パネルが構成される。図2の(b)はこの液晶パネルの平面図である。組み合わさった上下基板(21a、21b)において蒸着方向(26)が平行になるように各々を張り合わせる。このような液晶パネルに相系列がINACの強誘電性液晶を注入した場合、強誘電性液晶は図1(b)で示したように、層法線(27)が蒸着方向(26)に沿うように配向することが知られている。   As shown in FIG. 2 (c), a substrate including necessary elements such as a transparent electrode is deposited at a deposition angle 25 (a: 80-87) with respect to the deposition source 23 (inorganic oxide such as SiO) under vacuum conditions. Vapor deposition is performed. FIG. 2A is a cross-sectional view of a liquid crystal panel in which a pair of substrates (21a, 21b) thus deposited are combined so as to be parallel to each other. The liquid crystal panel is configured through a spacer (not shown) in the same manner as a general liquid crystal panel manufacturing method. FIG. 2B is a plan view of the liquid crystal panel. Each of the combined upper and lower substrates (21a, 21b) is bonded so that the vapor deposition direction (26) is parallel. When a ferroelectric liquid crystal having a phase series of IACC is injected into such a liquid crystal panel, the ferroelectric liquid crystal has a layer normal (27) along the deposition direction (26) as shown in FIG. 1 (b). It is known that the orientation is as follows.

強誘電性液晶の液晶分子(29)はコーン角θの円錐形表面を回るように動くが、セルギャップが薄い場合は、表面安定性強誘電性液晶(SSFLC)となり、図2の(b)に図示されるように、液晶分子(29)は電場無印加時において二つの安定状態(28a、28b)のいずれかに落ち着く(メモリ状態)。電場を印加した場合は、その電場の極性によって、いずれかの安定状態を選択することが可能となる(例えば特許文献1)。   The liquid crystal molecules (29) of the ferroelectric liquid crystal move around the conical surface having a cone angle θ, but when the cell gap is thin, the liquid crystal molecules become a surface stable ferroelectric liquid crystal (SSFLC), which is shown in FIG. As shown in the figure, the liquid crystal molecules (29) settle in one of two stable states (28a, 28b) when no electric field is applied (memory state). When an electric field is applied, any stable state can be selected depending on the polarity of the electric field (for example, Patent Document 1).

次に、一対の基板(21a、21b)の外側に互いの偏光軸が直交するように、一対の偏光板を配置する。図2(b)の正面図で示すように、一対の偏光板のどちらかの偏光軸は、液晶分子(29)の二つの安定状態(28a、28b)のいずれかに合わせ、液晶分子(29)の長軸と平行になるように配置する。図2の場合は安定状態1(28a)の位置に一方の偏光板の偏光軸(P)を合わせ、他方の偏光板の偏光軸(A)は偏光軸(P)に対して直交するように配置する。   Next, a pair of polarizing plates is arranged outside the pair of substrates (21a, 21b) so that the polarization axes thereof are orthogonal to each other. As shown in the front view of FIG. 2B, the polarization axis of one of the pair of polarizing plates is aligned with one of the two stable states (28a, 28b) of the liquid crystal molecule (29), and the liquid crystal molecule (29 ) To be parallel to the long axis. In the case of FIG. 2, the polarization axis (P) of one polarizing plate is aligned with the position of stable state 1 (28a), and the polarization axis (A) of the other polarizing plate is orthogonal to the polarization axis (P). Deploy.

このような配置で、強誘電性液晶の複屈折性によりディスプレイ機能が実現される。即ち、図2(b)の正面図において、ある特定の極性の電場を印加し、液晶分子を安定状態1(28a)にすることで光軸が偏光軸と一致し、光を遮断することができる。これは液晶ディスプレイの黒表示に対応する。一方、前記極性と逆の電場を印加すれば、液晶分子(29)は安定状態2(28b)の状態に移動し、光軸が偏光軸からずれ、光が漏れる。この状態はディスプレイの明状態に対応する。この場合透過率は下記式1のようになる。
式1: T=sin2(4q)sin2(pDnd/l)
(T:透過率、q:チルト角、Dn:液晶の屈折率の異方性、d:液晶層の厚さ、l:波長)
With such an arrangement, a display function is realized by the birefringence of the ferroelectric liquid crystal. That is, in the front view of FIG. 2B, by applying an electric field having a specific polarity and bringing the liquid crystal molecules into the stable state 1 (28a), the optical axis coincides with the polarization axis, and the light can be blocked. it can. This corresponds to the black display on the liquid crystal display. On the other hand, when an electric field opposite to the polarity is applied, the liquid crystal molecules (29) move to the stable state 2 (28b), the optical axis deviates from the polarization axis, and light leaks. This state corresponds to the bright state of the display. In this case, the transmittance is expressed by the following formula 1.
Formula 1: T = sin 2 (4q) sin 2 (pDnd / l)
(T: transmittance, q: tilt angle, Dn: anisotropy of refractive index of liquid crystal, d: thickness of liquid crystal layer, l: wavelength)

特開平5−281580号公報(第2頁、第2図)JP-A-5-281580 (2nd page, FIG. 2)

しかしながら、本発明者は、無機蒸着膜を配向膜として使用する液晶素子を生産する際に、蒸着時に基板の幅に由来する見込み角によって起きるコントラストのバラツキがあることを実験によって見出した。以下、図3と図4を用いて説明をする。   However, the present inventor has found through experimentation that when producing a liquid crystal element using an inorganic vapor deposition film as an alignment film, there is a variation in contrast caused by a prospective angle derived from the width of the substrate during vapor deposition. Hereinafter, description will be made with reference to FIGS. 3 and 4.

図3はこれまで一般的に行われた蒸着時の基板配置とそれにより構成された液晶セルについて示した図である。生産効率を上げるために、一般に大型基板はある程度の数の液晶セルをいっぺんに生産できるようなサイズになっている。図3は便宜上、一枚の大型基板31から、24個のセル基板がとれるような構成としているが、原理的には何枚取りでも同じである。蒸着中心線は蒸着源23から大型基板31対して蒸着される蒸着ビームの大型基板面内への投影方向が、大型基板の端辺と平行となる線である。この蒸着中心線の両側の位置にある2つのセル基板、図3(a)ではセル基板A1とセル基板A2、図3(b)ではセル基板B1とセル基板B2について拡大図示したのが図4である。   FIG. 3 is a diagram showing a substrate arrangement during vapor deposition generally performed so far and a liquid crystal cell constituted thereby. In order to increase production efficiency, large substrates are generally sized so that a certain number of liquid crystal cells can be produced together. For convenience, FIG. 3 shows a configuration in which 24 cell substrates can be taken from one large substrate 31, but in principle, any number of substrates can be obtained. The vapor deposition center line is a line in which the projection direction of the vapor deposition beam deposited on the large substrate 31 from the vapor deposition source 23 is parallel to the edge of the large substrate. FIG. 4 is an enlarged view of two cell substrates at positions on both sides of the deposition center line, FIG. 3A shows the cell substrate A1 and the cell substrate A2, and FIG. 3B shows the cell substrate B1 and the cell substrate B2. It is.

図4に図示したように、蒸着源23に対して、大型基板31はある幅を持っているために蒸着源に対しある見込み角Φが存在する。このために蒸着した大型基板の表面では場所によって、実質の蒸着方向は一方向ではなく、分布を持ってしまう。即ち、図4の中で蒸着源直上にある矢印Aと矢印Bの場所では、所期通りの基板縁に沿った蒸着方向になるが、それより離れるにつれ、次第にずれが大きくなり、縁部の矢印A−、矢印B−では基板の幅に対応して角度−Φ、縁部の矢印A+、矢印B+では角度+Φほど蒸着方向がずれてしまう。図3の(a)で蒸着した大型基板31のセル基板A1、セル基板A2と、図3の(b)で蒸着した大型基板31のセル基板B1とセル基板B2をそのまま蒸着された面が向き合うように重ね合わせると、図4の上部に示したようなパネルA1B2(32a)とパネルA2B1(32b)のように矢印が重なり、上下基板での蒸着方向が平行となり、上述の角度Φの分布がそのまま反映され、それにしたがって液晶を注入した後の液晶配向方向も同様な分布を持つことになる。   As shown in FIG. 4, since the large substrate 31 has a certain width with respect to the vapor deposition source 23, there is a certain prospective angle Φ with respect to the vapor deposition source. For this reason, on the surface of the large-sized board | substrate which vapor-deposited, the actual vapor deposition direction has distribution rather than one direction depending on a place. That is, in the positions of arrows A and B immediately above the deposition source in FIG. 4, the deposition direction is along the substrate edge as expected, but as it is further away, the deviation gradually increases, In the arrows A− and B−, the deposition direction is shifted by an angle −Φ corresponding to the width of the substrate, and by the angle + Φ in the arrows A + and B + at the edge. The cell substrates A1 and A2 of the large substrate 31 deposited in FIG. 3 (a) and the surfaces of the large substrate 31 deposited in FIG. 3 (b) on which the cell substrate B1 and the cell substrate B2 are directly deposited face each other. As shown in the upper part of FIG. 4, the arrows overlap like the panel A1B2 (32a) and the panel A2B1 (32b) as shown in the upper part of FIG. Reflected as it is, the liquid crystal alignment direction after injecting the liquid crystal accordingly has a similar distribution.

このように得られた一対の基板を個々の液晶セルに分断し、基板外側に偏光板を付け、ディスプレイにした場合、上述の配向分布は直接液晶のコントラスト分布につながり、表示品位にバラツキをもたらす。即ち、図4において、矢印A、Bを最適な方向として偏光板をつけた場合、矢印A−、B−では角度−Φ分、矢印A+、B+では角度+Φ分のずれが生じる。強誘電性液晶を用いた場合には、液晶分子の層方線方向が矢印A、Bと重なるように、偏光板の偏光軸を強誘電性液晶のコーン角θ分だけ矢印A、Bよりずらして配置する。そうすると、縁部の矢印A、Bの辺りでは、光のもれない黒状態が実現できるが、矢印A−、B−および矢印A+、B+の位置では、上記式1により、黒状態でも光がもれ、同一パネル面内の表示むらとなり、表示品位を落とすことになる。   When the pair of substrates thus obtained is divided into individual liquid crystal cells and a polarizing plate is attached to the outside of the substrate to form a display, the above-described orientation distribution directly leads to the contrast distribution of the liquid crystal, resulting in variations in display quality. . That is, in FIG. 4, when the polarizing plates are attached with the arrows A and B as the optimum directions, the arrows A− and B− cause a deviation of the angle −Φ, and the arrows A + and B + cause a deviation of the angle + Φ. When a ferroelectric liquid crystal is used, the polarization axis of the polarizing plate is shifted from the arrows A and B by the cone angle θ of the ferroelectric liquid crystal so that the layer direction of the liquid crystal molecules overlaps the arrows A and B. Arrange. Then, a black state where light does not leak can be realized around the arrows A and B at the edge, but at the positions of the arrows A− and B− and the arrows A + and B +, the light is emitted even in the black state according to the above equation 1. Leakage and display unevenness within the same panel surface, resulting in poor display quality.

図4において、個々のセル基板サイズが小さく、それに応じて取り個数をより多くした場合は位置AB、A−B+、A+B−がそれぞれ別々のパネルに属することになり、上記配向方向のずれはパネル間ずれとして現れることになる。   In FIG. 4, when the size of each cell substrate is small and the number is increased accordingly, the positions AB, A−B +, A + B− belong to different panels, and the deviation in the alignment direction is caused. Will appear as misalignment between panels.

この問題に対して、大型基板サイズを小さくする、または、大型基板と蒸着源の距離を離すことで角度Φを小さくする方法も考えられる。しかし、生産効率を考えた場合、大型基板は大きいほど有利で、真空蒸着機のサイズも小さいほど真空引きに時間がかからず、生産性の面で有利になる。   In order to solve this problem, a method of reducing the angle Φ by reducing the size of the large substrate or increasing the distance between the large substrate and the vapor deposition source can be considered. However, when considering production efficiency, the larger the substrate, the more advantageous. The smaller the size of the vacuum evaporation machine, the less time is required for evacuation, which is advantageous in terms of productivity.

また、個々のパネルサイズが小さく、取り個数が多い場合は個々のパネルでの実際の配向方向に応じて偏光板を張ることも考えられるが、配向方向が少しずつずれるため、パネルに対する方向合わせや偏光板のトリミングに余計な手間がかかり、生産効率を落とすことになる。   In addition, if the individual panel size is small and the number of pieces to be taken is large, it is conceivable that a polarizing plate is stretched according to the actual orientation direction of each panel. Trimming the polarizing plate takes extra time and reduces production efficiency.

上記課題を解決するために、本発明の製造方法は、下記記載の方法を採用する。複数のセル基板を有する大型基板を複数枚用意し、複数枚の大型基板を蒸着する蒸着工程と、大型基板に対して蒸着される蒸着ビームの大型基板面内への投影方向が、大型基板の端辺と平行となる線である蒸着中心線またはその平行線に沿って、大型基板を縦方向に分断し、複数の分断基板を得る大型基板分断工程と、異なる2枚の大型基板から、蒸着中心線に対して蒸着源からの方向が同じ位置に配置されていた分断基板をそれぞれ1枚ずつ2枚選び、2枚の分断基板を蒸着面が対向するように一対の分断基板として張り合わせる張り合わせ工程とを有することを特徴とする。   In order to solve the above problems, the manufacturing method of the present invention employs the following method. A plurality of large substrates having a plurality of cell substrates are prepared, and a deposition process for depositing a plurality of large substrates and a projection direction of a vapor deposition beam deposited on the large substrate on the large substrate surface are Vapor deposition from two different large substrates, and a large substrate cutting process that vertically divides a large substrate along the vapor deposition center line, which is a line parallel to the edge, or the parallel line, and a plurality of divided substrates. Select two separated substrates that are arranged in the same direction from the evaporation source with respect to the center line, one by one, and bond the two separated substrates together as a pair of divided substrates so that the evaporation surfaces face each other And a process.

また、張り合わせ工程の後に、複数の一対のセル基板に分断するセル基板分断工程を有することを特徴とする。張り合わせ工程の後に、液晶を注入することを特徴とする。また、この液晶は強誘電性液晶であることを特徴とする。また、一対のセル基板の外側に、互いの偏光軸が直交するように配置された一対の偏光板を配置し、一対のセル基板のうち、一方のセル基板のほぼ中央の位置の蒸着方向と、の前記セル基板のほぼ中央位置の蒸着方向とが交差する角の中央方向に、強誘電性液晶の層法線方向があるとし、層法線方向を基準に一対の偏光板の偏光軸方向を設定することを特徴とするを特徴とする。また、蒸着工程において、形成される蒸着膜がSiOまたはSiO2であることを特徴とする。   In addition, a cell substrate dividing step of dividing the substrate into a plurality of pairs of cell substrates is provided after the bonding step. A liquid crystal is injected after the bonding step. The liquid crystal is a ferroelectric liquid crystal. In addition, a pair of polarizing plates arranged so that their polarization axes are orthogonal to each other are disposed outside the pair of cell substrates, and the deposition direction at a position substantially at the center of one of the cell substrates. The direction of the axis of polarization of the pair of polarizing plates is based on the normal direction of the ferroelectric liquid crystal in the central direction of the angle at which the vapor deposition direction at the substantially central position of the cell substrate intersects. It is characterized by setting. In the vapor deposition step, the vapor deposition film to be formed is SiO or SiO2.

上記の如く本発明によれば、対向面に無機蒸着膜を配向膜として有する一対の基板間に、液晶を挟持してなる液晶パネルの製造において、該一対の基板は、蒸着機内における蒸着源に対する相対位置が同一のものを上下基板として選択し、組み合わせて、液晶パネルを構成することで、基板内における配向方向について、バラツキが少ない液晶パネルを製造することが出来る。   As described above, according to the present invention, in the manufacture of a liquid crystal panel in which a liquid crystal is sandwiched between a pair of substrates having an inorganic vapor deposition film as an alignment film on the opposite surface, the pair of substrates is against a vapor deposition source in the vapor deposition machine. By selecting and combining the same relative positions as the upper and lower substrates to form a liquid crystal panel, a liquid crystal panel with little variation in the alignment direction in the substrate can be manufactured.

以下、図1、図2、図3の各図を用いて本発明の実施の形態を詳述する。本発明は、セル基板が蒸着機内における蒸着源に対する相対位置が同一のものを上下基板として選択し、組み合わせて、液晶パネルを構成する。例えば、大型基板から二個取りのパネルを生産する場合、図1で示すように、大型基板に対して蒸着される蒸着ビームの大型基板面内への投影方向が、大型基板の端辺と平行となる線、つまり図1の蒸着中心線に沿って、蒸着源23に対し、大型基板31aの左部分のセル基板A1と、右部分のセル基板A2とを、同じく大型基板31bの左部分のセル基板B1と、右部分のセル基板B2とを分断し、蒸着中心線からの方向が同じ位置に配置されていた分断基板同士、つまり左部分同士(図中セル基板A1、B1)と右部分同士(図中セル基板A2、B2)で張り合わせて液晶セルを得る方法である。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIG. 1, FIG. 2, and FIG. In the present invention, a cell substrate having the same relative position with respect to a vapor deposition source in the vapor deposition machine is selected as the upper and lower substrates and combined to constitute a liquid crystal panel. For example, when producing a two-piece panel from a large substrate, as shown in FIG. 1, the projection direction of the vapor deposition beam deposited on the large substrate onto the large substrate surface is parallel to the edge of the large substrate. 1, that is, along the vapor deposition center line of FIG. 1, with respect to the vapor deposition source 23, the cell substrate A1 on the left side of the large substrate 31a and the cell substrate A2 on the right side of the large substrate 31b The cell substrate B1 and the cell substrate B2 in the right part are divided, and the divided substrates arranged in the same position from the vapor deposition center line, that is, the left parts (cell substrates A1 and B1 in the figure) and the right part In this method, the liquid crystal cells are obtained by bonding them together (cell substrates A2 and B2 in the figure).

図1で示したように、大型基板31aの左部分であるセル基板A1と大型基板31bの左部分であるセル基板B1、大型基板31aの右部分であるセル基板A2と大型基板31bの右部分であるセル基板B2を組み合わせ、パネルA1B1(41a)と、パネルA2B2(41b)を製造する。図1の上部の図はセル基板A1とセル基板A2のセル基板とを下にした場合である。   As shown in FIG. 1, the cell substrate A1 that is the left portion of the large substrate 31a and the cell substrate B1 that is the left portion of the large substrate 31b, and the cell substrate A2 that is the right portion of the large substrate 31a and the right portion of the large substrate 31b. A panel A1B1 (41a) and a panel A2B2 (41b) are manufactured by combining the cell substrates B2. The upper part of FIG. 1 shows the case where the cell substrate A1 and the cell substrate of the cell substrate A2 are turned down.

ここで、分断した分断基板は1個のセル基板、図1では個々のセル基板A1、セル基板
A2としたが、分断基板は複数のセル基板を含むように分断してもよい。例えば、図3(a)に図示するように、蒸着中心線に平行に、縦方向にセル基板A3を含む列、セル基板A1を含む列、セル基板A2を含む列、・・・セル基板A4を含む列、というように、列毎に分断し、そして同じく図3の(b)で分断した蒸着中心線からの方向が同じ位置に配置されていた分断基板列同士を張り合わせても良い。つまり、セル基板A3を含む列の分断基板とセル基板B3を含む列の分断基板とを向き合わせて、一対のセル基板(パネル)を複数有する一対の分断基板を得ても良い。
Here, although the divided substrate is a single cell substrate, and in FIG. 1, each cell substrate A1 and cell substrate A2 are divided, the divided substrate may be divided so as to include a plurality of cell substrates. For example, as shown in FIG. 3A, parallel to the deposition center line, the column including the cell substrate A3 in the vertical direction, the column including the cell substrate A1, the column including the cell substrate A2,... As shown in FIG. 3, the divided substrate rows may be bonded to each other, and divided from each other and arranged in the same position from the vapor deposition center line divided in FIG. That is, a pair of divided substrates having a plurality of pairs of cell substrates (panels) may be obtained by facing the divided substrates in a row including the cell substrates A3 and the divided substrates in a row including the cell substrates B3.

このようにできたパネル、例えば大型基板31a、31bの左側で組み合わせてできたパネルA1B1(41a)の蒸着方向の面内分布に関して、次のような特徴を有する。(1)上下基板での蒸着方向がクロスしている;(2)紙面に向かって右にねじれになってクロスしている;(3)クロスしている上下蒸着方向の平均方向、即ち液晶の配向方向は左端の矢印A,−Bでは角度−Φ/2(図中C−)、右端の矢印A,B−では角度+Φ/2となり(図中C+)、そしてパネルの中央位置では、矢印d−e−は0度(図中C)となっている。   The in-plane distribution in the vapor deposition direction of the panel thus formed, for example, the panel A1B1 (41a) formed by combining on the left side of the large substrates 31a and 31b has the following characteristics. (1) Vapor deposition directions on the upper and lower substrates are crossed; (2) Crossed by twisting to the right toward the paper surface; (3) Average direction of crossing upper and lower vapor deposition directions, ie, liquid crystal The orientation direction is the angle -Φ / 2 (C- in the figure) at the left arrows A and -B, the angle + Φ / 2 (C + in the figure) at the right arrows A and B-, and the arrow at the center position of the panel De-e- is 0 degree (C in the figure).

また、大型基板31a、31bの右側で組み合わせてできたパネルA2B2(41b)は上記のパネルA1B1(41a)に比べ、クロスが紙面に向かって左ねじれになっている点以外は同じ特徴を有する。   The panel A2B2 (41b) formed by combining the large substrates 31a and 31b on the right side has the same characteristics as the panel A1B1 (41a) except that the cloth is twisted leftward toward the paper surface.

このように、本発明の方法に従って大型基板を左右二等分した場合、配向方向の分布が図4に示した従来方法に比べ、約半分になる。また、生産上左右方向に更なる分割ができる場合は本発明法に従って、蒸着源に対して同一相対位置にある分断基板を組み合わせれば、さらに配向方向の分布を減らすことが可能になる。   As described above, when the large substrate is divided into two equal parts according to the method of the present invention, the distribution in the orientation direction is about half that of the conventional method shown in FIG. Further, when further division can be performed in the left-right direction in production, the distribution in the orientation direction can be further reduced by combining divided substrates at the same relative position with respect to the vapor deposition source according to the method of the present invention.

一方、本発明によって、上下基板での配向方向が必ずクロスし、そのずれ角が大型基板の両端で最大角度Φとなる。このようなずれが液晶の配向にどのような影響を与えるかを検討した結果、一般に蒸着時の見込み角である十数度の範囲では影響が無いことを確認した。その原因は強誘電性液晶の層構造に由来すると考えられる。即ち、一般に強誘電性液晶のようなスメクチック系の液晶には層構造があり、本発明のパネルのように上下基板の配向方向にある程度のずれがあっても、スメクチック層構造はねじれず、全体として一様に上下基板配向の中間方向に向く。また、一定のプレチルトを保つという蒸着基板界面からの要請により、強誘電性液晶の分子がコーン上でも一定の位置にとどまることと相まって、上述のように、上下基板の配向方向にずれがあっても、強誘電性液晶の配向に影響を与えないという結果につながる。   On the other hand, according to the present invention, the orientation directions on the upper and lower substrates always cross, and the deviation angle becomes the maximum angle Φ at both ends of the large substrate. As a result of examining how such a shift affects the alignment of the liquid crystal, it was confirmed that there is generally no influence in the range of tens of degrees, which is an expected angle at the time of vapor deposition. The cause is considered to be derived from the layer structure of the ferroelectric liquid crystal. That is, in general, a smectic liquid crystal such as a ferroelectric liquid crystal has a layer structure, and the smectic layer structure does not twist even if there is a certain amount of deviation in the alignment direction of the upper and lower substrates as in the panel of the present invention. It is uniformly oriented in the middle direction of the upper and lower substrate orientations. In addition, due to the demand from the vapor deposition substrate interface to maintain a certain pretilt, there is a shift in the alignment direction of the upper and lower substrates, as described above, coupled with the fact that the ferroelectric liquid crystal molecules remain at a certain position on the cone. This also results in no influence on the alignment of the ferroelectric liquid crystal.

以下、実施例により本発明の特徴および効果を具体的に示すが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the features and effects of the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.

図3の(a)と(b)に図示するようなITO電極が設けられた150mm×100mmサイズのガラス基板二枚(大型基板31)を真空蒸着機にセットし、加熱蒸着法により膜厚600ÅのSiO斜方蒸着膜を作製した。蒸着源と基板下の縁との距離は1mで、蒸着角βは85度であった。蒸着時の真空度および蒸着速度はそれぞれ、1x10−5torr、5Å/秒であった。 Two glass substrates (large substrate 31) having a size of 150 mm × 100 mm provided with ITO electrodes as shown in FIGS. 3A and 3B are set in a vacuum vapor deposition machine, and a film thickness of 600 mm is formed by a heat vapor deposition method. A SiO obliquely deposited film was prepared. The distance between the deposition source and the lower edge of the substrate was 1 m, and the deposition angle β was 85 degrees. The degree of vacuum during deposition and the deposition rate were 1 × 10 −5 torr and 5 liters / second, respectively.

このSiO斜方蒸着基板を、図3に示すように、両大型基板31を蒸着中心線と平行な線に沿って、列毎に分断した。図1に、大型基板31のうち、セル基板A1、A2の部分、セル基板B1、B2の部分のみを拡大して図示する。図1に図示するように左基板(セル基板A1とセル基板B1)同士、右基板(セル基板A2とセル基板B2)同士でそれぞ
れ組み合わせ、1.5mmのボールスペーサを挟んで貼り合わせ、一対の分断基板を得る。
As shown in FIG. 3, the large-size substrates 31 were divided into columns along the line parallel to the deposition center line. In FIG. 1, only the portions of the cell substrates A1 and A2 and the portions of the cell substrates B1 and B2 of the large substrate 31 are illustrated in an enlarged manner. As shown in FIG. 1, the left substrates (cell substrate A1 and cell substrate B1) are combined with each other and the right substrates (cell substrate A2 and cell substrate B2) are combined with each other with a 1.5 mm ball spacer interposed therebetween. A cut substrate is obtained.

その後、この一対の分断基板を12個の単個のパネルに切り出すセル基板分断工程を行い、AZエレクトロニック社製の強誘電性液晶組成物FELIX-015/100を100℃の等方相で注入し、2℃/分の速さで室温まで降温して、均一な水平配向を得た。本実施例では、個々のパネルに分断してから、注入を行ったが、個々のパネルに分断せず、複数のパネルを備えた一対の分断基板の状態で、同時に複数のパネルに対して注入を行う短冊注入を行っても良い。   Thereafter, a cell substrate cutting step is performed in which this pair of divided substrates is cut into 12 single panels, and a ferroelectric liquid crystal composition FELIX-015 / 100 manufactured by AZ Electronic Co., Ltd. is injected in an isotropic phase of 100 ° C. The temperature was lowered to room temperature at a rate of 2 ° C./min to obtain a uniform horizontal orientation. In this example, the injection was performed after dividing into individual panels, but it was not divided into individual panels, and was injected into a plurality of panels simultaneously in a state of a pair of divided substrates having a plurality of panels. A strip injection may be performed.

個々のパネルに対し、図2(b)に示したように基板の縁から液晶のチルト角q(21.4度)分ずれるようにセル基板の両側にクロスニコルになる二枚の偏光版を貼り、各パネルを完成した。   To each panel, two polarizing plates that are crossed Nicols are pasted on both sides of the cell substrate so as to be shifted from the edge of the substrate by the tilt angle q (21.4 degrees) of the liquid crystal as shown in FIG. Each panel was completed.

このようにして得られた各パネルA1B1、パネルA2B2、パネルA3B3及びパネルA4B4を用いた各々液晶デバイスに、10V/100Hzの矩形波を印加して、黒のメモリ状態にして、黒透過率を測定した。測定の際、無照明状態を0%、二枚の偏向板がパラニコルにした場合の透過率を100%とした。蒸着中心線に近いパネルA1B1を用いた液晶デバイスとパネルA2B2を用いた液晶デバイスの透過率は約0.4%であった。一方蒸着中心線から一番離れたセル基板A3,A4,B3,B4で製造したパネルA3B3とパネルA4B4の透過率は約0.8%でやや光漏れがあるが、いずれも十分なコントラストが得られる黒状態であった。   A black wave is measured by applying a 10 V / 100 Hz rectangular wave to each of the liquid crystal devices using the panels A1B1, A2B2, A3B3, and A4B4 thus obtained, and measuring the black transmittance. did. At the time of measurement, the non-illuminated state was 0%, and the transmittance when the two deflectors were paranicol was 100%. The transmittance of the liquid crystal device using the panel A1B1 close to the deposition center line and the liquid crystal device using the panel A2B2 was about 0.4%. On the other hand, the transmittance of panel A3B3 and panel A4B4 manufactured with cell substrates A3, A4, B3, and B4 that are farthest from the deposition center line is about 0.8%, and there is a slight light leakage, but sufficient contrast is obtained in both cases. It was a black state.

本実施例では蒸着膜にはSiO斜方蒸着膜を用いたが、SiO2斜方蒸着膜でも良好な結果が得られた。   In this embodiment, a SiO oblique deposition film was used as the deposition film, but good results were obtained even with the SiO 2 oblique deposition film.

比較例Comparative example

図4で図示したパネルA1B2(32a)とパネルA2B1(32b)とについて、実施例と同様な条件で黒透過率を測定した。パネルA1B2(32a)とパネルA2B1(32b)は蒸着中心線の左と右、右と左と違う位置の組み合わせで製造したものである。   With respect to the panel A1B2 (32a) and the panel A2B1 (32b) illustrated in FIG. 4, the black transmittance was measured under the same conditions as in the example. The panel A1B2 (32a) and the panel A2B1 (32b) are manufactured by a combination of positions different from the left and right of the deposition center line and the right and left.

蒸着中心線に近いパネルA1B2とパネルA2B1の透過率は約0.3%であった。一方、蒸着中心線から一番離れたパネルA3B4とA4B3の透過率は約2.4%で、実施例に比べ、大幅な光漏れが発生していた。液晶デバイスとしてのコントラストの低下が避けられない。   The transmittance of panel A1B2 and panel A2B1 close to the deposition center line was about 0.3%. On the other hand, the transmittances of the panels A3B4 and A4B3 farthest from the deposition center line were about 2.4%, and significant light leakage occurred compared to the example. A decrease in contrast as a liquid crystal device is inevitable.

本発明の製造法に基づくパネル組み合わせ図である。It is a panel combination figure based on the manufacturing method of this invention. SiOまたはSiO2斜方蒸着法と強誘電性液晶パネルの模式図である。It is a schematic diagram of a SiO or SiO2 oblique deposition method and a ferroelectric liquid crystal panel. 複数のセル基板を備えた大型基板と蒸着源との位置関係を示した図である。It is the figure which showed the positional relationship of the large sized board | substrate provided with the several cell substrate, and a vapor deposition source. 従来の製造法に基づくパネル組み合わせ図である。It is a panel combination figure based on the conventional manufacturing method.

符号の説明Explanation of symbols

21a、21b 基板
22 液晶層
23 蒸着源
24 蒸着ビーム
25 蒸着角
26 蒸着方向
27 層法線方向
28a、28b 安定状態
29 液晶分子
31 大型基板
32a パネルA1B2
32b パネルA2B1
41a パネルA1B1
41b パネルA2B2
21a, 21b Substrate 22 Liquid crystal layer 23 Deposition source 24 Deposition beam 25 Deposition angle 26 Deposition direction 27 Layer normal direction 28a, 28b Stable state 29 Liquid crystal molecule 31 Large substrate 32a Panel A1B2
32b Panel A2B1
41a Panel A1B1
41b Panel A2B2

Claims (6)

複数のセル基板を有する大型基板を複数枚用意し、前記複数枚の大型基板を蒸着する蒸着工程と、
前記大型基板に対して蒸着される蒸着ビームの前記大型基板面内への投影方向が、前記大型基板の端辺と平行となる線である蒸着中心線またはその平行線に沿って、前記大型基板を縦方向に分断し、複数の分断基板を得る大型基板分断工程と、
異なる2枚の前記大型基板から、前記蒸着中心線に対して前記蒸着源からの方向が同じ位置に配置されていた前記分断基板をそれぞれ1枚ずつ2枚選び、前記2枚の分断基板を蒸着面が対向するように一対の分断基板として張り合わせる張り合わせ工程とを有することを特徴とする液晶パネルの製造方法。
A plurality of large substrates having a plurality of cell substrates are prepared, and a deposition process for depositing the plurality of large substrates,
The projection direction of the vapor deposition beam vapor-deposited on the large substrate is a vapor deposition center line which is a line parallel to the edge of the large substrate or the parallel line, and the large substrate. A large-sized substrate cutting step to obtain a plurality of divided substrates,
From the two different large substrates, two of the divided substrates that are arranged in the same position from the vapor deposition source with respect to the vapor deposition center line are selected one by one, and the two divided substrates are vapor deposited. A method of manufacturing a liquid crystal panel, comprising: a step of bonding as a pair of divided substrates so that the surfaces face each other.
前記張り合わせ工程の後に、複数の一対のセル基板に分断するセル基板分断工程を有することを特徴とする請求項1に記載の液晶パネルの製造方法。   The method for manufacturing a liquid crystal panel according to claim 1, further comprising a cell substrate dividing step of dividing into a plurality of pairs of cell substrates after the bonding step. 前記張り合わせ工程の後に、液晶を注入することを特徴とする請求項1に記載の液晶パネルの製造方法。   The liquid crystal panel manufacturing method according to claim 1, wherein liquid crystal is injected after the bonding step. 前記液晶は強誘電性液晶であることを特徴とする請求項3に記載の液晶パネルの製造方法。   The method of manufacturing a liquid crystal panel according to claim 3, wherein the liquid crystal is a ferroelectric liquid crystal. 一対の前記セル基板の外側に、互いの偏光軸が直交するように配置された一対の偏光板を配置し、一対の前記セル基板のうち、一方の前記セル基板のほぼ中央の位置の蒸着方向と、他方の前記セル基板のほぼ中央位置の蒸着方向とが交差する角の中央方向に、前記強誘電性液晶の層法線方向があるとし、該層法線方向を基準に前記一対の偏光板の偏光軸方向を設定することを特徴とする請求項4に記載の液晶パネルの製造方法。   A pair of polarizing plates arranged so that their polarization axes are orthogonal to each other are disposed outside the pair of cell substrates, and the vapor deposition direction at a substantially central position of one of the cell substrates of the pair of cell substrates. And a layer normal direction of the ferroelectric liquid crystal in the central direction of the angle at which the vapor deposition direction at the substantially central position of the other cell substrate intersects, and the pair of polarized light with reference to the layer normal direction The method of manufacturing a liquid crystal panel according to claim 4, wherein the direction of the polarization axis of the plate is set. 前記蒸着工程において、形成される蒸着膜がSiOまたはSiO2であることを特徴とする請求項1に記載の液晶パネルの製造方法。 2. The method of manufacturing a liquid crystal panel according to claim 1, wherein the vapor deposition film formed in the vapor deposition step is SiO or SiO2.
JP2007081774A 2007-03-27 2007-03-27 Manufacturing method of liquid crystal panel Active JP4912933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081774A JP4912933B2 (en) 2007-03-27 2007-03-27 Manufacturing method of liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081774A JP4912933B2 (en) 2007-03-27 2007-03-27 Manufacturing method of liquid crystal panel

Publications (2)

Publication Number Publication Date
JP2008242030A true JP2008242030A (en) 2008-10-09
JP4912933B2 JP4912933B2 (en) 2012-04-11

Family

ID=39913484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081774A Active JP4912933B2 (en) 2007-03-27 2007-03-27 Manufacturing method of liquid crystal panel

Country Status (1)

Country Link
JP (1) JP4912933B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080281A (en) * 2007-09-26 2009-04-16 Citizen Holdings Co Ltd Method for manufacturing liquid crystal element
CN102213868A (en) * 2010-04-02 2011-10-12 精工爱普生株式会社 Method of manufacturing liquid crystal device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281580A (en) * 1980-01-08 1993-10-29 Noel A Clark Gray scale display device
JPH09152612A (en) * 1995-09-29 1997-06-10 Sony Corp Liquid crystal element and its manufacture
JPH1138376A (en) * 1997-07-23 1999-02-12 Matsushita Electric Ind Co Ltd Liquid crystal panel and its production
JPH11167130A (en) * 1997-12-02 1999-06-22 Citizen Watch Co Ltd Liquid crystal display device
JP2002255581A (en) * 2001-03-02 2002-09-11 Seiko Epson Corp Method and device for splitting substrate, and method for manufacturing liquid crystal panel
JP2002303842A (en) * 2001-04-04 2002-10-18 Seiko Epson Corp Liquid crystal device, and manufacturing method therefor, and electronic equipment
JP2005221806A (en) * 2004-02-06 2005-08-18 Fuji Photo Film Co Ltd Image recording apparatus, and method for manufacturing board
JP2006265599A (en) * 2005-03-23 2006-10-05 Citizen Miyota Co Ltd Oblique vapor deposition tool
JP2007047252A (en) * 2005-08-08 2007-02-22 Seiko Epson Corp Liquid crystal device, manufacturing method for liquid crystal device, and projection type display device
JP2007225645A (en) * 2006-02-21 2007-09-06 Epson Imaging Devices Corp Method for manufacturing electrooptical panel
JP2008056952A (en) * 2006-08-29 2008-03-13 Canon Inc Apparatus and method for oblique vapor deposition, and manufacturing method of liquid crystal apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281580A (en) * 1980-01-08 1993-10-29 Noel A Clark Gray scale display device
JPH09152612A (en) * 1995-09-29 1997-06-10 Sony Corp Liquid crystal element and its manufacture
JPH1138376A (en) * 1997-07-23 1999-02-12 Matsushita Electric Ind Co Ltd Liquid crystal panel and its production
JPH11167130A (en) * 1997-12-02 1999-06-22 Citizen Watch Co Ltd Liquid crystal display device
JP2002255581A (en) * 2001-03-02 2002-09-11 Seiko Epson Corp Method and device for splitting substrate, and method for manufacturing liquid crystal panel
JP2002303842A (en) * 2001-04-04 2002-10-18 Seiko Epson Corp Liquid crystal device, and manufacturing method therefor, and electronic equipment
JP2005221806A (en) * 2004-02-06 2005-08-18 Fuji Photo Film Co Ltd Image recording apparatus, and method for manufacturing board
JP2006265599A (en) * 2005-03-23 2006-10-05 Citizen Miyota Co Ltd Oblique vapor deposition tool
JP2007047252A (en) * 2005-08-08 2007-02-22 Seiko Epson Corp Liquid crystal device, manufacturing method for liquid crystal device, and projection type display device
JP2007225645A (en) * 2006-02-21 2007-09-06 Epson Imaging Devices Corp Method for manufacturing electrooptical panel
JP2008056952A (en) * 2006-08-29 2008-03-13 Canon Inc Apparatus and method for oblique vapor deposition, and manufacturing method of liquid crystal apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080281A (en) * 2007-09-26 2009-04-16 Citizen Holdings Co Ltd Method for manufacturing liquid crystal element
CN102213868A (en) * 2010-04-02 2011-10-12 精工爱普生株式会社 Method of manufacturing liquid crystal device
JP2011215526A (en) * 2010-04-02 2011-10-27 Seiko Epson Corp Method for manufacturing liquid crystal device

Also Published As

Publication number Publication date
JP4912933B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
US11112657B2 (en) Liquid crystal display device
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
WO2008062682A1 (en) Liquid crystal display panel and liquid crystal display panel manufacturing method
JP2008242031A (en) Liquid crystal device and manufacturing method thereof
CN102971664B (en) Liquid crystal indicator
JP4912933B2 (en) Manufacturing method of liquid crystal panel
WO2013100088A1 (en) Liquid crystal display device
KR100724957B1 (en) Fringe-field switching liquid crystal display
JP4629575B2 (en) Liquid crystal display element
WO2013166807A1 (en) Blue-phase liquid crystal panel and display device
JP2004045784A (en) Liquid crystal panel and its manufacturing method
US8659731B2 (en) Liquid crystal display element
KR101790489B1 (en) Method for manufacturing Liquid Crystal Display Device
US9007548B2 (en) Wide view angle liquid crystal display device operating in normally white mode
JP4964077B2 (en) Manufacturing method of liquid crystal element
JP4846401B2 (en) Liquid crystal display element
US9019457B2 (en) Liquid crystal display element
JPS5933428A (en) Liquid crystal display element
JP2010128094A (en) Liquid crystal display element and method of manufacturing the same
US20130321748A1 (en) PSVA Liquid Crystal Display Panel, Liquid Crystal Display Device and Liquid Crystal Display Device
KR20060089402A (en) Liquid crystal display
JP5328246B2 (en) Liquid crystal device and manufacturing method thereof
US7679704B2 (en) Method of fabricating an in-plane switching mode liquid crystal display comprising rubbing and applying a beam to set pre-tilt angles
JPH06294961A (en) Liquid crystal display element and its production
JP2000075308A (en) Liquid crystal display device and preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4912933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250