JP2008241535A - Laser monitoring device - Google Patents

Laser monitoring device Download PDF

Info

Publication number
JP2008241535A
JP2008241535A JP2007084096A JP2007084096A JP2008241535A JP 2008241535 A JP2008241535 A JP 2008241535A JP 2007084096 A JP2007084096 A JP 2007084096A JP 2007084096 A JP2007084096 A JP 2007084096A JP 2008241535 A JP2008241535 A JP 2008241535A
Authority
JP
Japan
Prior art keywords
monitoring target
monitoring
pulse laser
laser light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007084096A
Other languages
Japanese (ja)
Other versions
JP4993087B2 (en
Inventor
Yuuki Hiraiwa
勇樹 平岩
Taketoshi Takano
武寿 高野
Makoto Yamaguchi
真 山口
Tsutomu Terauchi
強 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007084096A priority Critical patent/JP4993087B2/en
Publication of JP2008241535A publication Critical patent/JP2008241535A/en
Application granted granted Critical
Publication of JP4993087B2 publication Critical patent/JP4993087B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser monitoring device for simplifying a constitution and stably maintaining a required monitoring performance for a long time in response to a change in a condition of a monitored area. <P>SOLUTION: The laser monitoring device irradiates a pulse laser light over the monitored area for a predetermined period, as it scans the pulse laser light, receives a reflection light as the pulse laser light reflected from the to-be-monitored area, in synchronization with the scan, and monitors the existence of an object in the monitored area. The laser monitoring apparatus is provided with an output period adjustment means for variably setting an output period T of the pulse laser light, in response to the object detecting condition of the monitored area. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パルスレーザ光を走査して監視対象領域における物体の有無を監視するレーザ監視装置に関する。   The present invention relates to a laser monitoring apparatus that scans pulse laser light to monitor the presence or absence of an object in a monitoring target region.

踏切内における障害物の有無を検出する監視装置として、パルスレーザ光を用いたレーザ監視装置が知られている(例えば特許文献1を参照)。この種のレーザ監視装置は、監視対象領域を見渡し得る所定高さの監視位置から上記監視対象領域の全域に亘ってパルスレーザ光を2次元走査しながら照射し、この走査に同期して上記パルスレーザ光の反射光を受光することで、その走査位置毎に障害物が存在するか否かを検出するものであり、レーザレーダとも称される。   As a monitoring device that detects the presence or absence of an obstacle in a railroad crossing, a laser monitoring device using a pulsed laser beam is known (see, for example, Patent Document 1). This type of laser monitoring apparatus irradiates a pulsed laser beam in a two-dimensional scan from the monitoring position having a predetermined height overlooking the monitoring target area over the entire area of the monitoring target area, and synchronizes with the pulse. By receiving the reflected light of the laser beam, it is detected whether there is an obstacle for each scanning position, and is also called a laser radar.

尚、この種のレーザ監視装置(レーザレーダ)において、その計測の安定性を確保するべく、温度に応じてレーザ光の出力強度を調整したり、また外来ノイズの影響を除去してその測定可能距離を確保するべく、パルスレーザ光の出力停止期間における受光信号に応じて受光アンプのゲインを最適化調整することが提唱されている。(例えば特許文献2,3を参照)。
特開2006−7818号公報 特開平9−318747号公報 特開平9−318749号公報
In this kind of laser monitoring device (laser radar), in order to ensure the stability of the measurement, the output intensity of the laser beam can be adjusted according to the temperature, or the influence of external noise can be removed and measured. In order to ensure the distance, it has been proposed to optimize and adjust the gain of the light receiving amplifier in accordance with the light receiving signal during the output stop period of the pulse laser beam. (See, for example, Patent Documents 2 and 3).
JP 2006-7818 A JP 9-318747 A Japanese Patent Laid-Open No. 9-318749

ところでレーザ監視装置においては、所定の監視対象領域における物体の有無を確実に検出し得る性能を備えることは勿論のことではあるが、長期に亘ってその性能を安定に維持し得ることも重要である。しかしながらレーザ監視装置の構成部品、特にパルスレーザ光を生成するレーザ発振器、例えばレーザダイオードの寿命は、その出力強度や駆動時間に大きく依存する。しかも一般的には監視対象領域の状況は絶えず変化しており、常に安定した監視環境が確保されるとは限らない。   By the way, in the laser monitoring device, it is of course important to have the capability of reliably detecting the presence / absence of an object in a predetermined monitoring target region, but it is also important that the performance can be stably maintained over a long period of time. is there. However, the lifetime of the components of the laser monitoring device, particularly a laser oscillator that generates pulsed laser light, for example, a laser diode, greatly depends on its output intensity and driving time. Moreover, in general, the situation of the monitoring target area is constantly changing, and a stable monitoring environment is not always ensured.

本発明はこのような事情を考慮してなされたもので、その目的は、監視対象領域の状況変化に応じて長期に亘って安定に所要とする監視性能を維持することのできる簡易な構成のレーザ監視装置を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to provide a simple configuration capable of maintaining the monitoring performance required stably over a long period of time in accordance with a change in the status of the monitoring target area. It is to provide a laser monitoring device.

上述した目的を達成するべく本発明は、所定の周期で生成したパルスレーザ光を監視対象領域に向けて照射すると共に、上記パルスレーザ光を前記監視対象領域の全域に亘って走査し、この走査に同期して前記監視対象領域における前記パルスレーザ光の反射光を受光して前記監視対象領域における物体の有無を監視するレーザ監視装置に係り、
特に前記監視対象領域における物体検出状況に応じて前記パルスレーザ光の生成周期を可変設定する出力周期調整手段を備えることを特徴としている。
In order to achieve the above-mentioned object, the present invention irradiates the pulsed laser light generated at a predetermined cycle toward the monitoring target area, and scans the pulsed laser light over the entire monitoring target area. A laser monitoring device that receives reflected light of the pulsed laser light in the monitoring target region in synchronization with and monitors the presence or absence of an object in the monitoring target region,
In particular, it is characterized by comprising output period adjusting means for variably setting the generation period of the pulse laser beam according to the object detection situation in the monitoring target region.

ちなみに前記監視対象領域における物体の有無の監視は、前記パルスレーザ光の走査に同期して検出される前記反射光の受光データを解析して物体を検出すると共に、前記監視対象領域における固定物を監視対象から除外して行われる。そして前記出力周期調整手段は、例えば前記監視対象領域に監視対象物体が存在しないときには前記パルスレーザ光の生成周期を予め定めた最大値に設定し、前記監視対象領域に監視対象物体が存在する場合には、各物体毎に求められる有効データ数に応じて前記パルスレーザ光の生成周期を増減するように構成される。   Incidentally, the monitoring of the presence or absence of an object in the monitoring target area detects the object by analyzing the received light data of the reflected light detected in synchronization with the scanning of the pulse laser beam, and detects a fixed object in the monitoring target area. Excluded from monitoring. For example, when the monitoring target area does not exist in the monitoring target area, the output cycle adjusting unit sets the generation period of the pulse laser light to a predetermined maximum value, and when the monitoring target object exists in the monitoring target area Is configured to increase / decrease the generation period of the pulsed laser light according to the number of effective data required for each object.

好ましくは前記出力周期調整手段は、例えば各物体毎にその平均検出距離を求め、最遠点の物体の有効データ数に応じて前記パルスレーザ光の生成周期を増減するように構成される。   Preferably, the output period adjusting means is configured to obtain an average detection distance for each object, for example, and increase or decrease the generation period of the pulse laser light according to the number of effective data of the object at the farthest point.

上記構成のレーザ監視装置によれば監視対象領域における物体検出状況に応じてパルスレーザ光の生成周期を調整し、これによって前記監視対象領域の走査密度を調整することができるので、例えば前記監視対象領域に監視対象とする物体が存在しないような場合には前記パルスレーザ光の生成周期を予め定めた最大値として長くし、その走査密度を粗く設定して前記監視対象領域における監視対象物体の出現だけを検出する、いわゆる待機モードに設定することができる。   According to the laser monitoring apparatus having the above-described configuration, the generation period of the pulsed laser light can be adjusted according to the object detection status in the monitoring target region, and thereby the scanning density of the monitoring target region can be adjusted. When there is no object to be monitored in the area, the generation period of the pulsed laser light is lengthened as a predetermined maximum value, and the scanning density is set to be rough, and the appearance of the object to be monitored in the monitoring object area Can be set to a so-called standby mode.

そして監視対象領域に監視対象物体が存在する場合には、例えば検出物体毎にその有効データ数を求め、物体を確実に検出し得る数の検出データが得られるように前記パルスレーザ光の生成周期を最適化すれば良い。具体的には検出物体毎にその平均検出距離と有効データ数とを求め、最遠点における物体を検出するに十分な数の検出データが得られるように前記パルスレーザ光の生成周期を最適化する。この結果、その計測性能を犠牲にすることなく一定時間当たりのパルスレーザ光の出力回数を減らし、その分、省エネルギ化を図ることが可能となる等の効果が奏せられる。   If there is a monitoring target object in the monitoring target region, for example, the number of effective data is obtained for each detection object, and the generation period of the pulse laser light is obtained so that the number of detection data that can reliably detect the object is obtained. Should be optimized. Specifically, the average detection distance and the number of valid data are obtained for each detected object, and the generation period of the pulse laser beam is optimized so that a sufficient number of detection data can be obtained to detect the object at the farthest point. To do. As a result, the number of output times of the pulse laser beam per fixed time can be reduced without sacrificing the measurement performance, and energy saving can be achieved correspondingly.

以下、図面を参照して本発明の一実施形態に係るレーザ監視装置について説明する。
図1はレーザ監視装置の概略構成図で、1は所定の監視対象領域Aを見渡し得る所定の高さ位置に設けられたセンサヘッドである。このセンサヘッド1には、パルスレーザ光を所定周期で生成して前記監視対象領域Aに向けて出力する投光部2と、上記パルスレーザ光の前記監視対象領域Aにおける反射光を受光する受光部3とが組み込まれている。尚、前記投光部2は、例えばレーザ光源としてのレーザダイオードと、このレーザダイオードから出力されたレーザ光を平行ビーム化するコリメータレンズ等を備えて構成されるものである。また前記受光部3は、例えば光センサとしてのフォトダイオードと、その前面に設けられた集光レンズ等を備えて構成される。
A laser monitoring apparatus according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a laser monitoring apparatus. Reference numeral 1 denotes a sensor head provided at a predetermined height position overlooking a predetermined monitoring target area A. FIG. The sensor head 1 includes a light projecting unit 2 that generates pulsed laser light at a predetermined period and outputs the pulsed laser light toward the monitoring target area A, and a light receiving unit that receives reflected light of the pulsed laser light in the monitoring target area A. Part 3 is incorporated. The light projecting unit 2 includes, for example, a laser diode as a laser light source and a collimator lens that converts the laser light output from the laser diode into a parallel beam. The light receiving unit 3 includes, for example, a photodiode as an optical sensor and a condensing lens provided in front of the photodiode.

特に前記投光部2から出力されたパルスレーザ光は、例えば反射鏡4aおよびハーフミラー4bからなる光学系を介して光学スキャナ5に導かれ、この光学スキャナ5にてその照射方向が一定の周期で2次元偏向制御されている。具体的には光学スキャナ5は、パルスレーザ光を角度θに亘って水平偏向制御(主走査)すると共に、この水平偏向制御に同期して角度φに亘って垂直偏向制御(副走査)し、これによって前記監視対象領域Aの全域に亘って前記パルスレーザ光の照射位置を走査している。そしてパルスレーザ光が照射された物体において生じた反射光は、上記走査に同期して前記光学スキャナ5を介して前記受光部3に導かれて受光され、受光部3はその受光強度に応じたレベルの検出信号を出力する。   In particular, the pulsed laser light output from the light projecting unit 2 is guided to the optical scanner 5 through an optical system including, for example, the reflecting mirror 4a and the half mirror 4b, and the irradiation direction of the optical scanner 5 is constant. 2D deflection control is performed. Specifically, the optical scanner 5 performs horizontal deflection control (main scanning) of the pulse laser beam over an angle θ, and performs vertical deflection control (sub scanning) over an angle φ in synchronization with the horizontal deflection control, Thus, the irradiation position of the pulse laser beam is scanned over the entire monitoring target area A. Then, the reflected light generated in the object irradiated with the pulse laser beam is guided to the light receiving unit 3 through the optical scanner 5 in synchronization with the scanning and received, and the light receiving unit 3 corresponds to the received light intensity. Outputs level detection signal.

尚、前記投光部2は、センサ制御部6の制御の下で所定の周期T毎に発光駆動されると共に、その駆動電圧に応じた強度のパルスレーザ光を出力する。センサ制御部6は、その上位機器である情報処理装置(例えばPC)7からの指示に従い、前記パルスレーザ光の生成周期Tとその出力強度Pをそれぞれ可変調整する出力周期調整手段およびレーザ光強度調整手段としての機能を担う。   The light projecting unit 2 is driven to emit light every predetermined period T under the control of the sensor control unit 6 and outputs pulse laser light having an intensity corresponding to the driving voltage. The sensor control unit 6 is responsive to an instruction from an information processing apparatus (for example, PC) 7 that is a host device thereof, an output period adjusting means that variably adjusts the generation period T of the pulse laser beam and its output intensity P, and the laser beam intensity. It functions as an adjustment means.

また前記受光部3からの検出信号を入力する検出部8は、前記センサ制御部6の制御の下で前述したパルスレーザ光の生成タイミングに同期して前記検出信号のレベル(反射光の受光強度)を判定し、予め設定した閾値以上の検出信号を物体による前記パルスレーザ光の反射光であるとして検出している。同時に検出部8は上記反射光の検出タイミング(反射光の受光タイミング)と前記パルスレーザ光の出力タイミングとの時間差を求め、これを前記監視対象領域Aにおける物体の検出距離として求めている。このようにして求められた反射波の受光強度Qと検出距離Lとからなる検出データ(Q,L)は、前記光学スキャナ5によるパルスレーザ光の照射方向の情報、つまり偏向情報(θ,φ)と共に前記情報処理装置に与えられる。   The detection unit 8 for inputting the detection signal from the light receiving unit 3 is synchronized with the generation timing of the pulse laser beam described above under the control of the sensor control unit 6 (the received light intensity of the reflected light). ) And a detection signal equal to or greater than a preset threshold value is detected as reflected light of the pulsed laser light from the object. At the same time, the detection unit 8 obtains the time difference between the reflected light detection timing (reflected light reception timing) and the pulse laser light output timing, and obtains this as the object detection distance in the monitoring target region A. The detection data (Q, L) consisting of the received light intensity Q of the reflected wave and the detection distance L obtained in this way is information on the irradiation direction of the pulsed laser beam by the optical scanner 5, that is, deflection information (θ, φ). ) And the information processing apparatus.

ここで前述した検出データに基づく前記情報処理装置7での物体検出処理について簡単に説明すると、情報処理装置7は前記パルスレーザ光の偏向走査に同期して、その偏向方向である走査位置(θ,φ)毎に前記検出データ(Q,L)を解析し、例えば同一物体による反射光であると認められる複数点からの検出データを統合してラベリングする。そして同一ラベルが付されて統合された複数の検出データの走査位置(θ,φ)からその大きさを推定して物体検出を行うと共に、前記監視対象領域Aにおける物体の存在位置を検出する。   Here, the object detection process in the information processing device 7 based on the detection data described above will be briefly described. The information processing device 7 synchronizes with the deflection scanning of the pulse laser beam and scan position (θ which is the deflection direction). , φ), the detection data (Q, L) is analyzed and, for example, detection data from a plurality of points recognized as reflected light from the same object are integrated and labeled. Then, the size is estimated from the scanning positions (θ, φ) of the plurality of detection data integrated with the same label, and the object is detected, and the presence position of the object in the monitoring target area A is detected.

図2は上述した物体検出のメカニズムを模式的に示している。例えば前記センサヘッド1から視野し得る監視対象領域Aに図2(a)に示すように物体a1,a2,a3が存在している場合、上記監視対象領域Aをパルスレーザ光によりスキャン(走査)することによって図2(b)に示すように上記各物体a1,a2,a3による反射光が検出される。そしてこれらの反射光は、前記各物体a1,a2,a3の存在領域毎に或るまとまりをなし、それらの各まとまりの大きさは各物体a1,a2,a3の大きさをそれぞれ示すことになる。従ってこれらの反射光のまとまりb1,b2,b3を検出し、その大きさを判定すれば、所定の大きさをなす反射光(検出データ)のまとまりb1,b2,b3を、それぞれ物体として認識することが可能となる。   FIG. 2 schematically shows the above-described object detection mechanism. For example, when the objects a1, a2, and a3 are present in the monitoring target area A that can be viewed from the sensor head 1, as shown in FIG. 2A, the monitoring target area A is scanned with a pulse laser beam (scanning). As a result, the reflected light from the objects a1, a2, and a3 is detected as shown in FIG. These reflected lights form a certain group for each region where the objects a1, a2, and a3 exist, and the size of each group indicates the size of each object a1, a2, and a3. . Therefore, if the b1, b2, b3 of these reflected lights are detected and their sizes are determined, the b1, b2, b3 of reflected lights (detection data) having a predetermined size are recognized as objects, respectively. It becomes possible.

尚、上述した如くして検出される物体の検出位置は、前述したように所定の高さに設けられたセンサヘッド1から監視対象領域Aを視野したときの[θ-φ]座標のものであるので、これを地表面での物体位置として検出する場合には、地表面を表す[x-y]座標との間で前記物体の検出位置を座標変換(投影変換)すれば良い。この座標変換により前記センサヘッド1からの俯瞰に起因する視差の問題を生じることなく、例えば図2(c)に示すように監視対象領域Aにおける物体c1,c2,c3の存在位置を容易に理解することが可能となる。   The detection position of the object detected as described above is the [θ−φ] coordinate when the monitoring target area A is viewed from the sensor head 1 provided at a predetermined height as described above. Therefore, when detecting this as an object position on the ground surface, the detected position of the object may be coordinate-transformed (projected) with respect to the [xy] coordinates representing the ground surface. By this coordinate conversion, the position of the objects c1, c2, and c3 in the monitoring target area A can be easily understood without causing a parallax problem due to the overhead view from the sensor head 1, for example, as shown in FIG. It becomes possible to do.

ここで本装置における特徴的な処理機能について説明する。この実施形態に係るレーザ監視装置においては、前述したようにセンサ制御部6の制御の下でパルスレーザ光の生成周期(出力周期)Tを可変設定する機能(出力周期調整手段)を備えている。このパルスレーザ光の生成周期Tの可変設定は、前述した光学スキャナ5によるパルスレーザ光の偏向走査とは独立に行われる。従ってパルスレーザ光の生成周期Tが長くなるに従って上記パルスレーザ光を所定の角度に亘って偏向走査する際のパルスレーザ光の照射回数が少なくなり、監視対象領域Aに対する走査密度が粗くなる。逆にパルスレーザ光の生成周期Tを短くすることによって監視対象領域Aが緻密に走査されることになり、同じ大きさの物体であっても数多くの検出データが得られることになる。   Here, a characteristic processing function in this apparatus will be described. The laser monitoring apparatus according to this embodiment includes a function (output period adjusting means) that variably sets the generation period (output period) T of the pulsed laser light under the control of the sensor control unit 6 as described above. . The variable setting of the generation period T of the pulse laser beam is performed independently of the deflection scanning of the pulse laser beam by the optical scanner 5 described above. Therefore, as the generation period T of the pulse laser beam becomes longer, the number of irradiation times of the pulse laser beam when the pulse laser beam is deflected and scanned over a predetermined angle decreases, and the scanning density for the monitoring target region A becomes coarse. Conversely, by shortening the generation period T of the pulsed laser light, the monitoring target area A is scanned precisely, and a large amount of detection data can be obtained even for an object of the same size.

ちなみに上記パルスレーザ光の生成周期(出力周期)Tの調整は、監視対象領域Aにおける物体検出状況に応じて行われるものであって、概略的には前記監視対象領域Aにて検出された物体の検出距離Dと、所定の受光強度Q以上の物体認識に用いられる有効データ数Mとに応じて、例えばレーザ光源としてのレーザダイオードの駆動周期Tを増減することにより実行される。   Incidentally, the adjustment of the generation period (output period) T of the pulse laser beam is performed in accordance with the object detection status in the monitoring target area A, and roughly the object detected in the monitoring target area A This is executed by increasing / decreasing the driving period T of the laser diode as the laser light source, for example, according to the detection distance D and the number M of effective data used for object recognition having a predetermined light reception intensity Q or higher.

具体的にはこの出力周期調整手段は、例えば前記情報処理装置7が備える処理機能9として実現される。例えばパルスレーザ光の生成周期(出力周期)Tの調整は、先ず監視対象領域Aにおいて物体が検出されたか否かを判定して行われ、更には監視対象領域Aに物体が存在する場合には検出した物体(検出データのまとまり)毎にその平均反射光強度Qaveと平均検出距離Daveとを求め、平均検出距離Daveから求められる最遠点の物体を表す有効データ数Mに従って前記パルスレーザ光の出力周期Tを最適化することにより行われる。   Specifically, this output cycle adjusting means is realized as the processing function 9 provided in the information processing apparatus 7, for example. For example, the adjustment of the generation period (output period) T of the pulsed laser light is performed by first determining whether or not an object is detected in the monitoring target area A. Further, when an object exists in the monitoring target area A, The average reflected light intensity Qave and the average detection distance Dave are obtained for each detected object (a group of detection data), and the pulse laser beam is detected according to the effective data number M representing the object at the farthest point obtained from the average detection distance Dave. This is done by optimizing the output period T.

即ち、監視対象領域Aに監視対象とする物体が存在しない場合には、前記パルスレーザ光の生成周期Tを予め定めた最大値Tmaxとして長くし、パルスレーザ光が出力される1周期当たりの偏向走査角度を広くすることで監視対象領域Aに対する走査密度を粗く設定する。そして前記監視対象領域Aへの監視対象物体の出現だけを検出する、いわゆる待機モードに設定する。また監視対象領域Aに監視対象物体が存在する場合には、例えば検出物体毎にその有効データ数Mを求め、上記物体を確実に検出し得る数の検出データが得られるように前記パルスレーザ光の生成周期Tを最適化する。具体的には検出物体毎にその平均検出距離Daveと有効データ数Mとを求め、最遠点における物体を検出するに十分な数の検出データMminが得られるように前記パルスレーザ光の生成周期Tを最適化する。   That is, when there is no object to be monitored in the monitoring target area A, the generation period T of the pulse laser light is lengthened as a predetermined maximum value Tmax, and the deflection per period in which the pulse laser light is output. By increasing the scanning angle, the scanning density for the monitoring target area A is set coarsely. Then, a so-called standby mode is set in which only the appearance of the monitoring target object in the monitoring target area A is detected. Further, when there is a monitoring target object in the monitoring target region A, for example, the number M of effective data is obtained for each detection object, and the pulse laser beam is obtained so that detection data of a number that can reliably detect the object is obtained. The generation cycle T is optimized. Specifically, the average detection distance Dave and the effective data number M are obtained for each detected object, and the generation period of the pulse laser light is obtained so that a sufficient number of detection data Mmin can be obtained to detect the object at the farthest point. Optimize T.

このようにして監視対象領域Aにおける物体の検出状況に応じてパルスレーザ光の出力周期Tを可変制御してその最適化を図り、例えばパルスレーザ光の生成周期Tを最大値Tmaxに設定し、前記監視対象領域Aへの監視対象物体の出現だけを検出する、いわゆる待機モードに設定することで、その間におけるセンサヘッド1の駆動電力を低減して省エネルギ化を図ることが可能となる。また投光部2を構成するレーザ光源としてのレーザダイオードの駆動回数(駆動時間)を減らすことができるので、その分、上記レーザダイオードの長寿命化を図ってその特性劣化を防ぐことができる。   In this way, the output period T of the pulsed laser light is variably controlled in accordance with the state of detection of the object in the monitoring target area A to optimize it. For example, the generation period T of the pulsed laser light is set to the maximum value Tmax, By setting the so-called standby mode in which only the appearance of the monitoring target object in the monitoring target area A is detected, it is possible to reduce the driving power of the sensor head 1 and save energy. In addition, since the number of times of driving (driving time) of the laser diode as the laser light source constituting the light projecting unit 2 can be reduced, it is possible to extend the life of the laser diode and prevent deterioration of its characteristics.

更には監視対象領域Aに物体が存在する場合には、それらの各物体の検出距離D(平均検出距離Dave)に従って最遠点の物体を特定し、この最遠点の物体を確実に検出し得る最低限の測定条件を満たすようにパルスレーザ光の出力周期Tを設定することで、前述したレーザダイオードの駆動条件を緩和することができる。具体的には、一般的には1つの物体として認識するに必要な、所定のまとまりをなすデータ数Mがその検出距離に応じて定まることから、物体検出条件として最も厳しい最遠点の物体に着目し、その物体を認識した有効データ数Mとその平均検出距離Daveとを求める。尚、有効データとは、予め定められた受光強度Q以上の検出データを指す。そして上記平均検出距離Daveに応じて所定の有効データ数Mが確保されるように、具体的には平均検出距離Daveに応じて所定の有効データ数Mとの比[Dave/M]に応じて前記パルスレーザ光の出力周期Tを最適化設定する。この結果、投光部2の駆動条件を緩和してその長寿命化を図り、更にはパルスレーザ光の出力周期T(レーザダイオードの駆動頻度)を低減した分、その駆動エネルギを抑えて省エネルギ化を図ることができる等の効果が奏せられる。   Furthermore, when an object exists in the monitoring target area A, the object at the farthest point is specified according to the detection distance D (average detection distance Dave) of each object, and the object at the farthest point is reliably detected. By setting the output period T of the pulse laser beam so as to satisfy the minimum measurement conditions to be obtained, the above-described laser diode driving conditions can be relaxed. Specifically, in general, the number M of data that forms a predetermined set necessary for recognition as one object is determined according to the detection distance, so that the object with the most severe point as the object detection condition is selected. Paying attention, the number M of effective data that recognized the object and its average detection distance Dave are obtained. The valid data refers to detection data having a predetermined light reception intensity Q or higher. In order to ensure a predetermined effective data number M according to the average detection distance Dave, specifically, according to a ratio [Dave / M] with a predetermined effective data number M according to the average detection distance Dave. The output period T of the pulse laser beam is optimized. As a result, the driving condition of the light projecting unit 2 is relaxed to extend its life, and further, the driving energy is reduced by reducing the driving energy of the pulse laser beam output period T (laser diode driving frequency). Effects such as being able to be achieved are achieved.

図3は上述したパルスレーザ光の出力周期Tに対する制御手順の一例を示している。この制御は、先ず監視対象領域Aにおける不変的な固定物に関するデータを取得し、背景データとして物体検出処理から除外するデータを得ることから開始される〈ステップS1〉。この背景データの除外処理は、例えば図4に示すように計測対象物が存在しない状況下において物体検出を行い〈ステップS11〉、これによって検出された物体の位置座標を求める〈ステップS12〉。そしてこれらの物体が前記監視対象領域Aにおける不変的な固定物であるか否かを判定し〈ステップS13〉、不変的な固定物であるならば背景データとして認識対象から除外する為の情報とする〈ステップS14〉。具体的には背景データとして認識された位置からの反射光(検出データ)を監視対象として取り込まないようにマスクする為の情報を作成する。これに加えて雑音成分となる地表面による反射光を除去するべく、地表面から高さに対する閾値を設定する〈ステップS15〉。この閾値処理は、前述したパルスレーザ光のスキャン(走査)方向毎に、その最大計測距離を制限することに相当する。   FIG. 3 shows an example of a control procedure for the output period T of the pulse laser beam described above. This control is started by first obtaining data relating to an immutable fixed object in the monitoring target area A and obtaining data excluded from the object detection process as background data <step S1>. In this background data exclusion process, for example, as shown in FIG. 4, object detection is performed in a situation where there is no measurement object <step S11>, and the position coordinates of the detected object are obtained <step S12>. Then, it is determined whether or not these objects are immutable fixed objects in the monitoring target area A <step S13>. If they are immutable fixed objects, information for excluding them from the recognition target as background data; <Step S14>. Specifically, information for masking the reflected light (detection data) from the position recognized as background data so as not to be taken in as a monitoring target is created. In addition to this, a threshold for the height from the ground surface is set in order to remove the reflected light from the ground surface, which becomes a noise component (step S15). This threshold value processing corresponds to limiting the maximum measurement distance for each scanning direction of the pulse laser beam described above.

以上の初期設定処理を終えたならば、前述した図3に示す処理手順に戻って通常の監視処理を開始する〈ステップS2〉。そしてその検出データを上位の情報処理装置(PC)7に送り、物体の検出処理を実行する〈ステップS3〉。この物体の検出処理については図2を参照して前述した通りである。そして所定のまとまりをなす検出データの集まり毎に、これを前記監視対象領域Aにおいて検出された物体の情報として検出する。この際、前述した如く求められた背景データに従って監視対象領域Aにおける固定物をその監視対象から除外したり、更には地表面からの不要な反射光に対する除去処理を実行する。   When the above initial setting process is completed, the process returns to the process procedure shown in FIG. 3 and the normal monitoring process is started <step S2>. Then, the detection data is sent to the host information processing apparatus (PC) 7 to execute object detection processing (step S3). This object detection process is as described above with reference to FIG. For each collection of detection data forming a predetermined unit, this is detected as information on an object detected in the monitoring target area A. At this time, the fixed object in the monitoring target area A is excluded from the monitoring target in accordance with the background data obtained as described above, and further, a removal process for unnecessary reflected light from the ground surface is executed.

しかる後、監視対象領域Aに監視対象とする物体が存在するか否かを判定する〈ステップS4〉。そして監視対象とする物体が存在しない場合には、監視対象領域Aへの監視対象物体の出現だけを検出し得る程度に、パルスレーザ光の生成周期Tを最大値Tmaxに設定する〈ステップS5〉。このようにしてパルスレーザ光の生成周期Tを最大値Tmaxすることは、レーザダイオードの駆動回数を最低限に抑えてその駆動電力を低減する、いわゆる待機モードを設定したことに相当する。   Thereafter, it is determined whether or not an object to be monitored exists in the monitoring target area A <Step S4>. If there is no object to be monitored, the pulse laser beam generation period T is set to the maximum value Tmax so that only the appearance of the monitored object in the monitoring target area A can be detected <step S5>. . Setting the pulse laser beam generation period T to the maximum value Tmax in this way corresponds to setting a so-called standby mode in which the number of times the laser diode is driven is minimized and the driving power is reduced.

これに対して監視対象領域Aにおいて何らかの監視対象物体が検出される場合には、その物体に対する最低限の検出性能を保証するべく、検出された物体毎にその検出データからその平均検出距離Daveとその有効データ数Mとをそれぞれ求める〈ステップS6〉。そして各物体毎に算出された平均検出距離Daveを相互に比較し、前記監視対象領域Aにおいて前記センサヘッド1が設けられた監視点から最遠点の物体を特定し、この最遠点の物体の検出データについて、その検出性能を評価する為の指標Sを
S=[平均反射光強度Qave]/[有効データ数M]
として計算する。
On the other hand, when any monitoring target object is detected in the monitoring target area A, the average detection distance Dave is detected from the detection data for each detected object in order to guarantee the minimum detection performance for the object. The number of valid data M is obtained <step S6>. Then, the average detection distance Dave calculated for each object is compared with each other, and the object farthest from the monitoring point where the sensor head 1 is provided in the monitoring target area A is specified. An index S for evaluating the detection performance of the detection data of S = [average reflected light intensity Qave] / [number of valid data M]
Calculate as

ちなみに最遠点の物体について計測性能評価の為の指標Sを求めるのは、監視点からの距離が長くなるほど(検出距離Dが長くなるほど)パルスレーザ光およびその反射光が大気中を伝播するに際しての減衰量が多く、また外来ノイズの影響を受け易くなり、その計測条件が悪い為である。そして上述した如く求めた指標Sについて、予め実験結果等に基づいて求められた物体の最低検出条件を保証しうる、例えば図5に示すような指標Sとパルスレーザ光の最適な出力周期Tとの関係を満たすように前記パルスレーザ光の出力周期Tを調整する〈ステップS7〉。このようにしてパルスレーザ光の出力周期Tを調整しながら、前述したステップS2からの処理に戻って監視対象領域Aにおける物体の監視処理を継続して実行する。   Incidentally, the index S for measuring performance evaluation for the object at the farthest point is obtained when the pulse laser beam and its reflected light propagate in the atmosphere as the distance from the monitoring point becomes longer (as the detection distance D becomes longer). This is because there is a large amount of attenuation, and it is easily affected by external noise, and the measurement conditions are poor. For the index S obtained as described above, the minimum detection condition of the object obtained in advance based on the experimental result or the like can be guaranteed, for example, the index S as shown in FIG. 5 and the optimum output period T of the pulse laser beam, The output period T of the pulse laser beam is adjusted so as to satisfy the relationship <Step S7>. In this way, while adjusting the output period T of the pulsed laser beam, the process returns to the above-described step S2 and the object monitoring process in the monitoring target area A is continuously executed.

以上のようにして監視対象領域Aにおける物体の検出状況に応じてパルスレーザ光の出力周期Tを最適化設定することにより、最遠点の物体を確実に検出し得る計測条件を満たしながら上記パルスレーザ光の出力回数を抑えることが可能となる。従ってパルスレーザ光の出力周期Tを長くした分、例えばレーザ光源としてレーザダイオードの駆動条件を緩和してその長寿命化を図ると共に、省エネルギ化を図ることが可能となる等の実用上多大なる効果が奏せられる。   As described above, by optimizing the output period T of the pulse laser beam in accordance with the detection state of the object in the monitoring target area A, the above pulse is satisfied while satisfying the measurement condition for reliably detecting the object at the farthest point. It is possible to suppress the number of times of laser light output. Therefore, as the output period T of the pulse laser beam is increased, for example, the driving condition of the laser diode as a laser light source is relaxed to extend its life, and energy saving can be achieved. An effect is produced.

尚、本発明は上述した実施形態に限定されるものではない。例えば上記実施形態においては、検出性能を評価する為の指標Sを平均反射光強度と有効データ数との比[Qave/M]として計算したが、有効データ数Mだけに着目してパルスレーザ光の出力周期Tを最適化するようにしても良い。またカメラを用いて監視対象領域Aを撮像し、その画像を解析することでパルスレーザ光を用いて実施される物体検出状況を推定し、この推定結果に応じてパルスレーザ光の出力周期Tを可変設定することも可能である。特に前述した待機モードを設定する場合に有用である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, in the above embodiment, the index S for evaluating the detection performance is calculated as the ratio [Qave / M] between the average reflected light intensity and the number of effective data. The output period T may be optimized. In addition, the object detection situation performed using the pulse laser beam is estimated by imaging the monitoring target area A using a camera and analyzing the image, and the output period T of the pulse laser beam is set according to the estimation result. Variable setting is also possible. This is particularly useful when setting the above-described standby mode. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

レーザ監視装置の概略構成図。The schematic block diagram of a laser monitoring apparatus. レーザ監視装置による物体検出の手法を模式的に示す図。The figure which shows typically the method of the object detection by a laser monitoring apparatus. 本発明の一実施形態に係るレーザ監視装置におけるパルスレーザ光の出力強度制御の処理手順を示す図。The figure which shows the process sequence of output intensity control of the pulsed laser beam in the laser monitoring apparatus which concerns on one Embodiment of this invention. 監視対象領域における固定物の検出処理手順を示す図。The figure which shows the detection processing procedure of the fixed object in the monitoring object area | region. パルスレーザ光の出力周期Tの最適化制御に用いる、最遠点の物体の平均検出距離Daveと有効データ数Mとの比[Dave/M]に対するパルスレーザ光の最適な出力周期Tとの関係を示す図。The relationship between the optimum output period T of the pulsed laser beam with respect to the ratio [Dave / M] of the average detection distance Dave of the object at the farthest point and the number of effective data M used for the optimization control of the output period T of the pulsed laser beam FIG.

符号の説明Explanation of symbols

1 センサヘッド
2 投光部
3 受光部
5 光学スキャナ
6 センサ制御部
7 情報処理装置
8 検出部
9 出力周期調整手段
DESCRIPTION OF SYMBOLS 1 Sensor head 2 Light projection part 3 Light reception part 5 Optical scanner 6 Sensor control part 7 Information processing apparatus 8 Detection part 9 Output period adjustment means

Claims (3)

所定の周期で生成したパルスレーザ光を監視対象領域に照射すると共に、上記パルスレーザ光を前記監視対象領域の全域に亘って走査し、この走査に同期して前記監視対象領域における前記パルスレーザ光の反射光を受光して前記監視対象領域における物体の有無を監視するレーザ監視装置であって、
前記監視対象領域における物体検出状況に応じて前記パルスレーザ光の生成周期を可変設定する出力周期調整手段を備えることを特徴とするレーザ監視装置。
The pulsed laser light generated at a predetermined cycle is irradiated onto the monitoring target region, and the pulsed laser light is scanned over the entire monitoring target region, and the pulsed laser light in the monitoring target region is synchronized with this scanning. A laser monitoring device that receives the reflected light of the object and monitors the presence or absence of an object in the monitoring target area,
A laser monitoring apparatus comprising: an output period adjusting unit that variably sets a generation period of the pulsed laser light according to an object detection state in the monitoring target region.
前記監視対象領域における物体の有無の監視は、前記パルスレーザ光の走査に同期して検出される前記反射光の受光データを解析して物体を検出すると共に、前記監視対象領域における固定物を監視対象から除外して行われるものであって、
前記出力周期調整手段は、前記監視対象領域に監視対象物体が存在しないときには前記パルスレーザ光の生成周期を予め定めた最大値に設定し、前記監視対象領域に監視対象物体が存在する場合には、各物体毎に求められる有効データ数に応じて前記パルスレーザ光の生成周期を増減するものである請求項1に記載のレーザ監視装置。
The monitoring of the presence / absence of an object in the monitoring target area detects the object by analyzing the received light data of the reflected light detected in synchronization with the scanning of the pulse laser beam, and monitors a fixed object in the monitoring target area It is done by excluding from the subject,
The output cycle adjusting means sets the generation period of the pulse laser beam to a predetermined maximum value when there is no monitoring target object in the monitoring target region, and when the monitoring target object exists in the monitoring target region. The laser monitoring apparatus according to claim 1, wherein the generation period of the pulsed laser light is increased or decreased according to the number of effective data obtained for each object.
前記出力周期調整手段は、各物体毎にその平均検出距離を求め、最遠点の物体の有効データ数に応じて前記パルスレーザ光の生成周期を増減するものである請求項2に記載のレーザ監視装置。   3. The laser according to claim 2, wherein the output cycle adjusting unit calculates an average detection distance for each object, and increases or decreases the generation cycle of the pulse laser beam according to the number of effective data of the object at the farthest point. Monitoring device.
JP2007084096A 2007-03-28 2007-03-28 Laser monitoring device Expired - Fee Related JP4993087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084096A JP4993087B2 (en) 2007-03-28 2007-03-28 Laser monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084096A JP4993087B2 (en) 2007-03-28 2007-03-28 Laser monitoring device

Publications (2)

Publication Number Publication Date
JP2008241535A true JP2008241535A (en) 2008-10-09
JP4993087B2 JP4993087B2 (en) 2012-08-08

Family

ID=39913063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084096A Expired - Fee Related JP4993087B2 (en) 2007-03-28 2007-03-28 Laser monitoring device

Country Status (1)

Country Link
JP (1) JP4993087B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156138A (en) * 2012-01-30 2013-08-15 Ihi Corp Moving object detecting apparatus
JP2013156139A (en) * 2012-01-30 2013-08-15 Ihi Corp Moving object detecting apparatus and moving object detecting method
JP2013537487A (en) * 2010-05-20 2013-10-03 アイロボット コーポレイション Mobile human interface robot
JP2013537651A (en) * 2010-05-20 2013-10-03 アイロボット コーポレイション Mobile human interface robot
JP2013238452A (en) * 2012-05-14 2013-11-28 Honda Elesys Co Ltd Position information detection device, position information detection method, position information detection program, and operation control system
WO2015137050A1 (en) * 2014-03-14 2015-09-17 株式会社メガチップス Optical position detection system, control apparatus, position detection apparatus, control program, and distance measuring system
KR20180135710A (en) * 2017-06-13 2018-12-21 현대오토에버 주식회사 Lidar apparatus for avoiding spoofing attack
JP2019512706A (en) * 2016-03-21 2019-05-16 ベロダイン ライダー, インク. Three-dimensional imaging based on LIDAR with variable irradiation field density
JP2019512704A (en) * 2016-03-21 2019-05-16 ベロダイン ライダー, インク. Three-dimensional imaging based on LIDAR with variable pulse repetition rate
JP2020008482A (en) * 2018-07-11 2020-01-16 株式会社Ihi Object detection device
JP2020148747A (en) * 2019-03-15 2020-09-17 株式会社リコー Object detection device
US10996319B2 (en) 2017-06-20 2021-05-04 Canon Kabushiki Kaisha Distance measuring system and control method of distance measuring system
JP2021147129A (en) * 2020-03-17 2021-09-27 Jfeエンジニアリング株式会社 Management device, management method, and program
JP2021530716A (en) * 2018-06-27 2021-11-11 ベロダイン ライダー ユーエスエー,インコーポレイテッド Laser radar

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055621A (en) * 1990-10-20 1993-01-14 Fuji Photo Film Co Ltd Distance measuring method
JPH0634320A (en) * 1992-07-20 1994-02-08 Fujitsu Ten Ltd Measuring apparatus of inter-vehicle distance
JPH06174849A (en) * 1992-12-04 1994-06-24 Kansei Corp Obstacle detecting device
JP2000028720A (en) * 1998-07-13 2000-01-28 Omron Corp Distance measuring device
JP2000275344A (en) * 1999-03-26 2000-10-06 Mitsubishi Electric Corp Measuring device of distance between vehicles
JP2001051186A (en) * 1999-08-12 2001-02-23 Canon Inc Multipoint range finder and camera
JP2001280932A (en) * 2000-03-31 2001-10-10 Minolta Co Ltd Photographing system, and two-dimensional image pick-up device and three-dimensional measuring instrument used for the system
JP2001280933A (en) * 2000-03-31 2001-10-10 Minolta Co Ltd Photographing system, and two-dimensional image pick-up device and three-dimensional measuring instrument used for the system
JP2002122664A (en) * 2000-10-12 2002-04-26 Honda Motor Co Ltd Object detector for moving body
JP2005300259A (en) * 2004-04-08 2005-10-27 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for detecting mobile unit
JP2006194617A (en) * 2005-01-11 2006-07-27 Ishikawajima Harima Heavy Ind Co Ltd Object detection method and device
JP2008232800A (en) * 2007-03-20 2008-10-02 Ihi Corp Laser monitor
JP2008241273A (en) * 2007-03-26 2008-10-09 Ihi Corp Laser radar device and its control method
JP2008241435A (en) * 2007-03-27 2008-10-09 Stanley Electric Co Ltd Distance image generation device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055621A (en) * 1990-10-20 1993-01-14 Fuji Photo Film Co Ltd Distance measuring method
JPH0634320A (en) * 1992-07-20 1994-02-08 Fujitsu Ten Ltd Measuring apparatus of inter-vehicle distance
JPH06174849A (en) * 1992-12-04 1994-06-24 Kansei Corp Obstacle detecting device
JP2000028720A (en) * 1998-07-13 2000-01-28 Omron Corp Distance measuring device
JP2000275344A (en) * 1999-03-26 2000-10-06 Mitsubishi Electric Corp Measuring device of distance between vehicles
JP2001051186A (en) * 1999-08-12 2001-02-23 Canon Inc Multipoint range finder and camera
JP2001280932A (en) * 2000-03-31 2001-10-10 Minolta Co Ltd Photographing system, and two-dimensional image pick-up device and three-dimensional measuring instrument used for the system
JP2001280933A (en) * 2000-03-31 2001-10-10 Minolta Co Ltd Photographing system, and two-dimensional image pick-up device and three-dimensional measuring instrument used for the system
JP2002122664A (en) * 2000-10-12 2002-04-26 Honda Motor Co Ltd Object detector for moving body
JP2005300259A (en) * 2004-04-08 2005-10-27 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for detecting mobile unit
JP2006194617A (en) * 2005-01-11 2006-07-27 Ishikawajima Harima Heavy Ind Co Ltd Object detection method and device
JP2008232800A (en) * 2007-03-20 2008-10-02 Ihi Corp Laser monitor
JP2008241273A (en) * 2007-03-26 2008-10-09 Ihi Corp Laser radar device and its control method
JP2008241435A (en) * 2007-03-27 2008-10-09 Stanley Electric Co Ltd Distance image generation device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195868A (en) * 2010-05-20 2014-10-16 アイロボット コーポレイション Method of operating mobile robot to follow person
JP2013537487A (en) * 2010-05-20 2013-10-03 アイロボット コーポレイション Mobile human interface robot
JP2013537651A (en) * 2010-05-20 2013-10-03 アイロボット コーポレイション Mobile human interface robot
JP2014176966A (en) * 2010-05-20 2014-09-25 Irobot Corp Mobile human interface robot
JP2013156139A (en) * 2012-01-30 2013-08-15 Ihi Corp Moving object detecting apparatus and moving object detecting method
JP2013156138A (en) * 2012-01-30 2013-08-15 Ihi Corp Moving object detecting apparatus
JP2013238452A (en) * 2012-05-14 2013-11-28 Honda Elesys Co Ltd Position information detection device, position information detection method, position information detection program, and operation control system
WO2015137050A1 (en) * 2014-03-14 2015-09-17 株式会社メガチップス Optical position detection system, control apparatus, position detection apparatus, control program, and distance measuring system
JP2015175712A (en) * 2014-03-14 2015-10-05 株式会社メガチップス Optical position detection system, control device, position detection device, control program, and ranging system
JP2022188162A (en) * 2016-03-21 2022-12-20 ベロダイン ライダー ユーエスエー,インコーポレイテッド Lidar based three-dimensional imaging with varying pulse repetition
JP7258554B2 (en) 2016-03-21 2023-04-17 ベロダイン ライダー ユーエスエー,インコーポレイテッド Three-dimensional imaging based on LIDAR with variable irradiation field density
JP2019512706A (en) * 2016-03-21 2019-05-16 ベロダイン ライダー, インク. Three-dimensional imaging based on LIDAR with variable irradiation field density
JP2019512704A (en) * 2016-03-21 2019-05-16 ベロダイン ライダー, インク. Three-dimensional imaging based on LIDAR with variable pulse repetition rate
KR101979086B1 (en) * 2017-06-13 2019-05-15 현대오토에버 주식회사 Lidar apparatus for avoiding spoofing attack
KR20180135710A (en) * 2017-06-13 2018-12-21 현대오토에버 주식회사 Lidar apparatus for avoiding spoofing attack
US10996319B2 (en) 2017-06-20 2021-05-04 Canon Kabushiki Kaisha Distance measuring system and control method of distance measuring system
JP2021530716A (en) * 2018-06-27 2021-11-11 ベロダイン ライダー ユーエスエー,インコーポレイテッド Laser radar
JP2020008482A (en) * 2018-07-11 2020-01-16 株式会社Ihi Object detection device
JP2020148747A (en) * 2019-03-15 2020-09-17 株式会社リコー Object detection device
JP2021147129A (en) * 2020-03-17 2021-09-27 Jfeエンジニアリング株式会社 Management device, management method, and program
JP7459582B2 (en) 2020-03-17 2024-04-02 Jfeエンジニアリング株式会社 Management device, management method, and program

Also Published As

Publication number Publication date
JP4993087B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4993087B2 (en) Laser monitoring device
JP4993084B2 (en) Laser monitoring device
CN109791195B (en) Adaptive transmit power control for optical access
EP3223034B1 (en) Object detection apparatus and moveable apparatus
JP6942966B2 (en) Object detection device and mobile device
JP6428462B2 (en) Laser radar equipment
US9891432B2 (en) Object detection device and sensing apparatus
US8643923B2 (en) Optical scanning device, optical scanning method, program, and image display device
JP5711925B2 (en) Optical distance measuring device
JP2007183246A (en) Laser scanning device
JP5832067B2 (en) Optical distance measuring device
JP2006349694A (en) Object detection device and method
JP2007147333A (en) Peak value detection circuit of pulse signal
JP2023181381A (en) Measuring device, control method, program, and storage medium
JP2022190043A (en) Electronic device and distance measurement method
JP2018044852A (en) Laser emission device, control method and program
JP2008224620A (en) Range finder
JP5602554B2 (en) Optical distance measuring device
JP2018044853A (en) Laser emission device, control method and program
JP2009192526A (en) Laser distance measuring device and shield object detection method therefor
TWI393031B (en) Method for adapting an optical navigation device for navigation on a transparent structure and optical navigational device
JP2020148747A (en) Object detection device
WO2015145599A1 (en) Video projection device
JP2007240384A (en) Radar device
JP2019138666A (en) Ranging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees