WO2015137050A1 - Optical position detection system, control apparatus, position detection apparatus, control program, and distance measuring system - Google Patents

Optical position detection system, control apparatus, position detection apparatus, control program, and distance measuring system Download PDF

Info

Publication number
WO2015137050A1
WO2015137050A1 PCT/JP2015/054116 JP2015054116W WO2015137050A1 WO 2015137050 A1 WO2015137050 A1 WO 2015137050A1 JP 2015054116 W JP2015054116 W JP 2015054116W WO 2015137050 A1 WO2015137050 A1 WO 2015137050A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
position detection
unit
light
coordinate value
Prior art date
Application number
PCT/JP2015/054116
Other languages
French (fr)
Japanese (ja)
Inventor
延寿 島村
敏英 三宅
Original Assignee
株式会社メガチップス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガチップス filed Critical 株式会社メガチップス
Publication of WO2015137050A1 publication Critical patent/WO2015137050A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the present invention relates to an optical detection technique.
  • Patent Document 1 proposes a system for optically detecting the position of a detection object.
  • an object of the present invention is to provide a technique capable of reducing the power consumption of a system using an optical detection technique.
  • One aspect of the optical position detection system includes: an illumination unit that emits light; and an electric signal obtained by receiving the light reflected by the detection object on a light receiving surface, and A position detection unit that detects a position; a determination unit that determines presence / absence of the detection target based on a detection result of the position detection unit; and an operation control unit that controls an operation mode of the optical position detection system.
  • the optical position detection system includes: a first operation mode in which the illumination unit emits light with a first light amount; and a second operation in which the illumination unit emits light with a second light amount less than the first light amount.
  • the operation control unit sets the operation mode to the first operation mode when the determination unit determines that the detection target exists, and the determination unit sets the detection target Was determined not to exist The case sets the operation mode to the second operation mode.
  • one aspect of the optical position detection system includes: an illumination unit that emits light; and the detection target based on an electrical signal obtained by receiving the light reflected by the detection target on a light receiving surface.
  • a position detection unit for detecting the position of an object a determination unit for determining the presence or absence of the detection target based on a detection result of the position detection unit, and an operation control unit for controlling an operation mode of the optical position detection system
  • the optical position detection system includes a first operation mode and a second operation mode in which a ratio of the irradiation time of the light in the illumination unit in a certain time is smaller than that of the first operation mode.
  • control program is the position of the detection object based on an illumination unit that emits light and an electrical signal obtained by receiving the light reflected by the detection object on a light receiving surface.
  • control program is the position of the detection object based on an illumination unit that emits light and an electrical signal obtained by receiving the light reflected by the detection object on a light receiving surface.
  • one aspect of the distance measurement system includes an illumination unit that emits light, and the distance measurement system based on an electrical signal obtained by receiving the light reflected by the detection target by a light receiving surface.
  • a distance detection unit for detecting a distance to the detection target, a determination unit for determining the presence or absence of the detection target based on a detection result of the distance detection unit, and an operation for controlling an operation mode of the ranging system
  • the distance measuring system includes: a first operation mode in which the illumination unit emits light with a first light amount; and a second operation in which the illumination unit emits light with a second light amount less than the first light amount.
  • the operation control unit sets the operation mode to the first operation mode when the determination unit determines that the detection target exists, and the determination unit detects the detection mode. When it is determined that the object does not exist Sets the operation mode to the second operation mode.
  • one aspect of the distance measurement system includes an illumination unit that emits light, and the distance measurement system based on an electrical signal obtained by receiving the light reflected by the detection target by a light receiving surface.
  • a distance detection unit for detecting a distance to the detection target, a determination unit for determining the presence or absence of the detection target based on a detection result of the distance detection unit, and an operation for controlling an operation mode of the ranging system
  • the distance measuring system has a first operation mode and a second operation mode in which a ratio of the irradiation time of the light in the illumination unit in a certain time is smaller than that of the first operation mode.
  • control program for controlling a ranging system having a distance detecting unit for detecting a distance, wherein (a) presence / absence of the detection object is detected in the ranging system based on a detection result of the distance detecting unit. And (b) when it is determined in step (a) that the detection target exists, the operation mode of the distance measuring system is set, and the illumination unit irradiates light with a first light amount.
  • 2nd operation mode to irradiate light with It is intended for executing a step of setting the mode.
  • control program for controlling a ranging system having a distance detecting unit for detecting a distance, wherein (a) presence / absence of the detection object is detected in the ranging system based on a detection result of the distance detecting unit. And (b) when it is determined in step (a) that the detection target exists, the operation mode of the optical position detection system is set to the irradiation time of the light in the illumination unit.
  • FIG. 1 shows schematic structure of an optical position detection system. It is a figure for demonstrating operation
  • FIG. 1 is a diagram showing a schematic configuration of an optical position detection system 1 according to the present embodiment.
  • the optical position detection system 1 according to the present embodiment optically detects the position of a detection target 60 such as a human hand or a human finger.
  • the optical position detection system 1 may be referred to as “position detection system 1”.
  • the outer shape of the position detection system 1 is a substantially rectangular parallelepiped.
  • the position detection system 1 is provided with a window through which light passes.
  • An illumination unit 2 and a light receiving unit 3 are provided inside the window.
  • the length of the longest side of the outer shape of the position detection system 1 is, for example, about 10 mm.
  • the position detection system 1 is shown in a size larger than the actual size.
  • the shape of the position detection system 1, the illumination part 2, and the light-receiving part 3 shown by FIG. 1 is an example.
  • the shape of the position detection system 1, the illumination part 2, and the light-receiving part 3 is not restricted to the shape shown by FIG.
  • FIG. 2 is a diagram for explaining the operation of the position detection system 1.
  • the light 50 is irradiated from the illumination unit 2 (step S1 in FIG. 2).
  • the light 50 irradiated by the illumination unit 2 is reflected by the detection target 60 and becomes reflected light 51 (step S2 in FIG. 2).
  • the reflected light 51 in step S2 is received by the light receiving unit 3 (step S3 in FIG. 2).
  • the light receiving unit 3 converts the received reflected light 51 into an electric signal such as a current (photoelectric conversion), and outputs the electric signal (step S4 in FIG. 2).
  • the position detection system 1 calculates
  • the position detection system 1 detects the position of the detection target 60 in a non-contact manner. Based on the position of the detection object 60 continuously obtained by the position detection system 1, for example, the movement (gesture) of a human hand is detected without contact.
  • FIG. 3 is a block diagram showing an electrical configuration of the position detection system 1.
  • the position detection system 1 includes an illumination unit 2, a light receiving unit 3, and a control unit 10.
  • the illumination unit 2 has an LED (Light Emitting Diode) 4 that is a light emitting element. It can be said that the illumination part 2 is also an illuminating device.
  • the LED 4 is, for example, an infrared light emitting diode that emits light in the infrared region.
  • the wavelength of the light 50 emitted from the illumination unit 2 (LED 4) only needs to include a wavelength that can be photoelectrically converted by the light receiving unit 3 (that is, a wavelength that can be detected by the light receiving unit 3).
  • the light 50 emitted from the light source may be, for example, light other than the infrared region such as visible light.
  • the LED 4 is an infrared light emitting diode
  • the light 50 emitted from the illuminating unit 2 is not visible to the human eye, so that the use range of the position detection system 1 can be widened.
  • the illumination part 2 is integrated with other components, such as the light-receiving part 3, the illumination part 2 may be provided separately from another component.
  • the light receiving unit 3 is, for example, a quadrant photodiode that is a light receiving element, and includes PDs (Photodiode) 5, 6, 7, and 8.
  • the light receiving unit 3 can also be said to be a light receiving device.
  • the PDs 5 to 8 are formed by dividing a light receiving surface formed on one semiconductor substrate into four.
  • the light receiving unit 3 may not be a divided photodiode.
  • the PDs 5 to 8 are formed on separate semiconductor substrates, for example.
  • FIG. 4 is a view showing a light receiving surface of the light receiving unit 3.
  • PD 5 has a first light receiving surface 15, PD 6 has a second light receiving surface 16, PD 7 has a third light receiving surface 17, and PD 8 has a fourth light receiving surface 18.
  • the PD 5 receives the reflected light 51 on the first light receiving surface 15 and converts the received reflected light 51 into a first electric signal.
  • the PD 6 receives the reflected light 51 at the second light receiving surface 16 and converts it into a second electrical signal
  • the PD 7 receives the reflected light 51 at the third light receiving surface 17 and converts it into a third electrical signal.
  • the PD 8 receives the reflected light 51 on the fourth light receiving surface 18 and converts it into a fourth electric signal.
  • the first, second, third, and fourth electric signals generated by the PDs 5, 6, 7, and 8 are output to the control unit 10.
  • the control unit 10 When it is not necessary to distinguish the first electric signal, the second electric signal, the third electric signal, and the fourth electric signal, each is simply referred to as an “electric signal”.
  • the 1st light-receiving surface 15, the 2nd light-receiving surface 16, the 3rd light-receiving surface 17, and the 4th light-receiving surface 18 are arrange
  • a light receiving surface 14 is formed. More specifically, the first light receiving surface 15, the second light receiving surface 16, the third light receiving surface 17, and the fourth light receiving surface 18 are on the same plane so as to be adjacent to the other two light receiving surfaces. By being arranged around the point 19, one light receiving surface 14 is formed. In the example of FIG. 4, the first light receiving surface 15, the second light receiving surface 16, the third light receiving surface 17, and the fourth light receiving surface 18 are arranged counterclockwise in this order.
  • the plane including the light receiving surface 14 is the xy coordinate plane.
  • the origin of the xy coordinate plane is the reference point 19.
  • the x-axis of the xy coordinate plane passes through the boundary between the first light receiving surface 15 and the fourth light receiving surface 18 and the boundary between the second light receiving surface 16 and the third light receiving surface 17.
  • the y axis of the xy coordinate plane passes through the boundary between the first light receiving surface 15 and the second light receiving surface 16 and the boundary between the third light receiving surface 17 and the fourth light receiving surface 18.
  • the axis in the direction perpendicular to the xy coordinate plane is the z axis.
  • the z coordinate value in the present embodiment is a value corresponding to the distance between the detection target 60 and the light receiving surface 14.
  • the z coordinate value will be described as an example in which the z coordinate value takes a larger value as the detection object 60 is located closer to the light receiving surface 14.
  • the z coordinate value may be set so as to take a larger value as the detection object 60 is located farther from the light receiving surface 14.
  • the light receiving unit 3 may include three PDs or five or more PDs.
  • the shapes and arrangement positions of the first to fourth light receiving surfaces shown in FIG. 4 are also an example.
  • each of the first light receiving surface 15, the second light receiving surface 16, the third light receiving surface 17, and the fourth light receiving surface 18 may have a fan shape and the light receiving surface 14 may have a circular shape.
  • the first light receiving surface 15, the second light receiving surface 16, the third light receiving surface 17, and the fourth light receiving surface 18 are not arranged around the reference point 19 as shown in FIG. You may arrange in a line along a direction. However, in this case, it becomes difficult to detect the position of the detection target 60 in the y-axis direction.
  • the control unit 10 obtains the position of the detection target 60 in the xyz orthogonal coordinate system based on the first to fourth electric signals output from the light receiving unit 3, and outputs a position signal indicating the position. Further, the control unit 10 comprehensively controls the operation of the position detection system 1 according to the position of the detection target 60 obtained based on the first to fourth electric signals.
  • FIG. 5 is a block diagram illustrating a configuration of the control unit 10.
  • the control unit (control circuit) 10 includes a first control unit (first control circuit) 11, a second control unit (second control circuit) 12 that controls the first control unit 11, and have.
  • the first control unit 11 includes an instruction unit 20 and a position detection unit 21.
  • the second control unit 12 includes a determination unit 22 and an operation control unit 23.
  • the first control unit 11 detects the position of the detection target 60 mainly based on a control signal from the second control unit 12. That is, the first control unit 11 functions as a position detection device that detects the position of the detection object 60.
  • the second control unit 12 controls the operation of the position detection system 1 mainly based on the detection result of the position of the detection target 60 in the first control unit 11. That is, the second control unit 12 functions as a control device that controls the operation of the position detection system 1.
  • each of the first control unit 11 and the second control unit 12 is configured by an LSI (Large Scale Integration).
  • the position detection unit 21 detects the position (coordinate value) of the detection target 60 based on the first to fourth electrical signals output from the light receiving unit 3. More specifically, when the magnitudes of the first to fourth electric signals (currents) are A to D, respectively, and the maximum values of the first to fourth electric signals are Amax, Bmax, Cmax and Dmax, respectively.
  • the position detection unit 21 obtains the x-coordinate value x, the y-coordinate value y, and the z-coordinate value z of the detection target 60 using the following formulas (1) to (3).
  • the possible range of the x coordinate value x, the y coordinate value y, and the z coordinate value z is 0 to V REF .
  • 0 and V REF are the minimum value and the maximum value of the output value of the position detection unit 21, respectively.
  • the position detection unit 21 detects (determines) the position of the detection target 60 using the above-described equations (1) to (3).
  • Expressions used for detecting are not limited to this.
  • the position detection unit 21 only needs to be able to detect the position of the detection target 60 based on the electrical signal output from the light receiving unit 3, and the position detection unit 21 according to the number and arrangement position of the PDs constituting the light receiving unit 3.
  • the arithmetic expression used in 21 may be changed as appropriate.
  • the coordinate value of the detection object 60 detected by the position detection unit 21 is output to the outside of the determination unit 22 and the position detection system 1 included in the second control unit 12.
  • the coordinate value output to the outside of the position detection system 1 is used, for example, for detecting a human hand movement (gesture) or a human hand speed.
  • the determination unit 22 determines whether or not the detection target 60 is present based on the coordinate value detected by the position detection unit 21. More specifically, the determination unit 22 determines whether or not the detection target 60 exists based on the z coordinate value output from the position detection unit 21.
  • FIG. 6 is a diagram for explaining the processing in the determination unit 22.
  • the determination unit 22 acquires the z coordinate value detected by the position detection unit 21 (step S10). Then, the determination unit 22 compares the z coordinate value acquired in step S10 with a predetermined threshold value (step S11). For example, when the z coordinate value is larger than a predetermined threshold (Yes in Step S11), the determination unit 22 determines that the detection target 60 is present (Step S12). On the other hand, when the z coordinate value is smaller than the predetermined threshold (No in Step S11), the determination unit 22 determines that the detection target 60 does not exist (Step S13). That is, the determination unit 22 in the present embodiment determines that “the detection target object 60 exists” when the distance between the light receiving surface 14 and the detection target object 60 is shorter than the predetermined distance.
  • the determination unit 22 determines that “the detection target 60 does not exist” when the distance between the light receiving surface 14 and the detection target 60 is longer than a predetermined distance or when the detection target 60 is not detected. .
  • the determination result in the determination unit 22 is output to the operation control unit 23.
  • the predetermined threshold value used for determining whether or not the detection target 60 exists is determined by the environment in which the position detection system 1 is installed, the type of the detection target 60, and the like.
  • the operation control unit 23 generally controls the operation of the position detection system 1 by sending a control signal to the instruction unit 20.
  • the operation control unit 23 uses the determination result output from the determination unit 22 to use the position detection system 1. Set the operation mode. Then, the operation control unit 23 sends a control signal to the instruction unit 20 based on the set operation mode.
  • the operation control unit 23 outputs a control signal for setting the operation mode of the position detection system 1 to the first operation mode when the determination unit 22 determines that the detection target 60 exists. Send it out.
  • the operation control unit 23 sends a control signal for setting the operation mode of the position detection system 1 to the second operation mode. .
  • the second operation mode In the second operation mode in which the detection target 60 does not exist and it is not necessary to perform the process of detecting the position of the detection target 60, the second operation mode needs to perform the process of detecting the position of the detection target 60. The power consumption of the position detection system 1 is reduced. Details of the first operation mode and the second operation mode will be described in detail in first to third embodiments described later.
  • the instruction unit 20 transmits instruction signals to the light receiving unit 3, the illumination unit 2, and the position detection unit 21 based on the control signal transmitted from the operation control unit 23 to control them.
  • the first control unit 11 detects the position of the detection target 60 and outputs the detection result to the second control unit 12.
  • the second control unit 12 sends a control signal to the first control unit 11 based on the detection result of the detection target 60 output from the first control unit 11.
  • the control signal sent from the second control unit 12 to the first control unit 11 includes first to third control signals.
  • FIG. 7 is a diagram mainly illustrating an example of the configuration of the first control unit 11.
  • the first control unit 11 includes an LED driver 41, amplifiers 42a to 42d, an arithmetic unit (arithmetic circuit) 43, and a logic circuit 44.
  • Capacitors 46a to 46d are connected to the amplifiers 42a to 42d, respectively.
  • each is referred to as an “amplifier 42”.
  • an amplifier 42 when it is not necessary to particularly distinguish the capacitors 46a to 46d, each is referred to as a “capacitor 46”.
  • Output terminals 47 a to 47 c are connected to the arithmetic unit 43.
  • each is referred to as an “output terminal 47”.
  • the LED driver 41 causes the LED 4 to emit light by applying a current to the LED 4 constituting the illumination unit 2. Thereby, light 50 is irradiated from LED4.
  • a resistor 45 is connected to the LED driver 41. A current corresponding to the value of the resistor 45 flows through the LED 4.
  • the first to fourth electric signals output from the PDs 5 to 8 of the light receiving unit 3 are input to the amplifiers 42a, 42b, 42c, and 42d, respectively.
  • the amplifiers 42a to 42d amplify and output the input first to fourth electric signals, respectively.
  • each amplifier 42 subtracts the electric signal obtained by subtracting the electric signal accumulated in the capacitor 46 connected to the amplifier 42 from the electric signal output from the PD connected to the amplifier 42. Amplify and output.
  • the computing unit 43 obtains the position of the detection target 60 based on the electrical signal output from each amplifier 42.
  • the light received by the PD when the LED 4 irradiates the light 50 and the reflected light 51 from the detection object 60 enters the PD includes disturbance light such as sunlight in addition to the reflected light 51.
  • Light having the same wavelength as the LED 4 (referred to as “steady light”) is also included. Therefore, if the amplifier 42 amplifies the electric signal output from the PD as it is, an electric signal corresponding to the light in which the steady light and the reflected light 51 are combined is output from the amplifier 42.
  • the computing unit 43 obtains the position of the detection target 60 based on the electrical signal affected by such stationary light, the correct position may not be obtained.
  • an electrical signal output from the PD when the LED 4 (illumination unit 2) is not irradiating the light 50, that is, an electrical signal indicating the intensity of steady light is connected to the PD. It is accumulated in a capacitor 46 connected to the amplifier 42. Then, the amplifier 42, based on the electric signal output from the PD when the LED 4 emits the light 50 and the reflected light 51 from the detection target 60 is present, is stored in the capacitor 46 connected to the amplifier 42. The electric signal obtained by subtracting (electric signal indicating the intensity of stationary light) is amplified and output to the computing unit 43. As a result, the amplifier 42 outputs an electrical signal in which the influence of stationary light is reduced. That is, the corrected electric signal from the PD is output from the amplifier 42. Therefore, the accuracy of the position of the detection target 60 obtained by the calculator 43 is improved.
  • first electric signal means the corrected first electric signal output from the amplifier 42a.
  • second electric signal means a corrected second electric signal output from the amplifier 42b.
  • third electric signal means a corrected third electric signal output from the amplifier 42c.
  • fourth electric signal means the corrected fourth electric signal output from the amplifier 42d.
  • the computing unit 43 uses the electrical signals output from the amplifiers 42a, 42b, 42c, and 42d when the LED 4 is irradiating the light 50, and the above-described equations (1) to (3) to detect objects. 60 positions are detected (obtained).
  • FIG. 8 is a diagram showing the computing unit 43 and the output terminal 47.
  • the computing unit 43 includes an x coordinate value computing unit 31, a y coordinate value computing unit 32, and a z coordinate value computing unit 33.
  • the calculator 43 and the output terminal 47 function as the position detector 21 shown in FIG.
  • the x-coordinate value calculator 31 obtains the x-coordinate value of the detection object 60 using the electrical signals output from the amplifiers 42a to 42d and the above-described equation (1).
  • the x-coordinate value obtained by the x-coordinate value calculator 31 is output from the output terminal 47 a to the outside of the second control unit 12 and the position detection system 1.
  • the y-coordinate value calculator 32 obtains the y-coordinate value of the detection target 60 using the electrical signals output from the amplifiers 42a to 42d and the above-described equation (2).
  • the y coordinate value obtained by the y coordinate value calculator 32 is output from the output terminal 47 b to the outside of the second control unit 12 and the position detection system 1.
  • the z-coordinate value calculator 33 obtains the z-coordinate value of the detection target 60 using the electrical signals output from the amplifiers 42a to 42d and the above-described equation (3).
  • the z coordinate value obtained by the z coordinate value calculator 33 is output from the output terminal 47 c to the outside of the second control unit 12 and the position detection system 1.
  • the logic circuit 44 functions as the instruction unit 20 shown in FIG.
  • the logic circuit 44 sends an instruction signal corresponding to the control signals (first control signal, second control signal, and third control signal) sent from the operation control unit 23 to the LED driver 41, amplifiers 42a, 42b, 42c, and 42d. And to the calculator 43.
  • the second control unit 12 is configured by, for example, a microcontroller (microcomputer) that is a kind of LSI.
  • FIG. 9 is a diagram illustrating a configuration of the second control unit 12.
  • the second control unit 12 includes a CPU (Central Processing Unit) 12a, a storage unit 12b, and the like. Various functions (determination part 22 and operation control part 23) of the 2nd control part 12 are realized when CPU12a runs control program 12c memorized by storage part 12b.
  • the storage unit 12b is configured by a non-transitory recording medium that can be read by the CPU 12a, such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the storage unit 12b may include a computer-readable non-transitory recording medium other than the ROM and the RAM.
  • the circuit configuring the first control unit 11 and the circuit configuring the second control unit 12 may be formed on the same substrate or may be formed on different substrates. Moreover, the 1st control part 11 and the 2nd control part 12 may be accommodated in the same package, and may be accommodated in a different package.
  • first control unit 11 may be provided in the second control unit 12.
  • position controller 21 of the first controller 11 may be provided in the second controller 12.
  • some functions of the second control unit 12 may be provided in the first control unit 11.
  • the determination unit 22 of the second control unit 12 may be provided in the first control unit 11.
  • FIG. 10 is a diagram illustrating an example of a control signal transmitted by the operation control unit 23.
  • FIG. 10 shows a control signal (first control signal, second control signal, and third control signal) sent out by the operation control unit 23, an amplifier 42, a calculator 43 (x coordinate value calculator 31, y coordinate value calculator). 6 types of relationships with the state of the device 32 and the z-coordinate value calculator 33) and the LED driver 41 are shown.
  • Each of the first control signal, the second control signal, and the third control signal is a binary signal, and indicates a signal level of either a high level or a low level.
  • the logic circuit 44 (instruction unit 20) outputs an instruction signal corresponding to a combination of signal levels indicated by the first control signal, the second control signal, and the third control signal output from the operation control unit 23, to the amplifier 42, The data is sent to the calculator 43 and the LED driver 41.
  • the logic circuit 44 includes the amplifier 42 regardless of the signal level of the third control signal. 42 is sent to the x coordinate value calculator 31, and an instruction signal to pause the operation of the x coordinate value calculator 31 is sent to the y coordinate value calculator 32. An instruction signal for stopping the operation of the coordinate value calculator 32 is sent, an instruction signal for stopping the operation of the z coordinate value calculator 33 is sent to the z coordinate value calculator 33, and an LED driver 41 is sent to the LED driver 41. An instruction signal to stop (turn off) the LED 4 (illumination unit 2) is sent. As a result, the operation of the position detection system 1 stops.
  • the logic circuit 44 instruction unit 20 regardless of the signal level of the third control signal.
  • an instruction signal for stopping the operation of the y-coordinate value calculator 32 is sent to the y-coordinate value calculator 32, and the operation of the z-coordinate value calculator 33 is paused to the z-coordinate value calculator 33.
  • the instruction signal is sent to the LED driver 41 to stop (turn off) the LED 4 (illumination unit 2).
  • the combination of the control signals shown in 4 is used when the operation control unit 23 sets the operation mode of the position detection system 1 to the second operation mode based on the determination result output from the determination unit 22. That is, when the second control unit 12 determines that the detection target 60 does not exist, the No. 3 and no.
  • the first to third control signals having the signal levels indicated by 4 are output, and the operation mode of the position detection system 1 is set to the second operation mode.
  • the logic circuit 44 (instruction unit 20) is connected to the amplifier 42. Sends an instruction signal for setting the operation mode of the amplifier 42 to the normal charge mode, sends an instruction signal to the x coordinate value calculator 31 to suspend the operation of the x coordinate value calculator 31, and An instruction signal to stop the operation of the y coordinate value calculator 32 is sent to the value calculator 32, and an instruction signal to stop the operation of the z coordinate value calculator 32 is sent to the z coordinate value calculator 33. Then, the LED driver 41 is sent an instruction signal to stop (turn off) the LED 4 (illumination unit 2).
  • each amplifier 42 When each amplifier 42 is set to the normal charge mode, the electric signal input from the PD connected to the amplifier 42 is stored in the capacitor 46 connected to the amplifier 42 at a normal speed. As a result, the capacitor 46 stores an electrical signal output from the PD when the LED 4 is turned off, that is, an electrical signal indicating the intensity of steady light.
  • the logic circuit 44 (instruction unit 20) is connected to the amplifier 42. Sends an instruction signal to set the operation mode of the amplifier 42 to the amplification mode, sends an instruction signal to stop the operation of the x coordinate value calculator 31 to the x coordinate value calculator 31, and sets the y coordinate value An instruction signal to stop the operation of the y coordinate value calculator 32 is sent to the calculator 32, and the z coordinate value calculator 33 is operated to the z coordinate value calculator 33 (that is, the z coordinate value is detected). An instruction signal indicating that the LED 4 (illumination unit 2) is lit with the second light amount.
  • the second light amount is smaller than the first light amount described later. That is, in this case, the LED driver 41 causes the LED 4 to emit light with a weaker current than when the LED 4 is lit with the first light amount.
  • each amplifier 42 When each amplifier 42 is set to the amplification mode, the electric signal stored in the capacitor connected to the amplifier 42 is subtracted from the electric signal input from the PD connected to the amplifier 42, thereby obtaining Amplified electrical signal is output.
  • Operation control unit 23 is No. First to third control signals shown in FIG.
  • the operation mode of the position detection system 1 is set to the second operation mode by switching and transmitting the first to third control signals shown in 4 at a predetermined cycle. From the operation control unit 23, the No.
  • each amplifier 42 is accumulated in the capacitor 46 from the electrical signal output from the PD when the LED 4 is irradiating light (light 50) with the second light quantity.
  • the electric signal indicating the intensity of the steady light is subtracted, and the electric signal obtained thereby is amplified and output.
  • each amplifier 42 corrects the electrical signal output from the PD when the LED 4 is irradiating the light 50 with the electrical signal indicating the intensity of the steady light, and amplifies the corrected electrical signal. Output. Then, the z-coordinate value calculator 33 obtains the position of the detection target 60 based on the electric signal output from each amplifier 42 in this way. Thereby, the z coordinate value calculator 33 can obtain the z coordinate value of the detection target 60 based on the electric signal indicating the intensity of the reflected light 51 received by each PD.
  • No. in FIG. 5 and no. 6 is used when the operation control unit 23 sets the operation mode of the position detection system 1 to the first operation mode based on the determination result output from the determination unit 22. That is, when the second control unit 12 determines that the detection target 60 is present, the No. 5 and no.
  • the first to third control signals having the signal levels shown in FIG. 6 are output, and the operation mode of the position detection system 1 is set to the first operation mode.
  • the logic circuit 44 (instruction unit 20) includes the amplifier 42, the x coordinate value calculator 31, and the y coordinate value calculator 32. , Z-coordinate value calculator 33 and LED driver 41 are respectively connected to No. 1 in FIG.
  • the instruction signal similar to the instruction signal illustrated in FIG. As a result, no. 3, an electric signal indicating the intensity of steady light is accumulated in the capacitor 46.
  • the logic circuit 44 (instruction unit 20) is connected to the amplifier 42.
  • Sends an instruction signal for setting the operation mode of the amplifier 42 to the amplification mode sends an instruction signal for performing the operation of the x coordinate value calculator 31 to the x coordinate value calculator 31, and calculates the y coordinate value
  • An instruction signal for performing the operation of the y coordinate value calculator 32 is transmitted to the device 32, and an instruction signal for performing the operation of the z coordinate value calculator 33 is transmitted to the z coordinate value calculator 33, and the LED driver.
  • An instruction signal for turning on the LED 4 (illumination unit 2) with the first light amount is sent to 41.
  • the first light amount is larger than the second light amount. That is, in this case, the LED driver 41 causes the LED 4 to emit light with a larger current than when the LED 4 is lit with the second light amount.
  • Operation control unit 23 is No.
  • the operation mode of the position detection system 1 is set to the first operation mode by switching the first to third control signals shown in FIG.
  • each amplifier 42 corrects the electric signal output from the PD when the LED 4 is irradiating light (light 50) with the first light amount with an electric signal indicating the intensity of steady light. Then, the corrected electric signal is amplified and output. Then, the x-coordinate value calculator 31, the y-coordinate value calculator 32, and the z-coordinate value calculator 33 obtain the position of the detection target 60 based on the electrical signal output from each amplifier 42 in this way.
  • FIG. 11 is a diagram illustrating an example of a timing chart of the position detection system 1.
  • FIG. 11 shows the control signal sent from the operation control unit 23 and the outputs (light quantity and coordinate values) of the LED 4 and the calculator 43.
  • the operation control unit 23 displays the No. shown in FIG. 1-No. 6 shows which control signal is being transmitted.
  • the operation control unit 23 displays the No. shown in FIG. 1-No. 6 shows which control signal is being transmitted.
  • two numbers No. 3 and No. 4 are indicated, such as “No. 3 and the control signal shown in No. 3; 4 represents that the control signal shown in FIG. 4 is switched and transmitted at a predetermined cycle.
  • the “first control signal”, “second control signal”, and “third control signal” columns are signals indicated by the first control signal, the second control signal, and the third control signal sent by the operation control unit 23. Represents each level.
  • FIG. 11 shows that the larger the value of the LED light quantity, the more light is emitted from the LED 4. That is, as the value of the LED light quantity is larger, the LED driver 41 lights the LED 4 with a larger current. Further, when the value of the LED light amount is the smallest, the LED 4 is turned off.
  • “And” Lighting with the first light quantity (when the control signal shown in No. 6 is sent) “are shown.
  • the “x coordinate value”, “y coordinate value”, and “z coordinate value” fields are respectively obtained by the calculator 43 (x coordinate value calculator 31, y coordinate value calculator 32, and z coordinate value calculator 33). The coordinate values obtained are shown.
  • a dotted line 61 shown in the column of “z coordinate value” indicates a predetermined threshold value used for determining whether or not the detection target 60 exists.
  • the determination unit 22 determines that the detection target 60 is present when the z coordinate value is larger than the dotted line 61 (predetermined threshold). Conversely, the determination unit 22 determines that the detection target 60 does not exist when the z coordinate value is smaller than the dotted line 61.
  • the operation of the position detection system 1 is paused at first.
  • the first to third control signals output from the operation control unit 23 indicate a low level (control signal indicated by No. 1 in FIG. 10)
  • the LED 4 is turned off, and the computing unit 43 receives each coordinate. The value cannot be obtained.
  • the operation control unit 23 2 When the operation of the position detection system 1 is in a dormant state, for example, when the position detection system 1 receives an instruction to start the operation of the position detection system 1 from the user, the operation control unit 23 2 is transmitted. No. When the control signal shown in FIG. 2 is sent, each amplifier 42 is set to the quick charge mode, and the capacitor 46 rapidly stores an electric signal indicating the intensity of steady light.
  • the operation control unit 23 sets the operation mode of the position detection system 1 to the second operation mode. From the operation control unit 23, the No.
  • the control signal shown in FIG. 4 is transmitted, as described above, the LED 4 is lit with the second light amount smaller than the first light amount, and the x coordinate value calculator 31 and the y coordinate value calculator 32 pause the operation.
  • the z-coordinate value calculator 33 calculates the z-coordinate value.
  • the determination unit 22 determines that the detection target 60 does not exist. In this case, the second operation mode is continued.
  • the z coordinate value obtained for the first time and the second time in the section where the operation mode of the position detection system 1 is set to the second operation mode is based on the dotted line 61 (predetermined threshold value). Small value. Therefore, the second operation mode is continued.
  • the determination unit 22 determines that the detection object 60 exists.
  • the operation control unit 23 sets (changes) the operation mode of the position detection system 1 to the first operation mode.
  • the z coordinate value obtained for the third time in a section where the operation mode of the position detection system 1 is set to the second operation mode is larger than the dotted line 61 (predetermined threshold value). For this reason, the operation mode of the position detection system 1 is changed to the first operation mode.
  • the operation mode of the position detection system 1 is set to the first operation mode, as shown in FIG. 5 and no. 6 is sent out. From the operation control unit 23, the No.
  • the control signal shown in FIG. 6 is sent, as described above, the LED 4 is lit with the first light amount (> second light amount), the x coordinate value calculator 31 calculates the x coordinate value, and y The coordinate value calculator 32 calculates the y coordinate value, and the z coordinate value calculator 33 calculates the z coordinate value.
  • the first operation mode is continued until the z coordinate value calculated by the z coordinate value calculator 33 becomes smaller than the dotted line 61 (predetermined threshold value).
  • the determination unit 22 determines that the detection target 60 does not exist, and the operation control unit 23 according to the determination result. Sets (changes) the operation mode of the position detection system 1 to the second operation mode. Thereafter, similarly, in the position detection system 1, the operation control unit 23 switches between the first operation mode and the second operation mode based on the determination result by the determination unit 22.
  • the illumination unit 2 uses a smaller amount of light (weak light) than when the detection target 60 is present. Irradiate light 50. Therefore, power consumption of the illuminating unit 2 can be reduced as compared with the case where the illuminating unit 2 irradiates the light 50 with a constant light amount regardless of whether or not the detection target 60 exists. As a result, the position detection system 1 can be reduced in power consumption.
  • the position detection system 1 when the detection target 60 does not exist, only the z coordinate value calculator 33 operates in the calculator 43 (that is, only the z coordinate value is obtained).
  • the power consumption of the computing unit 43 can be reduced. That is, the power consumption of the position detection unit 21 can be reduced. As a result, the position detection system 1 can further reduce power consumption.
  • the calculator 43 may obtain not only the z coordinate value but also one of the x coordinate value and the y coordinate value. Even in this case, in the second operation mode, one of the three coordinate values (x coordinate value, y coordinate value, and z coordinate value) cannot be obtained. The power consumption of the detection system 1 can be reduced.
  • the computing unit 43 may obtain all of the x coordinate value, the y coordinate value, and the z coordinate value. Even in this case, it is possible to reduce the power consumption of the position detection system 1 by reducing the amount of the light 50 emitted from the illumination unit 2 in the second operation mode.
  • the z coordinate value may be obtained without reducing the amount of light of the illumination unit 2.
  • the z-coordinate value and one of the x-coordinate value and the y-coordinate value may be obtained without reducing the light amount of the light 50 irradiated by the illumination unit 2. Even in this case, it is possible to reduce the power consumption of the position detection system 1.
  • the z coordinate value calculator 33 is an arithmetic expression represented by the above expression (3). A value obtained by multiplying the obtained value by a predetermined number may be output as the z coordinate value. Therefore, even if it is a case where the illumination part 2 is irradiating with weak light in a 2nd operation mode, a large z coordinate value can be obtained. Therefore, the determination unit 22 can easily determine the presence or absence of the detection target 60.
  • Second Embodiment when the operation mode of the position detection system 1 is set to the second operation mode, the irradiation time of the LED 4 (illumination unit 2) is shortened to reduce the power consumption of the position detection system 1. To do.
  • the remaining configuration of the position detection system 1 in the second embodiment is the same as that in the first embodiment.
  • FIG. 12 is a diagram for explaining the irradiation time of the illumination unit 2 in the present embodiment.
  • the operation mode of the position detection system 1 when the operation mode of the position detection system 1 is set to the second operation mode (that is, when the detection target 60 is not present), the irradiation pattern of the illumination unit 2 and the first operation mode are set.
  • the detection target 60 is present (that is, when the detection target 60 is present).
  • the illumination unit 2 irradiates the light 50 for a time of 2 times, that is, 2a (> a) in a certain time interval P. .
  • the illuminating unit 2 irradiates the light 50 in the time interval P for four times, that is, for 4a. That is, in the present embodiment, the proportion of the irradiation time of the illumination unit 2 in the fixed time (time interval P) is smaller when the detection target 60 is not present than when the detection target 60 is present. It has become.
  • the power consumption of the illumination part 2 is reduced by shortening the irradiation time of LED4 (illumination part 2).
  • the position detection system 1 can be reduced in power consumption.
  • the ratio of the time during which the illumination unit 2 irradiates light in the period in which the illumination unit 2 irradiates the light 50 between the first operation mode and the second operation mode (hereinafter, Simply called “duty ratio”). More specifically, in the example shown in FIG. 12, the irradiation period T2 of the illumination unit 2 at the time of setting the second operation mode is set longer than the irradiation period T1 of the illumination unit 2 at the time of setting the first operation mode. The duty ratio at the time of setting the second operation mode is made smaller than the duty ratio at the time of setting the first operation mode. However, as in the example shown in FIG. 12, it is not always necessary to change both the irradiation cycle and the duty ratio.
  • the ratio of the illumination time of the illumination unit 2 in the fixed time in the second operation mode only needs to be smaller than the ratio of the illumination time of the illumination unit 2 in the fixed time in the first operation mode.
  • the irradiation cycle is constant In this case, only the irradiation time may be changed, or the irradiation time may be constant and only the irradiation period may be changed.
  • FIG. 13 corresponds to FIG. 10 and shows an example of a timing chart of the position detection system 1 in the present embodiment.
  • the calculator 43 displays the coordinate value when the LED 4 is irradiating the light 50. Ask.
  • the duty ratio of the illumination unit 2 when the detection target object 60 does not exist is the same as when the detection target object 60 exists (when the first operation mode is set).
  • the time for the illuminating unit 2 to irradiate the light 50 is shortened (more specifically, the total irradiation time of the illuminating unit 2 within a certain time is shortened). is doing).
  • the power consumption in the illumination unit 2 can be reduced, and the position detection system 1 can be reduced in power consumption.
  • the amount of light 50 irradiated by the illumination unit 2 in the second operation mode is reduced as in the first embodiment, but it may not be reduced. Even in this case, the illumination unit 2 in the second operation mode is set to be shorter than the illumination time in the illumination unit 2 at the time of setting the first operation mode by setting the irradiation time at the illumination unit 2 at the time of setting the second operation mode. 2 can be reduced. In the second operation mode, all of the x coordinate value, the y coordinate value, and the z coordinate value may be obtained as in the first operation mode.
  • the illumination unit 2 in the second operation mode is set to be shorter than the illumination time in the illumination unit 2 at the time of setting the first operation mode by setting the irradiation time at the illumination unit 2 at the time of setting the second operation mode. 2 can be reduced.
  • the calculator 43 (x coordinate value calculator 31, y coordinate value calculator 32, and z coordinate value calculator 33).
  • the calculator 43 Reduces the power consumption of the position detection system 1 by obtaining at least one of the x-coordinate value, the y-coordinate value, and the z-coordinate value in a cycle longer than the cycle in which the LED 4 (illumination unit 2) irradiates the light 50 ing.
  • FIG. 14 is a diagram illustrating an example of coordinate values calculated and output by the position detection unit 21 (the arithmetic unit 43 and the output terminal 47) in the first operation mode.
  • the numbers shown on the horizontal axis in FIG. 14 are determined for convenience, and after the operation mode of the position detection system 1 is set to the first operation mode, the operation control unit 23 sets No. 1 for the first time.
  • the position detector 21 calculates and outputs the x coordinate value and the z coordinate value. Subsequently, No.
  • the position detector 21 calculates and outputs the y coordinate value and the z coordinate value. And No. 3 for the third time.
  • the position detection unit 21 calculates and outputs the x-coordinate value and the z-coordinate value as in the first time.
  • the position detection unit 21 calculates and outputs the y coordinate value and the z coordinate value as in the second time.
  • the position detection unit 21 calculates and outputs “x coordinate value and z coordinate value”.
  • the No When the number of times the control signal shown in FIG. 6 is sent is an even number such as the second time, the fourth time,..., The position detection unit 21 calculates and outputs “y coordinate value and z coordinate value”. In other words, in the example illustrated in FIG. 14, the position detection unit 21 alternately calculates and outputs the x coordinate value and the y coordinate value.
  • the operation control unit 23 sets No.
  • the instruction unit 20 transmits a first instruction signal for calculating the x-coordinate value and the z-coordinate value to the computing unit 43 (more specifically, the x-coordinate value).
  • An instruction signal for performing the operation is sent to the value calculator 31 and the z coordinate value calculator 33, and an instruction signal for stopping the operation is sent to the y coordinate value calculator 32).
  • the instruction unit 20 receives a No. from the operation control unit 23.
  • a second instruction signal for calculating the y coordinate value and the z coordinate value is sent to the computing unit 43 (more specifically, the x coordinate value computing unit).
  • an instruction signal to stop the operation is sent to the y-coordinate value calculator 32 and the z-coordinate value calculator 33. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted. Thereafter, the instructing unit 20 operates in the same manner, and the operation control unit 23 makes a No.
  • the first instruction signal and the second instruction signal are alternately transmitted by transmitting one of the first and second instruction signals every time the control signal shown in FIG. 6 is transmitted.
  • FIG. 15 is a diagram showing a timing chart of the position detection system 1 in the third embodiment. Since the instruction unit 20 alternately sends the first instruction signal and the second instruction signal, as shown in FIG. 15, the computing unit 43 has the x coordinate value, the z coordinate value, the y coordinate value, and the z coordinate value. The coordinate value is obtained alternately. Thereby, in the position detection system 1, each of the x coordinate value and the y coordinate value is obtained at intervals longer than the cycle in which the illumination unit 2 irradiates the light 50.
  • the x-coordinate value and the y-coordinate value that are not used for determining whether or not the detection target 60 exists are longer than the cycle in which the illumination unit 2 irradiates light.
  • the z coordinate value used for determining whether or not the detection object 60 exists is obtained at the same interval as the cycle in which the illumination unit 2 irradiates the light 50.
  • the x coordinate value and the y coordinate value are obtained alternately, but may be obtained at the same timing as shown in FIG.
  • the operation control unit 23 sets No.
  • a first instruction signal for calculating the x coordinate value, the y coordinate value, and the z coordinate value is transmitted to the computing unit 43.
  • the instruction unit 20 receives a No. from the operation control unit 23.
  • a second instruction signal for calculating the z coordinate value is sent to the computing unit 43.
  • the instruction unit 20 receives a No. from the operation control unit 23.
  • the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted.
  • the instruction unit 20 operates in the same manner, and alternately sends the first instruction signal and the second instruction signal.
  • the x coordinate value and the y coordinate value are obtained at intervals longer than the cycle in which the illumination unit 2 emits the light 50.
  • at least one of the x coordinate value, the y coordinate value, and the z coordinate is If the illumination unit 2 is obtained at intervals longer than the period in which the light 50 is irradiated, the position detection system 1 can be reduced in power consumption.
  • FIG. 17 is a diagram illustrating an example of a timing chart of the position detection system 1 when only the x-coordinate value is obtained at an interval longer than the cycle in which the illumination unit 2 irradiates the light 50.
  • the operation control unit 23 sets No.
  • a first instruction signal for calculating the x coordinate value, the y coordinate value, and the z coordinate value is transmitted to the computing unit 43.
  • the instruction unit 20 receives a No. from the operation control unit 23.
  • a second instruction signal for calculating the y coordinate value and the z coordinate value is sent to the computing unit 43.
  • the instruction unit 20 receives a No. from the operation control unit 23.
  • the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted.
  • the instruction unit 20 operates in the same manner, and alternately sends the first instruction signal and the second instruction signal.
  • FIG. 18 is a diagram illustrating an example of a timing chart of the position detection system 1 in a case where only the z coordinate value is obtained at an interval longer than the cycle in which the illumination unit 2 irradiates the light 50.
  • the operation control unit 23 sets No.
  • a first instruction signal for calculating the x coordinate value, the y coordinate value, and the z coordinate value is transmitted to the computing unit 43.
  • the instruction unit 20 receives a No. from the operation control unit 23.
  • a control signal shown in FIG. 6 is newly transmitted, a second instruction signal for calculating the computing unit 43x coordinate value and y coordinate value is transmitted.
  • the instruction unit 20 receives a No. from the operation control unit 23.
  • the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted.
  • the instruction unit 20 operates in the same manner, and alternately sends the first instruction signal and the second instruction signal.
  • FIG. 19 is a diagram illustrating an example of a timing chart of the position detection system 1 when all of the x-coordinate value, the y-coordinate value, and the z-coordinate value are obtained at intervals longer than the cycle in which the illumination unit 2 irradiates the light 50. is there.
  • the operation control unit 23 sets No.
  • a first instruction signal for calculating the x-coordinate value is sent to the computing unit 43.
  • the instruction unit 20 receives a No. from the operation control unit 23.
  • a second instruction signal for calculating the y-coordinate value is sent to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23.
  • a third instruction signal for calculating the z coordinate value is sent to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23.
  • the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted. Thereafter, the instruction unit 20 operates in the same manner, and alternately sends the first instruction signal, the second instruction signal, and the third instruction signal.
  • the x coordinate value, the y coordinate value, and the z coordinate value are all obtained at intervals longer than the period in which the illumination unit 2 irradiates the light 50, and thus consumed by the computing unit 43 (position detection unit 21). Electric power can be greatly reduced.
  • FIG. 20 is a diagram illustrating a configuration of the position detection unit 21 when the arithmetic circuit for obtaining the x coordinate value and the y coordinate value is shared.
  • the first calculator 35 shown in FIG. 20 can obtain both the x coordinate value and the y coordinate value.
  • the calculation formula (1) for calculating the x coordinate value is compared with the calculation formula (2) for calculating the y coordinate value, only one value in the addition formula existing in the numerator is different. It is. In other words, it is common to change whether the fourth electric signal or the second electric signal is input to one input terminal of the two-input adder circuit for obtaining the value of the numerator addition formula.
  • the x-coordinate value and the y-coordinate value can be obtained using the above computing unit (arithmetic circuit).
  • the first calculator 35 shown in FIG. 20 is a calculator common to the x coordinate value and the y coordinate value.
  • the first selector 36 in the first stage of the first computing unit 35 is connected to one input terminal of the 2-input adding circuit for obtaining the value of the numerator addition formula in the first computing unit 35 with respect to the fourth input terminal. It is switched between inputting an electric signal and inputting a second electric signal. That is, the first selector 36 selects the fourth electric signal and inputs it to one input terminal of the adder circuit when the computing unit 43 obtains the x coordinate value. On the other hand, the first selector 36 selects the second electric signal and inputs it to one input terminal of the adder circuit when the calculator 43 obtains the y coordinate value. Note that the first electric signal is input to the other input terminal of the adder circuit.
  • the second selector 37 provided at the subsequent stage of the first calculator 35 outputs the x-coordinate value to the output terminal 47a.
  • the y coordinate value is output, the y coordinate value is output to the output terminal 47b.
  • the configuration of the position detection unit 21 can be simplified by using a common computing unit for obtaining the x coordinate value and the y coordinate value. As a result, it is possible to reduce the area of the circuit that realizes the position detection unit 21 and to reduce the cost of the position detection unit 21.
  • the type of the calculation circuit to be shared is not limited to this.
  • the type of the arithmetic circuit to be shared can be determined according to the arithmetic expression used to obtain each coordinate value. Since a plurality of arithmetic expressions for obtaining at least two coordinate values of the x coordinate value, the y coordinate value, and the z coordinate value are the same as the expressions (1) and (2) only by changing the value to be substituted. If there is, it is possible to use a common computing unit for computing the at least two coordinate values.
  • an output terminal for outputting the x coordinate value and the y coordinate value may be made common.
  • the configuration of the position detection unit 21 can be further simplified.
  • the second selector 38 subsequent to the first calculator 35 and the z-coordinate value calculator 33 outputs the x-coordinate value to the output terminal 47a when the x-coordinate value is output from the first calculator 35. Further, when the y coordinate value is output from the first computing unit 35, the second selector 38 outputs the y coordinate value to the output terminal 47a. Then, when the z coordinate value is output from the z coordinate value calculator 33, the second selector 38 outputs the z coordinate value to the output terminal 47a.
  • the configuration of the position detection unit 21 can be further simplified by using a common output terminal for outputting the x coordinate value, the y coordinate value, and the z coordinate value.
  • FIG. 23 is a diagram illustrating a configuration of the distance measuring system 70.
  • the ranging system 70 includes an illumination unit 2, a light receiving unit 3, and a control unit 10, and detects the distance between the ranging system and the detection target 60.
  • the distance measuring system 70 irradiates the light 50 from the illuminating unit 2, and the light (reflected light 51) reflected by the detection target 60 is received by the light receiving unit 3.
  • the control unit 10 detects the distance between the distance measuring system 70 and the detection target 60 based on the electrical signal obtained by receiving the reflected light 51 by the light receiving unit 3.
  • the distance measurement system 70 is different from the position detection system 1 that detects the position (coordinate value) of the detection object 60 in that the distance between the distance measurement system 70 and the detection object 60 is detected.
  • the distance measuring system 70 is mounted on an imaging device, for example. In the imaging apparatus equipped with the ranging system 70, the detection target 60 is automatically focused based on the distance between the ranging system 70 and the detection target 60 detected by the ranging system 70. be able to.
  • the determination unit 22 determines whether or not the detection target 60 exists based on the distance detected by the distance detection unit 26, not based on the coordinate value.
  • the first control unit 11 having the distance detection unit 26 mainly detects the distance between the ranging system 70 and the detection object 60 based on the control signal from the second control unit 12. That is, the first control unit 11 having the distance detection unit 26 functions as a distance measuring device that detects the distance between the distance measuring system 70 and the detection target 60.
  • the remaining configuration of the ranging system 70 is the same as that of the position detection system 1.
  • the distance detection unit 26 detects the distance between the ranging system 70 and the detection target 60 based on the electrical signal output from the light receiving unit 3. More specifically, the distance detection unit 26 is the time from when the illumination unit 2 irradiates the light 50 to when the light 50 is reflected by the detection target 60 and received by the light receiving unit 3, or the light reception The incident angle or the like of the reflected light 51 received by the unit 3 is obtained using the electrical signal output from the light receiving unit 3 and a predetermined arithmetic expression, and the distance detection unit 26 obtains the obtained time or the Based on the incident angle or the like, the distance between the distance measuring system 70 and the detection object 60 is detected. In the distance detection unit 26, a predetermined arithmetic expression used when calculating the distance between the distance measurement system 70 and the detection target 60 is selected according to the number of PDs constituting the light receiving unit 3, the arrangement position, and the like.
  • FIG. 24 is a diagram illustrating a configuration of the first control unit 11 of the ranging system 70 corresponding to the configuration diagram of the first control unit 11 according to the position detection system 1 illustrated in FIG. 7.
  • the computing unit 43 and the output terminal 47 a function as the distance detection unit 26.
  • the computing unit 43 detects the distance between the distance measuring system 70 and the detection target 60 based on the electrical signals output from the amplifiers 42a, 42b, 42c, and 42d when the LED 4 is irradiating the light 50 ( Ask). Further, since there is only one type of information detected by the calculator 43 (only the distance between the distance measuring system 70 and the detection object 60), the calculator 43 is connected to one output terminal 47a.
  • the distance between the distance measuring system 70 and the detection object 60 detected by the computing unit 43 is output from the output terminal 47a to the outside of the second control unit 12 and the distance measuring system 70.
  • the determination unit 22 of the ranging system 70 determines whether or not the detection target 60 exists based on the distance between the ranging system 70 and the detection target 60 detected by the distance detection unit 26.
  • FIG. 25 is a diagram illustrating processing of the determination unit 22 according to the distance measuring system 70 corresponding to the processing of the determination unit 22 according to the position detection system 1 illustrated in FIG. 6.
  • the determination unit 22 first acquires the distance detected by the distance detection unit 26 (step S20). And the determination part 22 compares the distance acquired by step S20, and a predetermined threshold value (step S21). For example, when the distance acquired in step S20 is larger than a predetermined threshold, that is, when the detection target 60 does not exist within the predetermined distance (Yes in step S11), the determination unit 22 has the detection target 60 present. It is determined not to be performed (step S22). On the other hand, when the distance acquired in step S20 is smaller than the predetermined threshold, that is, when the detection target 60 is within the predetermined distance (No in step S11), the determination unit 22 It determines with the target object 60 existing (step S23). The determination result in the determination unit 22 is output to the operation control unit 23.
  • the operation control unit 23 of the distance measurement system 70 sets the operation mode of the distance measurement system 70 using the determination result output from the determination unit 22, and sends a control signal to the instruction unit 20 based on the operation mode.
  • the ranging system 70 includes a first operation mode that is set when the determination unit 22 determines that the detection target 60 exists, and the determination unit 22, as in the first and second embodiments described above. A second operation mode that is set when it is determined that the detection object 60 does not exist.
  • FIG. 26 is a diagram illustrating an example of a control signal sent out by the operation control unit 23 according to the present modification corresponding to the control signal sent out by the operation control unit 23 of the position detection system 1 shown in FIG.
  • the computing unit 43 As described above, only the distance between the distance measuring system 70 and the detection object 60 is output from the computing unit 43 according to this modification. Therefore, unlike the first embodiment, even when the detection object 60 does not exist (when the operation mode of the distance measuring system 70 is set to the second operation mode), it is detected by the computing unit 43. The type of information does not change. That is, as shown in FIG. 26, the computing unit 43 according to this modification example, regardless of whether the operation mode of the distance measuring system 70 is set to the first operation mode or the second operation mode. When the LED 4 (illumination unit 2) irradiates the light 50, the distance between the distance measuring system 70 and the detection target 60 is detected.
  • the LED driver 41 is similar to the above-described first embodiment. 2 is turned on with weak light (second light amount less than the first light amount). Therefore, the power consumption of the illumination unit 2 can be reduced as compared with the case where the light 50 is irradiated with a constant light amount regardless of the presence or absence of the detection target 60. As a result, the distance measurement system 70 can be reduced in power consumption.
  • the calculator 43 calculates the distance measurement system 70 obtained based on the electrical signal from the amplifier 42.
  • a value obtained by multiplying the distance to the detection target 60 by a predetermined number may be output as the distance between the distance measurement system 70 and the detection target 60.
  • the distance measuring system 70 is shortened by shortening the irradiation time of the LED 4 (illumination unit 2) as in the second embodiment.
  • the power consumption may be reduced.
  • the irradiation time of the illumination unit 2 can be changed by changing at least one of the irradiation period and the duty ratio.
  • the distance measurement system 70 can be reduced in power consumption.
  • the light amount of the light 50 emitted from the illumination unit 2 in the second operation mode may or may not be reduced. Even when the amount of light 50 emitted by the illumination unit 2 is not reduced, the irradiation time in the illumination unit 2 when the second operation mode is set is longer than the irradiation time in the illumination unit 2 when the first operation mode is set. By shortening, it is possible to reduce the power consumption of the illumination unit 2 in the second operation mode.

Abstract

Disclosed is an optical position detection system, wherein a position detection unit detects the position of a subject to be detected, said position being detected on the basis of electrical signals obtained by receiving, by means of a light receiving surface, light which has been radiated from the irradiation unit, and is reflected by means of the subject. A determining unit determines whether there is the subject or not on the basis of detection results obtained from the position detection unit. An operation control unit controls operation mode of the optical position detection system. The optical position detection system has: first operation mode, in which a lighting unit radiates light with a first light quantity; and second operation mode, in which the lighting unit radiates light with a second light quantity that is smaller than the first light quantity. In the cases where the determining unit determines that there is the subject, the operation control unit sets the operation mode to the first operation mode, and in the cases where the determining unit determines that there is no subject, the operation control unit sets the operation mode to the second operation mode.

Description

光学的位置検出システム、制御装置、位置検出装置、制御プログラムおよび測距システムOptical position detection system, control device, position detection device, control program, and ranging system
 本発明は、光学検出技術に関する。 The present invention relates to an optical detection technique.
 従来から様々な光学検出技術が提案されている。特許文献1には、検知対象物の位置を光学的に検出するシステムが提案されている。 Conventionally, various optical detection techniques have been proposed. Patent Document 1 proposes a system for optically detecting the position of a detection object.
特開2013-88122号公報JP 2013-88122 A
 さて、光学検出技術が使用されたシステムについては、低消費電力化が望まれる。 Now, for systems using optical detection technology, low power consumption is desired.
 そこで、本発明は上述した点に鑑みて成されたものであり、光学検出技術が使用されたシステムを低消費電力化することを可能とする技術を提供することを目的とする。 Therefore, the present invention has been made in view of the above points, and an object of the present invention is to provide a technique capable of reducing the power consumption of a system using an optical detection technique.
 光学的位置検出システムの一態様は、光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物の位置を検出する位置検出部と、前記位置検出部での検出結果に基づいて前記検知対象物の有無を判定する判定部と、前記光学的位置検出システムの動作モードを制御する動作制御部とを備え、前記光学的位置検出システムは、前記照明部が第1光量で光を照射する第1動作モードと、前記照明部が前記第1光量よりも少ない第2光量で光を照射する第2動作モードとを有し、前記動作制御部は、前記判定部で前記検知対象物が存在すると判定された場合には前記動作モードを前記第1動作モードに設定し、前記判定部で前記検知対象物が存在しないと判定された場合には前記動作モードを前記第2動作モードに設定する。 One aspect of the optical position detection system includes: an illumination unit that emits light; and an electric signal obtained by receiving the light reflected by the detection object on a light receiving surface, and A position detection unit that detects a position; a determination unit that determines presence / absence of the detection target based on a detection result of the position detection unit; and an operation control unit that controls an operation mode of the optical position detection system. The optical position detection system includes: a first operation mode in which the illumination unit emits light with a first light amount; and a second operation in which the illumination unit emits light with a second light amount less than the first light amount. The operation control unit sets the operation mode to the first operation mode when the determination unit determines that the detection target exists, and the determination unit sets the detection target Was determined not to exist The case sets the operation mode to the second operation mode.
 また、光学的位置検出システムの一態様は、光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物の位置を検出する位置検出部と、前記位置検出部での検出結果に基づいて前記検知対象物の有無を判定する判定部と、前記光学的位置検出システムの動作モードを制御する動作制御部とを備え、前記光学的位置検出システムは、第1動作モードと、前記照明部での前記光の照射時間が一定時間において占める割合が当該第1動作モードよりも小さい第2動作モードとを有し、前記動作制御部は、前記判定部で前記検知対象物が存在すると判定された場合には前記動作モードを前記第1動作モードに設定し、前記判定部で前記検知対象物が存在しないと判定された場合には前記動作モードを前記第2動作モードに設定する。 Further, one aspect of the optical position detection system includes: an illumination unit that emits light; and the detection target based on an electrical signal obtained by receiving the light reflected by the detection target on a light receiving surface. A position detection unit for detecting the position of an object, a determination unit for determining the presence or absence of the detection target based on a detection result of the position detection unit, and an operation control unit for controlling an operation mode of the optical position detection system The optical position detection system includes a first operation mode and a second operation mode in which a ratio of the irradiation time of the light in the illumination unit in a certain time is smaller than that of the first operation mode. When the determination unit determines that the detection target exists, the operation control unit sets the operation mode to the first operation mode, and the determination unit determines that the detection target does not exist. Judged Sets the operation mode to the second operation mode when the.
 また、制御プログラムの一態様は、光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物の位置を検出する位置検出部とを有する光学的位置検出システムを制御するための制御プログラムであって、前記光学的位置検出システムに、(a)前記位置検出部での検出結果に基づいて前記検知対象物の有無を判定する工程と、(b)前記工程(a)で前記検知対象物が存在すると判定された場合に、前記光学的位置検出システムの動作モードを、前記照明部が第1光量で光を照射する第1動作モードに設定する工程と、(c)前記工程(a)で前記検知対象物が存在しないと判定された場合に、前記動作モードを、前記照明が前記第1光量よりも少ない第2光量で光を照射する第2動作モードに設定する工程とを実行させるためのものである。 Further, one aspect of the control program is the position of the detection object based on an illumination unit that emits light and an electrical signal obtained by receiving the light reflected by the detection object on a light receiving surface. A control program for controlling an optical position detection system having a position detection unit for detecting the position of the optical position detection system, wherein the optical position detection system includes: (a) the detection target based on a detection result of the position detection unit; A step of determining the presence / absence of an object; and (b) when it is determined in step (a) that the detection target exists, the operation mode of the optical position detection system is set so that the illuminating unit uses the first light amount. A step of setting to a first operation mode for irradiating light; and (c) when it is determined in step (a) that the detection target does not exist, the operation mode is changed from the first light amount to the illumination mode. Less second light In is intended for executing a step of setting the second operating mode for emitting light.
 また、制御プログラムの一態様は、光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物の位置を検出する位置検出部とを有する光学的位置検出システムを制御するための制御プログラムであって、前記光学的位置検出システムに、(a)前記位置検出部での検出結果に基づいて前記検知対象物の有無を判定する工程と、(b)前記工程(a)で前記検知対象物が存在すると判定された場合に、前記光学的位置検出システムの動作モードを、前記照明部での前記光の照射時間が一定時間において占める割合が第1の割合となる第1動作モードに設定する工程と、(c)前記工程(a)で前記検知対象物が存在しないと判定された場合に、前記動作モードを、前記照明部での前記光の照射時間が前記一定時間において占める割合が前記第1の割合よりも小さい第2の割合となる第2動作モードに設定する工程とを実行させるためのものである。 Further, one aspect of the control program is the position of the detection object based on an illumination unit that emits light and an electrical signal obtained by receiving the light reflected by the detection object on a light receiving surface. A control program for controlling an optical position detection system having a position detection unit for detecting the position of the optical position detection system, wherein the optical position detection system includes: (a) the detection target based on a detection result of the position detection unit; A step of determining the presence or absence of an object, and (b) when it is determined in step (a) that the detection target exists, the operation mode of the optical position detection system is set to the light of the illumination unit. A step of setting the first operation mode in which the ratio of the irradiation time in a fixed time is a first rate; and (c) the operation when it is determined in step (a) that the detection target does not exist Mode It is intended for executing a step of setting the second operation mode in which a second proportion of the ratio of the irradiation time occupied in the certain time of the light is smaller than the first rate in the illumination unit.
 また、測距システムの一態様は、光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記測距システムと前記検知対象物との距離を検出する距離検出部と、前記距離検出部での検出結果に基づいて前記検知対象物の有無を判定する判定部と、前記測距システムの動作モードを制御する動作制御部とを備え、前記測距システムは、前記照明部が第1光量で光を照射する第1動作モードと、前記照明部が前記第1光量よりも少ない第2光量で光を照射する第2動作モードとを有し、前記動作制御部は、前記判定部で前記検知対象物が存在すると判定された場合には前記動作モードを前記第1動作モードに設定し、前記判定部で前記検知対象物が存在しないと判定された場合には前記動作モードを前記第2動作モードに設定する。 Further, one aspect of the distance measurement system includes an illumination unit that emits light, and the distance measurement system based on an electrical signal obtained by receiving the light reflected by the detection target by a light receiving surface. A distance detection unit for detecting a distance to the detection target, a determination unit for determining the presence or absence of the detection target based on a detection result of the distance detection unit, and an operation for controlling an operation mode of the ranging system The distance measuring system includes: a first operation mode in which the illumination unit emits light with a first light amount; and a second operation in which the illumination unit emits light with a second light amount less than the first light amount. The operation control unit sets the operation mode to the first operation mode when the determination unit determines that the detection target exists, and the determination unit detects the detection mode. When it is determined that the object does not exist Sets the operation mode to the second operation mode.
 また、測距システムの一態様は、光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記測距システムと前記検知対象物との距離を検出する距離検出部と、前記距離検出部での検出結果に基づいて前記検知対象物の有無を判定する判定部と、前記測距システムの動作モードを制御する動作制御部とを備え、前記測距システムは、第1動作モードと、前記照明部での前記光の照射時間が一定時間において占める割合が当該第1動作モードよりも小さい第2動作モードとを有し、前記動作制御部は、前記判定部で前記検知対象物が存在すると判定された場合には前記動作モードを前記第1動作モードに設定し、前記判定部で前記検知対象物が存在しないと判定された場合には前記動作モードを前記第2動作モードに設定する。 Further, one aspect of the distance measurement system includes an illumination unit that emits light, and the distance measurement system based on an electrical signal obtained by receiving the light reflected by the detection target by a light receiving surface. A distance detection unit for detecting a distance to the detection target, a determination unit for determining the presence or absence of the detection target based on a detection result of the distance detection unit, and an operation for controlling an operation mode of the ranging system And the distance measuring system has a first operation mode and a second operation mode in which a ratio of the irradiation time of the light in the illumination unit in a certain time is smaller than that of the first operation mode. When the determination unit determines that the detection target exists, the operation control unit sets the operation mode to the first operation mode, and the determination unit determines that the detection target does not exist. If judged Setting the operation mode to the second operation mode.
 また、制御プログラムの一態様は、光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物からの距離を検出する距離検出部とを有する測距システムを制御するための制御プログラムであって、前記測距システムに、(a)前記距離検出部での検出結果に基づいて前記検知対象物の有無を判定する工程と、(b)前記工程(a)で前記検知対象物が存在すると判定された場合に、前記測距システムの動作モードを、前記照明部が第1光量で光を照射する第1動作モードに設定する工程と、(c)前記工程(a)で前記検知対象物が存在しないと判定された場合に、前記動作モードを、前記照明が前記第1光量よりも少ない第2光量で光を照射する第2動作モードに設定する工程とを実行させるためのものである。 Further, one aspect of the control program is that an illumination unit that irradiates light and an electric signal obtained by receiving the light reflected by the detection target on the light receiving surface, from the detection target A control program for controlling a ranging system having a distance detecting unit for detecting a distance, wherein (a) presence / absence of the detection object is detected in the ranging system based on a detection result of the distance detecting unit. And (b) when it is determined in step (a) that the detection target exists, the operation mode of the distance measuring system is set, and the illumination unit irradiates light with a first light amount. A step of setting to one operation mode; and (c) a second light amount in which the illumination is less than the first light amount when it is determined in step (a) that the detection object does not exist. 2nd operation mode to irradiate light with It is intended for executing a step of setting the mode.
 また、制御プログラムの一態様は、光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物からの距離を検出する距離検出部とを有する測距システムを制御するための制御プログラムであって、前記測距システムに、(a)前記距離検出部での検出結果に基づいて前記検知対象物の有無を判定する工程と、(b)前記工程(a)で前記検知対象物が存在すると判定された場合に、前記光学的位置検出システムの動作モードを、前記照明部での前記光の照射時間が一定時間において占める割合が第1の割合となる第1動作モードに設定する工程と、(c)前記工程(a)で前記検知対象物が存在しないと判定された場合に、前記動作モードを、前記照明部での前記光の照射時間が前記一定時間において占める割合が前記第1の割合よりも小さい第2の割合となる第2動作モードに設定する工程とを実行させるためのものである。 Further, one aspect of the control program is that an illumination unit that irradiates light and an electric signal obtained by receiving the light reflected by the detection target on the light receiving surface, from the detection target A control program for controlling a ranging system having a distance detecting unit for detecting a distance, wherein (a) presence / absence of the detection object is detected in the ranging system based on a detection result of the distance detecting unit. And (b) when it is determined in step (a) that the detection target exists, the operation mode of the optical position detection system is set to the irradiation time of the light in the illumination unit. A step of setting to a first operation mode in which a proportion occupied in a certain time is a first proportion; and (c) when it is determined in step (a) that the detection target does not exist, the operation mode is In the lighting section Irradiation time of the serial light is intended for executing a step of setting the second mode of operation the proportion in the certain time is the first second rate smaller than a rate of.
 システムを低消費電力化することができる。 ・ The power consumption of the system can be reduced.
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
光学的位置検出システムの概略的な構成を示す図である。It is a figure which shows schematic structure of an optical position detection system. 光学的位置検出システムの動作を説明するための図である。It is a figure for demonstrating operation | movement of an optical position detection system. 光学的位置検出システムの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of an optical position detection system. 受光部の一例を示す図である。It is a figure which shows an example of a light-receiving part. 制御部の機能的な構成を示す図である。It is a figure which shows the functional structure of a control part. 判定部の処理を説明するための図である。It is a figure for demonstrating the process of a determination part. 第1制御部の構成を示す図である。It is a figure which shows the structure of a 1st control part. 演算器および出力端子を示す図である。It is a figure which shows a computing unit and an output terminal. 第2制御部の構成を示す図である。It is a figure which shows the structure of a 2nd control part. 動作制御部が送出する制御信号の一例を示す図である。It is a figure which shows an example of the control signal which an operation control part sends out. 第一実施形態に係る光学的位置検出システムのタイミングチャートを示す図である。It is a figure which shows the timing chart of the optical position detection system which concerns on 1st embodiment. 第二実施形態の概要を説明するための図である。It is a figure for demonstrating the outline | summary of 2nd embodiment. 第二実施形態に係る光学的位置検出システムのタイミングチャートを示す図である。It is a figure which shows the timing chart of the optical position detection system which concerns on 2nd embodiment. 第三実施形態の概要を説明するための図である。It is a figure for demonstrating the outline | summary of 3rd embodiment. 第三実施形態に係る光学的位置検出システムのタイミングチャートを示す図である。It is a figure which shows the timing chart of the optical position detection system which concerns on 3rd embodiment. 第三実施形態に係る光学的位置検出システムのタイミングチャートを示す図である。It is a figure which shows the timing chart of the optical position detection system which concerns on 3rd embodiment. 第三実施形態に係る光学的位置検出システムのタイミングチャートを示す図である。It is a figure which shows the timing chart of the optical position detection system which concerns on 3rd embodiment. 第三実施形態に係る光学的位置検出システムのタイミングチャートを示す図である。It is a figure which shows the timing chart of the optical position detection system which concerns on 3rd embodiment. 第三実施形態に係る光学的位置検出システムのタイミングチャートを示す図である。It is a figure which shows the timing chart of the optical position detection system which concerns on 3rd embodiment. 第三実施形態変形例に係る演算器及び出力端子を示す図である。It is a figure which shows the calculator and output terminal which concern on 3rd embodiment modification. 第三実施形態変形例に係る演算器及び出力端子を示す図である。It is a figure which shows the calculator and output terminal which concern on 3rd embodiment modification. 第三実施形態変形例に係る演算器及び出力端子を示す図である。It is a figure which shows the calculator and output terminal which concern on 3rd embodiment modification. 測距システムに係る電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure which concerns on a ranging system. 第1制御部の構成を示す図である。It is a figure which shows the structure of a 1st control part. 判定部の処理を説明するための図である。It is a figure for demonstrating the process of a determination part. 動作制御部が送出する制御信号の一例を示す図である。It is a figure which shows an example of the control signal which an operation control part sends out.
 <<光学的位置検出システムの概要>>
 まず、後述する第一~第三実施形態に共通する光学的位置検出システム1の構成について説明する。図1は、本実施の形態に係る光学的位置検出システム1の概略的な構成を示す図である。本実施の形態に係る光学的位置検出システム1は、例えば人の手あるいは人の指などの検知対象物60の位置を光学的に検出する。以後、光学的位置検出システム1を「位置検出システム1」と呼ぶことがある。
<< Overview of optical position detection system >>
First, the configuration of the optical position detection system 1 common to the first to third embodiments described later will be described. FIG. 1 is a diagram showing a schematic configuration of an optical position detection system 1 according to the present embodiment. The optical position detection system 1 according to the present embodiment optically detects the position of a detection target 60 such as a human hand or a human finger. Hereinafter, the optical position detection system 1 may be referred to as “position detection system 1”.
 図1に示されるように、位置検出システム1の外形は、略直方体を成している。位置検出システム1には、光が透過する窓が設けられている。その窓の内側には、照明部2と受光部3とが設けられている。位置検出システム1の外形の最長の一辺の長さは、例えば10mm程度の長さである。 As shown in FIG. 1, the outer shape of the position detection system 1 is a substantially rectangular parallelepiped. The position detection system 1 is provided with a window through which light passes. An illumination unit 2 and a light receiving unit 3 are provided inside the window. The length of the longest side of the outer shape of the position detection system 1 is, for example, about 10 mm.
 なお図1では、便宜上、実際よりも大きいサイズで位置検出システム1が示されている。また、図1に示される位置検出システム1、照明部2および受光部3の形状は一例である。位置検出システム1、照明部2および受光部3の形状は、図1に示される形状に限られない。 In FIG. 1, for convenience, the position detection system 1 is shown in a size larger than the actual size. Moreover, the shape of the position detection system 1, the illumination part 2, and the light-receiving part 3 shown by FIG. 1 is an example. The shape of the position detection system 1, the illumination part 2, and the light-receiving part 3 is not restricted to the shape shown by FIG.
 次に、位置検出システム1の概略的な動作について、図1,2を参照しながら説明する。図2は、位置検出システム1の動作を説明するための図である。 Next, a schematic operation of the position detection system 1 will be described with reference to FIGS. FIG. 2 is a diagram for explaining the operation of the position detection system 1.
 まず、照明部2から光50が照射される(図2のステップS1)。照明部2が照射する光50は、検知対象物60で反射して反射光51となる(図2のステップS2)。そして、ステップS2における反射光51が、受光部3で受光される(図2のステップS3)。その後、受光部3は、受光した反射光51を例えば電流といった電気信号に変換(光電変換)し、当該電気信号を出力する(図2のステップS4)。そして、位置検出システム1は、受光部3から出力された電気信号に基づいて、検知対象物60の位置を求める(図2のステップS5)。 First, the light 50 is irradiated from the illumination unit 2 (step S1 in FIG. 2). The light 50 irradiated by the illumination unit 2 is reflected by the detection target 60 and becomes reflected light 51 (step S2 in FIG. 2). Then, the reflected light 51 in step S2 is received by the light receiving unit 3 (step S3 in FIG. 2). Thereafter, the light receiving unit 3 converts the received reflected light 51 into an electric signal such as a current (photoelectric conversion), and outputs the electric signal (step S4 in FIG. 2). And the position detection system 1 calculates | requires the position of the detection target object 60 based on the electrical signal output from the light-receiving part 3 (step S5 of FIG. 2).
 このように、本実施形態に係る位置検出システム1は、検知対象物60の位置を非接触で検出する。位置検出システム1で連続的に求められる検知対象物60の位置に基づいて、例えば、人の手の動き(ジェスチャー)が非接触で検知される。 As described above, the position detection system 1 according to this embodiment detects the position of the detection target 60 in a non-contact manner. Based on the position of the detection object 60 continuously obtained by the position detection system 1, for example, the movement (gesture) of a human hand is detected without contact.
 <光学的位置検出システムの電気的構成について>
 図3は、位置検出システム1の電気的構成を示すブロック図である。図3に示されるように、位置検出システム1には、照明部2と、受光部3と、制御部10とが設けられている。
<About the electrical configuration of the optical position detection system>
FIG. 3 is a block diagram showing an electrical configuration of the position detection system 1. As shown in FIG. 3, the position detection system 1 includes an illumination unit 2, a light receiving unit 3, and a control unit 10.
 照明部2は、発光素子であるLED(Light Emitting Diode)4を有している。照明部2は照明装置とも言える。LED4は、例えば、赤外領域の光を照射する赤外発光ダイオードである。ただし、照明部2(LED4)から照射される光50の波長は、受光部3で光電変換可能な波長(つまり、受光部3で検出可能な波長)が含まれていればよく、照明部2から照射される光50は、例えば、可視光等の赤外領域以外の光であってもよい。LED4が赤外発光ダイオードである場合には、照明部2から照射される光50は人の目には見えないため、位置検出システム1の利用範囲を広くすることができる。また、本実施の形態では、照明部2は受光部3等の他の構成要素と一体となっているが、照明部2は他の構成要素と別体として設けられてもよい。 The illumination unit 2 has an LED (Light Emitting Diode) 4 that is a light emitting element. It can be said that the illumination part 2 is also an illuminating device. The LED 4 is, for example, an infrared light emitting diode that emits light in the infrared region. However, the wavelength of the light 50 emitted from the illumination unit 2 (LED 4) only needs to include a wavelength that can be photoelectrically converted by the light receiving unit 3 (that is, a wavelength that can be detected by the light receiving unit 3). The light 50 emitted from the light source may be, for example, light other than the infrared region such as visible light. When the LED 4 is an infrared light emitting diode, the light 50 emitted from the illuminating unit 2 is not visible to the human eye, so that the use range of the position detection system 1 can be widened. Moreover, in this Embodiment, although the illumination part 2 is integrated with other components, such as the light-receiving part 3, the illumination part 2 may be provided separately from another component.
 受光部3は、例えば、受光素子である4分割フォトダイオードであって、PD(Photodiode)5,6,7,8を有している。受光部3は受光装置とも言える。PD5~8は、1つの半導体基板上に形成された受光面が4つに分割されることによって形成されている。なお、受光部3は分割フォトダイオードでなくてもよい。この場合には、PD5~8は、例えば、別々の半導体基板上に形成される。 The light receiving unit 3 is, for example, a quadrant photodiode that is a light receiving element, and includes PDs (Photodiode) 5, 6, 7, and 8. The light receiving unit 3 can also be said to be a light receiving device. The PDs 5 to 8 are formed by dividing a light receiving surface formed on one semiconductor substrate into four. The light receiving unit 3 may not be a divided photodiode. In this case, the PDs 5 to 8 are formed on separate semiconductor substrates, for example.
 図4は受光部3の受光面を示す図である。PD5は第1受光面15を有しており、PD6は第2受光面16を有しており、PD7は第3受光面17を有しており、PD8は第4受光面18を有している。PD5は、第1受光面15で反射光51を受光し、受光した反射光51を第1電気信号に変換する。同様に、PD6は、第2受光面16で反射光51を受光して第2電気信号に変換し、PD7は第3受光面17で反射光51を受光して第3電気信号に変換し、PD8は第4受光面18で反射光51を受光して第4電気信号に変換する。PD5,6,7,8でそれぞれ生成された第1,2,3,4電気信号は、制御部10に出力される。以後、第1電気信号、第2電気信号、第3電気信号および第4電気信号を特に区別する必要がない場合には、それぞれを単に「電気信号」と呼ぶ。 FIG. 4 is a view showing a light receiving surface of the light receiving unit 3. PD 5 has a first light receiving surface 15, PD 6 has a second light receiving surface 16, PD 7 has a third light receiving surface 17, and PD 8 has a fourth light receiving surface 18. Yes. The PD 5 receives the reflected light 51 on the first light receiving surface 15 and converts the received reflected light 51 into a first electric signal. Similarly, the PD 6 receives the reflected light 51 at the second light receiving surface 16 and converts it into a second electrical signal, and the PD 7 receives the reflected light 51 at the third light receiving surface 17 and converts it into a third electrical signal. The PD 8 receives the reflected light 51 on the fourth light receiving surface 18 and converts it into a fourth electric signal. The first, second, third, and fourth electric signals generated by the PDs 5, 6, 7, and 8 are output to the control unit 10. Hereinafter, when it is not necessary to distinguish the first electric signal, the second electric signal, the third electric signal, and the fourth electric signal, each is simply referred to as an “electric signal”.
 図4に示されるように、第1受光面15、第2受光面16、第3受光面17および第4受光面18が同一平面上に配置されることで、受光部3全体での1つの受光面14が形成されている。より具体的には、第1受光面15、第2受光面16、第3受光面17および第4受光面18は、それぞれが他の2つの受光面と隣接するように、同一平面上において基準点19の周りに配置されることで、1つの受光面14を形成している。図4の例では、第1受光面15、第2受光面16、第3受光面17および第4受光面18が、この順で反時計回りに配置されている。 As FIG. 4 shows, the 1st light-receiving surface 15, the 2nd light-receiving surface 16, the 3rd light-receiving surface 17, and the 4th light-receiving surface 18 are arrange | positioned on the same plane. A light receiving surface 14 is formed. More specifically, the first light receiving surface 15, the second light receiving surface 16, the third light receiving surface 17, and the fourth light receiving surface 18 are on the same plane so as to be adjacent to the other two light receiving surfaces. By being arranged around the point 19, one light receiving surface 14 is formed. In the example of FIG. 4, the first light receiving surface 15, the second light receiving surface 16, the third light receiving surface 17, and the fourth light receiving surface 18 are arranged counterclockwise in this order.
 本実施の形態では、図4に示されるように、受光面14を含む平面がxy座標平面とされている。xy座標平面の原点は基準点19となっている。xy座標平面のx軸は、第1受光面15及び第4受光面18の境界と第2受光面16及び第3受光面17の境界とを通る。xy座標平面のy軸は、第1受光面15及び第2受光面16の境界と第3受光面17及び第4受光面18の境界とを通る。さらに、本実施の形態では、xy座標平面に垂直な方向の軸がz軸とされている。位置検出システム1では、x軸、y軸及びz軸から成るxyz直交座標系での検知対象物の位置が検出される。本実施の形態におけるz座標値は、検知対象物60と受光面14との距離に応じた値となる。なお、以下の説明では、z座標値は検知対象物60が受光面14から近い位置に存在する程大きい値を取る場合を例に挙げて説明する。しかし、z座標値は、検知対象物60が受光面14から遠い位置に存在する程大きい値を取るように設定されてもよい。 In the present embodiment, as shown in FIG. 4, the plane including the light receiving surface 14 is the xy coordinate plane. The origin of the xy coordinate plane is the reference point 19. The x-axis of the xy coordinate plane passes through the boundary between the first light receiving surface 15 and the fourth light receiving surface 18 and the boundary between the second light receiving surface 16 and the third light receiving surface 17. The y axis of the xy coordinate plane passes through the boundary between the first light receiving surface 15 and the second light receiving surface 16 and the boundary between the third light receiving surface 17 and the fourth light receiving surface 18. Furthermore, in the present embodiment, the axis in the direction perpendicular to the xy coordinate plane is the z axis. In the position detection system 1, the position of the detection target in the xyz orthogonal coordinate system including the x axis, the y axis, and the z axis is detected. The z coordinate value in the present embodiment is a value corresponding to the distance between the detection target 60 and the light receiving surface 14. In the following description, the z coordinate value will be described as an example in which the z coordinate value takes a larger value as the detection object 60 is located closer to the light receiving surface 14. However, the z coordinate value may be set so as to take a larger value as the detection object 60 is located farther from the light receiving surface 14.
 また、本実施の形態では、受光部3が4つのPDを有する場合について説明するが、PDの数はこれに限られない。受光部3は、例えば、3つのPDを有していてもよいし、5つ以上のPDを有していてもよい。また、図4に示される、第1乃至第4受光面の形状及び配置位置も一例である。例えば、第1受光面15、第2受光面16、第3受光面17および第4受光面18のそれぞれの形状が扇形であって、受光面14の形状が円形であってもよい。また、第1受光面15、第2受光面16、第3受光面17および第4受光面18を、図4に示されるように基準点19の周りに配置するのではなく、例えば、x軸方向に沿って一列に並べてもよい。ただしこの場合は、y軸方向での検知対象物60の位置の検出が難しくなる。 In the present embodiment, the case where the light receiving unit 3 has four PDs will be described, but the number of PDs is not limited to this. For example, the light receiving unit 3 may include three PDs or five or more PDs. Further, the shapes and arrangement positions of the first to fourth light receiving surfaces shown in FIG. 4 are also an example. For example, each of the first light receiving surface 15, the second light receiving surface 16, the third light receiving surface 17, and the fourth light receiving surface 18 may have a fan shape and the light receiving surface 14 may have a circular shape. Further, the first light receiving surface 15, the second light receiving surface 16, the third light receiving surface 17, and the fourth light receiving surface 18 are not arranged around the reference point 19 as shown in FIG. You may arrange in a line along a direction. However, in this case, it becomes difficult to detect the position of the detection target 60 in the y-axis direction.
 制御部10は、受光部3から出力される第1乃至第4電気信号に基づいて検知対象物60のxyz直交座標系での位置を求めて、当該位置を示す位置信号を出力する。また、制御部10は、第1乃至第4電気信号に基づいて求めた検知対象物60の位置等に応じて、位置検出システム1の動作を統括的に制御する。 The control unit 10 obtains the position of the detection target 60 in the xyz orthogonal coordinate system based on the first to fourth electric signals output from the light receiving unit 3, and outputs a position signal indicating the position. Further, the control unit 10 comprehensively controls the operation of the position detection system 1 according to the position of the detection target 60 obtained based on the first to fourth electric signals.
 <制御部のブロック構成について>
 図5は、制御部10の構成を示すブロック図である。図5に示されるように、制御部(制御回路)10は、第1制御部(第1制御回路)11と、第1制御部11を制御する第2制御部(第2制御回路)12とを有している。第1制御部11は、指示部20と、位置検出部21とを有している。第2制御部12は、判定部22と、動作制御部23とを有している。第1制御部11は、主に、第2制御部12からの制御信号に基づいて、検知対象物60の位置を検出する。つまり、第1制御部11は、検知対象物60の位置を検出する位置検出装置として機能する。一方、第2制御部12は、主に、第1制御部11での検知対象物60の位置の検知結果に基づいて、位置検出システム1の動作を制御する。つまり、第2制御部12は、位置検出システム1の動作を制御する制御装置として機能する。本実施の形態では、例えば、第1制御部11及び第2制御部12のそれぞれはLSI(Large Scale Integration)で構成される。
<Block configuration of control unit>
FIG. 5 is a block diagram illustrating a configuration of the control unit 10. As shown in FIG. 5, the control unit (control circuit) 10 includes a first control unit (first control circuit) 11, a second control unit (second control circuit) 12 that controls the first control unit 11, and have. The first control unit 11 includes an instruction unit 20 and a position detection unit 21. The second control unit 12 includes a determination unit 22 and an operation control unit 23. The first control unit 11 detects the position of the detection target 60 mainly based on a control signal from the second control unit 12. That is, the first control unit 11 functions as a position detection device that detects the position of the detection object 60. On the other hand, the second control unit 12 controls the operation of the position detection system 1 mainly based on the detection result of the position of the detection target 60 in the first control unit 11. That is, the second control unit 12 functions as a control device that controls the operation of the position detection system 1. In the present embodiment, for example, each of the first control unit 11 and the second control unit 12 is configured by an LSI (Large Scale Integration).
 位置検出部21は、受光部3から出力された第1乃至第4電気信号に基づいて、検知対象物60の位置(座標値)を検出する。より具体的には、第1乃至第4電気信号(電流)の大きさを、それぞれA~Dとし、第1乃至第4電気信号の最大値を、それぞれAmax、Bmax、CmaxおよびDmaxとすると、位置検出部21は、以下の式(1)~(3)を用いて、検知対象物60のx座標値x、y座標値y及びz座標値zを求める。なお、x座標値x、y座標値y及びz座標値zのとり得る範囲は、0~VREFである。ここで、0及びVREFは、それぞれ、位置検出部21の出力値の最小値及び最大値である。 The position detection unit 21 detects the position (coordinate value) of the detection target 60 based on the first to fourth electrical signals output from the light receiving unit 3. More specifically, when the magnitudes of the first to fourth electric signals (currents) are A to D, respectively, and the maximum values of the first to fourth electric signals are Amax, Bmax, Cmax and Dmax, respectively. The position detection unit 21 obtains the x-coordinate value x, the y-coordinate value y, and the z-coordinate value z of the detection target 60 using the following formulas (1) to (3). Note that the possible range of the x coordinate value x, the y coordinate value y, and the z coordinate value z is 0 to V REF . Here, 0 and V REF are the minimum value and the maximum value of the output value of the position detection unit 21, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本実施の形態では、位置検出部21が、上述した式(1)~(3)を用いて、検知対象物60の位置を検出する(求める)場合について説明するが、検知対象物60の位置の検出に用いる式(x座標値、y座標値、z座標値を求めるための演算式)はこれに限られない。位置検出部21は、受光部3から出力された電気信号に基づいて、検知対象物60の位置を検出できればよく、受光部3を構成するPDの数および配置位置などに応じて、位置検出部21で用いられる演算式を適宜変更してもよい。 In the present embodiment, the case where the position detection unit 21 detects (determines) the position of the detection target 60 using the above-described equations (1) to (3) will be described. Expressions used for detecting (an arithmetic expression for obtaining an x-coordinate value, a y-coordinate value, and a z-coordinate value) are not limited to this. The position detection unit 21 only needs to be able to detect the position of the detection target 60 based on the electrical signal output from the light receiving unit 3, and the position detection unit 21 according to the number and arrangement position of the PDs constituting the light receiving unit 3. The arithmetic expression used in 21 may be changed as appropriate.
 位置検出部21で検出された、検知対象物60の座標値は、第2制御部12が有する判定部22および位置検出システム1の外部に出力される。位置検出システム1の外部に出力された座標値は、例えば、人の手の動き(ジェスチャー)あるいは人の手の速度の検知に用いられる。 The coordinate value of the detection object 60 detected by the position detection unit 21 is output to the outside of the determination unit 22 and the position detection system 1 included in the second control unit 12. The coordinate value output to the outside of the position detection system 1 is used, for example, for detecting a human hand movement (gesture) or a human hand speed.
 判定部22は、位置検出部21で検出された座標値に基づいて、検知対象物60が存在するか否かの判定を行う。より具体的には、判定部22は、位置検出部21から出力されたz座標値に基づいて、検知対象物60が存在するか否かを判定する。図6は、判定部22での処理を説明するための図である。 The determination unit 22 determines whether or not the detection target 60 is present based on the coordinate value detected by the position detection unit 21. More specifically, the determination unit 22 determines whether or not the detection target 60 exists based on the z coordinate value output from the position detection unit 21. FIG. 6 is a diagram for explaining the processing in the determination unit 22.
 まず、判定部22は、位置検出部21で検出されたz座標値を取得する(ステップS10)。そして、判定部22は、ステップS10で取得したz座標値と、所定の閾値とを比較する(ステップS11)。例えば、z座標値が、所定の閾値より大きい場合には(ステップS11でYes)、判定部22は、検知対象物60が存在すると判定する(ステップS12)。一方、z座標値が、所定の閾値より小さい場合には(ステップS11でNo)、判定部22は、検知対象物60が存在しないと判定する(ステップS13)。つまり、本実施の形態における判定部22は、受光面14と検知対象物60との間の距離が所定距離より短いときに「検知対象物60が存在する」と判定する。そして、判定部22は、受光面14と検知対象物60との間の距離が所定距離より長いとき、もしくは、検知対象物60が検出されないときに「検知対象物60が存在しない」と判定する。判定部22での判定結果は、動作制御部23に出力される。検知対象物60が存在するか否かの判定に用いられる所定の閾値は、位置検出システム1が設置される環境、検知対象物60の種類等によって決定される。 First, the determination unit 22 acquires the z coordinate value detected by the position detection unit 21 (step S10). Then, the determination unit 22 compares the z coordinate value acquired in step S10 with a predetermined threshold value (step S11). For example, when the z coordinate value is larger than a predetermined threshold (Yes in Step S11), the determination unit 22 determines that the detection target 60 is present (Step S12). On the other hand, when the z coordinate value is smaller than the predetermined threshold (No in Step S11), the determination unit 22 determines that the detection target 60 does not exist (Step S13). That is, the determination unit 22 in the present embodiment determines that “the detection target object 60 exists” when the distance between the light receiving surface 14 and the detection target object 60 is shorter than the predetermined distance. Then, the determination unit 22 determines that “the detection target 60 does not exist” when the distance between the light receiving surface 14 and the detection target 60 is longer than a predetermined distance or when the detection target 60 is not detected. . The determination result in the determination unit 22 is output to the operation control unit 23. The predetermined threshold value used for determining whether or not the detection target 60 exists is determined by the environment in which the position detection system 1 is installed, the type of the detection target 60, and the like.
 動作制御部23は、指示部20に制御信号を送出することで、位置検出システム1の動作を統括的に制御する。位置検出システム1の動作が休止中以外のとき、もしくは位置検出システム1の動作が起動直後以外のときには、動作制御部23は、判定部22から出力された判定結果を用いて、位置検出システム1の動作モードを設定する。そして、動作制御部23は、設定した動作モードに基づいて制御信号を指示部20に送出する。 The operation control unit 23 generally controls the operation of the position detection system 1 by sending a control signal to the instruction unit 20. When the operation of the position detection system 1 is not paused, or when the operation of the position detection system 1 is not immediately after activation, the operation control unit 23 uses the determination result output from the determination unit 22 to use the position detection system 1. Set the operation mode. Then, the operation control unit 23 sends a control signal to the instruction unit 20 based on the set operation mode.
 より具体的には、動作制御部23は、判定部22で検知対象物60が存在すると判定された場合には、位置検出システム1の動作モードを第1動作モードに設定するための制御信号を送出する。一方で、判定部22で検知対象物60が存在しないと判定された場合には、動作制御部23は、位置検出システム1の動作モードを第2動作モードに設定するための制御信号を送出する。検知対象物60が存在せず検知対象物60の位置を検出する処理を行う必要がない第2動作モードでは、検知対象物60の位置を検出する処理を行う必要がある第1動作モードよりも、位置検出システム1の消費電力が低減する。第1動作モードおよび第2動作モードの詳細については、後述する第一乃至第三実施形態で詳しく述べる。 More specifically, the operation control unit 23 outputs a control signal for setting the operation mode of the position detection system 1 to the first operation mode when the determination unit 22 determines that the detection target 60 exists. Send it out. On the other hand, when the determination unit 22 determines that the detection target 60 does not exist, the operation control unit 23 sends a control signal for setting the operation mode of the position detection system 1 to the second operation mode. . In the second operation mode in which the detection target 60 does not exist and it is not necessary to perform the process of detecting the position of the detection target 60, the second operation mode needs to perform the process of detecting the position of the detection target 60. The power consumption of the position detection system 1 is reduced. Details of the first operation mode and the second operation mode will be described in detail in first to third embodiments described later.
 指示部20は、動作制御部23から送出された制御信号に基づいて、受光部3、照明部2及び位置検出部21に指示信号を送出してそれらを制御する。 The instruction unit 20 transmits instruction signals to the light receiving unit 3, the illumination unit 2, and the position detection unit 21 based on the control signal transmitted from the operation control unit 23 to control them.
 このように、本実施の形態では、第1制御部11は、検知対象物60の位置を検出し、その検出結果を第2制御部12に出力する。第2制御部12は、第1制御部11から出力された検知対象物60の検出結果に基づいて、第1制御部11に制御信号を送出する。後述するように、第2制御部12が第1制御部11に送出する制御信号は、第一乃至第三制御信号で構成される。 Thus, in the present embodiment, the first control unit 11 detects the position of the detection target 60 and outputs the detection result to the second control unit 12. The second control unit 12 sends a control signal to the first control unit 11 based on the detection result of the detection target 60 output from the first control unit 11. As will be described later, the control signal sent from the second control unit 12 to the first control unit 11 includes first to third control signals.
 <第1制御部の構成について>
 ここでは、第1制御部11(位置検出装置)の構成について説明する。図7は、主に第1制御部11の構成の一例を示す図である。図7に示されるように、第1制御部11は、LEDドライバ41と、増幅器42a~42dと、演算器(演算回路)43と、論理回路44とを備えている。増幅器42a~42dにはコンデンサ46a~46dがそれぞれ接続されている。以後、増幅器42a~42dを特に区別する必要がないときには、それぞれを「増幅器42」と呼ぶ。また、コンデンサ46a~46dを特に区別する必要がないときには、それぞれを「コンデンサ46」と呼ぶ。演算器43には、出力端子47a~47cが接続されている。以後、出力端子47a~47cを特に区別する必要がないときには、それぞれを「出力端子47」と呼ぶ。
<Configuration of the first control unit>
Here, the structure of the 1st control part 11 (position detection apparatus) is demonstrated. FIG. 7 is a diagram mainly illustrating an example of the configuration of the first control unit 11. As shown in FIG. 7, the first control unit 11 includes an LED driver 41, amplifiers 42a to 42d, an arithmetic unit (arithmetic circuit) 43, and a logic circuit 44. Capacitors 46a to 46d are connected to the amplifiers 42a to 42d, respectively. Hereinafter, when it is not necessary to particularly distinguish the amplifiers 42a to 42d, each is referred to as an “amplifier 42”. Further, when it is not necessary to particularly distinguish the capacitors 46a to 46d, each is referred to as a “capacitor 46”. Output terminals 47 a to 47 c are connected to the arithmetic unit 43. Hereinafter, when it is not necessary to particularly distinguish the output terminals 47a to 47c, each is referred to as an “output terminal 47”.
 LEDドライバ41は、照明部2を構成するLED4に電流を与えることによって、当該LED4を発光させる。これにより、LED4からは光50が照射される。LEDドライバ41には抵抗45が接続されている。LED4には、この抵抗45の値に応じた電流が流れる。 The LED driver 41 causes the LED 4 to emit light by applying a current to the LED 4 constituting the illumination unit 2. Thereby, light 50 is irradiated from LED4. A resistor 45 is connected to the LED driver 41. A current corresponding to the value of the resistor 45 flows through the LED 4.
 増幅器42a,42b,42c,42dには、受光部3のPD5~8から出力される第1乃至第4電気信号がそれぞれ入力される。そして、増幅器42a~42dは、入力される第1乃至第4電気信号をそれぞれ増幅して出力する。具体的には、各増幅器42は、当該増幅器42に接続されたPDから出力される電気信号から、当該増幅器42に接続されたコンデンサ46に蓄積されている電気信号を差し引いて得られる電気信号を増幅して出力する。演算器43は、各増幅器42から出力される電気信号に基づいて検知対象物60の位置を求める。 The first to fourth electric signals output from the PDs 5 to 8 of the light receiving unit 3 are input to the amplifiers 42a, 42b, 42c, and 42d, respectively. The amplifiers 42a to 42d amplify and output the input first to fourth electric signals, respectively. Specifically, each amplifier 42 subtracts the electric signal obtained by subtracting the electric signal accumulated in the capacitor 46 connected to the amplifier 42 from the electric signal output from the PD connected to the amplifier 42. Amplify and output. The computing unit 43 obtains the position of the detection target 60 based on the electrical signal output from each amplifier 42.
 ここで、LED4が光50を照射して検知対象物60による反射光51がPDに入射する際にPDで受光される光には、反射光51以外にも、太陽光等の外乱光のうちLED4と同じ波長の光(「定常光」と呼ぶ)も含まれる。したがって、仮に増幅器42がPDから出力される電気信号をそのまま増幅すると、当該増幅器42からは、定常光と反射光51とが合わさった光に応じた電気信号が出力されることになる。このような定常光の影響を受けた電気信号に基づいて演算器43が検知対象物60の位置を求める場合には、正しい位置を求めることができないことがある。 Here, the light received by the PD when the LED 4 irradiates the light 50 and the reflected light 51 from the detection object 60 enters the PD includes disturbance light such as sunlight in addition to the reflected light 51. Light having the same wavelength as the LED 4 (referred to as “steady light”) is also included. Therefore, if the amplifier 42 amplifies the electric signal output from the PD as it is, an electric signal corresponding to the light in which the steady light and the reflected light 51 are combined is output from the amplifier 42. When the computing unit 43 obtains the position of the detection target 60 based on the electrical signal affected by such stationary light, the correct position may not be obtained.
 そこで、本実施の形態では、LED4(照明部2)が光50を照射していないときにPDから出力される電気信号、つまり、定常光の強さを示す電気信号が、当該PDが接続され増幅器42に繋がったコンデンサ46に蓄積される。そして、増幅器42は、LED4が光50を照射して検知対象物60による反射光51があるときにPDから出力される電気信号から、当該増幅器42に繋がったコンデンサ46で蓄積されている電気信号(定常光の強さを示す電気信号)を差し引いて得られる電気信号を増幅して演算器43に出力する。これにより、増幅器42からは、定常光の影響が低減された電気信号が出力される。つまり、増幅器42からは、補正された、PDからの電気信号が出力される。よって、演算器43で求められる検知対象物60の位置の精度が向上する。 Therefore, in the present embodiment, an electrical signal output from the PD when the LED 4 (illumination unit 2) is not irradiating the light 50, that is, an electrical signal indicating the intensity of steady light is connected to the PD. It is accumulated in a capacitor 46 connected to the amplifier 42. Then, the amplifier 42, based on the electric signal output from the PD when the LED 4 emits the light 50 and the reflected light 51 from the detection target 60 is present, is stored in the capacitor 46 connected to the amplifier 42. The electric signal obtained by subtracting (electric signal indicating the intensity of stationary light) is amplified and output to the computing unit 43. As a result, the amplifier 42 outputs an electrical signal in which the influence of stationary light is reduced. That is, the corrected electric signal from the PD is output from the amplifier 42. Therefore, the accuracy of the position of the detection target 60 obtained by the calculator 43 is improved.
 以後、特に断らない限り、単に「第1電気信号」と言えば、増幅器42aから出力される補正された第1電気信号を意味する。また、単に「第2電気信号」と言えば、増幅器42bから出力される補正された第2電気信号を意味する。また、単に「第3電気信号」と言えば、増幅器42cから出力される補正された第3電気信号を意味する。そして、単に「第4電気信号」と言えば、増幅器42dから出力される補正された第4電気信号を意味する。 Hereinafter, unless otherwise specified, simply saying “first electric signal” means the corrected first electric signal output from the amplifier 42a. Further, simply speaking “second electric signal” means a corrected second electric signal output from the amplifier 42b. Further, simply speaking “third electric signal” means a corrected third electric signal output from the amplifier 42c. And simply speaking, “fourth electric signal” means the corrected fourth electric signal output from the amplifier 42d.
 演算器43は、LED4が光50を照射している際に増幅器42a,42b,42c,42dから出力された電気信号と、既述した式(1)~(3)とを用いて検知対象物60の位置を検出する(求める)。 The computing unit 43 uses the electrical signals output from the amplifiers 42a, 42b, 42c, and 42d when the LED 4 is irradiating the light 50, and the above-described equations (1) to (3) to detect objects. 60 positions are detected (obtained).
 図8は、演算器43および出力端子47を示す図である。図8に示されるように、演算器43は、x座標値演算器31と、y座標値演算器32と、z座標値演算器33とを有している。演算器43および出力端子47は、図5に示される位置検出部21として機能する。 FIG. 8 is a diagram showing the computing unit 43 and the output terminal 47. As shown in FIG. 8, the computing unit 43 includes an x coordinate value computing unit 31, a y coordinate value computing unit 32, and a z coordinate value computing unit 33. The calculator 43 and the output terminal 47 function as the position detector 21 shown in FIG.
 x座標値演算器31は、増幅器42a~42dから出力された電気信号と、既述した式(1)とを用いて検知対象物60のx座標値を求める。x座標値演算器31で求められたx座標値は、出力端子47aから第2制御部12および位置検出システム1の外部に出力される。 The x-coordinate value calculator 31 obtains the x-coordinate value of the detection object 60 using the electrical signals output from the amplifiers 42a to 42d and the above-described equation (1). The x-coordinate value obtained by the x-coordinate value calculator 31 is output from the output terminal 47 a to the outside of the second control unit 12 and the position detection system 1.
 y座標値演算器32は、増幅器42a~42dから出力された電気信号と、既述した式(2)とを用いて検知対象物60のy座標値を求める。y座標値演算器32で求められたy座標値は、出力端子47bから第2制御部12および位置検出システム1の外部に出力される。 The y-coordinate value calculator 32 obtains the y-coordinate value of the detection target 60 using the electrical signals output from the amplifiers 42a to 42d and the above-described equation (2). The y coordinate value obtained by the y coordinate value calculator 32 is output from the output terminal 47 b to the outside of the second control unit 12 and the position detection system 1.
 z座標値演算器33は、増幅器42a~42dから出力された電気信号と、既述した式(3)とを用いて検知対象物60のz座標値を求める。z座標値演算器33で求められたz座標値は、出力端子47cから第2制御部12および位置検出システム1の外部に出力される。 The z-coordinate value calculator 33 obtains the z-coordinate value of the detection target 60 using the electrical signals output from the amplifiers 42a to 42d and the above-described equation (3). The z coordinate value obtained by the z coordinate value calculator 33 is output from the output terminal 47 c to the outside of the second control unit 12 and the position detection system 1.
 論理回路44は、図5に示される指示部20として機能する。論理回路44は、動作制御部23から送出された制御信号(第一制御信号、第二制御信号及び第三制御信号)に応じた指示信号を、LEDドライバ41、増幅器42a,42b,42c,42d及び演算器43へ送出する。 The logic circuit 44 functions as the instruction unit 20 shown in FIG. The logic circuit 44 sends an instruction signal corresponding to the control signals (first control signal, second control signal, and third control signal) sent from the operation control unit 23 to the LED driver 41, amplifiers 42a, 42b, 42c, and 42d. And to the calculator 43.
 <第2制御部の構成について>
 ここでは、第2制御部12(制御装置)の構成について説明する。第2制御部12は、例えば、LSIの一種であるマイクロコントローラ(マイコン)で構成される。図9は、第2制御部12の構成を示す図である。
<About the configuration of the second control unit>
Here, the configuration of the second control unit 12 (control device) will be described. The second control unit 12 is configured by, for example, a microcontroller (microcomputer) that is a kind of LSI. FIG. 9 is a diagram illustrating a configuration of the second control unit 12.
 図9に示されるように、第2制御部12は、CPU(Central Processing Unit)12aおよび記憶部12b等を備えている。CPU12aが記憶部12bに記憶されている制御プログラム12cを実行することで、第2制御部12の各種機能(判定部22及び動作制御部23)が実現される。記憶部12bは、ROM(Read Only Memory)及びRAM(Random Access Memory)等の、CPU12aが読み取り可能な非一時的な記録媒体で構成されている。記憶部12bは、ROM及びRAM以外の、コンピュータが読み取り可能な非一時的な記録媒体を備えていてもよい。 As shown in FIG. 9, the second control unit 12 includes a CPU (Central Processing Unit) 12a, a storage unit 12b, and the like. Various functions (determination part 22 and operation control part 23) of the 2nd control part 12 are realized when CPU12a runs control program 12c memorized by storage part 12b. The storage unit 12b is configured by a non-transitory recording medium that can be read by the CPU 12a, such as a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage unit 12b may include a computer-readable non-transitory recording medium other than the ROM and the RAM.
 第1制御部11を構成する回路と、第2制御部12を構成する回路とは、同じ基板上に形成されていてもよいし、異なる基板上に形成されてもよい。また、第1制御部11と第2制御部12とは、同じパッケージ内に収納されてもよいし、異なるパッケージ内に収納されてもよい。 The circuit configuring the first control unit 11 and the circuit configuring the second control unit 12 may be formed on the same substrate or may be formed on different substrates. Moreover, the 1st control part 11 and the 2nd control part 12 may be accommodated in the same package, and may be accommodated in a different package.
 また、第1制御部11の一部の機能を第2制御部12に設けてもよい。例えば、第1制御部11の位置検出部21を第2制御部12に設けてもよい。また、第2制御部12の一部の機能を第1制御部11に設けてもよい。例えば、第2制御部12の判定部22を第1制御部11に設けてもよい。 Further, some functions of the first control unit 11 may be provided in the second control unit 12. For example, the position controller 21 of the first controller 11 may be provided in the second controller 12. Further, some functions of the second control unit 12 may be provided in the first control unit 11. For example, the determination unit 22 of the second control unit 12 may be provided in the first control unit 11.
 <<第一実施形態>>
 ここでは第一実施形態に係る位置検出システム1について説明する。
<< First Embodiment >>
Here, the position detection system 1 according to the first embodiment will be described.
 <動作制御部が送出する制御信号について>
 図10は、動作制御部23が送出する制御信号の一例を示す図である。図10には、動作制御部23が送出する制御信号(第一制御信号、第二制御信号及び第三制御信号)と、増幅器42、演算器43(x座標値演算器31、y座標値演算器32およびz座標値演算器33)及びLEDドライバ41の状態との関係が6種類示されている。第一制御信号、第二制御信号および第三制御信号のそれぞれは、2値信号であって、highレベル及びlowレベルのどちらか一方の信号レベルを示す。そして、論理回路44(指示部20)は、動作制御部23から出力された第一制御信号、第二制御信号及び第三制御信号が示す信号レベルの組み合わせに応じた指示信号を、増幅器42、演算器43及びLEDドライバ41に送出する。
<Regarding the control signal sent out by the operation control unit>
FIG. 10 is a diagram illustrating an example of a control signal transmitted by the operation control unit 23. FIG. 10 shows a control signal (first control signal, second control signal, and third control signal) sent out by the operation control unit 23, an amplifier 42, a calculator 43 (x coordinate value calculator 31, y coordinate value calculator). 6 types of relationships with the state of the device 32 and the z-coordinate value calculator 33) and the LED driver 41 are shown. Each of the first control signal, the second control signal, and the third control signal is a binary signal, and indicates a signal level of either a high level or a low level. Then, the logic circuit 44 (instruction unit 20) outputs an instruction signal corresponding to a combination of signal levels indicated by the first control signal, the second control signal, and the third control signal output from the operation control unit 23, to the amplifier 42, The data is sent to the calculator 43 and the LED driver 41.
 図10のNo.1に例示されるように、第一及び第二制御信号がlowレベルを示す場合には、第三制御信号の信号レベルにかかわらず、論理回路44(指示部20)は、増幅器42には増幅器42の動作を休止する旨の指示信号を送出し、x座標値演算器31にはx座標値演算器31の動作を休止する旨の指示信号を送出し、y座標値演算器32にはy座標値演算器32の動作を休止する旨の指示信号を送出し、z座標値演算器33にはz座標値演算器33の動作を休止する旨の指示信号を送出し、LEDドライバ41にはLED4(照明部2)を休止(消灯)させる旨の指示信号を送出する。これにより、位置検出システム1の動作が休止する。 No. in FIG. As illustrated in FIG. 1, when the first and second control signals indicate a low level, the logic circuit 44 (instruction unit 20) includes the amplifier 42 regardless of the signal level of the third control signal. 42 is sent to the x coordinate value calculator 31, and an instruction signal to pause the operation of the x coordinate value calculator 31 is sent to the y coordinate value calculator 32. An instruction signal for stopping the operation of the coordinate value calculator 32 is sent, an instruction signal for stopping the operation of the z coordinate value calculator 33 is sent to the z coordinate value calculator 33, and an LED driver 41 is sent to the LED driver 41. An instruction signal to stop (turn off) the LED 4 (illumination unit 2) is sent. As a result, the operation of the position detection system 1 stops.
 図10のNo.2に例示されるように、第一制御信号がhighレベルを示し、第二制御信号がlowレベルを示す場合には、第三制御信号の信号レベルにかかわらず、論理回路44(指示部20)は、増幅器42には増幅器42の動作モードを急速チャージモードに設定する旨の指示信号を送出し、x座標値演算器31にはx座標値演算器31の動作を休止する旨の指示信号を送出し、y座標値演算器32にはy座標値演算器32の動作を休止する旨の指示信号を送出し、z座標値演算器33にはz座標値演算器33の動作を休止する旨の指示信号を送出し、LEDドライバ41にはLED4(照明部2)を休止(消灯)させる旨の指示信号を送出する。 No. in FIG. 2, when the first control signal indicates a high level and the second control signal indicates a low level, the logic circuit 44 (instruction unit 20) regardless of the signal level of the third control signal. Sends an instruction signal to the amplifier 42 to set the operation mode of the amplifier 42 to the rapid charge mode, and an instruction signal to stop the operation of the x coordinate value calculator 31 to the x coordinate value calculator 31. And an instruction signal for stopping the operation of the y-coordinate value calculator 32 is sent to the y-coordinate value calculator 32, and the operation of the z-coordinate value calculator 33 is paused to the z-coordinate value calculator 33. The instruction signal is sent to the LED driver 41 to stop (turn off) the LED 4 (illumination unit 2).
 各増幅器42は、急速チャージモードに設定されると、当該増幅器42に接続されたPDから入力された電気信号を、当該増幅器42に接続されたコンデンサ46に急速に蓄積する。これにより、コンデンサ46には、LED4が消灯している際にPDから出力される電気信号、つまり定常光の強さを示す電気信号が急速に蓄積される。No.2に示される制御信号の組み合わせは、位置検出システム1の起動直後に使用される。 When each amplifier 42 is set to the quick charge mode, the electric signal input from the PD connected to the amplifier 42 is rapidly stored in the capacitor 46 connected to the amplifier 42. As a result, an electrical signal output from the PD when the LED 4 is turned off, that is, an electrical signal indicating the intensity of steady light, is rapidly accumulated in the capacitor 46. No. The combination of control signals shown in 2 is used immediately after the position detection system 1 is activated.
 図10のNo.3及びNo.4に示される制御信号の組み合わせは、動作制御部23が、判定部22から出力された判定結果に基づいて、位置検出システム1の動作モードを第2動作モードに設定する場合に使用される。つまり、第2制御部12は、検知対象物60が存在しないと判定した場合に、No.3及びNo.4に示される信号レベルの第一乃至第三制御信号を出力して、位置検出システム1の動作モードを第2動作モードに設定する。 No. in FIG. 3 and no. The combination of the control signals shown in 4 is used when the operation control unit 23 sets the operation mode of the position detection system 1 to the second operation mode based on the determination result output from the determination unit 22. That is, when the second control unit 12 determines that the detection target 60 does not exist, the No. 3 and no. The first to third control signals having the signal levels indicated by 4 are output, and the operation mode of the position detection system 1 is set to the second operation mode.
 図10のNo.3に例示されるように、第一制御信号及び第二制御信号が共にhighレベルを示し、第三制御信号がlowレベルを示す場合には、論理回路44(指示部20)は、増幅器42には増幅器42の動作モードを通常チャージモードに設定する旨の指示信号を送出し、x座標値演算器31にはx座標値演算器31の動作を休止する旨の指示信号を送出し、y座標値演算器32にはy座標値演算器32の動作を休止する旨の指示信号を送出し、z座標値演算器33にはz座標値演算器32の動作を休止する旨の指示信号を送出し、LEDドライバ41にはLED4(照明部2)を休止(消灯)させる旨の指示信号を送出する。 No. in FIG. 3, when both the first control signal and the second control signal indicate a high level and the third control signal indicates a low level, the logic circuit 44 (instruction unit 20) is connected to the amplifier 42. Sends an instruction signal for setting the operation mode of the amplifier 42 to the normal charge mode, sends an instruction signal to the x coordinate value calculator 31 to suspend the operation of the x coordinate value calculator 31, and An instruction signal to stop the operation of the y coordinate value calculator 32 is sent to the value calculator 32, and an instruction signal to stop the operation of the z coordinate value calculator 32 is sent to the z coordinate value calculator 33. Then, the LED driver 41 is sent an instruction signal to stop (turn off) the LED 4 (illumination unit 2).
 各増幅器42は、通常チャージモードに設定されると、当該増幅器42に接続されたPDから入力された電気信号を、当該増幅器42に接続されたコンデンサ46に通常の速さで蓄積する。これにより、コンデンサ46には、LED4が消灯している際にPDから出力される電気信号、つまり定常光の強さを示す電気信号が蓄積される。 When each amplifier 42 is set to the normal charge mode, the electric signal input from the PD connected to the amplifier 42 is stored in the capacitor 46 connected to the amplifier 42 at a normal speed. As a result, the capacitor 46 stores an electrical signal output from the PD when the LED 4 is turned off, that is, an electrical signal indicating the intensity of steady light.
 図10のNo.4に例示されるように、第一制御信号及び第三制御信号が共にlowレベルを示し、第二制御信号がhighレベルを示す場合には、論理回路44(指示部20)は、増幅器42には増幅器42の動作モードを増幅モードに設定する旨の指示信号を送出し、x座標値演算器31にはx座標値演算器31の動作を休止する旨の指示信号を送出し、y座標値演算器32にはy座標値演算器32の動作を休止する旨の指示信号を送出し、z座標値演算器33にはz座標値演算器33の動作を行う(つまり、z座標値を検出する)旨の指示信号を送出し、LEDドライバ41にはLED4(照明部2)を第2光量で点灯させる旨の指示信号を送出する。ここで、第2光量は、後述する第1光量より少ない光量である。つまり、この場合には、LEDドライバ41は、LED4を第1光量で点灯させる場合よりも、弱い電流でLED4を発光させる。 No. in FIG. 4, when both the first control signal and the third control signal indicate a low level and the second control signal indicates a high level, the logic circuit 44 (instruction unit 20) is connected to the amplifier 42. Sends an instruction signal to set the operation mode of the amplifier 42 to the amplification mode, sends an instruction signal to stop the operation of the x coordinate value calculator 31 to the x coordinate value calculator 31, and sets the y coordinate value An instruction signal to stop the operation of the y coordinate value calculator 32 is sent to the calculator 32, and the z coordinate value calculator 33 is operated to the z coordinate value calculator 33 (that is, the z coordinate value is detected). An instruction signal indicating that the LED 4 (illumination unit 2) is lit with the second light amount. Here, the second light amount is smaller than the first light amount described later. That is, in this case, the LED driver 41 causes the LED 4 to emit light with a weaker current than when the LED 4 is lit with the first light amount.
 各増幅器42は、増幅モードに設定されると、当該増幅器42に接続されたPDから入力された電気信号から、当該増幅器42に接続されたコンデンサに蓄積されている電気信号を差し引き、それによって得られる電気信号を増幅して出力する。 When each amplifier 42 is set to the amplification mode, the electric signal stored in the capacitor connected to the amplifier 42 is subtracted from the electric signal input from the PD connected to the amplifier 42, thereby obtaining Amplified electrical signal is output.
 動作制御部23は、No.3に示される第一乃至第三制御信号とNo.4に示される第一乃至第三制御信号とを所定周期で切り替えて送出することによって、位置検出システム1の動作モードを第2動作モードに設定する。動作制御部23からNo.4に示される制御信号が送出されたときには、各増幅器42は、LED4が第2光量で光(光50)を照射している際にPDから出力された電気信号から、コンデンサ46に蓄積されている、定常光の強さを示す電気信号を差し引き、それによって得られる電気信号を増幅して出力する。つまり、各増幅器42は、LED4が光50を照射している際にPDから出力された電気信号を、定常光の強さを示す電気信号で補正し、補正後の当該電気信号を増幅して出力する。そして、z座標値演算器33は、各増幅器42からこのようにして出力される電気信号に基づいて、検知対象物60の位置を求める。これにより、z座標値演算器33は、各PDで受光された反射光51の強さを示す電気信号に基づいて検知対象物60のz座標値を求めることができる。 Operation control unit 23 is No. First to third control signals shown in FIG. The operation mode of the position detection system 1 is set to the second operation mode by switching and transmitting the first to third control signals shown in 4 at a predetermined cycle. From the operation control unit 23, the No. When the control signal shown in FIG. 4 is transmitted, each amplifier 42 is accumulated in the capacitor 46 from the electrical signal output from the PD when the LED 4 is irradiating light (light 50) with the second light quantity. The electric signal indicating the intensity of the steady light is subtracted, and the electric signal obtained thereby is amplified and output. That is, each amplifier 42 corrects the electrical signal output from the PD when the LED 4 is irradiating the light 50 with the electrical signal indicating the intensity of the steady light, and amplifies the corrected electrical signal. Output. Then, the z-coordinate value calculator 33 obtains the position of the detection target 60 based on the electric signal output from each amplifier 42 in this way. Thereby, the z coordinate value calculator 33 can obtain the z coordinate value of the detection target 60 based on the electric signal indicating the intensity of the reflected light 51 received by each PD.
 図10のNo.5及びNo.6に示される制御信号の組み合わせは、判定部22から出力された判定結果に基づいて、動作制御部23が、位置検出システム1の動作モードを第1動作モードに設定する場合に使用される。つまり、第2制御部12は、検知対象物60が存在すると判定した場合に、No.5及びNo.6に示される信号レベルの第一乃至第三制御信号を出力して、位置検出システム1の動作モードを第1動作モードに設定する。 No. in FIG. 5 and no. 6 is used when the operation control unit 23 sets the operation mode of the position detection system 1 to the first operation mode based on the determination result output from the determination unit 22. That is, when the second control unit 12 determines that the detection target 60 is present, the No. 5 and no. The first to third control signals having the signal levels shown in FIG. 6 are output, and the operation mode of the position detection system 1 is set to the first operation mode.
 図10のNo.5に例示されるように、第一乃至第三制御信号がhighレベルを示す場合には、論理回路44(指示部20)は、増幅器42、x座標値演算器31、y座標値演算器32、z座標値演算器33及びLEDドライバ41のそれぞれに、既述した図10のNo.3に例示される指示信号と同様の指示信号を送出する。これにより、No.3と同様に、コンデンサ46に、定常光の強さを示す電気信号が蓄積される。 No. in FIG. As illustrated in FIG. 5, when the first to third control signals indicate a high level, the logic circuit 44 (instruction unit 20) includes the amplifier 42, the x coordinate value calculator 31, and the y coordinate value calculator 32. , Z-coordinate value calculator 33 and LED driver 41 are respectively connected to No. 1 in FIG. The instruction signal similar to the instruction signal illustrated in FIG. As a result, no. 3, an electric signal indicating the intensity of steady light is accumulated in the capacitor 46.
 図10のNo.6に例示されるように、第一制御信号がlowレベルを示し、第二制御信号及び第三制御信号が共にhighレベルを示す場合には、論理回路44(指示部20)は、増幅器42には増幅器42の動作モードを増幅モードに設定する旨の指示信号を送出し、x座標値演算器31にはx座標値演算器31の動作を行う旨の指示信号を送出し、y座標値演算器32にはy座標値演算器32の動作を行う旨の指示信号を送出し、z座標値演算器33にはz座標値演算器33の動作を行う旨の指示信号を送出し、LEDドライバ41にはLED4(照明部2)を第1光量で点灯させる旨の指示信号を送出する。ここで、第1光量は、第2光量より多い光量である。つまり、この場合には、LEDドライバ41は、LED4を第2光量で点灯させる場合よりも、大きい電流でLED4を発光させる。 No. in FIG. 6, when the first control signal indicates a low level and both the second control signal and the third control signal indicate a high level, the logic circuit 44 (instruction unit 20) is connected to the amplifier 42. Sends an instruction signal for setting the operation mode of the amplifier 42 to the amplification mode, sends an instruction signal for performing the operation of the x coordinate value calculator 31 to the x coordinate value calculator 31, and calculates the y coordinate value An instruction signal for performing the operation of the y coordinate value calculator 32 is transmitted to the device 32, and an instruction signal for performing the operation of the z coordinate value calculator 33 is transmitted to the z coordinate value calculator 33, and the LED driver. An instruction signal for turning on the LED 4 (illumination unit 2) with the first light amount is sent to 41. Here, the first light amount is larger than the second light amount. That is, in this case, the LED driver 41 causes the LED 4 to emit light with a larger current than when the LED 4 is lit with the second light amount.
 動作制御部23は、No.5に示される第一乃至第三制御信号とNo.6に示される第一乃至第三制御信号とを所定周期で切り替えて送出することによって、位置検出システム1の動作モードを第1動作モードに設定する。第1動作モードでは、各増幅器42は、LED4が第1光量で光(光50)を照射している際にPDから出力された電気信号を、定常光の強さを示す電気信号で補正し、補正後の当該電気信号を増幅して出力する。そして、x座標値演算器31、y座標値演算器32及びz座標値演算器33は、各増幅器42からこのようにして出力される電気信号に基づいて、検知対象物60の位置を求める。 Operation control unit 23 is No. The first to third control signals shown in FIG. The operation mode of the position detection system 1 is set to the first operation mode by switching the first to third control signals shown in FIG. In the first operation mode, each amplifier 42 corrects the electric signal output from the PD when the LED 4 is irradiating light (light 50) with the first light amount with an electric signal indicating the intensity of steady light. Then, the corrected electric signal is amplified and output. Then, the x-coordinate value calculator 31, the y-coordinate value calculator 32, and the z-coordinate value calculator 33 obtain the position of the detection target 60 based on the electrical signal output from each amplifier 42 in this way.
 <動作制御部による制御例について>
 ここでは、動作制御部23による位置検出システム1の制御例について説明する。図11は、位置検出システム1のタイミングチャートの一例を示す図である。図11には、動作制御部23から送出される制御信号と、LED4及び演算器43の出力(光量及び各座標値)とが示されている。
<Example of control by the operation control unit>
Here, a control example of the position detection system 1 by the operation control unit 23 will be described. FIG. 11 is a diagram illustrating an example of a timing chart of the position detection system 1. FIG. 11 shows the control signal sent from the operation control unit 23 and the outputs (light quantity and coordinate values) of the LED 4 and the calculator 43.
 図11に示される「制御内容」の欄には、動作制御部23が、図10に示されるNo.1~No.6のうちのいずれの制御信号を送出しているかが示されている。ここで、例えば「No.3,4」のように、2つの番号(No.3およびNo.4)が示されている期間は、動作制御部23が、No.3に示される制御信号と、No.4に示される示す制御信号とを所定周期で切り替えて送出していることを表している。また、「第一制御信号」、「第二制御信号」及び「第三制御信号」の欄は、動作制御部23が送出した第一制御信号、第二制御信号及び第三制御信号が示す信号レベルをそれぞれ表している。 In the “control content” column shown in FIG. 11, the operation control unit 23 displays the No. shown in FIG. 1-No. 6 shows which control signal is being transmitted. Here, for example, during the period in which two numbers (No. 3 and No. 4) are indicated, such as “No. 3 and the control signal shown in No. 3; 4 represents that the control signal shown in FIG. 4 is switched and transmitted at a predetermined cycle. The “first control signal”, “second control signal”, and “third control signal” columns are signals indicated by the first control signal, the second control signal, and the third control signal sent by the operation control unit 23. Represents each level.
 「LED光量」の欄には、LED4から照射される光量が示されている。図11では、LED光量の値が大きい程、LED4から照射される光量が多いことを示している。つまり、LED光量の値が大きい程、LEDドライバ41は、大きい電流でLED4を点灯させている。また、LED光量の値が一番小さいときには、LED4が消灯している状態を表している。図11には、「消灯(No.1,2,3,5に示される制御信号が送出されたとき)」、「第2光量で点灯(No.4に示される制御信号が送出されたとき)」及び「第1光量で点灯(No.6に示される制御信号が送出されたとき)」の3種類の光量が示されている。 In the column “LED light quantity”, the light quantity emitted from the LED 4 is shown. FIG. 11 shows that the larger the value of the LED light quantity, the more light is emitted from the LED 4. That is, as the value of the LED light quantity is larger, the LED driver 41 lights the LED 4 with a larger current. Further, when the value of the LED light amount is the smallest, the LED 4 is turned off. In FIG. 11, “lights off (when control signals shown in No. 1, 2, 3, 5 are sent)” and “lights up with the second light quantity (when control signals shown in No. 4 are sent). ) "And" Lighting with the first light quantity (when the control signal shown in No. 6 is sent) "are shown.
 「x座標値」、「y座標値」及び「z座標値」の欄にはそれぞれ、演算器43(x座標値演算器31、y座標値演算器32及びz座標値演算器33)で求められた座標値が示されている。 The “x coordinate value”, “y coordinate value”, and “z coordinate value” fields are respectively obtained by the calculator 43 (x coordinate value calculator 31, y coordinate value calculator 32, and z coordinate value calculator 33). The coordinate values obtained are shown.
 また、「z座標値」の欄に示されている点線61は、検知対象物60が存在するか否かの判定に用いられる所定の閾値の値を示している。判定部22は、z座標値が点線61(所定の閾値)より大きい場合に、検知対象物60が存在していると判定する。反対に、判定部22は、z座標値が点線61より小さい場合に、検知対象物60が存在しないと判定する。 Further, a dotted line 61 shown in the column of “z coordinate value” indicates a predetermined threshold value used for determining whether or not the detection target 60 exists. The determination unit 22 determines that the detection target 60 is present when the z coordinate value is larger than the dotted line 61 (predetermined threshold). Conversely, the determination unit 22 determines that the detection target 60 does not exist when the z coordinate value is smaller than the dotted line 61.
 図11の例では、はじめは位置検出システム1の動作が休止している。この場合には、動作制御部23から出力される第一乃至第三制御信号はlowレベルを示し(図10のNo.1に示される制御信号)、LED4は消灯し、演算器43では各座標値が求められない。 In the example of FIG. 11, the operation of the position detection system 1 is paused at first. In this case, the first to third control signals output from the operation control unit 23 indicate a low level (control signal indicated by No. 1 in FIG. 10), the LED 4 is turned off, and the computing unit 43 receives each coordinate. The value cannot be obtained.
 位置検出システム1の動作が休止状態のときに、例えば、位置検出システム1がユーザから位置検出システム1の動作を起動する旨の指示等を受けると、動作制御部23は、No.2に示される制御信号を送出する。No.2に示される制御信号が送出された場合には、各増幅器42は、急速チャージモードに設定され、コンデンサ46には、定常光の強さを示す電気信号が急速に蓄積される。 When the operation of the position detection system 1 is in a dormant state, for example, when the position detection system 1 receives an instruction to start the operation of the position detection system 1 from the user, the operation control unit 23 2 is transmitted. No. When the control signal shown in FIG. 2 is sent, each amplifier 42 is set to the quick charge mode, and the capacitor 46 rapidly stores an electric signal indicating the intensity of steady light.
 コンデンサ46に、定常光の強さを示す電気信号が蓄積されると、図11に示されるように、動作制御部23は、No.3およびNo.4に示される制御信号を送出する。つまり、動作制御部23は、位置検出システム1の動作モードを第2動作モードに設定する。動作制御部23からNo.4に示される制御信号が送出されたときには、既述したように、LED4は第1光量より少ない第2光量で点灯し、x座標値演算器31及びy座標値演算器32は動作を休止し、z座標値演算器33はz座標値を算出する。 When the electric signal indicating the intensity of the steady light is accumulated in the capacitor 46, as shown in FIG. 3 and no. 4 is sent out. That is, the operation control unit 23 sets the operation mode of the position detection system 1 to the second operation mode. From the operation control unit 23, the No. When the control signal shown in FIG. 4 is transmitted, as described above, the LED 4 is lit with the second light amount smaller than the first light amount, and the x coordinate value calculator 31 and the y coordinate value calculator 32 pause the operation. The z-coordinate value calculator 33 calculates the z-coordinate value.
 ここで、z座標値演算器33で算出されたz座標値が、点線61(所定の閾値)より小さい場合には、判定部22は、検知対象物60が存在しないと判定する。この場合には、第2動作モードが継続される。図11に示される例では、位置検出システム1の動作モードが第2動作モードに設定されている区間において、1回目及び2回目に求められたz座標値は、点線61(所定の閾値)より小さい値である。したがって、第2動作モードが継続されている。 Here, when the z coordinate value calculated by the z coordinate value calculator 33 is smaller than the dotted line 61 (predetermined threshold value), the determination unit 22 determines that the detection target 60 does not exist. In this case, the second operation mode is continued. In the example shown in FIG. 11, the z coordinate value obtained for the first time and the second time in the section where the operation mode of the position detection system 1 is set to the second operation mode is based on the dotted line 61 (predetermined threshold value). Small value. Therefore, the second operation mode is continued.
 一方、z座標値演算器33で算出されたz座標値が、点線61(所定の閾値)より大きい場合には、判定部22は、検知対象物60が存在すると判定する。この場合には、動作制御部23は、位置検出システム1の動作モードを第1動作モードに設定(変更)する。図11に示される例では、位置検出システム1の動作モードが第2動作モードに設定されている区間において、3回目に求められたz座標値が、点線61(所定の閾値)より大きい値であるため、位置検出システム1の動作モードが第1動作モードに変更される。 On the other hand, when the z coordinate value calculated by the z coordinate value calculator 33 is larger than the dotted line 61 (predetermined threshold value), the determination unit 22 determines that the detection object 60 exists. In this case, the operation control unit 23 sets (changes) the operation mode of the position detection system 1 to the first operation mode. In the example shown in FIG. 11, the z coordinate value obtained for the third time in a section where the operation mode of the position detection system 1 is set to the second operation mode is larger than the dotted line 61 (predetermined threshold value). For this reason, the operation mode of the position detection system 1 is changed to the first operation mode.
 位置検出システム1の動作モードが第1動作モードに設定されているときには、図11に示されるように、動作制御部23は、No.5およびNo.6に示される制御信号を送出する。動作制御部23からNo.6に示される制御信号が送出された場合には、既述したように、LED4は第1光量(>第2光量)で点灯し、x座標値演算器31はx座標値を算出し、y座標値演算器32はy座標値を算出し、z座標値演算器33はz座標値を算出する。 When the operation mode of the position detection system 1 is set to the first operation mode, as shown in FIG. 5 and no. 6 is sent out. From the operation control unit 23, the No. When the control signal shown in FIG. 6 is sent, as described above, the LED 4 is lit with the first light amount (> second light amount), the x coordinate value calculator 31 calculates the x coordinate value, and y The coordinate value calculator 32 calculates the y coordinate value, and the z coordinate value calculator 33 calculates the z coordinate value.
 第1動作モードは、z座標値演算器33で算出されたz座標値が点線61(所定の閾値)より小さくなるまで継続される。z座標値演算器33で算出されたz座標値が点線61(所定の閾値)より小さい場合には、判定部22は検知対象物60が存在しないと判定し、当該判定結果により動作制御部23は位置検出システム1の動作モードを第2動作モードに設定(変更)する。以後、同様に、位置検出システム1では、判定部22による判定結果に基づいて、動作制御部23が第1動作モードと第2動作モードとの切り替えを行う。 The first operation mode is continued until the z coordinate value calculated by the z coordinate value calculator 33 becomes smaller than the dotted line 61 (predetermined threshold value). When the z coordinate value calculated by the z coordinate value calculator 33 is smaller than the dotted line 61 (predetermined threshold value), the determination unit 22 determines that the detection target 60 does not exist, and the operation control unit 23 according to the determination result. Sets (changes) the operation mode of the position detection system 1 to the second operation mode. Thereafter, similarly, in the position detection system 1, the operation control unit 23 switches between the first operation mode and the second operation mode based on the determination result by the determination unit 22.
 このように、本実施の形態における位置検出システム1では、照明部2は、検知対象物60が存在しない場合には、検知対象物60が存在する場合と比較して少ない光量(弱い光)で光50を照射する。したがって、照明部2が、検知対象物60が存在するか否かにかかわらず、一定の光量で光50を照射する場合と比較して、照明部2の消費電力を低減することができる。その結果、位置検出システム1を低消費電力化することができる。 As described above, in the position detection system 1 according to the present embodiment, when the detection target 60 is not present, the illumination unit 2 uses a smaller amount of light (weak light) than when the detection target 60 is present. Irradiate light 50. Therefore, power consumption of the illuminating unit 2 can be reduced as compared with the case where the illuminating unit 2 irradiates the light 50 with a constant light amount regardless of whether or not the detection target 60 exists. As a result, the position detection system 1 can be reduced in power consumption.
 また、本実施の形態における位置検出システム1では、検知対象物60が存在しない場合には、演算器43ではz座標値演算器33のみが動作する(つまり、z座標値のみが求められる)ため、演算器43の消費電力を低減することができる。つまり、位置検出部21の消費電力を低減することができる。その結果、位置検出システム1をさらに低消費電力化することができる。 In the position detection system 1 according to the present embodiment, when the detection target 60 does not exist, only the z coordinate value calculator 33 operates in the calculator 43 (that is, only the z coordinate value is obtained). The power consumption of the computing unit 43 can be reduced. That is, the power consumption of the position detection unit 21 can be reduced. As a result, the position detection system 1 can further reduce power consumption.
 なお、第2動作モードでは、演算器43は、z座標値だけではなく、x座標値及びy座標値の一方を求めてもよい。この場合であっても、第2動作モードでは、3つの座標値(x座標値、y座標値及びz座標値)のうちの一つは求められないことから、第1動作モードよりも、位置検出システム1を低消費電力化することができる。 In the second operation mode, the calculator 43 may obtain not only the z coordinate value but also one of the x coordinate value and the y coordinate value. Even in this case, in the second operation mode, one of the three coordinate values (x coordinate value, y coordinate value, and z coordinate value) cannot be obtained. The power consumption of the detection system 1 can be reduced.
 また、第2動作モードでは、演算器43は、x座標値、y座標値及びz座標値のすべてを求めてもよい。この場合であっても、第2動作モードにおいて、照明部2が照射する光50の光量を低減することによって、位置検出システム1を低消費電力化することができる。 In the second operation mode, the computing unit 43 may obtain all of the x coordinate value, the y coordinate value, and the z coordinate value. Even in this case, it is possible to reduce the power consumption of the position detection system 1 by reducing the amount of the light 50 emitted from the illumination unit 2 in the second operation mode.
 また、第2動作モードでは、照明部2の光の光量を低減せずに、z座標値だけが求められてもよい。あるいは、第2動作モードでは、照明部2が照射する光50の光量を低減せずに、z座標値と、x座標値及びy座標値の一方とが求められてもよい。この場合であっても、位置検出システム1を低消費電力化することができる。 In the second operation mode, only the z coordinate value may be obtained without reducing the amount of light of the illumination unit 2. Alternatively, in the second operation mode, the z-coordinate value and one of the x-coordinate value and the y-coordinate value may be obtained without reducing the light amount of the light 50 irradiated by the illumination unit 2. Even in this case, it is possible to reduce the power consumption of the position detection system 1.
 また、検知対象物60が存在しない場合(位置検出システム1の動作モードが第2動作モードである場合)には、z座標値演算器33は、上記の式(3)で示される演算式で求められる値を所定数倍した値をz座標値として出力してもよい。これにより、第2動作モードにおいて、照明部2が弱い光で照射している場合であっても、大きい値のz座標値を得ることができる。そのため、判定部22で検知対象物60の有無を判定しやすくすることができる。 In addition, when the detection target 60 does not exist (when the operation mode of the position detection system 1 is the second operation mode), the z coordinate value calculator 33 is an arithmetic expression represented by the above expression (3). A value obtained by multiplying the obtained value by a predetermined number may be output as the z coordinate value. Thereby, even if it is a case where the illumination part 2 is irradiating with weak light in a 2nd operation mode, a large z coordinate value can be obtained. Therefore, the determination unit 22 can easily determine the presence or absence of the detection target 60.
 <<第二実施形態>>
 第二実施形態では、位置検出システム1の動作モードが第2動作モードに設定されている場合に、LED4(照明部2)の照射時間を短くすることで、位置検出システム1を低消費電力化する。なお、第二実施形態における位置検出システム1の残余の構成は、第一実施形態と同様である。
<< Second Embodiment >>
In the second embodiment, when the operation mode of the position detection system 1 is set to the second operation mode, the irradiation time of the LED 4 (illumination unit 2) is shortened to reduce the power consumption of the position detection system 1. To do. The remaining configuration of the position detection system 1 in the second embodiment is the same as that in the first embodiment.
 図12は、本実施の形態における、照明部2の照射時間を説明するための図である。図12には、位置検出システム1の動作モードが第2動作モード設定されている場合(つまり、検知対象物60が存在しない場合)における照明部2の照射パターンと、第1動作モードに設定されている場合(つまり、検知対象物60が存在する場合)における照明部2の照射パターンとが並べて示されている。 FIG. 12 is a diagram for explaining the irradiation time of the illumination unit 2 in the present embodiment. In FIG. 12, when the operation mode of the position detection system 1 is set to the second operation mode (that is, when the detection target 60 is not present), the irradiation pattern of the illumination unit 2 and the first operation mode are set. Are shown side by side with the irradiation pattern of the illuminating unit 2 when the detection target 60 is present (that is, when the detection target 60 is present).
 図12に示されるように、検知対象物60が存在しない場合には、照明部2は、ある時間間隔Pのうちaが2回すなわち2a(>a)の時間、光50を照射している。一方、検知対象物60が存在する場合には、照明部2はある時間間隔Pのうちaが4回すなわち4aの時間、光50を照射している。つまり、本実施の形態では、照明部2の照射時間が一定時間(時間間隔P)において占める割合は、検知対象物60が存在しない場合の方が、検知対象物60が存在する場合よりも小さくなっている。このように、本実施の形態では、検知対象物60が存在しない場合に、LED4(照明部2)の照射時間を短くすることで、照明部2の消費電力を低減している。その結果、位置検出システム1を低消費電力化することができる。 As shown in FIG. 12, when the detection target 60 does not exist, the illumination unit 2 irradiates the light 50 for a time of 2 times, that is, 2a (> a) in a certain time interval P. . On the other hand, when the detection target 60 is present, the illuminating unit 2 irradiates the light 50 in the time interval P for four times, that is, for 4a. That is, in the present embodiment, the proportion of the irradiation time of the illumination unit 2 in the fixed time (time interval P) is smaller when the detection target 60 is not present than when the detection target 60 is present. It has become. Thus, in this Embodiment, when the detection target object 60 does not exist, the power consumption of the illumination part 2 is reduced by shortening the irradiation time of LED4 (illumination part 2). As a result, the position detection system 1 can be reduced in power consumption.
 また、図12に示される例では、第1動作モード及び第2動作モードとの間で、照明部2が光50を照射する周期のうち照明部2が光を照射する時間の占める割合(以後、単に「デューティ比」と呼ぶ)を変化させている。より具体的には、図12に示される例では、第2動作モード設定時における照明部2の照射周期T2を、第1動作モード設定時における照明部2の照射周期T1より長くすると共に、第2動作モード設定時におけるデューティ比を、第1動作モード設定時におけるデューティ比より小さくしている。ただし、図12に示される例のように、必ずしも、照射周期と、デューティ比との両方を変化させる必要はない。第2動作モードにおいて照明部2の照射時間が一定時間において占める割合が、第1動作モードにおいて照明部2の照射時間が一定時間において占める割合より小さくなっていればよく、例えば、照射周期が一定で照射時間のみ変化、もしくは照射時間が一定で照射周期のみ変化させてもよい。 In the example shown in FIG. 12, the ratio of the time during which the illumination unit 2 irradiates light in the period in which the illumination unit 2 irradiates the light 50 between the first operation mode and the second operation mode (hereinafter, Simply called “duty ratio”). More specifically, in the example shown in FIG. 12, the irradiation period T2 of the illumination unit 2 at the time of setting the second operation mode is set longer than the irradiation period T1 of the illumination unit 2 at the time of setting the first operation mode. The duty ratio at the time of setting the second operation mode is made smaller than the duty ratio at the time of setting the first operation mode. However, as in the example shown in FIG. 12, it is not always necessary to change both the irradiation cycle and the duty ratio. The ratio of the illumination time of the illumination unit 2 in the fixed time in the second operation mode only needs to be smaller than the ratio of the illumination time of the illumination unit 2 in the fixed time in the first operation mode. For example, the irradiation cycle is constant In this case, only the irradiation time may be changed, or the irradiation time may be constant and only the irradiation period may be changed.
 図13は、図10に対応しており、本実施の形態における位置検出システム1のタイミングチャートの一例を示している。図13に示されるように、演算器43(x座標値演算器31、y座標値演算器32及びz座標値演算器33)は、LED4が光50を照射しているときに、座標値を求める。 FIG. 13 corresponds to FIG. 10 and shows an example of a timing chart of the position detection system 1 in the present embodiment. As shown in FIG. 13, the calculator 43 (the x coordinate value calculator 31, the y coordinate value calculator 32, and the z coordinate value calculator 33) displays the coordinate value when the LED 4 is irradiating the light 50. Ask.
 図13に示される例では、検知対象物60が存在しない場合(第2動作モード設定時)における照明部2のデューティ比を、検知対象物60が存在する場合(第1動作モード設定時)における照明部2のデューティ比よりも小さくすることで、照明部2が光50を照射する時間を短くしている(より具体的には、一定時間内における、照明部2の照射時間の総計を短くしている)。照明部2が光50を照射する時間を短くすることで、照明部2での消費電力を低減することができ、位置検出システム1を低消費電力化することができる。 In the example shown in FIG. 13, the duty ratio of the illumination unit 2 when the detection target object 60 does not exist (when the second operation mode is set) is the same as when the detection target object 60 exists (when the first operation mode is set). By making it smaller than the duty ratio of the illuminating unit 2, the time for the illuminating unit 2 to irradiate the light 50 is shortened (more specifically, the total irradiation time of the illuminating unit 2 within a certain time is shortened). is doing). By shortening the time during which the illumination unit 2 irradiates the light 50, the power consumption in the illumination unit 2 can be reduced, and the position detection system 1 can be reduced in power consumption.
 なお、図13に示される例では、第一実施形態と同様に、第2動作モードにおいて照明部2が照射する光50の光量を低減しているが、低減しなくてもよい。この場合であっても、第2動作モード設定時における照明部2での照射時間を、第1動作モード設定時における照明部2での照射時間より短くすることで、第2動作モードにおける照明部2の消費電力を低減することが可能である。また、第2動作モードにおいては、第1動作モードと同様に、x座標値、y座標値及びz座標値のすべてが求められてもよい。この場合であっても、第2動作モード設定時における照明部2での照射時間を、第1動作モード設定時における照明部2での照射時間より短くすることで、第2動作モードにおける照明部2の消費電力を低減することが可能である。 In the example shown in FIG. 13, the amount of light 50 irradiated by the illumination unit 2 in the second operation mode is reduced as in the first embodiment, but it may not be reduced. Even in this case, the illumination unit 2 in the second operation mode is set to be shorter than the illumination time in the illumination unit 2 at the time of setting the first operation mode by setting the irradiation time at the illumination unit 2 at the time of setting the second operation mode. 2 can be reduced. In the second operation mode, all of the x coordinate value, the y coordinate value, and the z coordinate value may be obtained as in the first operation mode. Even in this case, the illumination unit 2 in the second operation mode is set to be shorter than the illumination time in the illumination unit 2 at the time of setting the first operation mode by setting the irradiation time at the illumination unit 2 at the time of setting the second operation mode. 2 can be reduced.
 <<第三実施形態>>
 第三実施形態では、位置検出システム1の動作モードが第1動作モードに設定されている場合に、演算器43(x座標値演算器31、y座標値演算器32及びz座標値演算器33)が、LED4(照明部2)が光50を照射する周期より長い周期で、x座標値、y座標値及びz座標値の少なくとも一つを求めることで、位置検出システム1を低消費電力化している。
<< Third embodiment >>
In the third embodiment, when the operation mode of the position detection system 1 is set to the first operation mode, the calculator 43 (x coordinate value calculator 31, y coordinate value calculator 32, and z coordinate value calculator 33). ) Reduces the power consumption of the position detection system 1 by obtaining at least one of the x-coordinate value, the y-coordinate value, and the z-coordinate value in a cycle longer than the cycle in which the LED 4 (illumination unit 2) irradiates the light 50 ing.
 図14は、第1動作モードにおいて位置検出部21(演算器43及び出力端子47)で算出及び出力される座標値の一例を示す図である。図14の横軸に示される番号は、便宜的に定めたものであり、位置検出システム1の動作モードが第1動作モードに設定された後、初めて動作制御部23からNo.6に示される制御信号が送出されたときを「1回目」としている。また、「1回目」の下欄には、当該1回目に送出されたNo.6に示される制御信号に基づいて、位置検出部21で算出及び出力された座標値の種類を示している。以降、動作制御部23からNo.6に示される制御信号が送出される度に、2回目、3回目・・・と番号が大きくなる。 FIG. 14 is a diagram illustrating an example of coordinate values calculated and output by the position detection unit 21 (the arithmetic unit 43 and the output terminal 47) in the first operation mode. The numbers shown on the horizontal axis in FIG. 14 are determined for convenience, and after the operation mode of the position detection system 1 is set to the first operation mode, the operation control unit 23 sets No. 1 for the first time. The time when the control signal shown in FIG. In the lower column of “First time”, the No. 6 shows the types of coordinate values calculated and output by the position detector 21 based on the control signal shown in FIG. Thereafter, the operation control unit 23 changes the No. Each time the control signal shown in FIG. 6 is sent out, the number increases as the second time, the third time,.
 図14に示されるように、1回目にNo.6に示される制御信号が送出されたときには、位置検出部21はx座標値及びz座標値を算出及び出力を行う。続いて、2回目にNo.6に示される制御信号が送出されたときには、位置検出部21はy座標値及びz座標値の算出及び出力を行う。そして、3回目にNo.6に示される制御信号が送出されたときには、1回目のときと同様に、位置検出部21はx座標値及びz座標値の算出及び出力を行い、4回目にNo.6に示される制御信号が送出されたときには、2回目のときと同様に、位置検出部21はy座標値及びz座標値の算出及び出力を行う。 As shown in FIG. When the control signal shown in FIG. 6 is sent, the position detector 21 calculates and outputs the x coordinate value and the z coordinate value. Subsequently, No. When the control signal shown in FIG. 6 is sent, the position detector 21 calculates and outputs the y coordinate value and the z coordinate value. And No. 3 for the third time. When the control signal shown in FIG. 6 is sent out, the position detection unit 21 calculates and outputs the x-coordinate value and the z-coordinate value as in the first time. When the control signal shown in FIG. 6 is sent out, the position detection unit 21 calculates and outputs the y coordinate value and the z coordinate value as in the second time.
 このように、動作制御部23からNo.6に示される制御信号が送出された回数が1回目、3回目・・・など奇数回数であるときには、位置検出部21は「x座標値及びz座標値」の算出及び出力を行う。一方、動作制御部23からNo.6に示される制御信号が送出された回数が2回目、4回目・・・など偶数回数であるときには、位置検出部21は「y座標値及びz座標値」の算出及び出力を行う。言い換えると、図14に示される例では、位置検出部21は、x座標値及びy座標値を交互に算出して出力している。 In this way, from the operation control unit 23, no. 6 is an odd number such as the first time, the third time,..., The position detection unit 21 calculates and outputs “x coordinate value and z coordinate value”. On the other hand, from the operation control unit 23, the No. When the number of times the control signal shown in FIG. 6 is sent is an even number such as the second time, the fourth time,..., The position detection unit 21 calculates and outputs “y coordinate value and z coordinate value”. In other words, in the example illustrated in FIG. 14, the position detection unit 21 alternately calculates and outputs the x coordinate value and the y coordinate value.
 第1動作モードに設定された後、動作制御部23からNo.6に示される制御信号が送出されると、指示部20は、演算器43にx座標値とz座標値の算出を行う旨の第1指示信号を送出する(より具体的には、x座標値演算器31及びz座標値演算器33に動作を行う旨の指示信号を送出し、y座標値演算器32に動作を休止する旨の指示信号を送出する)。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、演算器43にy座標値とz座標値の算出を行う旨の第2指示信号を送出する(より具体的には、x座標値演算器31に動作を休止する旨の指示信号を送出し、y座標値演算器32及びz座標値演算器33に動作を行う旨の指示信号を送出する)。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、第1指示信号を送出する。以後、指示部20は、同様に動作して、動作制御部23からNo.6に示される制御信号が送出されるたびに第1及び第2指示信号の一方を送出することによって、第1指示信号と第2指示信号を交互に送出する。 After the first operation mode is set, the operation control unit 23 sets No. When the control signal shown in FIG. 6 is transmitted, the instruction unit 20 transmits a first instruction signal for calculating the x-coordinate value and the z-coordinate value to the computing unit 43 (more specifically, the x-coordinate value). An instruction signal for performing the operation is sent to the value calculator 31 and the z coordinate value calculator 33, and an instruction signal for stopping the operation is sent to the y coordinate value calculator 32). Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly sent, a second instruction signal for calculating the y coordinate value and the z coordinate value is sent to the computing unit 43 (more specifically, the x coordinate value computing unit). 31), an instruction signal to stop the operation is sent to the y-coordinate value calculator 32 and the z-coordinate value calculator 33. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted. Thereafter, the instructing unit 20 operates in the same manner, and the operation control unit 23 makes a No. The first instruction signal and the second instruction signal are alternately transmitted by transmitting one of the first and second instruction signals every time the control signal shown in FIG. 6 is transmitted.
 図15は、第三実施形態における位置検出システム1のタイミングチャートを示す図である。指示部20からは第1指示信号と第2指示信号が交互に送出されることから、図15に示されるように、演算器43は、x座標値及びz座標値と、y座標値及びz座標値とを交互に求める。これにより、位置検出システム1では、x座標値及びy座標値のそれぞれが、照明部2が光50を照射する周期より長い間隔で求められる。 FIG. 15 is a diagram showing a timing chart of the position detection system 1 in the third embodiment. Since the instruction unit 20 alternately sends the first instruction signal and the second instruction signal, as shown in FIG. 15, the computing unit 43 has the x coordinate value, the z coordinate value, the y coordinate value, and the z coordinate value. The coordinate value is obtained alternately. Thereby, in the position detection system 1, each of the x coordinate value and the y coordinate value is obtained at intervals longer than the cycle in which the illumination unit 2 irradiates the light 50.
 このように、本実施形態に係る位置検出システム1は、検知対象物60が存在するか否かの判定に使用しないx座標値およびy座標値を、照明部2が光を照射する周期より長い間隔で求め、検知対象物60が存在するか否かの判定に使用するz座標値を、照明部2が光50を照射する周期と同じ間隔で求めている。これにより、検知対象物60が存在するか否かの判定を遅らせることなく、演算器43(位置検出部21)での消費電力を低減することができる。その結果、位置検出システム1を低消費電力化することができる。 Thus, in the position detection system 1 according to the present embodiment, the x-coordinate value and the y-coordinate value that are not used for determining whether or not the detection target 60 exists are longer than the cycle in which the illumination unit 2 irradiates light. The z coordinate value used for determining whether or not the detection object 60 exists is obtained at the same interval as the cycle in which the illumination unit 2 irradiates the light 50. Thereby, the power consumption in the calculator 43 (position detection part 21) can be reduced, without delaying the determination whether the detection target object 60 exists. As a result, the position detection system 1 can be reduced in power consumption.
 なお、上記の例では、x座標値およびy座標値が交互に求められていたが、図16に示されるように、同じタイミングで求められてもよい。図16の例では、指示部20は、第1動作モードに設定された後、動作制御部23からNo.6に示される制御信号が送出されると、演算器43に対して、x座標値、y座標値及びz座標値の算出を行う旨の第1指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、演算器43にz座標値の算出を行う旨の第2指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、第1指示信号を送出する。以後、指示部20は、同様に動作して、第1指示信号と第2指示信号を交互に送出する。 In the above example, the x coordinate value and the y coordinate value are obtained alternately, but may be obtained at the same timing as shown in FIG. In the example of FIG. 16, after the instruction unit 20 is set to the first operation mode, the operation control unit 23 sets No. When the control signal shown in FIG. 6 is transmitted, a first instruction signal for calculating the x coordinate value, the y coordinate value, and the z coordinate value is transmitted to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly sent, a second instruction signal for calculating the z coordinate value is sent to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted. Thereafter, the instruction unit 20 operates in the same manner, and alternately sends the first instruction signal and the second instruction signal.
 また、上記の例では、x座標値およびy座標値が、照明部2が光50を照射する周期より長い間隔で求められていたが、x座標値、y座標値及びz座標の少なくとも一つが、照明部2が光50を照射する周期より長い間隔で求められれば、位置検出システム1を低消費電力化することができる。 In the above example, the x coordinate value and the y coordinate value are obtained at intervals longer than the cycle in which the illumination unit 2 emits the light 50. However, at least one of the x coordinate value, the y coordinate value, and the z coordinate is If the illumination unit 2 is obtained at intervals longer than the period in which the light 50 is irradiated, the position detection system 1 can be reduced in power consumption.
 図17は、x座標値だけが、照明部2が光50を照射する周期より長い間隔で求められる場合の位置検出システム1のタイミングチャートの一例を示す図である。図17の例では、指示部20は、第1動作モードに設定された後、動作制御部23からNo.6に示される制御信号が送出されると、演算器43に対して、x座標値、y座標値及びz座標値の算出を行う旨の第1指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、演算器43にy座標値とz座標値の算出を行う旨の第2指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、第1指示信号を送出する。以後、指示部20は、同様に動作して、第1指示信号と第2指示信号を交互に送出する。 FIG. 17 is a diagram illustrating an example of a timing chart of the position detection system 1 when only the x-coordinate value is obtained at an interval longer than the cycle in which the illumination unit 2 irradiates the light 50. In the example of FIG. 17, after the instruction unit 20 is set to the first operation mode, the operation control unit 23 sets No. When the control signal shown in FIG. 6 is transmitted, a first instruction signal for calculating the x coordinate value, the y coordinate value, and the z coordinate value is transmitted to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When a control signal shown in FIG. 6 is newly sent, a second instruction signal for calculating the y coordinate value and the z coordinate value is sent to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted. Thereafter, the instruction unit 20 operates in the same manner, and alternately sends the first instruction signal and the second instruction signal.
 図18は、z座標値だけが、照明部2が光50を照射する周期より長い間隔で求められる場合の位置検出システム1のタイミングチャートの一例を示す図である。図18の例では、指示部20は、第1動作モードに設定された後、動作制御部23からNo.6に示される制御信号が送出されると、演算器43に対して、x座標値、y座標値及びz座標値の算出を行う旨の第1指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、演算器43x座標値及びy座標値の算出を行う旨の第2指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、第1指示信号を送出する。以後、指示部20は、同様に動作して、第1指示信号と第2指示信号を交互に送出する。 FIG. 18 is a diagram illustrating an example of a timing chart of the position detection system 1 in a case where only the z coordinate value is obtained at an interval longer than the cycle in which the illumination unit 2 irradiates the light 50. In the example of FIG. 18, after the instruction unit 20 is set to the first operation mode, the operation control unit 23 sets No. When the control signal shown in FIG. 6 is transmitted, a first instruction signal for calculating the x coordinate value, the y coordinate value, and the z coordinate value is transmitted to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When a control signal shown in FIG. 6 is newly transmitted, a second instruction signal for calculating the computing unit 43x coordinate value and y coordinate value is transmitted. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted. Thereafter, the instruction unit 20 operates in the same manner, and alternately sends the first instruction signal and the second instruction signal.
 図19は、x座標値、y座標値及びz座標値のすべてが、照明部2が光50を照射する周期より長い間隔で求められる場合の位置検出システム1のタイミングチャートの一例を示す図である。図19の例では、指示部20は、第1動作モードに設定された後、動作制御部23からNo.6に示される制御信号が送出されると、演算器43に対して、x座標値の算出を行う旨の第1指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、演算器43にy座標値の算出を行う旨の第2指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、演算器43にz座標値の算出を行う旨の第3指示信号を送出する。その後、指示部20は、動作制御部23からNo.6に示される制御信号が新たに送出されると、第1指示信号を送出する。以後、指示部20は、同様に動作して、第1指示信号、第2指示信号及び第3指示信号を交互に送出する。 FIG. 19 is a diagram illustrating an example of a timing chart of the position detection system 1 when all of the x-coordinate value, the y-coordinate value, and the z-coordinate value are obtained at intervals longer than the cycle in which the illumination unit 2 irradiates the light 50. is there. In the example of FIG. 19, after the instruction unit 20 is set to the first operation mode, the operation control unit 23 sets No. When the control signal shown in FIG. 6 is sent, a first instruction signal for calculating the x-coordinate value is sent to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly sent, a second instruction signal for calculating the y-coordinate value is sent to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly sent, a third instruction signal for calculating the z coordinate value is sent to the computing unit 43. Thereafter, the instruction unit 20 receives a No. from the operation control unit 23. When the control signal shown in FIG. 6 is newly transmitted, the first instruction signal is transmitted. Thereafter, the instruction unit 20 operates in the same manner, and alternately sends the first instruction signal, the second instruction signal, and the third instruction signal.
 このように、x座標値、y座標値及びz座標値のすべてが、照明部2が光50を照射する周期より長い間隔で求められることによって、演算器43(位置検出部21)での消費電力を大きく低減することができる。 As described above, the x coordinate value, the y coordinate value, and the z coordinate value are all obtained at intervals longer than the period in which the illumination unit 2 irradiates the light 50, and thus consumed by the computing unit 43 (position detection unit 21). Electric power can be greatly reduced.
 また、上述の図15,19のように、x座標値とy座標値とが異なるタイミングで求められる場合には、x座標値及びy座標値を求める演算器を共通にすることが可能である。図20は、x座標値及びy座標値を求める演算回路が共通にされた場合の位置検出部21の構成を示す図である。図20に示される第一演算器35は、x座標値及びy座標値の両方を求めることができる。 Further, as shown in FIGS. 15 and 19, when the x coordinate value and the y coordinate value are obtained at different timings, it is possible to use a common arithmetic unit for obtaining the x coordinate value and the y coordinate value. . FIG. 20 is a diagram illustrating a configuration of the position detection unit 21 when the arithmetic circuit for obtaining the x coordinate value and the y coordinate value is shared. The first calculator 35 shown in FIG. 20 can obtain both the x coordinate value and the y coordinate value.
 ここで、x座標値を算出するための演算式(1)と、y座標値を算出するための演算式(2)とを比較すると、分子に存在する加算式中の一方の値が異なるだけである。つまり、分子の加算式の値を求めるための2入力の加算回路の一方の入力端子に対して、第4電気信号を入力するか、第2電気信号を入力するかを変化させるだけで、共通の演算器(演算回路)を用いてx座標値及びy座標値を求めることができる。 Here, when the calculation formula (1) for calculating the x coordinate value is compared with the calculation formula (2) for calculating the y coordinate value, only one value in the addition formula existing in the numerator is different. It is. In other words, it is common to change whether the fourth electric signal or the second electric signal is input to one input terminal of the two-input adder circuit for obtaining the value of the numerator addition formula. The x-coordinate value and the y-coordinate value can be obtained using the above computing unit (arithmetic circuit).
 図20に示される第一演算器35は、x座標値及びy座標値に共通の演算器である。そして、第一演算器35の前段の第一選択器36によって、第一演算器35における、分子の加算式の値を求めるための2入力の加算回路の一方の入力端子に対して、第4電気信号を入力するか、第2電気信号を入力するかを切り換えている。つまり、第一選択器36は、演算器43がx座標値を求めるときには、第4電気信号を選択して加算回路の一方の入力端子に入力する。一方で、第一選択器36は、演算器43がy座標値を求めるときには、第2電気信号を選択して加算回路の一方の入力端子に入力する。なお、加算回路の他方の入力端子には第1電気信号が入力される。 The first calculator 35 shown in FIG. 20 is a calculator common to the x coordinate value and the y coordinate value. Then, the first selector 36 in the first stage of the first computing unit 35 is connected to one input terminal of the 2-input adding circuit for obtaining the value of the numerator addition formula in the first computing unit 35 with respect to the fourth input terminal. It is switched between inputting an electric signal and inputting a second electric signal. That is, the first selector 36 selects the fourth electric signal and inputs it to one input terminal of the adder circuit when the computing unit 43 obtains the x coordinate value. On the other hand, the first selector 36 selects the second electric signal and inputs it to one input terminal of the adder circuit when the calculator 43 obtains the y coordinate value. Note that the first electric signal is input to the other input terminal of the adder circuit.
 第一演算器35の後段に設けられた第二選択器37は、第一演算器35からx座標値が出力されると当該x座標値を出力端子47aに出力し、第一演算器35からy座標値が出力されると当該y座標値を出力端子47bに出力する。 When the x-coordinate value is output from the first calculator 35, the second selector 37 provided at the subsequent stage of the first calculator 35 outputs the x-coordinate value to the output terminal 47a. When the y coordinate value is output, the y coordinate value is output to the output terminal 47b.
 このように、x座標値及びy座標値を求める演算器を共通とすることで、位置検出部21の構成を簡素化できる。その結果、位置検出部21を実現する回路の面積縮小および位置検出部21の低コスト化が可能となる。 Thus, the configuration of the position detection unit 21 can be simplified by using a common computing unit for obtaining the x coordinate value and the y coordinate value. As a result, it is possible to reduce the area of the circuit that realizes the position detection unit 21 and to reduce the cost of the position detection unit 21.
 なお、図20では、x座標値演算器31とy座標値演算器32とを共通化する例について説明したが、共通化する演算回路の種類はこれに限られない。共通化する演算回路の種類は、各座標値を求めるために使用する演算式に応じて決定することができる。x座標値、y座標値及びz座標値の少なくとも2つの座標値を求めるための複数の演算式が、式(1)及び(2)のように、代入する値を変えるだけで同じとなるのであれば、当該少なくとも2つの座標値を演算する演算器を共通にすることができる。 In FIG. 20, the example in which the x-coordinate value calculator 31 and the y-coordinate value calculator 32 are shared has been described, but the type of the calculation circuit to be shared is not limited to this. The type of the arithmetic circuit to be shared can be determined according to the arithmetic expression used to obtain each coordinate value. Since a plurality of arithmetic expressions for obtaining at least two coordinate values of the x coordinate value, the y coordinate value, and the z coordinate value are the same as the expressions (1) and (2) only by changing the value to be substituted. If there is, it is possible to use a common computing unit for computing the at least two coordinate values.
 また、x座標値及びy座標値を求める演算器を共通にする場合には、図21に示されるように、x座標値及びy座標値を出力する出力端子を共通化してもよい。これより、位置検出部21の構成をさらに簡素化できる。 Further, in the case where an arithmetic unit for obtaining the x coordinate value and the y coordinate value is made common, as shown in FIG. 21, an output terminal for outputting the x coordinate value and the y coordinate value may be made common. Thus, the configuration of the position detection unit 21 can be further simplified.
 また、図19に示されるように、x座標値、y座標値及びz座標値が互いに異なるタイミングで算出される場合には、図22に示されるように、x座標値、y座標値及びz座標値を出力する出力端子を共通にしてもよい。第一演算器35及びz座標値演算器33の後段の第二選択器38は、第一演算器35からx座標値が出力されると当該x座標値を出力端子47aに出力する。また、第二選択器38は、第一演算器35からy座標値が出力されると当該y座標値を出力端子47aに出力する。そして、第二選択器38は、z座標値演算器33からz座標値が出力されると当該z座標値を出力端子47aに出力する。 As shown in FIG. 19, when the x coordinate value, the y coordinate value, and the z coordinate value are calculated at different timings, as shown in FIG. 22, the x coordinate value, the y coordinate value, and the z coordinate value are calculated. An output terminal for outputting coordinate values may be shared. The second selector 38 subsequent to the first calculator 35 and the z-coordinate value calculator 33 outputs the x-coordinate value to the output terminal 47a when the x-coordinate value is output from the first calculator 35. Further, when the y coordinate value is output from the first computing unit 35, the second selector 38 outputs the y coordinate value to the output terminal 47a. Then, when the z coordinate value is output from the z coordinate value calculator 33, the second selector 38 outputs the z coordinate value to the output terminal 47a.
 このように、x座標値、y座標値及びz座標値を出力する出力端子を共通にすることによって、位置検出部21の構成をさらに簡素化できる。 Thus, the configuration of the position detection unit 21 can be further simplified by using a common output terminal for outputting the x coordinate value, the y coordinate value, and the z coordinate value.
 <<変形例>>
 <測距システムについて>
 上述した第一実施形態及び第二実施形態の内容は、位置検出システム1だけでなく、測距システムにも適用することができる。図23は、測距システム70の構成を示す図である。
<< Modification >>
<About ranging system>
The contents of the first embodiment and the second embodiment described above can be applied not only to the position detection system 1 but also to a distance measuring system. FIG. 23 is a diagram illustrating a configuration of the distance measuring system 70.
 測距システム70は、照明部2、受光部3及び制御部10を備えており、当該測距システムと検知対象物60との距離を検出する。測距システム70は、照明部2から光50を照射し、検知対象物60で反射した光(反射光51)を受光部3で受光する。そして、測距システム70では、反射光51を受光部3で受光することで得られた電気信号に基づいて、制御部10が測距システム70と検知対象物60との距離を検出する。測距システム70は、当該測距システム70と検知対象物60との距離を検出する点で、検知対象物60の位置(座標値)を検出する位置検出システム1と異なる。測距システム70は、例えば、撮像装置に搭載される。測距システム70が搭載された撮像装置では、当該測距システム70によって検出された、当該測距離システム70と検知対象物60との距離に基づいて、当該検知対象物60にピントを自動で合わせることができる。 The ranging system 70 includes an illumination unit 2, a light receiving unit 3, and a control unit 10, and detects the distance between the ranging system and the detection target 60. The distance measuring system 70 irradiates the light 50 from the illuminating unit 2, and the light (reflected light 51) reflected by the detection target 60 is received by the light receiving unit 3. In the distance measuring system 70, the control unit 10 detects the distance between the distance measuring system 70 and the detection target 60 based on the electrical signal obtained by receiving the reflected light 51 by the light receiving unit 3. The distance measurement system 70 is different from the position detection system 1 that detects the position (coordinate value) of the detection object 60 in that the distance between the distance measurement system 70 and the detection object 60 is detected. The distance measuring system 70 is mounted on an imaging device, for example. In the imaging apparatus equipped with the ranging system 70, the detection target 60 is automatically focused based on the distance between the ranging system 70 and the detection target 60 detected by the ranging system 70. be able to.
 測距システム70では、図23に示されるように、位置検出部21(図5参照)ではなく、測距システム70と検知対象物60との距離を検出する距離検出部26が設けられる。また、測距システム70では、判定部22は、座標値に基づいてではなく、距離検出部26が検知した距離に基づいて、検知対象物60が存在するか否かの判定を行う。距離検出部26を有する第1制御部11は、主に、第2制御部12からの制御信号に基づいて、測距システム70と検知対象物60との距離を検出する。つまり、距離検出部26を有する第1制御部11は、測距システム70と検知対象物60との距離を検出する測距装置として機能する。測距システム70の残余の構成は、位置検出システム1と同様である。 In the distance measuring system 70, as shown in FIG. 23, not the position detecting unit 21 (see FIG. 5) but a distance detecting unit 26 for detecting the distance between the distance measuring system 70 and the detection target 60 is provided. In the distance measuring system 70, the determination unit 22 determines whether or not the detection target 60 exists based on the distance detected by the distance detection unit 26, not based on the coordinate value. The first control unit 11 having the distance detection unit 26 mainly detects the distance between the ranging system 70 and the detection object 60 based on the control signal from the second control unit 12. That is, the first control unit 11 having the distance detection unit 26 functions as a distance measuring device that detects the distance between the distance measuring system 70 and the detection target 60. The remaining configuration of the ranging system 70 is the same as that of the position detection system 1.
 距離検出部26は、受光部3から出力された電気信号に基づいて、測距システム70と検知対象物60との距離を検出する。より具体的には、距離検出部26は、照明部2が光50を照射してから、当該光50が検知対象物60で反射して受光部3で受光されるまでの時間、もしくは、受光部3で受光された反射光51の入射角等を、受光部3から出力された電気信号と所定の演算式とを用いて求める、そして、距離検出部26は、求めた当該時間、もしくは当該入射角等に基づいて、測距システム70と検知対象物60との距離を検出する。距離検出部26において、測距システム70と検知対象物60との距離を算出する際に用いる所定の演算式は、受光部3を構成するPDの数や配置位置などに応じて選択される。 The distance detection unit 26 detects the distance between the ranging system 70 and the detection target 60 based on the electrical signal output from the light receiving unit 3. More specifically, the distance detection unit 26 is the time from when the illumination unit 2 irradiates the light 50 to when the light 50 is reflected by the detection target 60 and received by the light receiving unit 3, or the light reception The incident angle or the like of the reflected light 51 received by the unit 3 is obtained using the electrical signal output from the light receiving unit 3 and a predetermined arithmetic expression, and the distance detection unit 26 obtains the obtained time or the Based on the incident angle or the like, the distance between the distance measuring system 70 and the detection object 60 is detected. In the distance detection unit 26, a predetermined arithmetic expression used when calculating the distance between the distance measurement system 70 and the detection target 60 is selected according to the number of PDs constituting the light receiving unit 3, the arrangement position, and the like.
 図24は、図7に示される位置検出システム1に係る第1制御部11の構成図に対応する、測距システム70の第1制御部11の構成を示す図である。図24に例示される第1制御部11では、演算器43と出力端子47aとが、距離検出部26として機能する。演算器43は、LED4が光50を照射している際に増幅器42a,42b,42c,42dから出力された電気信号に基づいて、測距システム70と検知対象物60との距離を検出する(求める)。また、演算器43で検出される情報の種類は1種類(測距システム70と検知対象物60との距離だけ)であるため、演算器43には1つの出力端子47aが接続されている。演算器43で検出された、測距システム70と検知対象物60との距離は、出力端子47aから第2制御部12および測距システム70の外部に出力される。 FIG. 24 is a diagram illustrating a configuration of the first control unit 11 of the ranging system 70 corresponding to the configuration diagram of the first control unit 11 according to the position detection system 1 illustrated in FIG. 7. In the first control unit 11 illustrated in FIG. 24, the computing unit 43 and the output terminal 47 a function as the distance detection unit 26. The computing unit 43 detects the distance between the distance measuring system 70 and the detection target 60 based on the electrical signals output from the amplifiers 42a, 42b, 42c, and 42d when the LED 4 is irradiating the light 50 ( Ask). Further, since there is only one type of information detected by the calculator 43 (only the distance between the distance measuring system 70 and the detection object 60), the calculator 43 is connected to one output terminal 47a. The distance between the distance measuring system 70 and the detection object 60 detected by the computing unit 43 is output from the output terminal 47a to the outside of the second control unit 12 and the distance measuring system 70.
 測距システム70の判定部22は、距離検出部26で検出された、測距システム70と検知対象物60との距離に基づいて、検知対象物60が存在するか否かの判定を行う。図25は、図6に示される位置検出システム1に係る判定部22の処理に対応する、測距システム70に係る判定部22の処理を示す図である。 The determination unit 22 of the ranging system 70 determines whether or not the detection target 60 exists based on the distance between the ranging system 70 and the detection target 60 detected by the distance detection unit 26. FIG. 25 is a diagram illustrating processing of the determination unit 22 according to the distance measuring system 70 corresponding to the processing of the determination unit 22 according to the position detection system 1 illustrated in FIG. 6.
 本変形例に係る判定部22は、まず、距離検出部26で検出された距離を取得する(ステップS20)。そして、判定部22は、ステップS20で取得した距離と、所定の閾値とを比較する(ステップS21)。例えば、ステップS20で取得した距離が、所定の閾値より大きい場合、つまり検知対象物60が所定距離内に存在しない場合には(ステップS11でYes)、判定部22は、検知対象物60が存在しないと判定する(ステップS22)。一方、判定部22は、ステップS20で取得した距離が、所定の閾値より小さい場合、つまり検知対象物60が所定距離内に存在する場合には(ステップS11でNo)、判定部22は、検知対象物60が存在すると判定する(ステップS23)。判定部22での判定結果は、動作制御部23に出力される。 The determination unit 22 according to the present modification first acquires the distance detected by the distance detection unit 26 (step S20). And the determination part 22 compares the distance acquired by step S20, and a predetermined threshold value (step S21). For example, when the distance acquired in step S20 is larger than a predetermined threshold, that is, when the detection target 60 does not exist within the predetermined distance (Yes in step S11), the determination unit 22 has the detection target 60 present. It is determined not to be performed (step S22). On the other hand, when the distance acquired in step S20 is smaller than the predetermined threshold, that is, when the detection target 60 is within the predetermined distance (No in step S11), the determination unit 22 It determines with the target object 60 existing (step S23). The determination result in the determination unit 22 is output to the operation control unit 23.
 測距システム70の動作制御部23は、判定部22から出力された判定結果を用いて、測距システム70の動作モードを設定し、当該動作モードに基づいて指示部20に制御信号を送出する。測距システム70は、上述した第一実施形態および第二実施形態と同様に、判定部22で検知対象物60が存在すると判定された場合に設定される第1動作モードと、判定部22で検知対象物60が存在しないと判定された場合に設定される第2動作モードとを有している。 The operation control unit 23 of the distance measurement system 70 sets the operation mode of the distance measurement system 70 using the determination result output from the determination unit 22, and sends a control signal to the instruction unit 20 based on the operation mode. . The ranging system 70 includes a first operation mode that is set when the determination unit 22 determines that the detection target 60 exists, and the determination unit 22, as in the first and second embodiments described above. A second operation mode that is set when it is determined that the detection object 60 does not exist.
 <動作制御部による制御例について>
 図26は、図10に示される位置検出システム1の動作制御部23が送出する制御信号に対応する、本変形例に係る動作制御部23が送出する制御信号の一例を示す図である。
<Example of control by the operation control unit>
FIG. 26 is a diagram illustrating an example of a control signal sent out by the operation control unit 23 according to the present modification corresponding to the control signal sent out by the operation control unit 23 of the position detection system 1 shown in FIG.
 上述したように、本変形例に係る演算器43からは、測距システム70と検知対象物60との距離しか出力されない。そのため、第一実施形態とは異なり、検知対象物60が存在しない場合(測距システム70の動作モードが第2動作モードに設定されている場合)であっても、演算器43で検出される情報の種類は変化しない。つまり、本変形例に係る演算器43は、図26に示されるように、測距システム70の動作モードが第1動作モードに設定されているか第2動作モードに設定されているかに関わらず、LED4(照明部2)が光50を照射している際に、測距システム70と検知対象物60との距離を検知する。 As described above, only the distance between the distance measuring system 70 and the detection object 60 is output from the computing unit 43 according to this modification. Therefore, unlike the first embodiment, even when the detection object 60 does not exist (when the operation mode of the distance measuring system 70 is set to the second operation mode), it is detected by the computing unit 43. The type of information does not change. That is, as shown in FIG. 26, the computing unit 43 according to this modification example, regardless of whether the operation mode of the distance measuring system 70 is set to the first operation mode or the second operation mode. When the LED 4 (illumination unit 2) irradiates the light 50, the distance between the distance measuring system 70 and the detection target 60 is detected.
 一方、LEDドライバ41は、測距システム70の動作モードが第2動作モードであるとき、つまり、検知対象物60が所定距離内に存在しないときには、上述した第一実施形態と同様に、照明部2を弱い光(第1光量より少ない第2光量)で点灯させる。そのため、検知対象物60の有無に関わらず一定の光量で光50を照射する場合と比較して、照明部2の消費電力を低減することができる。その結果、測距システム70を低消費電力化することができる。 On the other hand, when the operation mode of the ranging system 70 is the second operation mode, that is, when the detection target 60 does not exist within the predetermined distance, the LED driver 41 is similar to the above-described first embodiment. 2 is turned on with weak light (second light amount less than the first light amount). Therefore, the power consumption of the illumination unit 2 can be reduced as compared with the case where the light 50 is irradiated with a constant light amount regardless of the presence or absence of the detection target 60. As a result, the distance measurement system 70 can be reduced in power consumption.
 なお、検知対象物60が存在しない場合(測距システム70の動作モードが第2動作モードである場合)に、演算器43は、増幅器42からの電気信号に基づいて求める、測距システム70と検知対象物60との距離を所定数倍した値を、測距システム70と検知対象物60との距離として出力してもよい。これにより、第2動作モードにおいて、照明部2が弱い光で照射している場合でも、大きい値の検出結果を得ることができ、判定部22において検知対象物60の有無が判定しやすくなる。 Note that when the detection object 60 does not exist (when the operation mode of the distance measurement system 70 is the second operation mode), the calculator 43 calculates the distance measurement system 70 obtained based on the electrical signal from the amplifier 42. A value obtained by multiplying the distance to the detection target 60 by a predetermined number may be output as the distance between the distance measurement system 70 and the detection target 60. Thereby, even when the illumination part 2 is irradiating with the weak light in a 2nd operation mode, the detection result of a big value can be obtained and it becomes easy to determine the presence or absence of the detection target object 60 in the determination part 22. FIG.
 また、測距システム70の動作モードが第2動作モードに設定されている場合には、第ニ実施形態と同様に、LED4(照明部2)の照射時間を短くすることで、測距システム70を低消費電力化してもよい。照明部2の照射時間は、第二実施形態で説明したように、照射周期およびデューティ比の少なくとも一方を変化させることで変化させることができる。検知対象物60が存在しない場合(第2動作モード設定時)における照明部2が光50を照射する時間を、検知対象物60が存在する場合(第1動作モード設定時)における照明部2が光50を照射する時間より短くすることで、上述した第二実施形態と同様に、照明部2の消費電力を低減することができる。その結果、測距システム70を低消費電力化することができる。なお、この場合には、第2動作モードにおいて照明部2が照射する光50の光量は、低減してもよいし、低減しなくてもよい。照明部2が照射する光50の光量を低減しない場合であっても、第2動作モード設定時における照明部2での照射時間を、第1動作モード設定時における照明部2での照射時間より短くすることで、第2動作モードにおける照明部2の消費電力を低減することが可能である。 Further, when the operation mode of the distance measuring system 70 is set to the second operation mode, the distance measuring system 70 is shortened by shortening the irradiation time of the LED 4 (illumination unit 2) as in the second embodiment. The power consumption may be reduced. As described in the second embodiment, the irradiation time of the illumination unit 2 can be changed by changing at least one of the irradiation period and the duty ratio. When the detection target 60 does not exist (when the second operation mode is set), the illumination unit 2 emits the light 50. When the detection target 60 exists (when the first operation mode is set), the illumination unit 2 By making it shorter than the time for irradiating the light 50, the power consumption of the illumination unit 2 can be reduced as in the second embodiment described above. As a result, the distance measurement system 70 can be reduced in power consumption. In this case, the light amount of the light 50 emitted from the illumination unit 2 in the second operation mode may or may not be reduced. Even when the amount of light 50 emitted by the illumination unit 2 is not reduced, the irradiation time in the illumination unit 2 when the second operation mode is set is longer than the irradiation time in the illumination unit 2 when the first operation mode is set. By shortening, it is possible to reduce the power consumption of the illumination unit 2 in the second operation mode.
 以上のように、位置検出システム1及び測距システム70は詳細に説明されたが、上記した説明は、全ての局面において例示であって、この発明がそれに限定されるものではない。また、上述した各種の例は、相互に矛盾しない限り組み合わせて適用可能である。そして、例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 As described above, the position detection system 1 and the distance measurement system 70 have been described in detail. However, the above description is illustrative in all aspects, and the present invention is not limited thereto. The various examples described above can be applied in combination as long as they do not contradict each other. And it is understood that the countless modification which is not illustrated can be assumed without deviating from the scope of the present invention.
 1 光学的位置検出システム
 2 照明部
 3 受光部
 14 受光面
 21 位置検出部
 22 判定部
 23 動作制御部
 50 光
 60 検知対象物
 70 測距システム
DESCRIPTION OF SYMBOLS 1 Optical position detection system 2 Illumination part 3 Light-receiving part 14 Light-receiving surface 21 Position detection part 22 Judgment part 23 Operation | movement control part 50 Light 60 Detection target object 70 Distance measuring system

Claims (27)

  1.  光学的位置検出システムであって、
     光を照射する照明部と、
     検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物の位置を検出する位置検出部と、
     前記位置検出部での検出結果に基づいて前記検知対象物の有無を判定する判定部と、
     前記光学的位置検出システムの動作モードを制御する動作制御部と
    を備え、
     前記光学的位置検出システムは、前記照明部が第1光量で光を照射する第1動作モードと、前記照明部が前記第1光量よりも少ない第2光量で光を照射する第2動作モードとを有し、
     前記動作制御部は、前記判定部で前記検知対象物が存在すると判定された場合には前記動作モードを前記第1動作モードに設定し、前記判定部で前記検知対象物が存在しないと判定された場合には前記動作モードを前記第2動作モードに設定する、光学的位置検出システム。
    An optical position detection system comprising:
    An illumination unit that emits light;
    A position detection unit that detects the position of the detection object based on an electrical signal obtained by receiving the light reflected by the detection object on a light receiving surface;
    A determination unit for determining the presence or absence of the detection object based on a detection result in the position detection unit;
    An operation control unit for controlling an operation mode of the optical position detection system,
    The optical position detection system includes a first operation mode in which the illumination unit emits light with a first light amount, and a second operation mode in which the illumination unit emits light with a second light amount less than the first light amount. Have
    The operation control unit sets the operation mode to the first operation mode when the determination unit determines that the detection target exists, and the determination unit determines that the detection target does not exist. And an optical position detection system that sets the operation mode to the second operation mode.
  2.  請求項1に記載の光学的位置検出システムであって、
     前記第1動作モードでは、前記位置検出部は、前記受光面を含む座標平面での前記検知対象物の位置を示すx座標値及びy座標値と、当該座標平面に垂直な方向での前記検知対象物の位置を示すz座標値とを求め、
     前記第2動作モードでは、前記位置検出部は、前記x座標値、前記y座標値及び前記z座標値のうちの前記z座標値のみを求める、光学的位置検出システム。
    The optical position detection system according to claim 1,
    In the first operation mode, the position detection unit is configured to detect the x-coordinate value and the y-coordinate value indicating the position of the detection target on a coordinate plane including the light receiving surface, and the detection in a direction perpendicular to the coordinate plane. A z-coordinate value indicating the position of the object,
    In the second operation mode, the position detection unit obtains only the z coordinate value of the x coordinate value, the y coordinate value, and the z coordinate value.
  3.  請求項1に記載の光学的位置検出システムであって、
     前記位置検出部は、
     前記第1動作モードでは、前記受光面に垂直な方向での前記検知対象物の位置を示すz座標値として、所定の演算式を用いて求まる値をそのまま出力し、
     前記第2動作モードでは、前記z座標値として、前記所定の演算式を用いて求まる値の所定数倍を出力する、光学的位置検出システム。
    The optical position detection system according to claim 1,
    The position detector is
    In the first operation mode, as a z coordinate value indicating the position of the detection target in a direction perpendicular to the light receiving surface, a value obtained using a predetermined arithmetic expression is output as it is.
    In the second operation mode, an optical position detection system that outputs a predetermined number times a value obtained using the predetermined arithmetic expression as the z coordinate value.
  4.  請求項1乃至請求項3のいずれか1つに記載の光学的位置検出システムであって、
     前記照明部での前記光の照射時間が一定時間において占める割合は、前記第1動作モードより前記第2動作モードの方が小さく設定される、光学的位置検出システム。
    An optical position detection system according to any one of claims 1 to 3,
    The optical position detection system in which the ratio of the irradiation time of the light in the illumination unit in the fixed time is set to be smaller in the second operation mode than in the first operation mode.
  5.  請求項2に記載の光学的位置検出システムであって、
     前記第1動作モードでは、前記照明部は、所定の周期で前記光を照射し、
     前記第1動作モードでは、前記位置検出部は、前記所定の周期より長い間隔で、前記x座標値、前記y座標値及び前記z座標値の少なくとも一つを求める、光学的位置検出システム。
    The optical position detection system according to claim 2,
    In the first operation mode, the illumination unit irradiates the light at a predetermined cycle,
    In the first operation mode, the position detection unit obtains at least one of the x coordinate value, the y coordinate value, and the z coordinate value at an interval longer than the predetermined period.
  6.  請求項5に記載の光学的位置検出システムであって、
     前記第1動作モードでは、前記位置検出部は、前記所定の周期より長い間隔で、前記x座標値及び前記y座標値を求める、光学的位置検出システム。
    The optical position detection system according to claim 5,
    In the first operation mode, the position detection unit obtains the x coordinate value and the y coordinate value at an interval longer than the predetermined period.
  7.  請求項5及び請求項6のいずれか一つに記載の光学的位置検出システムであって、
     前記第1動作モードでは、前記位置検出部は、前記所定の周期より長い間隔で、前記z座標値を求める、光学的位置検出システム。
    An optical position detection system according to any one of claims 5 and 6,
    In the first operation mode, the position detection unit obtains the z coordinate value at an interval longer than the predetermined period.
  8.  請求項6に記載の光学的位置検出システムであって、
     前記第1動作モードでは、前記位置検出部は、前記x座標値及び前記y座標値を交互に求める、光学的位置検出システム。
    The optical position detection system according to claim 6,
    In the first operation mode, the position detection unit obtains the x coordinate value and the y coordinate value alternately, and is an optical position detection system.
  9.  請求項8に記載の光学的位置検出システムであって、
     前記位置検出部では、前記x座標値及び前記y座標値を求める演算回路が共通となっている、光学的位置検出システム。
    The optical position detection system according to claim 8, comprising:
    The optical position detection system in which the calculation circuit which calculates | requires the said x coordinate value and the said y coordinate value is common in the said position detection part.
  10.  請求項8及び請求項9のいずれか一つに記載の光学的位置検出システムであって、
     前記位置検出部では、前記x座標値及び前記y座標値を出力する出力端子が共通となっている、光学的位置検出システム。
    An optical position detection system according to any one of claims 8 and 9,
    The optical position detection system in which the output terminal which outputs the x coordinate value and the y coordinate value is common in the position detection unit.
  11.  請求項8乃至請求項10のいずれか一つに記載の光学的位置検出システムであって、
     前記第1動作モードでは、前記位置検出部は、前記所定の周期より長い間隔で、前記x座標値、前記y座標値及び前記z座標値を求め、
     前記第1動作モードでは、前記位置検出部は、前記x座標値、前記y座標値及び前記z座標値を交互に求め、
     前記位置検出部では、前記x座標値、前記y座標値及び前記z座標値を出力する出力端子が共通となっている、光学的位置検出システム。
    An optical position detection system according to any one of claims 8 to 10,
    In the first operation mode, the position detection unit obtains the x coordinate value, the y coordinate value, and the z coordinate value at intervals longer than the predetermined period,
    In the first operation mode, the position detection unit alternately obtains the x coordinate value, the y coordinate value, and the z coordinate value,
    The optical position detection system in which the output terminal for outputting the x coordinate value, the y coordinate value, and the z coordinate value is common in the position detection unit.
  12.  光学的位置検出システムであって、
     光を照射する照明部と、
     検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物の位置を検出する位置検出部と、
     前記位置検出部での検出結果に基づいて前記検知対象物の有無を判定する判定部と、
     前記光学的位置検出システムの動作モードを制御する動作制御部と
    を備え、
     前記光学的位置検出システムは、第1動作モードと、前記照明部での前記光の照射時間が一定時間において占める割合が当該第1動作モードよりも小さい第2動作モードとを有し、
     前記動作制御部は、前記判定部で前記検知対象物が存在すると判定された場合には前記動作モードを前記第1動作モードに設定し、前記判定部で前記検知対象物が存在しないと判定された場合には前記動作モードを前記第2動作モードに設定する、光学的位置検出システム。
    An optical position detection system comprising:
    An illumination unit that emits light;
    A position detection unit that detects the position of the detection object based on an electrical signal obtained by receiving the light reflected by the detection object on a light receiving surface;
    A determination unit for determining the presence or absence of the detection object based on a detection result in the position detection unit;
    An operation control unit for controlling an operation mode of the optical position detection system,
    The optical position detection system has a first operation mode, and a second operation mode in which a ratio of the irradiation time of the light in the illumination unit in a certain time is smaller than the first operation mode,
    The operation control unit sets the operation mode to the first operation mode when the determination unit determines that the detection target exists, and the determination unit determines that the detection target does not exist. And an optical position detection system that sets the operation mode to the second operation mode.
  13.  請求項12に記載の光学的位置検出システムであって、
     前記照明部は、所定の周期で光を照射し、
     前記第1及び第2動作モードの間では、前記照明部での前記所定の周期が互いに異なる、光学的位置検出システム。
    An optical position detection system according to claim 12, comprising:
    The illumination unit irradiates light at a predetermined cycle,
    The optical position detection system in which the predetermined period in the illumination unit is different between the first and second operation modes.
  14.  請求項12及び請求項13のいずれか一つに記載の光学的位置検出システムであって、
     前記第1及び第2動作モードの間では、前記所定の周期において前記光の照射時間が占める割合が互いに異なる、光学的位置検出システム。
    An optical position detection system according to any one of claims 12 and 13,
    The optical position detection system in which the ratio of the irradiation time of the light in the predetermined period is different between the first and second operation modes.
  15.  請求項1乃至請求項14のいずれか一つに記載の光学的位置検出システムが有する前記判定部及び前記動作制御部を備える制御装置。 A control device comprising the determination unit and the operation control unit included in the optical position detection system according to any one of claims 1 to 14.
  16.  請求項9乃至請求項11のいずれか一つに記載の光学的位置検出システムが有する前記位置検出部を備える位置検出装置。 A position detection apparatus comprising the position detection unit included in the optical position detection system according to any one of claims 9 to 11.
  17.  光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物の位置を検出する位置検出部とを有する光学的位置検出システムを制御するための制御プログラムであって、
     前記光学的位置検出システムに、
     (a)前記位置検出部での検出結果に基づいて前記検知対象物の有無を判定する工程と、
     (b)前記工程(a)で前記検知対象物が存在すると判定された場合に、前記光学的位置検出システムの動作モードを、前記照明部が第1光量で光を照射する第1動作モードに設定する工程と、
     (c)前記工程(a)で前記検知対象物が存在しないと判定された場合に、前記動作モードを、前記照明が前記第1光量よりも少ない第2光量で光を照射する第2動作モードに設定する工程と
    を実行させるための制御プログラム。
    An illumination unit that emits light; and a position detection unit that detects a position of the detection target based on an electric signal obtained by receiving the light reflected by the detection target on a light receiving surface. A control program for controlling an optical position detection system,
    In the optical position detection system,
    (A) a step of determining the presence or absence of the detection object based on a detection result in the position detection unit;
    (B) When it is determined in step (a) that the detection target exists, the operation mode of the optical position detection system is changed to a first operation mode in which the illumination unit emits light with a first light amount. A setting process;
    (C) When it is determined in step (a) that the detection target does not exist, the operation mode is the second operation mode in which the illumination is irradiated with light with a second light amount smaller than the first light amount. And a control program for executing the process set to.
  18.  光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物の位置を検出する位置検出部とを有する光学的位置検出システムを制御するための制御プログラムであって、
     前記光学的位置検出システムに、
     (a)前記位置検出部での検出結果に基づいて前記検知対象物の有無を判定する工程と、
     (b)前記工程(a)で前記検知対象物が存在すると判定された場合に、前記光学的位置検出システムの動作モードを、前記照明部での前記光の照射時間が一定時間において占める割合が第1の割合となる第1動作モードに設定する工程と、
     (c)前記工程(a)で前記検知対象物が存在しないと判定された場合に、前記動作モードを、前記照明部での前記光の照射時間が前記一定時間において占める割合が前記第1の割合よりも小さい第2の割合となる第2動作モードに設定する工程と
    を実行させるための制御プログラム。
    An illumination unit that emits light; and a position detection unit that detects a position of the detection target based on an electric signal obtained by receiving the light reflected by the detection target on a light receiving surface. A control program for controlling an optical position detection system,
    In the optical position detection system,
    (A) a step of determining the presence or absence of the detection object based on a detection result in the position detection unit;
    (B) When it is determined in the step (a) that the detection target is present, the operation mode of the optical position detection system is the ratio of the irradiation time of the light in the illumination unit in a certain time. Setting the first operation mode to be the first ratio;
    (C) When it is determined in the step (a) that the detection target does not exist, the operation mode is set such that a ratio of the irradiation time of the light in the illumination unit in the predetermined time is the first time. A control program for executing the step of setting to the second operation mode having a second ratio smaller than the ratio.
  19.  測距システムであって、
     光を照射する照明部と、
     検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記測距システムと前記検知対象物との距離を検出する距離検出部と、
     前記距離検出部での検出結果に基づいて前記検知対象物の有無を判定する判定部と、
     前記測距システムの動作モードを制御する動作制御部と
    を備え、
     前記測距システムは、前記照明部が第1光量で光を照射する第1動作モードと、前記照明部が前記第1光量よりも少ない第2光量で光を照射する第2動作モードとを有し、
     前記動作制御部は、前記判定部で前記検知対象物が存在すると判定された場合には前記動作モードを前記第1動作モードに設定し、前記判定部で前記検知対象物が存在しないと判定された場合には前記動作モードを前記第2動作モードに設定する、測距システム。
    A ranging system,
    An illumination unit that emits light;
    A distance detection unit that detects a distance between the ranging system and the detection object based on an electrical signal obtained by receiving the light reflected by the detection object on a light receiving surface;
    A determination unit for determining the presence or absence of the detection object based on a detection result in the distance detection unit;
    An operation control unit for controlling an operation mode of the ranging system;
    The ranging system has a first operation mode in which the illumination unit emits light with a first light amount, and a second operation mode in which the illumination unit emits light with a second light amount less than the first light amount. And
    The operation control unit sets the operation mode to the first operation mode when the determination unit determines that the detection target exists, and the determination unit determines that the detection target does not exist. A distance measuring system that sets the operation mode to the second operation mode in the event of a failure.
  20.  請求項19に記載の測距システムであって、
     前記距離検出部は、
     前記第1動作モードでは、前記測距システムと前記検知対象物との距離として、所定の演算式を用いて求まる値をそのまま出力し、
     前記第2動作モードでは、前記測距システムと前記検知対象物との距離として、前記所定の演算式を用いて求まる値の所定数倍を出力する、測距システム。
    The ranging system according to claim 19, wherein
    The distance detector is
    In the first operation mode, as a distance between the ranging system and the detection target, a value obtained using a predetermined arithmetic expression is output as it is,
    In the second operation mode, the distance measuring system outputs a predetermined number of times a value obtained by using the predetermined arithmetic expression as a distance between the distance measuring system and the detection target.
  21.  請求項19及び請求項20のいずれか1つに記載の測距システムであって、
     前記照明部での前記光の照射時間が一定時間において占める割合は、前記第1動作モードより前記第2動作モードの方が小さく設定される、測距システム。
    A ranging system according to any one of claims 19 and 20, wherein
    The distance measurement system in which the proportion of the light irradiation time in the illumination unit in the fixed time is set to be smaller in the second operation mode than in the first operation mode.
  22.  測距システムであって、
     光を照射する照明部と、
     検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記測距システムと前記検知対象物との距離を検出する距離検出部と、
     前記距離検出部での検出結果に基づいて前記検知対象物の有無を判定する判定部と、
     前記測距システムの動作モードを制御する動作制御部と
    を備え、
     前記測距システムは、第1動作モードと、前記照明部での前記光の照射時間が一定時間において占める割合が当該第1動作モードよりも小さい第2動作モードとを有し、
     前記動作制御部は、前記判定部で前記検知対象物が存在すると判定された場合には前記動作モードを前記第1動作モードに設定し、前記判定部で前記検知対象物が存在しないと判定された場合には前記動作モードを前記第2動作モードに設定する、測距システム。
    A ranging system,
    An illumination unit that emits light;
    A distance detection unit that detects a distance between the ranging system and the detection object based on an electrical signal obtained by receiving the light reflected by the detection object on a light receiving surface;
    A determination unit for determining the presence or absence of the detection object based on a detection result in the distance detection unit;
    An operation control unit for controlling an operation mode of the ranging system;
    The ranging system has a first operation mode and a second operation mode in which a ratio of the irradiation time of the light in the illumination unit in a certain time is smaller than the first operation mode,
    The operation control unit sets the operation mode to the first operation mode when the determination unit determines that the detection target exists, and the determination unit determines that the detection target does not exist. A distance measuring system that sets the operation mode to the second operation mode in the event of a failure.
  23.  請求項22に記載の測距システムであって、
     前記照明部は、所定の周期で光を照射し、
     前記第1及び第2動作モードの間では、前記照明部での前記所定の周期が互いに異なる、測距システム。
    A ranging system according to claim 22, wherein
    The illumination unit irradiates light at a predetermined cycle,
    The ranging system in which the predetermined period in the illumination unit is different between the first and second operation modes.
  24.  請求項22及び請求項23のいずれか一つに記載の測距システムであって、
     前記第1及び第2動作モードの間では、前記所定の周期において前記光の照射時間が占める割合が互いに異なる、測距システム。
    A ranging system according to any one of claims 22 and 23, wherein
    Between the first and second operation modes, the distance measuring system in which the ratio of the irradiation time of the light in the predetermined period is different from each other.
  25.  請求項19乃至請求項24のいずれか一つに記載の測距システムが有する前記判定部及び前記動作制御部を備える制御装置。 A control device comprising the determination unit and the operation control unit included in the ranging system according to any one of claims 19 to 24.
  26.  光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物からの距離を検出する距離検出部とを有する測距システムを制御するための制御プログラムであって、
     前記測距システムに、
     (a)前記距離検出部での検出結果に基づいて前記検知対象物の有無を判定する工程と、
     (b)前記工程(a)で前記検知対象物が存在すると判定された場合に、前記測距システムの動作モードを、前記照明部が第1光量で光を照射する第1動作モードに設定する工程と、
     (c)前記工程(a)で前記検知対象物が存在しないと判定された場合に、前記動作モードを、前記照明が前記第1光量よりも少ない第2光量で光を照射する第2動作モードに設定する工程と
    を実行させるための制御プログラム。
    An illumination unit that irradiates light, and a distance detection unit that detects a distance from the detection target based on an electrical signal obtained by receiving the light reflected by the detection target on a light receiving surface. A control program for controlling a ranging system having:
    In the ranging system,
    (A) a step of determining the presence or absence of the detection object based on a detection result in the distance detection unit;
    (B) When it is determined in step (a) that the detection target exists, the operation mode of the ranging system is set to a first operation mode in which the illumination unit emits light with a first light amount. Process,
    (C) When it is determined in step (a) that the detection target does not exist, the operation mode is the second operation mode in which the illumination is irradiated with light with a second light amount smaller than the first light amount. And a control program for executing the process set to.
  27.  光を照射する照明部と、検知対象物で反射された前記光が受光面で受光されることによって得られた電気信号に基づいて、前記検知対象物からの距離を検出する距離検出部とを有する測距システムを制御するための制御プログラムであって、
     前記測距システムに、
     (a)前記距離検出部での検出結果に基づいて前記検知対象物の有無を判定する工程と、
     (b)前記工程(a)で前記検知対象物が存在すると判定された場合に、前記光学的位置検出システムの動作モードを、前記照明部での前記光の照射時間が一定時間において占める割合が第1の割合となる第1動作モードに設定する工程と、
     (c)前記工程(a)で前記検知対象物が存在しないと判定された場合に、前記動作モードを、前記照明部での前記光の照射時間が前記一定時間において占める割合が前記第1の割合よりも小さい第2の割合となる第2動作モードに設定する工程と
    を実行させるための制御プログラム。
    An illumination unit that irradiates light, and a distance detection unit that detects a distance from the detection target based on an electrical signal obtained by receiving the light reflected by the detection target on a light receiving surface. A control program for controlling a ranging system having:
    In the ranging system,
    (A) a step of determining the presence or absence of the detection object based on a detection result in the distance detection unit;
    (B) When it is determined in the step (a) that the detection target is present, the operation mode of the optical position detection system is the ratio of the irradiation time of the light in the illumination unit in a certain time. Setting the first operation mode to be the first ratio;
    (C) When it is determined in the step (a) that the detection target does not exist, the operation mode is set such that a ratio of the irradiation time of the light in the illumination unit in the predetermined time is the first time. A control program for executing the step of setting to the second operation mode having a second ratio smaller than the ratio.
PCT/JP2015/054116 2014-03-14 2015-02-16 Optical position detection system, control apparatus, position detection apparatus, control program, and distance measuring system WO2015137050A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014052024A JP6355014B2 (en) 2014-03-14 2014-03-14 Optical position detection system, control device, position detection device, control program, and ranging system
JP2014-052024 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137050A1 true WO2015137050A1 (en) 2015-09-17

Family

ID=54071501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054116 WO2015137050A1 (en) 2014-03-14 2015-02-16 Optical position detection system, control apparatus, position detection apparatus, control program, and distance measuring system

Country Status (2)

Country Link
JP (1) JP6355014B2 (en)
WO (1) WO2015137050A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002890A (en) * 2017-06-20 2019-01-10 キヤノン株式会社 Ranging system and control method thereof
CN113039456A (en) * 2018-11-07 2021-06-25 索尼半导体解决方案公司 Light projection control device and light projection control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101859630B1 (en) * 2016-03-14 2018-05-18 체이시로보틱스(주) Proximity sensor and method for power consumption of the same
JP7021885B2 (en) * 2017-09-11 2022-02-17 株式会社日立エルジーデータストレージ Distance measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241535A (en) * 2007-03-28 2008-10-09 Ihi Corp Laser monitoring device
JP2011237360A (en) * 2010-05-13 2011-11-24 Seiko Epson Corp Optical type detection device, display device and electronic apparatus
JP2011257336A (en) * 2010-06-11 2011-12-22 Seiko Epson Corp Optical position detection device, electronic apparatus and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241535A (en) * 2007-03-28 2008-10-09 Ihi Corp Laser monitoring device
JP2011237360A (en) * 2010-05-13 2011-11-24 Seiko Epson Corp Optical type detection device, display device and electronic apparatus
JP2011257336A (en) * 2010-06-11 2011-12-22 Seiko Epson Corp Optical position detection device, electronic apparatus and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002890A (en) * 2017-06-20 2019-01-10 キヤノン株式会社 Ranging system and control method thereof
CN113039456A (en) * 2018-11-07 2021-06-25 索尼半导体解决方案公司 Light projection control device and light projection control method

Also Published As

Publication number Publication date
JP6355014B2 (en) 2018-07-11
JP2015175712A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
US8411289B2 (en) Optical position detection device
WO2015137050A1 (en) Optical position detection system, control apparatus, position detection apparatus, control program, and distance measuring system
EP3202467B1 (en) Treadmill and control method for controlling the treadmill belt thereof
JP6805504B2 (en) Distance measuring device, mobile device and distance measuring method
JPWO2018181250A1 (en) Range image generation device and range image generation method
RU2014123558A (en) DETECTING THE AVAILABILITY OF THE OBJECT USING THE LIGHTING DEVICE WITH A DIVIDED BEAM
JP5765483B2 (en) Optical sensor
TWI530828B (en) Optical mouse including thermal sensor
JP2012127835A5 (en)
JP2017003461A (en) Distance measurement device
TWI457790B (en) Portable electronic apparatus and method used for portable electronic apparatus
WO2012160141A3 (en) Radiation sensing device and control circuit
JP2014181949A (en) Information acquisition device and object detection device
JP2006318677A5 (en)
KR102251374B1 (en) Image sensing apparatus and operating method thereof
JP6271278B2 (en) Position measuring apparatus and position measuring method
WO2006106452A1 (en) Relative movement sensor comprising multiple lasers
JP2017142596A (en) Gesture sensing device
JP2012008431A (en) Autofocus apparatus
JP7269131B2 (en) Information processing device, line-of-sight detection system, line-of-sight detection method, and line-of-sight detection program
JP5864346B2 (en) Auto focus mechanism
US20240126393A1 (en) Proximity detection device and method for detecting proximity
EP2787732A3 (en) Projector
TWI575248B (en) Non-contact optical sensing device and method for sensing depth and position of an object in three-dimensional space
JP7264474B2 (en) Object detection device and object detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760732

Country of ref document: EP

Kind code of ref document: A1