JP2008240076A - Cold forged non-tempered high-strength steel component having excellent impact characteristic in direction orthogonal to axial direction - Google Patents

Cold forged non-tempered high-strength steel component having excellent impact characteristic in direction orthogonal to axial direction Download PDF

Info

Publication number
JP2008240076A
JP2008240076A JP2007082824A JP2007082824A JP2008240076A JP 2008240076 A JP2008240076 A JP 2008240076A JP 2007082824 A JP2007082824 A JP 2007082824A JP 2007082824 A JP2007082824 A JP 2007082824A JP 2008240076 A JP2008240076 A JP 2008240076A
Authority
JP
Japan
Prior art keywords
less
shaft
strength steel
cold
cold forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082824A
Other languages
Japanese (ja)
Other versions
JP5147272B2 (en
Inventor
Masamichi Chiba
政道 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007082824A priority Critical patent/JP5147272B2/en
Publication of JP2008240076A publication Critical patent/JP2008240076A/en
Application granted granted Critical
Publication of JP5147272B2 publication Critical patent/JP5147272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve both strength and the impact characteristics in a direction orthogonal to an axial direction in the cold forged non-tempered high-strength steel components having shaft-like parts. <P>SOLUTION: The cold forged non-tempered high-strength steel components having the shaft-like parts have components containing 0.20 to 0.35% C, ≤0.1% Si, 1.0 to 2.0% Mn, ≤0.02% P, ≤0.02% S, 0.05 to 0.5% Cr, ≤0.07% Al, ≤0.006% N, and ≤0.010% C, and the balance iron and inevitable impurities, in which the ratio of Mn to C (Mn/C) is ≥4, the ratio Al to N (AI/N) is ≥8, the shaft-like part is a ferrite-pearlite structure and the Gp grain size number at its cross section is ≥9.0 and the Fgc grain size number is ≥10.0 and the aspect ratio of an Mns-based inclusion at the longitudinal direction section is 6 to 7.5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、軸状部を有し、軸方向に対して直交する方向での衝撃特性が求められる冷間鍛造非調質高強度鋼部品(例えば、タイロッド、ボールスタッドなど)に関するものである。   The present invention relates to a cold forged non-tempered high-strength steel part (for example, a tie rod, a ball stud, etc.) that has a shaft-like portion and requires impact characteristics in a direction orthogonal to the axial direction.

タイロッド、ボールスタッドなどは、例えば、伸線によって得られた軸状鋼(棒鋼、線材など)の片端を球形に冷間鍛造し、他端を絞り加工することによって製造される部品であり、高い引張強度(例えば、800〜1000N/mm2程度)が求められている。そのため、通常、冷間鍛造・絞り加工を行った後、焼入れ・焼戻し処理を行うことによって所定の強度を確保している。 Tie rods, ball studs, etc. are parts manufactured by, for example, cold forging one end of a shaft steel (bar steel, wire, etc.) obtained by wire drawing into a spherical shape and drawing the other end. Tensile strength (for example, about 800 to 1000 N / mm 2 ) is required. Therefore, normally, after performing cold forging and drawing, a predetermined strength is ensured by performing quenching and tempering treatment.

近年、部品製造コストの低減、CO2排出量削減などを目的として、冷間鍛造・絞り加工後の焼入れ・焼戻し処理を省略した非調質の鋼部品が求められている(例えば、特許文献1)。また非調質鋼部品は、焼入れ・焼戻し処理に起因する熱ひずみ変形を防止でき、矯正加工が不要である点でも優れている。 In recent years, there has been a demand for non-tempered steel parts in which quenching and tempering processes after cold forging and drawing are omitted for the purpose of reducing part manufacturing costs and reducing CO 2 emissions (for example, Patent Document 1). ). Non-tempered steel parts are also superior in that they can prevent thermal strain deformation due to quenching and tempering treatments and do not require straightening.

しかし、焼入れ・焼戻し処理を省略すると、強度の確保が困難である。非調質部品で所定の引張強度を確保するためには、例えば、合金成分を増大したり、加工率を向上することが考えられる。しかし合金成分を増大したり、加工率を向上すると靭性(衝撃特性)が劣化する。近年、タイロッド、ボールスタッドなどの自動車足回り部品は、軸方向に対して直交する方向(以下、単に直交方向という場合がある)での衝撃特性にも優れていることが求められており、非調質部品であっても強度と軸状部の直交方向の衝撃特性とを両立することが要求される。
特開平6−55237号公報
However, if the quenching / tempering treatment is omitted, it is difficult to ensure the strength. In order to secure a predetermined tensile strength with the non-heat treated parts, for example, it is conceivable to increase the alloy components or improve the processing rate. However, toughness (impact characteristics) deteriorates when the alloy components are increased or the processing rate is improved. In recent years, automobile underbody parts such as tie rods and ball studs have been required to have excellent impact characteristics in a direction orthogonal to the axial direction (hereinafter sometimes simply referred to as an orthogonal direction). Even a tempered part is required to have both strength and impact characteristics in the orthogonal direction of the shaft portion.
JP-A-6-55237

本発明は上記の様な事情に着目してなされたものであって、その目的は、軸状部を有する冷間鍛造非調質鋼部品において強度と直交方向の衝撃特性とを両立することにある。   The present invention has been made paying attention to the above-described circumstances, and its purpose is to achieve both strength and impact characteristics in the orthogonal direction in a cold forged non-heat treated steel part having a shaft-like portion. is there.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、鋼成分を適切な範囲に調整しつつ、軸状部の組織をフェライト−パーライトからなる微細な繊維状組織にすると、焼入れ・焼戻ししなくても強度と直交方向の衝撃特性とを両立できることを見出し、本発明を完成した。   As a result of intensive studies in order to solve the above problems, the present inventors have adjusted the steel component to an appropriate range while making the structure of the shaft-like portion a fine fibrous structure composed of ferrite-pearlite. It was found that both strength and impact characteristics in the orthogonal direction could be achieved without quenching and tempering, and the present invention was completed.

すなわち、本発明に係る直交方向の衝撃特性に優れた冷間鍛造非調質高強度鋼部品は、フェライト−パーライト組織の軸状部を有しており、この軸状部の横断面を観察したとき、旧オーステナイトのGp粒度番号(2005年 JIS G 0551)が9.0以上、フェライトのFGc粒度番号(1998年 JIS G 0552)が10.0以上であり、軸状部の長手方向断面を観察したとき、MnS系介在物のアスペクト比が6〜7.5である点に要旨を有するものである。なお鋼成分も重要であり、前記鋼部品は、C:0.20〜0.35%(質量%の意味、以下同じ)、Si:0.1%以下(0%を含まない)、Mn:1.0〜2.0%、P:0.02%以下(0%を含まない)、S:0.02%以下(0%を含まない)、Cr:0.05〜0.5%(0%を含まない)、Al:0.07%以下(0%を含まない)、N:0.006%以下(0%を含まない)、O:0.010%以下(0%を含まない)であって、残部は鉄及び不可避不純物であり、かつMnとCの比(Mn/C)が4以上、AlとNの比(Al/N)が8以上である。また前記鋼部品は、さらにCu及びNiを含有している場合もあり、その場合、Cu:0.1%以下(0%を含まない)、Ni:0.1%以下(0%を含まない)に抑制されている。   That is, the cold forged non-tempered high-strength steel part having excellent impact characteristics in the orthogonal direction according to the present invention has a shaft-shaped portion of a ferrite-pearlite structure, and a cross section of the shaft-shaped portion was observed. When the old austenite has a Gp grain size number (2005 JIS G 0551) of 9.0 or more and a ferrite FGc grain size number (1998 JIS G 0552) of 10.0 or more, the longitudinal section of the shaft portion is observed. In this case, the aspect ratio of the MnS inclusion is 6 to 7.5. Steel components are also important, and the steel parts are: C: 0.20 to 0.35% (meaning mass%, the same shall apply hereinafter), Si: 0.1% or less (not including 0%), Mn: 1.0-2.0%, P: 0.02% or less (not including 0%), S: 0.02% or less (not including 0%), Cr: 0.05-0.5% ( 0% not included), Al: 0.07% or less (not including 0%), N: 0.006% or less (not including 0%), O: 0.010% or less (not including 0%) The balance is iron and inevitable impurities, and the ratio of Mn to C (Mn / C) is 4 or more, and the ratio of Al to N (Al / N) is 8 or more. Further, the steel part may further contain Cu and Ni. In that case, Cu: 0.1% or less (not including 0%), Ni: 0.1% or less (not including 0%) ).

前記軸状部の長手方向断面を観察したとき、MnS系介在物中に析出したAl23系介在物の平均粒径は、例えば、5μm以下である。本発明の冷間鍛造非調質高強度鋼部品は、温度250〜600℃でベーキングしてもよい。本発明の冷間鍛造非調質高強度鋼部品は、軸状部の引張強さが、例えば、850N/mm2以上であり、軸状部から採取した幅5mmのサブサイズUノッチ試験片による衝撃吸収エネルギーKU2が、試験温度−50℃及び20℃のいずれでも、例えば、100J/cm2以上である。 When the longitudinal section of the shaft-like portion is observed, the average particle diameter of Al 2 O 3 inclusions precipitated in the MnS inclusions is, for example, 5 μm or less. The cold forged non-tempered high strength steel part of the present invention may be baked at a temperature of 250 to 600 ° C. The cold forged non-tempered high-strength steel part of the present invention has a tensile strength of the shaft-shaped portion of, for example, 850 N / mm 2 or more, and is based on a subsize U-notch test piece having a width of 5 mm taken from the shaft-shaped portion. The impact absorption energy KU 2 is, for example, 100 J / cm 2 or more at both test temperatures −50 ° C. and 20 ° C.

なお本明細書において鋼材の加熱温度は、特にことわりのない限り、炉の温度を指す。   In this specification, the heating temperature of the steel material refers to the temperature of the furnace unless otherwise specified.

本発明の冷間鍛造非調質高強度鋼部品によれば、鋼成分を適切な範囲に調整しつつ、軸状部の組織をフェライト−パーライトからなる微細な繊維状組織にしているため、焼入れ・焼戻ししなくても強度と直交方向の衝撃特性とを両立できる。   According to the cold forged non-tempered high-strength steel part of the present invention, the steel component is adjusted to an appropriate range, and the structure of the shaft portion is made into a fine fibrous structure made of ferrite-pearlite. -Both strength and impact characteristics in the orthogonal direction can be achieved without tempering.

本発明の高強度鋼部品(冷間鍛造部品)は、伸線によって得られた軸状鋼(棒鋼、線材など)から得られ、軸状鋼の一部を冷間鍛造した冷間鍛造部分と、軸状鋼の一部を冷間で縮径加工(絞り、圧延など)した軸状部とを有しており、冷間加工後に焼入れ・焼戻し処理する必要がない非調質部品である。本発明では、この高強度鋼部品の鋼成分を適切な範囲に調整しつつ、軸状部の組織をフェライト−パーライトからなる微細な繊維状組織にしている。そのため、焼入れ・焼戻ししなくても強度と直交方向の衝撃特性とを両立できる。   A high-strength steel part (cold forged part) of the present invention is obtained from a shaft steel (bar steel, wire, etc.) obtained by wire drawing, and a cold forged part obtained by cold forging part of the shaft steel. It is a non-tempered part that has a shaft-shaped portion obtained by cold-reducing (drawing, rolling, etc.) a part of shaft-shaped steel and does not require quenching / tempering after cold working. In the present invention, the steel component of the high-strength steel part is adjusted to an appropriate range, and the shaft portion has a fine fibrous structure made of ferrite-pearlite. Therefore, both strength and orthogonal impact characteristics can be achieved without quenching and tempering.

本発明の鋼部品の成分は、以下の通りである。   The components of the steel part of the present invention are as follows.

C:0.20〜0.35%(質量%の意味、以下同じ)
Cは鋼材の強度と延性のバランスを支配する基本元素であり、高強度化のために必須である。従ってCは、0.20%以上、好ましくは0.23%以上、さらに好ましくは0.25%以上である。しかしCを増量すると靭性や延性が低下し、衝撃特性が低下する。また冷間鍛造性(特に割れ発生限界圧縮率)の低下を招く。従ってC量は、0.35%以下、特に0.33%以下とする。
C: 0.20 to 0.35% (meaning mass%, the same shall apply hereinafter)
C is a basic element that governs the balance between strength and ductility of the steel material, and is essential for increasing the strength. Therefore, C is 0.20% or more, preferably 0.23% or more, and more preferably 0.25% or more. However, when C is increased, toughness and ductility are lowered, and impact characteristics are lowered. Moreover, the cold forgeability (especially crack generation limit compression rate) is reduced. Accordingly, the C content is 0.35% or less, particularly 0.33% or less.

Si:0.1%以下(0%を含まない)
Siは溶製時に脱酸剤として作用し、鋼材製造上、有用な元素であるが、多大に添加するとフェライトの硬化・脆化を招き、冷間鍛造性と衝撃特性を阻害する。従って本発明ではSiを0.1%以下、好ましくは0.07%以下、さらに好ましくは0.05%以下とする。
Si: 0.1% or less (excluding 0%)
Si acts as a deoxidizer during melting and is a useful element in the production of steel materials. However, if added in a large amount, it causes hardening and embrittlement of ferrite and inhibits cold forgeability and impact characteristics. Therefore, in the present invention, Si is made 0.1% or less, preferably 0.07% or less, more preferably 0.05% or less.

Mn:1.0〜2.0%
Mnは脱酸剤として作用するとともに、鋼中のSと結合してSによる脆化を抑制する。また非調質鋼部品の強度を確保する点からも有効な元素である。従ってMnは、1.0%以上、好ましくは1.1%以上、さらに好ましくは1.2%以上とした。またMnは、Cの4倍以上(すなわちMn/Cが4以上)、好ましくは4.2倍以上、さらに好ましくは4.5倍以上とする。Mnは衝撃値の遷移温度を低下させるなどの低温衝撃特性を改善する点で優れており、低温衝撃特性を下げるCに対して十分な量を添加する必要がある。なおMnが過剰になるとフェライトの脆化を招き、冷間鍛造性が劣化する。従ってMnは、2.0%以下、好ましくは1.8%以下、さらに好ましくは1.6%以下とする。
Mn: 1.0-2.0%
Mn acts as a deoxidizer and combines with S in steel to suppress embrittlement due to S. It is also an effective element from the viewpoint of ensuring the strength of non-heat treated steel parts. Accordingly, Mn is set to 1.0% or more, preferably 1.1% or more, and more preferably 1.2% or more. Mn is 4 times or more of C (that is, Mn / C is 4 or more), preferably 4.2 times or more, more preferably 4.5 times or more. Mn is excellent in improving the low temperature impact characteristics such as lowering the transition temperature of the impact value, and it is necessary to add a sufficient amount to C that lowers the low temperature impact characteristics. If Mn is excessive, ferrite becomes brittle and cold forgeability deteriorates. Therefore, Mn is 2.0% or less, preferably 1.8% or less, more preferably 1.6% or less.

P:0.02%以下(0%を含まない)
Pは粒界偏析を起こして、衝撃値の低下と冷間鍛造性の低下を招くため、少ないほど望ましい。P量は、0.02%以下、好ましくは0.015%以下、さらに好ましくは0.010%以下である。
P: 0.02% or less (excluding 0%)
P is more preferably as small as possible because it causes grain boundary segregation and causes a drop in impact value and cold forgeability. The amount of P is 0.02% or less, preferably 0.015% or less, more preferably 0.010% or less.

S:0.02%以下(0%を含まない)
Sは鋼中でMnS系介在物を形成する。このMnS系介在物は、応力集中源となり、衝撃特性及び冷間鍛造性を低下させるため、Sは少ないほど好ましい。S量は、0.02%以下、好ましくは0.015%以下、さらに好ましくは0.010%以下である。
S: 0.02% or less (excluding 0%)
S forms MnS inclusions in the steel. This MnS inclusion becomes a stress concentration source and lowers impact characteristics and cold forgeability. The amount of S is 0.02% or less, preferably 0.015% or less, more preferably 0.010% or less.

Cr:0.05〜0.5%
Crは、鋼中で炭窒化物を生成し、固溶C及び固溶Nによるひずみ時効を抑制するのに有効な元素である。またCやSiと同様に強度上昇に寄与し、かつ冷間鍛造性に対する悪影響がCやSiに比べて小さいため、重要な元素である。従ってCr量は、0.05%以上、好ましくは0.08%以上である。しかし多量に添加すると粗大な炭窒化物の生成を招き、冷間鍛造性と衝撃特性を低下させる。よってCrは、0.5%以下、好ましくは0.3%以下、さらに好ましくは0.15%以下にする。
Cr: 0.05-0.5%
Cr is an element effective in producing carbonitrides in steel and suppressing strain aging due to solute C and solute N. Further, it is an important element because it contributes to an increase in strength in the same manner as C and Si and has a smaller adverse effect on cold forgeability than C and Si. Therefore, the Cr content is 0.05% or more, preferably 0.08% or more. However, if added in a large amount, coarse carbonitrides are formed, and cold forgeability and impact properties are deteriorated. Therefore, Cr is 0.5% or less, preferably 0.3% or less, more preferably 0.15% or less.

Al:0.07%以下(0%を含まない)
Alは、固溶NをAlNとして固定することによってひずみ時効を防止するのに有効である。またAlNによって結晶粒の粗大化を抑制するのに有効である。従ってAlは、Nに対して、8倍以上(すなわちAl/Nが8以上)、好ましくは9倍以上、さらに好ましくは10倍以上になるように添加する。具体的なAl量は、例えば、0.03%以上、好ましくは0.035%以上、さらに好ましくは0.040%以上である。しかしAlを多量に添加するとフェライトの硬度が上昇し、またAl23系介在物が粗大になり、靭性や延性が低下し、冷間鍛造性が悪くなる。従ってAl量は、0.07%以下、好ましくは0.06%以下、さらに好ましくは0.055%以下である。
Al: 0.07% or less (excluding 0%)
Al is effective in preventing strain aging by fixing solute N as AlN. Further, AlN is effective in suppressing the coarsening of crystal grains. Therefore, Al is added so as to be 8 times or more (that is, Al / N is 8 or more), preferably 9 times or more, and more preferably 10 times or more with respect to N. A specific amount of Al is, for example, 0.03% or more, preferably 0.035% or more, and more preferably 0.040% or more. However, if Al is added in a large amount, the hardness of ferrite increases, Al 2 O 3 inclusions become coarse, toughness and ductility decrease, and cold forgeability deteriorates. Accordingly, the Al content is 0.07% or less, preferably 0.06% or less, and more preferably 0.055% or less.

N:0.006%以下(0%を含まない)
NはAlと結合して窒化物(AlN)を形成する。Alと結合できないNは、固溶Nとして残存し、ひずみ時効による衝撃特性の低下や冷間鍛造性の低下を招く。従って鋼中全N量は、0.006%以下、好ましくは0.005%以下にする。なおAlNを有効利用する視点に立てば、N量は、例えば、0.001%以上、好ましくは0.002%以上、さらに好ましくは0.003%以上である。
N: 0.006% or less (excluding 0%)
N combines with Al to form nitride (AlN). N that cannot be combined with Al remains as a solid solution N, which causes a decrease in impact characteristics due to strain aging and a decrease in cold forgeability. Therefore, the total N amount in the steel is 0.006% or less, preferably 0.005% or less. From the viewpoint of effectively using AlN, the N amount is, for example, 0.001% or more, preferably 0.002% or more, and more preferably 0.003% or more.

O:0.010%以下(0%を含まない)
Oは常温では鋼に殆ど固溶せず、硬質の酸化物として存在する。酸化物系介在物は冷間鍛造時及び衝撃応力負荷時に応力集中源として作用し、両特性を大きく低下させる。従ってO含有量は、極力低減すべきであり、本発明では0.010%以下、好ましくは0.007%以下、さらに好ましくは0.005%以下にする。
O: 0.010% or less (excluding 0%)
O hardly dissolves in steel at room temperature and exists as a hard oxide. Oxide inclusions act as a stress concentration source during cold forging and when impact stress is applied, greatly reducing both properties. Therefore, the O content should be reduced as much as possible. In the present invention, the O content is 0.010% or less, preferably 0.007% or less, and more preferably 0.005% or less.

残部は、通常、鉄及び不可避不純物である。   The balance is usually iron and inevitable impurities.

なお本発明の鋼部品は、製鋼原料、製造プロセスなどから混入してくる不純物も含む場合がある。この不純物には、例えば、Cu、Niなどが挙げられる。それぞれの許容量とその抑制理由は、以下の通りである。   The steel part of the present invention may also contain impurities mixed in from steelmaking raw materials, manufacturing processes, and the like. Examples of this impurity include Cu and Ni. Each allowable amount and the reason for its suppression are as follows.

Cu:0.1%以下(0%を含まない)
Cuは、少量含む場合には、衝撃値及び冷間鍛造性への悪影響が少ないが、0.1%を超えて含むと遷移温度が上昇し、低温衝撃値の低下を招く。従ってCuは、0.1%以下、好ましくは0.07%以下、さらに好ましくは0.05%以下である。
Cu: 0.1% or less (excluding 0%)
When Cu is contained in a small amount, there is little adverse effect on the impact value and cold forgeability, but if it exceeds 0.1%, the transition temperature rises and the low temperature impact value is lowered. Therefore, Cu is 0.1% or less, preferably 0.07% or less, more preferably 0.05% or less.

Ni:0.1%以下(0%を含まない)
NiもCuと同様、少量含む場合には、衝撃値及び冷間鍛造性への悪影響が少ないが、0.1%を超えて含むと遷移温度が上昇し、低温衝撃値の低下を招く。従ってNiは、0.1%以下、好ましくは0.07%以下、さらに好ましくは0.05%以下である。
Ni: 0.1% or less (excluding 0%)
When Ni is contained in a small amount like Cu, there is little adverse effect on the impact value and cold forgeability, but if it exceeds 0.1%, the transition temperature rises and the low temperature impact value is lowered. Therefore, Ni is 0.1% or less, preferably 0.07% or less, more preferably 0.05% or less.

そして本発明の鋼部品では、軸状部の組織をフェライト−パーライトからなる微細な繊維状組織にしている。この繊維状組織は、軸方向に沿った断面(長手方向断面)では、例えば、図1(a)、図1(b)の光学顕微鏡写真に示すような層状組織になっている。また軸方向と直交する断面(横断面)では、例えば、図2の光学顕微鏡写真に示すような微細粒状になっている。   And in the steel part of this invention, the structure | tissue of the shaft-shaped part is made into the fine fibrous structure which consists of ferrite-pearlite. In the cross section (longitudinal section) along the axial direction, this fibrous structure has a layered structure as shown in the optical micrographs of FIGS. 1 (a) and 1 (b), for example. Moreover, in the cross section (transverse cross section) orthogonal to the axial direction, for example, it is a fine grain as shown in the optical micrograph of FIG.

図1より明らかなように、長手方向断面の層状の組織状態を直接定量的に示すのは難しい。フェライト−パーライトの繊維化の程度は、この長手方向断面におけるMnS系介在物のアスペクト比と相関があるため、本発明ではMnS系介在物のアスペクト比(長径/短径)によって間接的に組織状態を規定することとした。MnS系介在物のアスペクト比は、6以上、好ましくは6.2以上、さらに好ましくは6.5以上である。なお繊維化が過剰になると(すなわちMnS系介在物のアスペクト比が大きくなり過ぎると)、かえって靭性や延性が低下し、冷間鍛造性が悪化する。従ってMnS系介在物のアスペクト比は、7.5以下、好ましくは7.4以下とする。   As is clear from FIG. 1, it is difficult to directly and quantitatively show the layered tissue state of the longitudinal section. Since the degree of ferrite-pearlite fiberization is correlated with the aspect ratio of the MnS inclusions in the longitudinal section, in the present invention, the structure state is indirectly determined by the aspect ratio (major axis / minor axis) of the MnS inclusions. It was decided to prescribe. The aspect ratio of the MnS-based inclusion is 6 or more, preferably 6.2 or more, and more preferably 6.5 or more. If the fiberization becomes excessive (that is, if the aspect ratio of the MnS inclusions becomes too large), the toughness and ductility are lowered, and the cold forgeability is deteriorated. Therefore, the aspect ratio of the MnS inclusions is 7.5 or less, preferably 7.4 or less.

一方、横断面の微細粒状の組織状態は、旧オーステナイトとフェライトの結晶粒度番号によって定量的に示すことができる。横断面のオーステナイトのGp粒度番号(2005年 JIS G 0551)は、9.0以上、好ましくは9.5以上である。Gp粒度番号の上限は特に限定されないが、14以下程度であっても本発明に含まれる。また横断面のフェライトのFGc粒度(1998年 JIS G 0552)は、10.0以上、好ましくは10.5以上、さらに好ましくは11.0以上である。FGc粒度番号の上限は特に限定されないが、14以下程度であっても本発明に含まれる。   On the other hand, the fine grain structure state of the cross section can be quantitatively shown by the crystal grain size numbers of prior austenite and ferrite. The Gp particle size number (2005 JIS G 0551) of the austenite in the cross section is 9.0 or more, preferably 9.5 or more. The upper limit of the Gp particle size number is not particularly limited, but it is included in the present invention even if it is about 14 or less. Moreover, the FGc particle size (1998 JIS G 0552) of the ferrite of a cross section is 10.0 or more, Preferably it is 10.5 or more, More preferably, it is 11.0 or more. The upper limit of the FGc particle size number is not particularly limited, but it is included in the present invention even if it is about 14 or less.

なお本発明の鋼部品は、上述したように、Alや酸素を低減することによって酸化物系介在物を微細化している。酸化物系介在物の大きさは、具体的には、長手方向断面におけるMnS系介在物中に存在するAl23系介在物を調べることで、より一層明確にすることができる。Al23系介在物の粒径(=(長径+短径)/2)の平均値(平均粒径)は、例えば、5μm以下、好ましくは4μm以下、さらに好ましくは3μm以下である。平均粒径の下限は特に限定されないが、1μm以上程度であっても本発明に含まれる。 In addition, as above-mentioned, the steel component of this invention refine | miniaturizes the oxide type inclusion by reducing Al and oxygen. Specifically, the size of the oxide inclusions can be further clarified by examining the Al 2 O 3 inclusions present in the MnS inclusions in the longitudinal section. The average value (average particle size) of the particle size (= (major axis + minor axis) / 2) of the Al 2 O 3 inclusion is, for example, 5 μm or less, preferably 4 μm or less, and more preferably 3 μm or less. Although the minimum of an average particle diameter is not specifically limited, Even if it is about 1 micrometer or more, it is included in this invention.

本発明の鋼部品は、概略、熱間圧延した軸状鋼(棒鋼、線材など)を、適宜酸洗、皮膜処理などし、次いで伸線した後、部品形状に冷間鍛造及び縮径加工することによって得られる。最も重要なのは、軸状部を上述したようなフェライト−パーライトからなる微細な繊維状組織にする為に、伸線と縮径加工において強加工する点である。より具体的には、伸線加工の減面率を20%以上とし、かつ縮径加工後のトータル減面率(伸線前を基準とする減面率)を40%超(好ましくは42%以上、さらに好ましくは45%以上)、80%以下(好ましくは70%以下、さらに好ましくは65%以下)にする。強加工の程度を調節することで、フェライト−パーライト組織の繊維化の程度を調節できる。   The steel parts of the present invention are roughly outlined by hot-rolled shaft steel (bar steel, wire rods, etc.), as appropriate, pickled, coated, etc., then drawn and then cold forged and reduced in diameter into the part shape. Can be obtained. Most importantly, in order to make the shaft-like portion into a fine fibrous structure made of ferrite-pearlite as described above, the wire is strongly processed in wire drawing and diameter reduction processing. More specifically, the area reduction rate of wire drawing is set to 20% or more, and the total area reduction after diameter reduction (area reduction based on before wire drawing) exceeds 40% (preferably 42%). Or more, more preferably 45% or more) and 80% or less (preferably 70% or less, more preferably 65% or less). The degree of fibrosis of the ferrite-pearlite structure can be adjusted by adjusting the degree of strong processing.

他の製造工程は、以下の通りにすることが推奨される。   Other manufacturing processes are recommended as follows.

熱間圧延における加熱温度は、1000〜1200℃程度の範囲から選択する。加熱温度が低いとオーステナイト相とフェライト相の混合相などが局所的に生成し、圧延時の割れ発生を招く危険性がある。また低温側では圧延時のロール負荷が上昇し、生産性が低下する。一方、加熱温度が高いと、フェライト結晶粒が粗大化し、冷間鍛造性が低下すると共に、繊維状組織化による衝撃値の改善が不十分となる。   The heating temperature in the hot rolling is selected from a range of about 1000 to 1200 ° C. When the heating temperature is low, a mixed phase of an austenite phase and a ferrite phase is locally generated, and there is a risk of causing cracks during rolling. On the low temperature side, the roll load during rolling increases, and the productivity decreases. On the other hand, when the heating temperature is high, ferrite crystal grains are coarsened, the cold forgeability is lowered, and the impact value is not improved sufficiently by the fibrous organization.

熱間圧延の仕上温度は、850〜975℃程度(好ましくは875〜950℃程度)の範囲から選択する。仕上温度が低いと、圧延ロールへの負荷が増加し、鋼材生産性の大幅な低下を招く。また逆に仕上温度が高すぎても、フェライト粒が粗大化する。   The finishing temperature of hot rolling is selected from the range of about 850 to 975 ° C. (preferably about 875 to 950 ° C.). If the finishing temperature is low, the load on the rolling roll increases and the steel material productivity is significantly reduced. Conversely, even if the finishing temperature is too high, the ferrite grains become coarse.

圧延後の巻き取り温度は、800〜950℃程度である。巻き取り温度が高すぎると、窒化物の析出が遅くなり、鋼材中の固溶Nが増加する。固溶Nは、ひずみ時効による変形抵抗の増加をもたらすため、冷鍛金型寿命を低下させる。   The winding temperature after rolling is about 800 to 950 ° C. When the coiling temperature is too high, the precipitation of nitride is delayed, and the solid solution N in the steel material increases. Since solute N causes an increase in deformation resistance due to strain aging, the cold forging die life is reduced.

上記のようにして得られた鋼部品は、必要に応じて、ベーキングしてもよい。適切な温度でベーキングすれば、衝撃特性を悪化することなく、引張強度を高めることができる。ベーキング温度は、例えば、250〜600℃程度、好ましくは280〜500℃程度、さらに好ましくは300〜450℃程度である。なおベーキング時間は、通常、5〜30分程度、好ましくは10〜20分程度である。ベーキング後は、放冷する。   The steel part obtained as described above may be baked as necessary. If baking is performed at an appropriate temperature, the tensile strength can be increased without deteriorating the impact characteristics. Baking temperature is about 250-600 degreeC, for example, Preferably it is about 280-500 degreeC, More preferably, it is about 300-450 degreeC. The baking time is usually about 5 to 30 minutes, preferably about 10 to 20 minutes. Allow to cool after baking.

本発明の鋼部品は軸状部を有しており、ベーキング処理の有無を問わず、強度と軸状部の直交方向の衝撃特性とに優れている。軸状部の引張強さは、例えば、850N/mm2以上、好ましくは900N/mm2以上であり、最も優れている場合には950N/mm2以上である。引張強度の上限は、特に限定されないが、1100N/mm2以下であっても本発明に含まれる。 The steel part of the present invention has a shaft-like portion and is excellent in strength and impact characteristics in the orthogonal direction of the shaft-like portion regardless of the presence or absence of baking treatment. Tensile strength of the shaft-like portion is, for example, 850N / mm 2 or more, preferably at 900 N / mm 2 or more, when the most excellent 950 N / mm 2 or more. The upper limit of the tensile strength is not particularly limited, but even if it is 1100 N / mm 2 or less, it is included in the present invention.

軸状部から採取した幅5mmのサブサイズUノッチ試験片による衝撃吸収エネルギーKU2は、試験温度−50℃の場合で、例えば、100J/cm2以上、好ましくは105J/cm2以上、さらに好ましくは110J/cm2以上である。温度−50℃におけるKU2の上限は特に限定されないが、150J/cm2以下であっても本発明に含まれる。また試験温度20℃における衝撃吸収エネルギーKU2は、例えば、100J/cm2以上、好ましくは120J/cm2以上であり、最も優れている場合には150J/cm2以上である。なお温度20℃でのKU2の上限は特に限定されないが、200J/cm2以下であっても本発明に含まれる。 Impact absorption energy KU 2 by the sub-size U-notch test piece of width 5mm taken from the shaft-like part, in the case of test temperature -50 ° C., for example, 100 J / cm 2 or more, preferably 105 J / cm 2 or more, more preferably Is 110 J / cm 2 or more. The upper limit of KU 2 at a temperature of −50 ° C. is not particularly limited, but even if it is 150 J / cm 2 or less, it is included in the present invention. Impact absorption energy KU 2 at a test temperature of 20 ° C. Further, for example, 100 J / cm 2 or more, preferably at 120 J / cm 2 or more, when the most excellent 150 J / cm 2 or more. The upper limit of KU 2 at a temperature of 20 ° C. is not particularly limited, but 200 K / cm 2 or less is included in the present invention.

なお軸状部のHRC硬さは、例えば、10〜40程度(好ましくは25〜40程度)である。HRC硬さが高いほど、引張強度が優れているといえる。   The HRC hardness of the shaft-like portion is, for example, about 10-40 (preferably about 25-40). It can be said that the higher the HRC hardness, the better the tensile strength.

本発明の鋼部品は、軸状部の引張強度と衝撃特性に優れていることから、例えば、タイロッド、ボールスタッドなどのような、タイロッドアウターソケットと連結する為の軸状部品に用いることができる。この軸状部品は、冷間鍛造部品である点、より詳細には伸線によって得られる軸状鋼(棒鋼、線材など)の一部を冷間鍛造する一方、他の一部を縮径加工(絞りなど)することによって得られる点で共通しており、この縮径加工された軸状部において、直交方向での優れた衝撃特性が求められる点に特徴がある。   Since the steel part of the present invention is excellent in the tensile strength and impact characteristics of the shaft part, it can be used for a shaft part for connecting to a tie rod outer socket, such as a tie rod and a ball stud. . This shaft-shaped part is a cold forged part. More specifically, a part of shaft steel (bar, wire, etc.) obtained by wire drawing is cold-forged while the other part is reduced in diameter. It is common in that it can be obtained by (drawing, etc.), and is characterized in that excellent impact characteristics in the orthogonal direction are required in this reduced diameter shaft-shaped portion.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実験No.1〜24
表1に示す成分の供試材を真空溶製にて各150kg製造した。溶製材を155mm×155mm角に鍛造加工し、ダミービレット材に溶接した後、加熱温度1050℃、仕上温度925℃、巻取温度825℃の条件で熱間圧延して、表2に示す直径の圧延材を得た。この圧延材を硫酸洗浄、水洗、塩酸洗浄、水洗の順で処理し、皮膜処理(燐酸亜鉛被膜)した後、表2に示す直径まで伸線した。
Experiment No. 1-24
150 kg of test materials having the components shown in Table 1 were manufactured by vacuum melting. After forging the melted material into a 155 mm × 155 mm square and welding it to a dummy billet material, it was hot-rolled under the conditions of a heating temperature of 1050 ° C., a finishing temperature of 925 ° C., and a winding temperature of 825 ° C. A rolled material was obtained. This rolled material was treated in the order of washing with sulfuric acid, washing with water, washing with hydrochloric acid and washing with water, followed by coating treatment (zinc phosphate coating), and then drawing to the diameter shown in Table 2.

得られた線材を後述する方法によって冷間鍛造して冷間鍛造性を調べた。また得られた線材を冷間で縮径加工(スキンパス圧延)して非調質の軸状部相当品を製造し、一部の例(No.8〜11)ではさらにベーキングした。得られた軸状部相当品の詳細(組織、粒度、MnS系介在物のアスペクト比、Al23系介在物の平均粒径、HRC硬さ、引張強さ、衝撃値)を後述する方法によって調べた。 The obtained wire was cold forged by the method described later and examined for cold forgeability. Further, the obtained wire was cold-reduced (skin pass rolling) to produce a non-tempered shaft-like part, and in some examples (Nos. 8 to 11), baking was further performed. Details of the obtained shaft-like part equivalent (structure, particle size, aspect ratio of MnS inclusions, average particle diameter of Al 2 O 3 inclusions, HRC hardness, tensile strength, impact value) are described later. Investigated by.

実験No.25〜27
前記実験No.1〜24と同様にして、表2に示す最終径の線材を得た。
Experiment No. 25-27
In the experiment No. In the same manner as in 1 to 24, wire rods having final diameters shown in Table 2 were obtained.

この線材を後述する方法によって冷間鍛造して冷間鍛造性を調べた。またこの線材を焼入れ(加熱温度840℃、加熱時間30分、冷却条件:油冷)、焼戻し(加熱温度420〜530℃、加熱時間120分、冷却条件:空冷)して調質の軸状部相当品を製造した。得られた軸状部相当品の詳細を後述する方法によって調べた。   This wire was cold forged by the method described later and examined for cold forgeability. In addition, this wire is quenched (heating temperature 840 ° C., heating time 30 minutes, cooling condition: oil cooling), and tempered (heating temperature 420 to 530 ° C., heating time 120 minutes, cooling condition: air cooling). An equivalent product was produced. The details of the obtained shaft-like part were examined by the method described later.

冷間鍛造性、粒度、MnS系介在物のアスペクト比、Al23系介在物の平均粒径、ロックウェル硬さ、引張強さ、及び衝撃値の評価方法は以下の通りである。 Evaluation methods of cold forgeability, particle size, aspect ratio of MnS inclusions, average particle diameter of Al 2 O 3 inclusions, Rockwell hardness, tensile strength, and impact value are as follows.

(1)冷間鍛造性
線材の軸方向と平行に直径10mm×高さ15mmの試料を採取し、軸方向に端面拘束圧縮(ひずみ速度=10/秒)した。圧縮後の割れ発生の有無と圧縮率との関係を調べ、割れ発生限界圧縮率を求めた。
(1) Cold forgeability A sample having a diameter of 10 mm and a height of 15 mm was taken in parallel with the axial direction of the wire, and subjected to end face constrained compression (strain rate = 10 / second) in the axial direction. The relationship between the presence or absence of cracking after compression and the compression ratio was examined, and the crack compression limit compression ratio was determined.

(2)組織
軸状部相当品の横断面を露出させた状態で支持基材内に埋め込み、研磨後、5%のピクリン酸アルコール液に15〜30秒間浸漬して腐食させた後、光学顕微鏡によってD/4(Dは直径)部位の組織を400倍で10視野撮影した。また軸状部相当品の長手方向断面(縦断面)について、横断面と同様にして腐食させた後、光学顕微鏡によってD/4部位の組織を400倍で10視野撮影した。これらの顕微鏡写真から、組織状態(フェライト−パーライトからなる微細な繊維状組織であるか否か)を確認した。なお微細化の程度は、結晶粒度番号によって定量化される。また繊維化の程度はMnS系介在物のアスペクト比によって定量化される。
(2) Structure After embedding in a supporting substrate with the cross-section of the shaft-like portion equivalent product exposed, polishing, and immersing in a 5% picric acid alcohol solution for 15 to 30 seconds to corrode, then an optical microscope The tissue of D / 4 (D is a diameter) region was photographed at 10 × with 10 fields. Further, the longitudinal section (longitudinal section) of the shaft-like part was corroded in the same manner as the transverse section, and then 10 fields of view of the structure of the D / 4 part were photographed at 400 × with an optical microscope. From these micrographs, the structure state (whether it is a fine fibrous structure made of ferrite-pearlite) was confirmed. The degree of refinement is quantified by the crystal grain size number. The degree of fiberization is quantified by the aspect ratio of the MnS inclusions.

(3)粒度
上記組織観察で撮影した横断面の光学顕微鏡写真(10視野)に基づき、旧オーステナイト結晶粒度番号Gp(2005年 JIS G 0551の6.3.3.3「初析フェライト法」)とフェライト結晶粒度番号FGc(1998年 JIS G 0552)を求めた。
(3) Grain size Based on the optical micrograph (10 fields of view) of the cross section taken by the above structure observation, the former austenite grain size number Gp (6.3.3.3 “Proeutectoid ferrite method” of JIS G 0551, 2005) And ferrite grain size number FGc (1998 JIS G 0552).

(4)MnS系介在物のアスペクト比
上記組織観察で撮影した長手方向断面の走査型電子顕微鏡写真(断面数2×観察箇所数5=10視野)に基づき、MnS系介在物のアスペクト比を求めた。5つの観察箇所とは、D/8(Dは直径)部位からの2箇所、D/4(Dは直径)部位からの2箇所、及びD/2(Dは直径)部位からの1箇所である。より具体的には、各視野において電子顕微鏡の反射電子像を撮影(倍率:400倍)した。この反射電子像は、化学成分によって輝度が変化する(図3(a)参照)。次にEDSスペクトルによってMnS部(MnTiSなども含む)を同定し(図3(b)参照)、画像解析ソフトを利用してMnS部に相当する輝度の箇所を前記反射電子像から抽出した。この操作によってMnS系介在物は、黒色部として抽出される(図3(c)参照)。厚さが0.5μm以上のMnS系介在物についてアスペクト比を求め、その平均(算術平均)を算出し、MnS系介在物のアスペクト比とした。
(4) Aspect ratio of MnS inclusions The aspect ratio of MnS inclusions was determined based on a scanning electron micrograph of the longitudinal section taken in the above structure observation (2 cross sections x 5 observation points = 10 fields of view). It was. The five observation locations are 2 locations from the D / 8 (D is diameter) location, 2 locations from the D / 4 (D is diameter) location, and 1 location from the D / 2 (D is diameter) location. is there. More specifically, a reflection electron image of an electron microscope was taken in each field of view (magnification: 400 times). The reflected electron image changes in luminance depending on the chemical component (see FIG. 3A). Next, a MnS portion (including MnTiS and the like) was identified by an EDS spectrum (see FIG. 3B), and a portion having a luminance corresponding to the MnS portion was extracted from the reflected electron image using image analysis software. By this operation, MnS inclusions are extracted as black portions (see FIG. 3C). The aspect ratio was calculated for MnS inclusions having a thickness of 0.5 μm or more, and the average (arithmetic average) was calculated as the aspect ratio of the MnS inclusions.

(5)Al23系介在物の平均粒径
また軸状部相当品の長手方向断面(縦断面)について、走査型電子顕微鏡(SEM)によってD/8(Dは直径)から2視野、D/4(Dは直径)部位から2視野、及びD/2(Dは直径)部位から1視野を観察した。それぞれの視野についてまず倍率400倍で反射電子像を撮影し、著しい偏析がないことを確認した(図3(a)参照)。この反射電子像は、化学成分によって輝度が変化する。輝度変化の認められる部分について拡大撮影(倍率1600倍)し、EDSスペクトルによって成分を調べ、Al23系介在物を探した(図3(b)参照)。また見つかったAl23系介在物の周囲にMnS系介在物が存在するかも確認した。周囲にMnS系介在物が存在し、かつ短径が0.5μm以上であるAl23系介在物についてその粒径(=(長径+短径)/2)を求め、5視野全ての介在物の粒径の算術平均を平均粒径とした。
(5) Average particle diameter of Al 2 O 3 -based inclusions In addition, the longitudinal section (longitudinal section) of the shaft-shaped portion equivalent product is viewed from D / 8 (D is the diameter) from D / 8 (D is a diameter) by a scanning electron microscope (SEM). Two visual fields were observed from the D / 4 (D is diameter) site, and one visual field was observed from the D / 2 (D is diameter) site. For each field of view, a reflected electron image was first taken at a magnification of 400 times to confirm that there was no significant segregation (see FIG. 3A). The reflected electron image changes in luminance depending on the chemical component. The portion where the luminance change was recognized was magnified (magnification 1600 times), the component was examined by the EDS spectrum, and the Al 2 O 3 inclusion was searched (see FIG. 3B). It was also confirmed whether MnS inclusions exist around the found Al 2 O 3 inclusions. Obtain the particle size (= (major axis + minor axis) / 2) for Al 2 O 3 inclusions with MnS inclusions in the surroundings and a minor axis of 0.5 μm or more. The arithmetic average of the particle size of the product was defined as the average particle size.

(6)ロックウェル硬さ
JIS Z 2245に基づき、軸状部相当品の横断面のロックウェル硬さ(スケールC)を測定した。
(6) Rockwell hardness Based on JIS Z 2245, the Rockwell hardness (scale C) of the cross section of a shaft-like part equivalent product was measured.

(7)引張強さ
軸状部相当品からJIS Z 2201に規定する14号試験片を採取し、JIS Z 2241に従って引張強さを求めた。
(7) Tensile strength No. 14 test piece specified in JIS Z 2201 was sampled from the shaft-like portion equivalent product, and the tensile strength was determined according to JIS Z 2241.

(8)衝撃値
軸状部相当品から幅5mmのサブサイズUノッチ試験片(試験片の長さ方向は軸状部相当品の軸方向と同じである)を採取し、JIS Z 2242に従って室温(20℃)又は−50℃での衝撃吸収エネルギーKU2を求めた。
(8) Impact value A 5 mm wide sub-size U-notch test piece (the length direction of the test piece is the same as the axial direction of the shaft-like part) is taken from the shaft-like part and the room temperature is measured according to JIS Z 2242. The impact absorption energy KU 2 at (20 ° C.) or −50 ° C. was determined.

結果を下記表に示す。また長手方向断面の光学顕微鏡写真の一例(実験No.3の例)を図1(a)(倍率:100倍)と図1(b)(倍率:400倍)に示し、横断面の光学顕微鏡写真の一例(実験No.3,5の例)を図2(倍率:400倍)に示す。   The results are shown in the table below. An example of an optical micrograph of the longitudinal section (example of Experiment No. 3) is shown in FIG. 1 (a) (magnification: 100 times) and FIG. 1 (b) (magnification: 400 times). An example of the photograph (examples of Experiment Nos. 3 and 5) is shown in FIG. 2 (magnification: 400 times).

実験No.1〜2は、伸線と縮径加工での加工が不十分であってフェライト−パーライト組織の微細繊維状化が不十分であるため、引張強さ、衝撃値などが低い。No.6は、フェライト−パーライト組織の繊維化が過度に進行しており、冷間鍛造性が悪い。No.8及び11は、ベーキング温度が低すぎたり高すぎたりして、かえって引張強さ又は衝撃値が悪化している。No.12はMn/Cが低い点、No.13はAl/Nが低い点、No.14はC量が不足する点、No.15はCが過剰である点、No.16はSiが不足する点、No.17はMnが不足する点、No.18はMnが過剰である点、No.19はPが過剰である点、No.20はSが過剰である点、No.21はCrが過剰である点、No.22はAlが過剰である点、No.23はNが過剰である点、No.24はOが過剰である点でいずれも不適切であり、冷間鍛造性、引張強さ、衝撃値のいずれかが悪化する。   Experiment No. Nos. 1 and 2 have low tensile strength, impact value, and the like because the processing by wire drawing and diameter reduction is insufficient and the fine fiber formation of the ferrite-pearlite structure is insufficient. No. No. 6, the ferrite-pearlite structure is excessively fiberized, and the cold forgeability is poor. No. In Nos. 8 and 11, the baking temperature is too low or too high, and the tensile strength or impact value is deteriorated. No. No. 12 is a point with low Mn / C. No. 13 is a low Al / N point. No. 14 is a point where the amount of C is insufficient. No. 15 is that C is excessive, No. 15; No. 16 is a point where Si is insufficient. No. 17 is a point where Mn is insufficient. No. 18 is that Mn is excessive. No. 19 is that P is excessive. No. 20 is that S is excessive, No. 20; No. 21 is that Cr is excessive. No. 22 is that Al is excessive. No. 23 is that N is excessive. No. 24 is inappropriate in that O is excessive, and any of cold forgeability, tensile strength, and impact value deteriorates.

実験No.25〜27は、調質した冷間鍛造品(S45C−W相当)を模擬したものであり、衝撃値が低い。   Experiment No. Nos. 25 to 27 simulate simulated tempered cold forged products (equivalent to S45C-W) and have low impact values.

これらに対してNo.3〜5、7、及び9〜10では、鋼成分を適切な範囲に調整しつつ、軸状部の組織をフェライト−パーライトからなる微細な繊維状組織にしているため、焼入れ・焼戻ししなくても強度と直交方向の衝撃特性とを両立できる。   No. In 3-5, 7, and 9-10, the steel component is adjusted to an appropriate range, and the structure of the shaft-like portion is made into a fine fibrous structure composed of ferrite-pearlite, so it is not quenched and tempered. Can achieve both strength and impact characteristics in the orthogonal direction.

図1は本発明の冷間鍛造非調質高強度鋼部品の軸状部の長手方向断面の組織状態を示す光学顕微鏡写真である。FIG. 1 is an optical micrograph showing the structure of the cross section in the longitudinal direction of the axial part of the cold forged non-tempered high strength steel part of the present invention. 図2は本発明の冷間鍛造非調質高強度鋼部品の軸状部の横断面の組織状態を示す光学顕微鏡写真である。FIG. 2 is an optical micrograph showing the cross-sectional structure of the shaft-shaped portion of the cold forged non-tempered high strength steel part of the present invention. 図3(a)は介在物の測定方法を説明するための電子顕微鏡写真である。FIG. 3A is an electron micrograph for explaining a method for measuring inclusions. 図3(b)は介在物の測定方法を説明するための電子顕微鏡写真とEDSスペクトルを組み合わせた図である。FIG. 3B is a diagram combining an electron micrograph and an EDS spectrum for explaining a method for measuring inclusions. 図3(c)は介在物の測定方法を説明するための画像解析処理後の電子顕微鏡写真である。FIG.3 (c) is the electron micrograph after the image analysis process for demonstrating the measuring method of an inclusion.

Claims (5)

軸状部を有する冷間鍛造非調質高強度鋼部品において、
該鋼部品は、成分がC:0.20〜0.35%(質量%の意味、以下同じ)、Si:0.1%以下(0%を含まない)、Mn:1.0〜2.0%、P:0.02%以下(0%を含まない)、S:0.02%以下(0%を含まない)、Cr:0.05〜0.5%(0%を含まない)、Al:0.07%以下(0%を含まない)、N:0.006%以下(0%を含まない)、O:0.010%以下(0%を含まない)であって、残部は鉄及び不可避不純物であり、かつMnとCの比(Mn/C)が4以上、AlとNの比(Al/N)が8以上であり、
軸状部は、フェライト−パーライト組織であり、
この軸状部の横断面を観察したとき、旧オーステナイトのGp粒度番号(2005年 JIS G 0551)が9.0以上、フェライトのFGc粒度番号(1998年 JIS G 0552)が10.0以上であり、
前記軸状部の長手方向断面を観察したとき、MnS系介在物のアスペクト比が6〜7.5であることを特徴とする、
軸方向に対して直交する方向での衝撃特性に優れた冷間鍛造非調質高強度鋼部品。
In cold forged non-tempered high-strength steel parts having a shaft-shaped part,
The steel part has components of C: 0.20 to 0.35% (meaning mass%, the same shall apply hereinafter), Si: 0.1% or less (not including 0%), Mn: 1.0 to 2. 0%, P: 0.02% or less (not including 0%), S: 0.02% or less (not including 0%), Cr: 0.05 to 0.5% (not including 0%) Al: 0.07% or less (excluding 0%), N: 0.006% or less (not including 0%), O: 0.010% or less (not including 0%), the balance Is iron and inevitable impurities, the ratio of Mn to C (Mn / C) is 4 or more, the ratio of Al to N (Al / N) is 8 or more,
The shaft part is a ferrite-pearlite structure,
When the cross section of this shaft-like part was observed, the Gp grain size number of old austenite (2005 JIS G 0551) was 9.0 or more, and the FGc grain size number of ferrite (1998 JIS G 0552) was 10.0 or more. ,
When the longitudinal section of the axial part is observed, the aspect ratio of the MnS inclusion is 6 to 7.5,
Cold forged non-tempered high strength steel parts with excellent impact characteristics in the direction perpendicular to the axial direction.
さらにCu及びNiを含有しており、その量が、Cu:0.1%以下(0%を含まない)、Ni:0.1%以下(0%を含まない)に抑制されている請求項1に記載の冷間鍛造非調質高強度鋼部品。   Furthermore, Cu and Ni are contained, and the amount is suppressed to Cu: 0.1% or less (not including 0%), Ni: 0.1% or less (not including 0%). 1. Cold forged non-tempered high-strength steel part according to 1. 前記軸状部の長手方向断面を観察したとき、MnS系介在物中に析出したAl23系介在物の平均粒径が5μm以下である請求項1又は2に記載の冷間鍛造非調質高強度鋼部品。 The cold forging non-adjustment according to claim 1 or 2, wherein an average particle diameter of Al 2 O 3 inclusions precipitated in the MnS inclusions is 5 µm or less when a longitudinal section of the shaft-like portion is observed. High quality steel parts. 請求項1〜3のいずれかに記載の冷間鍛造非調質高強度鋼部品を温度250〜600℃でベーキングすることによって得られる冷間鍛造非調質高強度鋼部品。   A cold forged non-tempered high strength steel part obtained by baking the cold forged non-tempered high strength steel part according to claim 1 at a temperature of 250 to 600 ° C. 軸状部の引張強さが850N/mm2以上、軸状部から採取した幅5mmのサブサイズUノッチ試験片による衝撃吸収エネルギーKU2が、試験温度−50℃及び20℃のいずれでも100J/cm2以上である請求項1〜4のいずれかに記載の冷間鍛造非調質高強度鋼部品。 The tensile strength of the shaft-shaped portion is 850 N / mm 2 or more, and the impact absorption energy KU 2 by the sub-size U-notch test piece with a width of 5 mm collected from the shaft-shaped portion is 100 J / at both the test temperature −50 ° C. and 20 ° C. cm 2 or more in cold forging microalloyed high-strength steel part according to any one of claims 1 to 4.
JP2007082824A 2007-03-27 2007-03-27 Cold forged non-tempered high-strength steel parts with excellent impact characteristics in the direction perpendicular to the axial direction Expired - Fee Related JP5147272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082824A JP5147272B2 (en) 2007-03-27 2007-03-27 Cold forged non-tempered high-strength steel parts with excellent impact characteristics in the direction perpendicular to the axial direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082824A JP5147272B2 (en) 2007-03-27 2007-03-27 Cold forged non-tempered high-strength steel parts with excellent impact characteristics in the direction perpendicular to the axial direction

Publications (2)

Publication Number Publication Date
JP2008240076A true JP2008240076A (en) 2008-10-09
JP5147272B2 JP5147272B2 (en) 2013-02-20

Family

ID=39911759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082824A Expired - Fee Related JP5147272B2 (en) 2007-03-27 2007-03-27 Cold forged non-tempered high-strength steel parts with excellent impact characteristics in the direction perpendicular to the axial direction

Country Status (1)

Country Link
JP (1) JP5147272B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133248A3 (en) * 2010-04-20 2011-12-22 Alcoa Inc. High strength forged aluminum alloy products
WO2012091745A1 (en) * 2010-12-27 2012-07-05 Altynalmas Gold Ltd. Stabilization of arsenic-containing wastes generated during treatment of sulfide ores
CN115468457A (en) * 2022-10-14 2022-12-13 北京坤飞航天科技有限公司 Anti-invasion structure with special-shaped surface penetration-resistant layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119806A (en) * 1998-10-08 2000-04-25 Kobe Steel Ltd Steel wire rod excellent in cold workability, and its manufacture
WO2001066814A1 (en) * 2000-03-06 2001-09-13 Nippon Steel Corporation Steel excellent in suitability for forging and cutting
JP2003113444A (en) * 2001-10-05 2003-04-18 Kobe Steel Ltd Rod for high strength non-heat-treated upset head bolt, manufacturing method therefor, and method for manufacturing upset head bolt using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119806A (en) * 1998-10-08 2000-04-25 Kobe Steel Ltd Steel wire rod excellent in cold workability, and its manufacture
WO2001066814A1 (en) * 2000-03-06 2001-09-13 Nippon Steel Corporation Steel excellent in suitability for forging and cutting
JP2003113444A (en) * 2001-10-05 2003-04-18 Kobe Steel Ltd Rod for high strength non-heat-treated upset head bolt, manufacturing method therefor, and method for manufacturing upset head bolt using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133248A3 (en) * 2010-04-20 2011-12-22 Alcoa Inc. High strength forged aluminum alloy products
CN102822376A (en) * 2010-04-20 2012-12-12 美铝公司 High strength forged aluminum alloy products
CN104046932A (en) * 2010-04-20 2014-09-17 美铝公司 High strength forged aluminum alloy products
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
RU2580261C2 (en) * 2010-04-20 2016-04-10 Алкоа Инк. High-strength forged items of aluminium alloy
WO2012091745A1 (en) * 2010-12-27 2012-07-05 Altynalmas Gold Ltd. Stabilization of arsenic-containing wastes generated during treatment of sulfide ores
CN115468457A (en) * 2022-10-14 2022-12-13 北京坤飞航天科技有限公司 Anti-invasion structure with special-shaped surface penetration-resistant layer
CN115468457B (en) * 2022-10-14 2024-06-07 北京坤飞航天科技有限公司 Anti-explosion structure with special-shaped surface anti-penetration layer

Also Published As

Publication number Publication date
JP5147272B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
JP6528860B2 (en) Steel wire for non-heat treatment machine parts and non-heat treatment machine parts
KR20210065164A (en) High-strength steel sheet and its manufacturing method
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
KR20140050110A (en) Wire material for non-refined machine component; steel wire for non-refined machine component; non-refined machine component; and method for manufacturing wire material for non-refined machine component, steel wire for non-refined machine component, and non-refined machine component
JP6226085B2 (en) Rolled steel bar or wire rod for cold forging parts
KR20150023726A (en) High carbon steel pipe having excellent cold workability, machinability, and quenching properties, and method for manufacturing same
JP2007291511A (en) High-tensile strength thick steel plate having excellent toughness and its production method
TWI643959B (en) Wire, steel wire and components
WO2016088803A1 (en) High-carbon-steel wire rod having excellent wire drawing properties
JP4423219B2 (en) High-strength bolts with excellent delayed fracture resistance and relaxation resistance
JP7518338B2 (en) Steel Wire
JP3527641B2 (en) Steel wire with excellent cold workability
WO2015194411A1 (en) Steel for mechanical structure for cold working, and method for producing same
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
WO2012144630A1 (en) High carbon steel wire rod and method for producing high carbon steel wire rod
CN108368583B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
JP2021183710A (en) Steel wire, wire for non-heat-treated mechanical components, and non-heat-treated mechanical component
JP2001294981A (en) High strength wire rod excellent in delayed fracture resistance and forgeability and/or under head toughness and its producing method
JP5147272B2 (en) Cold forged non-tempered high-strength steel parts with excellent impact characteristics in the direction perpendicular to the axial direction
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP2004190127A (en) Wire rod and steel bar for bearing having spherodized carbide structure, and manufacturing method therefor
JP2001089830A (en) Steel wire rod and bar steel excellent in cold forgeability after spheroidizing and its manufacture
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP7226083B2 (en) wire and steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Ref document number: 5147272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees