JP2008240040A - METHOD FOR PRODUCING SrRuO3 FILM, AND FILM OBTAINED THEREBY - Google Patents

METHOD FOR PRODUCING SrRuO3 FILM, AND FILM OBTAINED THEREBY Download PDF

Info

Publication number
JP2008240040A
JP2008240040A JP2007080184A JP2007080184A JP2008240040A JP 2008240040 A JP2008240040 A JP 2008240040A JP 2007080184 A JP2007080184 A JP 2007080184A JP 2007080184 A JP2007080184 A JP 2007080184A JP 2008240040 A JP2008240040 A JP 2008240040A
Authority
JP
Japan
Prior art keywords
srruo
film
pressure
substrate
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007080184A
Other languages
Japanese (ja)
Other versions
JP4858912B2 (en
Inventor
Hiroshi Funakubo
浩 舟窪
Takashi Kamo
嵩史 加茂
Ken Nishida
謙 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuuchi Kagaku Kk
Tokyo Institute of Technology NUC
Original Assignee
Furuuchi Kagaku Kk
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuuchi Kagaku Kk, Tokyo Institute of Technology NUC filed Critical Furuuchi Kagaku Kk
Priority to JP2007080184A priority Critical patent/JP4858912B2/en
Publication of JP2008240040A publication Critical patent/JP2008240040A/en
Application granted granted Critical
Publication of JP4858912B2 publication Critical patent/JP4858912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an SrRuO<SB>3</SB>crystal film having low resistance equal to that of a bulk film by a sputtering process having excellent mass-productivity, and to provide a sputtered SrRuO<SB>3</SB>crystal film having low resistance equal to that of a bulk film. <P>SOLUTION: Regarding the method for producing an SrRuO<SB>3</SB>film, SrRuO<SB>3</SB>is deposited on a substrate in an oxygen-containing atmosphere under the pressure in the range of 8 to <300 Pa, preferably, in the range of 16 to 130 Pa by a sputtering process where a target and the substrate are confronted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はSrRuO膜の製法と得られるSrRuO膜に係わり、特にスパッタ法でバルクと同等の低抵抗率のSrRuO膜を成膜する方法を提供するものである。 The present invention relates to a method for producing a SrRuO film and a SrRuO 3 film obtained, and particularly provides a method for forming a SrRuO 3 film having a low resistivity equivalent to that of a bulk by sputtering.

ペロブスカイト構造を有する物質は、誘電体、磁性体、導電体等の多くの機能の発現が報告されており、今後の発展が期待できる物質群である。   Substances having a perovskite structure have been reported to exhibit many functions such as dielectrics, magnetic substances, and conductors, and are a group of substances that can be expected to develop in the future.

基礎研究で用いる単結晶のうち、電極に関しては、現在導電性のSrTiOとしてNbまたはLaをドープしたSrTiOが使用されている。しかし、熱処理によって表面が半導体化するため、使用用途が限られている。したがって、SrTiO上に単結晶導電層を作成する必要がある。 Among the single crystals used in the basic research, regarding the electrodes, SrTiO 3 doped with Nb or La is currently used as the conductive SrTiO 3 . However, since the surface is made semiconductor by heat treatment, the usage is limited. Therefore, it is necessary to form a single crystal conductive layer on SrTiO 3 .

SrRuOは、ペロブスカイト構造を有する、高い熱的安定性および化学的安定性と、低い抵抗率(室温ρ=280μΩcm)を有する導電体であることから、強誘電体、磁気抵抗素子、超伝導体等の電極として期待されている。またSrRuOは、エピタキシャル強誘電体薄膜を評価する上で重要な電極材料である。SrRuOは、スイカ(商標)等のICカードに使われている強誘電体メモリの電極等として実際に使用され始めている。現在、SrRuOが、ペロブスカイト構造を有する各種機能性物質の電極として最有力候補である。 SrRuO 3 is a conductor having a perovskite structure, high thermal stability and chemical stability, and low resistivity (room temperature ρ = 280 μΩcm), so that it is a ferroelectric, magnetoresistive element, superconductor. It is expected as an electrode. SrRuO 3 is an important electrode material for evaluating an epitaxial ferroelectric thin film. SrRuO 3 is actually being used as an electrode of a ferroelectric memory used in an IC card such as Watermelon (trademark). Currently, SrRuO 3 is the most promising candidate for electrodes of various functional materials having a perovskite structure.

SrRuOの成膜方法としては、本発明者らが先駆けて開示したMOCVD法のほか、パルスレーザ堆積法、分子ビームエピタキシ法などの方法がある(特許文献1等)。MOCVD法は高い再現性を有し、有望な成膜方法であるが、コストを含めた量産性に劣る問題がある。 As a film formation method of SrRuO 3 , there are methods such as a pulse laser deposition method and a molecular beam epitaxy method in addition to the MOCVD method disclosed by the present inventors (Patent Document 1 and the like). The MOCVD method has a high reproducibility and is a promising film forming method, but has a problem that it is inferior in mass productivity including cost.

工業的な量産性を考えると、安定した再現性、大面積化が容易なスパッタ法が望まれる。しかし、従来、90°オフ・アクシス・スパッタ法、高圧DCスパッタ法など、非常に析出速度を遅くした極端な条件のスパッタ法を除くと、通常のスパッタ法で成膜したSrRuO膜は、バルクのSrRuOと比べて、抵抗率が5倍以上高く、抵抗率が負の温度依存性を有していて、結晶の単位胞体積が大きいという問題を有していた(非特許文献1)。
特開2005−079118号公報 Jpn.J.Appl.Phys.Vol.41(2002) pp5376-5380, Part.1,No.8,August 2002
In consideration of industrial mass productivity, a sputtering method that is stable and easy to increase in area and reproducibility is desired. However, excluding the conventional sputtering methods with extremely slow deposition rates such as 90 ° off-axis sputtering method and high-pressure DC sputtering method, the SrRuO 3 film deposited by the usual sputtering method is bulky. Compared to SrRuO 3 , the resistivity was 5 times higher, the resistivity had a negative temperature dependence, and the unit cell volume of the crystal was large (Non-patent Document 1).
Japanese Patent Laying-Open No. 2005-079118 Jpn.J.Appl.Phys.Vol.41 (2002) pp5376-5380, Part.1, No.8, August 2002

そこで、本発明は、バルクに匹敵する低抵抗のSrRuO結晶膜を量産性に優れたスパッタ法で成膜する方法及びバルクに匹敵する低抵抗のスパッタSrRuO結晶膜を提供することを目的とする。 Accordingly, the present invention is, intended to provide a low resistance of the sputtering SrRuO 3 crystal film comparable to methods and bulk forming excellent sputtering mass production of SrRuO 3 crystal film of a low resistivity comparable to bulk To do.

本発明者は、上記の目的を達成するために、鋭意、各種のスパッタ方法およびスパッタ条件を変えて検討する過程において、低抵抗で高品質のSrRuOを得るためにはプラズマ独特の問題であるプラズマによるダメージを低減させる必要があること、ダメージの低減のためにはプラズマ粒子の加速を低減させるために成膜圧力を上昇させることが有効であること、しかし成膜圧力をあまり高くすると成膜速度が低下して量産性に劣ることを見出し、特定の成膜圧力を採用することでバルクに匹敵する低抵抗のSrRuOをスパッタ法において高い成膜速度で成膜できることを確認し、本発明を完成したものである。 In order to achieve the above-mentioned object, the present inventor is a problem unique to plasma in order to obtain SrRuO 3 with low resistance and high quality in the process of studying various sputtering methods and sputtering conditions. It is necessary to reduce the damage caused by the plasma, and to reduce the damage, it is effective to increase the deposition pressure to reduce the acceleration of the plasma particles. However, if the deposition pressure is too high, the deposition is performed. It has been found that the speed is lowered and the mass productivity is inferior, and it is confirmed that a low resistance SrRuO 3 comparable to the bulk can be formed at a high film formation speed in the sputtering method by adopting a specific film formation pressure. Is completed.

こうして、本発明は下記を提供する。
(1)ターゲットと基板を対向させたスパッタ法で、酸素含有雰囲気、8Pa以上300Pa未満の圧力下で、基板上にSrRuOを堆積することを特徴とするSrRuO膜の製法。
(2)圧力が13Pa〜150Paの範囲内である、上記(1)に記載のSrRuO膜の製法。
(3)圧力が16Pa〜130Paである、上記(1)に記載のSrRuO膜の製法。
(4)基板が、ペロブスカイト構造、フローライト構造、面心立方構造、単純立方晶構造、c−希土類構造、NaCl構造から選ばれる材料からなる、上記(1)〜(3)のいずれか1項に記載のSrRuO膜の製法。
(5)成膜速度が10nm/hr以上である、上記(1)〜(4)のいずれか1項に記載のSrRuO膜の製法。
(6)上記(1)〜(5)のいずれか1項に記載の製法で得られたSrRuO膜。
(7)面内格子定数が3.905±0.2Å、面外格子定数が3.98〜3.92Åのペロブスカイト構造である、上記(6)に記載のSrRuO膜。
Thus, the present invention provides the following.
(1) A method for producing a SrRuO 3 film, characterized in that SrRuO 3 is deposited on a substrate by sputtering with a target and a substrate facing each other under an oxygen-containing atmosphere and a pressure of 8 Pa or more and less than 300 Pa.
(2) The method for producing the SrRuO 3 film according to (1) above, wherein the pressure is in a range of 13 Pa to 150 Pa.
(3) The method for producing the SrRuO 3 film according to (1), wherein the pressure is 16 Pa to 130 Pa.
(4) Any one of the above (1) to (3), wherein the substrate is made of a material selected from a perovskite structure, a fluorite structure, a face-centered cubic structure, a simple cubic structure, a c-rare earth structure, and a NaCl structure. A method for producing the SrRuO 3 film described in 1.
(5) The method for producing a SrRuO 3 film according to any one of the above (1) to (4), wherein the deposition rate is 10 nm / hr or more.
(6) A SrRuO 3 film obtained by the production method according to any one of (1) to (5) above.
(7) The SrRuO 3 film according to (6), which has a perovskite structure having an in-plane lattice constant of 3.905 ± 0.2 ± and an out-of-plane lattice constant of 3.98 to 3.923.

本発明のスパッタ法で堆積する膜は、ペロブスカイトSrRuO結晶である。図1にSrRuOの結晶構造を示す(R.J.Bouchard et al., Mater.Res.Bull.7(1972)873)。SrRuOの室温抵抗率はρ=280μΩcmである。 The film deposited by the sputtering method of the present invention is a perovskite SrRuO 3 crystal. FIG. 1 shows the crystal structure of SrRuO 3 (RJBouchard et al., Mater. Res. Bull. 7 (1972) 873). The room temperature resistivity of SrRuO 3 is ρ = 280 μΩcm.

従来、量産性に優れた通常のスパッタ法では良好なSrRuO膜は得られていない。通常のスパッタ法で成膜したSrRuO膜は、バルクのSrRuOと比べて、抵抗率が5倍以上高く、抵抗率が負の温度依存性(半導体性)を有し、結晶の単位胞体積が大きいという問題を有している(特許文献1等)。しかし、本発明によれば、ターゲットと基板を対向配置する通常のスパッタ法で、酸素含有雰囲気の圧力を8Paから300Pa未満の比較的高い圧力にすると、他の条件に依存せずに、SrRuO結晶膜はバルクと同様の単位胞体積と物性(抵抗率等)を示すものが得られ、しかも堆積速度は高い速度であることが見出された。本発明者は量産性に優れるスパッタについて各種の方法、条件を変えて検討するなかで、他の方法あるいは条件では変化はないが、通常のスパッタ法で特定の圧力が所望の結果をもたらすことを見出した。これまで、通常のスパッタ法で、高い堆積速度において、バルクと同様の単位胞体積と物性を示すSrRuO結晶膜を堆積できることは知られていなかったので、この知見は驚くべきものであり、かつ、MOCVD等の製法と比べて通常のスパッタ法は工業的に明らかに優位であることから、本発明の有用性は極めて高いものである。 Conventionally, a good SrRuO 3 film has not been obtained by a normal sputtering method excellent in mass productivity. The SrRuO 3 film formed by the usual sputtering method has a temperature dependency (semiconductor property) that is more than five times higher than the bulk SrRuO 3 and has a negative resistivity, and has a unit cell volume of crystal. (Patent document 1 etc.). However, according to the present invention, when the pressure of the oxygen-containing atmosphere is set to a relatively high pressure of 8 Pa to less than 300 Pa in a normal sputtering method in which the target and the substrate are opposed to each other, SrRuO 3 is not dependent on other conditions. It was found that a crystalline film having the same unit cell volume and physical properties (resistivity, etc.) as the bulk was obtained, and the deposition rate was high. While the present inventor examined various sputtering methods and conditions that are excellent in mass productivity, there is no change in other methods or conditions, but a specific pressure brings about a desired result in a normal sputtering method. I found it. Until now, it was not known that a SrRuO 3 crystal film having the same unit cell volume and physical properties as the bulk could be deposited by a normal sputtering method at a high deposition rate, so this finding is surprising, and Compared with a manufacturing method such as MOCVD, the ordinary sputtering method is clearly superior in industry, so that the usefulness of the present invention is extremely high.

本発明のスパッタ法は、基板とターゲットを対向配置して行なうスパッタ法である。基板とターゲットを90°に配置する90°オフ・アクシス法と異なり、高い堆積速度を得ることが可能なスパッタ法である。図2に本発明に用いるマグネトロンスパッタ法を実施する装置を模式的に示す。真空容器1内に基板2とターゲット3を対向して配置し、基板2はヒータ4に取り付けられ、かつ電源5に接続されている。ターゲット3も電源6に接続されている。電源は高周波電源及び直流電源のいずれでもよい。真空容器1はターボ分子ポンプとロータリーポンプなどを組み合わせた真空ポンプ7により真空引される一方、ボンベ8,9(たとえば、酸素8、アルゴン9)から流量計10を経て雰囲気ガスが導入され、真空容器1内を酸素含有ガス雰囲気にしている。   The sputtering method of the present invention is a sputtering method performed by arranging a substrate and a target so as to face each other. Unlike the 90 ° off-axis method in which the substrate and the target are arranged at 90 °, this sputtering method can obtain a high deposition rate. FIG. 2 schematically shows an apparatus for performing the magnetron sputtering method used in the present invention. A substrate 2 and a target 3 are disposed facing each other in the vacuum container 1, and the substrate 2 is attached to a heater 4 and connected to a power source 5. The target 3 is also connected to the power source 6. The power source may be either a high frequency power source or a DC power source. The vacuum vessel 1 is evacuated by a vacuum pump 7 which is a combination of a turbo molecular pump and a rotary pump, while atmospheric gas is introduced from a cylinder 8 or 9 (for example, oxygen 8 or argon 9) through a flow meter 10 to form a vacuum. The container 1 has an oxygen-containing gas atmosphere.

ターゲットとしては、典型的には堆積すべきSrRuOの粉末、焼結体などを用いることができるが、堆積すべきSrRuOを与える複合ターゲットでもよい。たとえば、SrCOとRuOの複合ターゲットを用いることができる。 Typically, SrRuO 3 powder to be deposited, a sintered body, or the like can be used as the target, but a composite target that provides SrRuO 3 to be deposited may be used. For example, a composite target of SrCO 3 and RuO 2 can be used.

SrRuOを堆積する基板は、限定されないが、堆積すべきSrRuOに近い格子定数を有する結晶基板が好ましい。基板はペロブスカイト構造である必要はないが、ペロブスカイト構造であることは好ましい。代表的には、LaAlO(ペロブスカイト構造),(001)SrTiO(ペロブスカイト構造)、(001)〔(LaAlO0.3−(SrAl0.5Ta0.50.7〕(LSAT;ペロブスカイト構造)、MgO(NaCl構造),Pt(面心立方構造)、LaNiO(ペロブスカイト構造)などを挙げることができる。 The substrate on which SrRuO 3 is deposited is not limited, but a crystal substrate having a lattice constant close to SrRuO 3 to be deposited is preferable. The substrate need not have a perovskite structure, but preferably has a perovskite structure. Typically, LaAlO 3 (perovskite structure), (001) SrTiO 3 (perovskite structure), (001) [(LaAlO 3) 0.3 - (SrAl 0.5 Ta 0.5 O 3) 0.7 ] (LSAT; perovskite structure), MgO (NaCl structure), Pt (face centered cubic structure), LaNiO 3 (perovskite structure), and the like.

スパッタ成膜ガスにはアルゴン、ネオンなどの不活性ガスに酸素または酸素を与える物質が雰囲気中に存在しないと、堆積するSrRuOに酸素欠陥等の結晶欠陥が生じるおそれがある。不活性ガスと酸素付与物質の混合比率は、特に限定しないが、一般的には1:1〜10:1の範囲内、好ましくは5:4〜10:1の範囲内である。酸素が不足しても多すぎても抵抗率が上昇し、また酸素が多すぎるとプラズマが立ちにくくなったり、堆積速度が遅くなる。酸素付与物質が不足しても多すぎても結晶品質が安定しないおそれがある。 If the sputtering film forming gas does not contain oxygen or a substance that gives oxygen to an inert gas such as argon or neon in the atmosphere, crystal defects such as oxygen defects may be generated in the deposited SrRuO 3 . The mixing ratio of the inert gas and the oxygen-imparting substance is not particularly limited, but is generally in the range of 1: 1 to 10: 1, preferably in the range of 5: 4 to 10: 1. If oxygen is insufficient or too much, the resistivity will increase, and if there is too much oxygen, it will be difficult to generate plasma or the deposition rate will be slow. There is a possibility that the crystal quality is not stable even if the oxygen-providing substance is insufficient or too much.

本発明のスパッタにおける雰囲気圧力は、8Pa以上300Pa未満である。雰囲気圧力が8Pa未満では、得られる膜のSrRuOの単位胞体積がバルクより大きく、抵抗率が不所望に低いものとなるので好ましくない。雰囲気圧力が300Pa以上では、SrRuO膜の堆積速度が遅いので実用的でない上に、抵抗率も上昇する。雰囲気圧力は13Pa〜150Paの範囲内が好ましく、16Pa〜130Paの範囲内がより好ましく、20〜130Paがさらに好ましく、27Pa付近が最も好ましい。 The atmospheric pressure in the sputtering of the present invention is 8 Pa or more and less than 300 Pa. If the atmospheric pressure is less than 8 Pa, the unit cell volume of SrRuO 3 in the resulting film is larger than the bulk and the resistivity is undesirably low, which is not preferable. When the atmospheric pressure is 300 Pa or more, the deposition rate of the SrRuO 3 film is slow, which is not practical and the resistivity also increases. The atmospheric pressure is preferably within a range of 13 Pa to 150 Pa, more preferably within a range of 16 Pa to 130 Pa, further preferably 20 to 130 Pa, and most preferably around 27 Pa.

本発明において、雰囲気圧力以外の条件は殆ど影響しないことを確認しているので、特に限定されず、一般的な成膜条件を採用できる。たとえば、基板温度は約450〜650℃の範囲内、さらには約500〜600℃の範囲内が好ましく採用される。電源は交流電力、直流電力のいずれでもよい。   In the present invention, since it has been confirmed that conditions other than atmospheric pressure have little influence, there is no particular limitation, and general film forming conditions can be employed. For example, the substrate temperature is preferably in the range of about 450 to 650 ° C., more preferably in the range of about 500 to 600 ° C. The power source may be either AC power or DC power.

成膜速度は、工業的にはより高いことが望まれるが、1nm/hr以上であること好ましく、5nm/hr以上がより好ましく、10nm/hr以上であることがさらに好ましい。   Although it is desired that the film formation rate is industrially higher, it is preferably 1 nm / hr or more, more preferably 5 nm / hr or more, and further preferably 10 nm / hr or more.

本発明ではSrRuOについて成膜圧力の効果を実験的に確認した。実験結果から考察すると、従来の通常のスパッタ法ではプラズマ中の電離した酸素、ターゲットからたたき出された高速粒子による膜へのダメージにより、酸素空孔、格子間酸素、Sr,Ruのアンチサイトなどが起きて、結晶単位胞体積を大きくし、また抵抗率を高くする原因であったと考えられ、本発明の成膜圧力ではプラズマ粒子が他の粒子と衝突して膜への衝撃を小さくした結果、結晶欠陥をなくすことができ、単位胞体積を小さくし、また抵抗率を低くできるが、圧力が高くなりすぎると非常に長時間の成膜になり基板からTiなどの原子が拡散したり、膜表面からRuなどが揮散したりして、結晶品質を低下させ、抵抗率を上昇させるものと考えられる。 In the present invention, the effect of the film forming pressure was experimentally confirmed for SrRuO 3 . Considering from the experimental results, in the conventional normal sputtering method, oxygen vacancies, interstitial oxygen, anti-site of Sr, Ru, etc. due to damage to the film by ionized oxygen in the plasma, high speed particles knocked out of the target, etc. It is thought that this was the cause of increasing the crystal unit cell volume and increasing the resistivity, and at the film forming pressure of the present invention, plasma particles collided with other particles to reduce the impact on the film. The crystal defects can be eliminated, the unit cell volume can be reduced, and the resistivity can be lowered, but if the pressure is too high, the film is formed for a very long time and atoms such as Ti diffuse from the substrate, It is considered that Ru and the like are volatilized from the film surface, thereby lowering the crystal quality and increasing the resistivity.

本発明によれば、スパッタ法で成膜されたSrRuO膜において、バルクのSrRuOと比べて、単位胞体積が室温で61Å以下(より好ましくは室温60.7Å以下)、抵抗率が室温で400μΩcm以下(より好ましくは室温で300μΩcm以下)の差を有するにすぎない膜を得ることができる。 According to the present invention, in a SrRuO 3 film formed by sputtering, the unit cell volume is 61 Å 3 or less (more preferably, room temperature 60.7 3 3 or less) and resistivity compared to bulk SrRuO 3. A film having only a difference of 400 μΩcm or less at room temperature (more preferably 300 μΩcm or less at room temperature) can be obtained.

図2に示したスパッタ装置を用い、下記の成膜条件で、SrRuOを(001)SrTiO基板上に堆積した。 Using the sputtering apparatus shown in FIG. 2, SrRuO 3 was deposited on the (001) SrTiO 3 substrate under the following film forming conditions.

ターゲット:SrRuO粉末の圧密体
ターゲット寸法:2インチ(5.12cm)径の円板状
基板:(001)SrTiO
基板温度:550℃
雰囲気ガス:Ar/O=20:5(供給流量比)
入力パワー:RF50W(高周波電力)
基板とターゲットの距離:120mm
成膜圧力:1.3Pa,8.0Pa,13Pa,27Pa,53Pa,130Pa
堆積膜厚:60nm
Target: SrRuO 3 powder compact Target size: Disk shape with 2 inch (5.12 cm) diameter Substrate: (001) SrTiO 3
Substrate temperature: 550 ° C
Atmospheric gas: Ar / O 2 = 20: 5 (supply flow ratio)
Input power: RF50W (high frequency power)
Distance between substrate and target: 120mm
Deposition pressure: 1.3 Pa, 8.0 Pa, 13 Pa, 27 Pa, 53 Pa, 130 Pa
Deposited film thickness: 60nm

得られたSrRuO膜について、X線回折装置(Philips X'pert-MRD)で結晶構造を解析し、四探針法で室温抵抗率(於室温25℃)を測定し、ファン・デル・パウ法(van der Pauw法)で抵抗率の温度依存性を測定した。 The obtained SrRuO 3 film was analyzed for crystal structure with an X-ray diffractometer (Philips X'pert-MRD), and the room temperature resistivity (at room temperature 25 ° C.) was measured by a four-probe method. The temperature dependence of resistivity was measured by the method (van der Pauw method).

図3に、得られた膜のX線回折チャートをθが40°〜50°の領域だけを拡大して示す。成膜圧力が1.3Paから13Paまでは圧力が上昇するにしたがって(002)SrRuOのピーク位置は高角側(格子定数は小さくなる方向)へシフトするが、27Paから130Paまでは(002)SrRuOのピーク位置がほぼ一定である。 FIG. 3 shows an X-ray diffraction chart of the obtained film by enlarging only the region where θ is 40 ° to 50 °. As the film pressure increases from 1.3 Pa to 13 Pa, the peak position of (002) SrRuO 3 shifts to the higher angle side (in which the lattice constant decreases), but from (27) SrRuO to 27 Pa to 130 Pa. The peak position of 3 is almost constant.

SrRuO膜の単位胞の格子定数を求めると、図4及び図5に参照されるように、すべての膜において、基板面内方向(2軸とも)は基板であるSrTiOと同じ3.905Åであったが、基板に垂直方向の格子定数は、低圧側で大きく、圧力が約8Paより低い辺りから増加するとともに小さくなり、27Paで最低になり、その後一定であった。したがって、単位胞体積は面外格子定数に比例する。この格子定数から計算される単位胞体積は、図5に見られるように、基板に垂直な方向の格子定数と同じような形状をなすが、27Pa以上の圧力で得られたSrRuO膜の単位胞体積(3.905Å×3.905Å×3.965Å=6.046×10−2nm)は、バルクのSrRuOの単位胞体積(3.93Å×3.93Å×3.93Å=6.05×10−2nm)とほぼ同じ(僅かに小さい)であった。 When the lattice constant of the unit cell of the SrRuO 3 film is obtained, as shown in FIGS. 4 and 5, in all the films, the substrate in-plane direction (both two axes) is the same as that of SrTiO 3 as the substrate 3.90590 However, the lattice constant in the direction perpendicular to the substrate was large on the low-pressure side, decreased as the pressure increased from below about 8 Pa, decreased, reached a minimum at 27 Pa, and remained constant thereafter. Therefore, the unit cell volume is proportional to the out-of-plane lattice constant. As shown in FIG. 5, the unit cell volume calculated from this lattice constant has the same shape as the lattice constant in the direction perpendicular to the substrate, but the unit of the SrRuO 3 film obtained at a pressure of 27 Pa or more. The cell volume (3.905 Å x 3.905 Å x 3.965 Å = 6.046 x 10 -2 nm 3 ) is the unit cell volume of bulk SrRuO 3 (3.93 Å x 3.93 Å x 3.93 Å = 6.93 Å). 05 × 10 −2 nm 3 ) (slightly smaller).

図6に、SrRuO膜の室温における抵抗率を成膜圧力の関数として示す。成膜圧力が27Paまでは、単位胞体積と同じように圧力の増加とともに低下したが、成膜圧力が27Paを超えて増加すると、抵抗率は単位胞体積のように一定ではなく、圧力とともに僅かに上昇した。 FIG. 6 shows the resistivity of the SrRuO 3 film at room temperature as a function of the deposition pressure. The film formation pressure decreased to 27 Pa as the unit cell volume increased as the unit cell volume increased. However, when the film formation pressure increased beyond 27 Pa, the resistivity was not constant as the unit cell volume and slightly increased with the pressure. Rose to.

SrRuO膜の格子定数、単位胞体積及び室温抵抗率を表1に示す。比較のために特許文献1及びバルクの値も示す。

Figure 2008240040
Table 1 shows the lattice constant, unit cell volume, and room temperature resistivity of the SrRuO 3 film. For comparison, Patent Document 1 and bulk values are also shown.
Figure 2008240040

図7に、SrRuO膜の抵抗率の温度依存性を成膜圧力の関数として示す。成膜圧力が低圧側では抵抗率は負の温度依存性、すなわち半導体的な挙動を示したが、高圧側では抵抗率は正の温度依存性、すなわち金属的な挙動を示した。金属的な挙動を示すものが望ましいことはいうまでもない。 FIG. 7 shows the temperature dependence of the resistivity of the SrRuO 3 film as a function of the deposition pressure. On the low pressure side, the resistivity showed a negative temperature dependence, that is, a semiconductor behavior, whereas on the high pressure side, the resistivity showed a positive temperature dependence, that is, a metallic behavior. It goes without saying that a metal-like behavior is desirable.

さらに、成膜圧力27Paで得られたSrRuO膜について約150Kで強磁性相への相転移を示す抵抗率の変化を観察した。これはバルクのSrRuOに見られる特徴と一致した。 Furthermore, a change in resistivity indicating a phase transition to a ferromagnetic phase was observed at about 150 K for the SrRuO 3 film obtained at a deposition pressure of 27 Pa. This was consistent with the features found in bulk SrRuO 3 .

これらの結果から、圧力27Paで成膜したSrRuO膜において、実質的にバルクと同じ単位胞体積(結晶構造)と物性を持つSrRuO結晶が得られていること、通常のスパッタ法でもバルクと同等の結晶膜が得られることが確認された。 From these results, it was confirmed that SrRuO 3 crystals having substantially the same unit cell volume (crystal structure) and physical properties as the bulk were obtained in the SrRuO 3 film formed at a pressure of 27 Pa. It was confirmed that an equivalent crystal film was obtained.

図8に、SrRuO膜の成膜速度を成膜圧力の関数として示す。成膜圧力の増加とともに成膜速度が低下している。成膜圧力130Paで成膜速度が約10nm/hrである。 FIG. 8 shows the deposition rate of the SrRuO 3 film as a function of the deposition pressure. The film formation speed decreases as the film formation pressure increases. The film formation speed is about 10 nm / hr at a film formation pressure of 130 Pa.

これらの結果及びその他の結果から、本発明における成膜圧力は、8Pa以上300Pa未満が好ましく、13Pa〜150Paがより好ましく、16Pa〜130Paがさらに好ましく、20〜130Paがさらにより好ましく、27Pa付近が最も好ましいと考えられる。   From these results and other results, the film forming pressure in the present invention is preferably 8 Pa or more and less than 300 Pa, more preferably 13 Pa to 150 Pa, further preferably 16 Pa to 130 Pa, still more preferably 20 to 130 Pa, and most around 27 Pa. It is considered preferable.

上記と同様の条件で、成膜圧力を27Paとした上で、(i)基板温度を500℃、600℃に変えた例、(ii)膜厚を35nm、65nmに変えた例、(iii)パワーをRF20W,RF40W、DC40Wに変えた例、(iv)基板とターゲットの距離を70mm、100mmに変えた例、(v)Ar/(Ar+O)の割合を33%、45%、90%に変えた例について、それぞれ成膜実験を行ない、得られたSrRuO膜について上記と同様の評価を行なったが、結果に実質的な変化は見られなかった。 (I) an example in which the substrate temperature was changed to 500 ° C. and 600 ° C. under the same conditions as above, and (ii) an example in which the film thickness was changed to 35 nm and 65 nm, and (iii) RF20W power, RF40W, examples of changing the DC40W, (iv) 70mm substrate and the distance of the target, an example for changing to 100 mm, the ratio of 33% (v) Ar / (Ar + O 2), 45%, 90% With respect to the changed examples, film formation experiments were performed, and the obtained SrRuO 3 film was evaluated in the same manner as described above, but no substantial change was observed in the results.

また、上記と同様の条件で成膜圧力を8Paとして得られたSrRuO膜について、酸素雰囲気及び大気中で、熱処理温度を300℃、500℃、650℃、750℃、850℃として、10分間ポストアニールを行なった。熱処理温度が750℃、850℃の場合に単位胞体積がわずかに減少したが、バルクの値までは回復しなかった。室温抵抗率は僅かに低下するが、900μΩcmレベルであり、バルクの値(280μΩcm)より高いままであった。以上の実施例ではターゲットと基板との距離は120mmであったが、この値に限定されるものではない。 Further, with respect to the SrRuO 3 film obtained under the same conditions as described above and the film forming pressure is 8 Pa, the heat treatment temperatures are 300 ° C., 500 ° C., 650 ° C., 750 ° C., and 850 ° C. for 10 minutes in the oxygen atmosphere and the air. Post annealing was performed. When the heat treatment temperatures were 750 ° C. and 850 ° C., the unit cell volume was slightly reduced, but it did not recover to the bulk value. Room temperature resistivity decreased slightly, but was at the 900 μΩcm level and remained higher than the bulk value (280 μΩcm). In the above embodiment, the distance between the target and the substrate is 120 mm, but is not limited to this value.

本発明のスパッタ法は、誘電体、磁性体、導電体等の物性で多くの有益な機能を発現するSrRuO結晶材料の堆積に用いることができ、また、高い導電性、高い熱的安定性、高い化学的安定性を有し、電極材料としてペロブスカイト材料と格子整合し易い電極材料を工業的に成膜する方法を提供するものであり、その産業上の有用性は高いものである。 The sputtering method of the present invention can be used for depositing SrRuO 3 crystal material that exhibits many useful functions with physical properties such as dielectrics, magnetics, and conductors, and has high conductivity and high thermal stability. The present invention provides a method for industrially forming an electrode material having high chemical stability and easily lattice-matched with a perovskite material as an electrode material, and its industrial usefulness is high.

SrRuOのペロブスカイト結晶構造を示す。The perovskite crystal structure of SrRuO 3 is shown. スパッタ装置の模式図を示す。The schematic diagram of a sputtering device is shown. 実施例1で成膜したSrRuOのθが40°〜50°の領域だけを拡大したX線回折チャートである。 3 is an X-ray diffraction chart in which only a region where SrRuO 3 formed in Example 1 has a θ of 40 ° to 50 ° is enlarged. 実施例1で成膜したSrRuOの単位胞(格子定数)を示す。The unit cell (lattice constant) of SrRuO 3 formed into a film in Example 1 is shown. 実施例1で成膜したSrRuOの格子定数及び単位胞体積の成膜圧力依存性を示すグラフである。4 is a graph showing the dependency of the lattice constant and unit cell volume of SrRuO 3 deposited in Example 1 on the deposition pressure. 実施例1で成膜したSrRuOの室温での抵抗率を成膜圧力の関数として示すグラフである。The resistivity at room temperature of SrRuO 3 was deposited in Example 1 is a graph showing as a function of formation pressure. 実施例1で成膜したSrRuOの抵抗率を温度依存性を示すグラフである。4 is a graph showing the temperature dependence of the resistivity of SrRuO 3 formed in Example 1. 実施例1で成膜したSrRuOの成膜速度を成膜圧力の関数として示すグラフである。4 is a graph showing the deposition rate of SrRuO 3 deposited in Example 1 as a function of deposition pressure.

符号の説明Explanation of symbols

1 真空容器
2 基板
3 ターゲット
4 ヒータ
5、6 電源
7 真空ポンプ
8,9 ボンベ(酸素、アルゴン)
10 流量計
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Board | substrate 3 Target 4 Heater 5, 6 Power supply 7 Vacuum pump 8,9 Cylinder (oxygen, argon)
10 Flow meter

Claims (7)

ターゲットと基板を対向させたスパッタ法で、酸素含有雰囲気、8Pa以上300Pa未満の圧力下で、基板上にSrRuOを堆積することを特徴とするSrRuO膜の製法。 A method for producing a SrRuO 3 film, characterized in that SrRuO 3 is deposited on a substrate by sputtering with a target and a substrate facing each other under an oxygen-containing atmosphere and a pressure of 8 Pa or more and less than 300 Pa. 圧力が13Pa〜150Paの範囲内である、請求項1に記載のSrRuO膜の製法。 Is within the pressure 13Pa~150Pa, SrRuO 3 film manufacturing method according to claim 1. 圧力が16Pa〜130Paである、請求項1に記載のSrRuO膜の製法。 A pressure 16Pa~130Pa, SrRuO 3 film manufacturing method according to claim 1. 基板が、ペロブスカイト構造、フローライト構造、面心立方構造、単純立方晶構造、c−希土類構造、NaCl構造から選ばれる材料からなる、請求項1〜3のいずれか1項に記載のSrRuO膜の製法。 The SrRuO 3 film according to any one of claims 1 to 3, wherein the substrate is made of a material selected from a perovskite structure, a fluorite structure, a face-centered cubic structure, a simple cubic structure, a c-rare earth structure, and a NaCl structure. The manufacturing method. 成膜速度が10nm/hr以上である、請求項1〜4のいずれか1項に記載のSrRuO膜の製法。 Deposition rate is 10 nm / hr or more, SrRuO 3 film production method according to any one of claims 1 to 4. 請求項1〜5のいずれか1項に記載の製法で得られたSrRuO膜。 SrRuO 3 film obtained by the process described in any one of claims 1 to 5. 面内格子定数が3.905±0.2Å、面外格子定数が3.98〜3.92Åのペロブスカイト構造である、請求項6に記載のSrRuO膜。 The SrRuO 3 film according to claim 6, which has a perovskite structure having an in-plane lattice constant of 3.905 ± 0.2Å and an out-of-plane lattice constant of 3.98 to 3.92Å.
JP2007080184A 2007-03-26 2007-03-26 Method for producing SrRuO3 film and obtained film Expired - Fee Related JP4858912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080184A JP4858912B2 (en) 2007-03-26 2007-03-26 Method for producing SrRuO3 film and obtained film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080184A JP4858912B2 (en) 2007-03-26 2007-03-26 Method for producing SrRuO3 film and obtained film

Publications (2)

Publication Number Publication Date
JP2008240040A true JP2008240040A (en) 2008-10-09
JP4858912B2 JP4858912B2 (en) 2012-01-18

Family

ID=39911724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080184A Expired - Fee Related JP4858912B2 (en) 2007-03-26 2007-03-26 Method for producing SrRuO3 film and obtained film

Country Status (1)

Country Link
JP (1) JP4858912B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094171A1 (en) * 2011-12-22 2013-06-27 キヤノンアネルバ株式会社 Method for forming srruo3 film
JP2021513008A (en) * 2018-02-08 2021-05-20 メドトロニック ミニメド インコーポレイテッド How to Control Physical Vapor Deposition Metal Film Adhesion to Substrate and Surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121233A (en) * 1996-10-15 1998-05-12 Fujitsu Ltd Formation of dielectric thin film
JPH1153935A (en) * 1997-08-06 1999-02-26 Fujitsu Ltd Lsro thin film and its production
JP2001270795A (en) * 2000-03-28 2001-10-02 Toshiba Corp Method for producing epitaxial strain lattice film of oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121233A (en) * 1996-10-15 1998-05-12 Fujitsu Ltd Formation of dielectric thin film
JPH1153935A (en) * 1997-08-06 1999-02-26 Fujitsu Ltd Lsro thin film and its production
JP2001270795A (en) * 2000-03-28 2001-10-02 Toshiba Corp Method for producing epitaxial strain lattice film of oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094171A1 (en) * 2011-12-22 2013-06-27 キヤノンアネルバ株式会社 Method for forming srruo3 film
CN104024467A (en) * 2011-12-22 2014-09-03 佳能安内华股份有限公司 Method for forming srruo3 film
JPWO2013094171A1 (en) * 2011-12-22 2015-04-27 キヤノンアネルバ株式会社 Method for forming SrRuO3 film
JP2021513008A (en) * 2018-02-08 2021-05-20 メドトロニック ミニメド インコーポレイテッド How to Control Physical Vapor Deposition Metal Film Adhesion to Substrate and Surface
JP7322042B2 (en) 2018-02-08 2023-08-07 メドトロニック ミニメド インコーポレイテッド How to manufacture multiple devices

Also Published As

Publication number Publication date
JP4858912B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
Maier et al. Ferroelectricity and ferrimagnetism in iron-doped BaTiO 3
JP5341082B2 (en) Tunnel magnetoresistive element manufacturing method and manufacturing apparatus
JP5826476B2 (en) Method for manufacturing ferroelectric thin film
Kim et al. The effects of La substitution on ferroelectric domain structure and multiferroic properties of epitaxially grown BiFeO3 thin films
TWI616425B (en) MgO-TiO sintered body target and manufacturing method thereof
JP2017005243A (en) Perpendicular magnetization film, perpendicular magnetization film structure, magnetoresistance element, and perpendicular magnetic recording medium
Yen et al. Mechanical modulation of colossal magnetoresistance in flexible epitaxial perovskite manganite
JP4230374B2 (en) Perovskite manganese oxide thin film, switching element comprising the thin film, and method for producing the thin film
West et al. Magnetic properties and spin polarization of Ru doped half metallic CrO2
JP4858912B2 (en) Method for producing SrRuO3 film and obtained film
Sultan et al. Structural morphology and electrical transitions of V2O3 thin films grown on SiO2/Si by high power impulse magnetron sputtering
KR20120112716A (en) Oxide film, process for producing same, target, and process for producing sintered oxide
Song et al. Energy storage and multiferroic properties of La-doped epitaxial BiFeO3 thin films according to La doping concentration
JP2017204542A (en) Vertical magnetization film, vertical magnetization film structure, magnetic resistance element, and vertical magnetic recording medium
Huang et al. Preparation and characterization of RuO2 thin films from Ru (CO) 2 (tmhd) 2 by metalorganic chemical vapor deposition
JP2014003313A (en) Manufacturing process of tunnel magnetoresistive element
JP6826344B2 (en) Manufacturing method of ferromagnetic tunnel junction and ferromagnetic tunnel junction
Park et al. Enhanced piezoelectric properties of lead-free 0.935 (Bi 0.5 Na 0.5) TiO 3-0.065 BaTiO 3 thin films fabricated by using pulsed laser deposition
JP2015151572A (en) Iron oxide thin film and method for manufacturing the same
Stewart et al. Growth, structure, and high temperature stability of zirconium diboride thin films
Zhao et al. The growth behavior and stress evolution of sputtering-deposited LaNiO3 thin films
TW201946307A (en) Fabrication of correlated electron material devices
Abe et al. C-axis-oriented Ru thin films prepared by sputtering in Ar and O2 gas mixture
Sahu La0. 7Sr0. 3MnO3 film prepared by dc sputtering on silicon substrate: Effect of working pressure
Zhang et al. Parametric study of sputtered Sr-deficient SrBi2Ta2O9 thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees