JP2014003313A - Manufacturing process of tunnel magnetoresistive element - Google Patents

Manufacturing process of tunnel magnetoresistive element Download PDF

Info

Publication number
JP2014003313A
JP2014003313A JP2013163153A JP2013163153A JP2014003313A JP 2014003313 A JP2014003313 A JP 2014003313A JP 2013163153 A JP2013163153 A JP 2013163153A JP 2013163153 A JP2013163153 A JP 2013163153A JP 2014003313 A JP2014003313 A JP 2014003313A
Authority
JP
Japan
Prior art keywords
layer
metal
oxygen
magnetoresistive element
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013163153A
Other languages
Japanese (ja)
Other versions
JP5689932B2 (en
Inventor
Koji Tsunekawa
孝二 恒川
Yoshinori Nagamine
佳紀 永峰
Kazumasa Nishimura
和正 西村
Franck Ernult
フランク エルヌ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2013163153A priority Critical patent/JP5689932B2/en
Publication of JP2014003313A publication Critical patent/JP2014003313A/en
Application granted granted Critical
Publication of JP5689932B2 publication Critical patent/JP5689932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing process of a tunnel magnetoresistive element and a manufacturing apparatus which have comparatively small number of steps and excellent characteristics in RA uniformity, and have a high MR ratio acquired in low RA.SOLUTION: An embodiment of the present invention is a manufacturing process of a tunnel magnetoresistive element which has a first ferromagnetic layer, a tunnel barrier layer, and a second ferromagnetic layer, and the process manufacturing the tunnel barrier layer is a process in which a metal target is sputtered by applying an electric power to the metal target and forming plasma, and a first metal layer is film-formed on the first ferromagnetic layer. The manufacturing process has: a process of forming the first metal layer with oxygen doped by that oxygen gas is not introduced in only either one stage and the oxygen gas is introduced in only the other stage among an initial stage and a later stage of film forming; a process in which a metal oxide layer is formed by oxidation-treating the first metal layer with oxygen doped; and a process in which a second metal layer is film-formed on the metal oxide layer.

Description

本発明は、磁気ディスク駆動装置の磁気再生ヘッドおよび磁気ランダムアクセスメモリの記憶素子および磁気センサに関する。   The present invention relates to a magnetic reproducing head of a magnetic disk drive device, a storage element of a magnetic random access memory, and a magnetic sensor.

結晶性のMgOをトンネルバリア層としたトンネル磁気抵抗素子は、室温で200%以上の巨大なMR比(磁気抵抗変化率)を示すことから、磁気ディスク駆動装置の磁気再生ヘッドや磁気ランダムアクセスメモリ(MRAM)の記憶素子、磁気センサへの応用が期待されている。従来のMgOをトンネルバリア層としたトンネル磁気抵抗素子においては、MgOトンネルバリア層の形成には、MgOの焼結ターゲットを用いたRFマグネトロンスパッタリング法が用いられていた(特許文献1、非特許文献1〜5)。しかしながら、MgO焼結ターゲットを用いたRFマグネトロンスパッタリングによるMgO形成方法では、規格化トンネル抵抗値(RA)のバラツキが生じやすいという問題があり、デバイス製造時の歩留まりを著しく低下させる恐れがあった。   A tunnel magnetoresistive element using crystalline MgO as a tunnel barrier layer exhibits a huge MR ratio (magnetoresistive change rate) of 200% or more at room temperature. Therefore, a magnetic reproducing head or magnetic random access memory of a magnetic disk drive device Application to (MRAM) storage elements and magnetic sensors is expected. In a conventional magnetoresistive element using MgO as a tunnel barrier layer, an RF magnetron sputtering method using an MgO sintered target has been used to form the MgO tunnel barrier layer (Patent Document 1, Non-Patent Document). 1-5). However, the method of forming MgO by RF magnetron sputtering using an MgO sintered target has a problem that the normalized tunnel resistance value (RA) is likely to vary, and there is a possibility that the yield at the time of device manufacture is significantly reduced.

このような問題を回避するためにMgO焼結ターゲットを用いないで、MgOトンネルバリア層を形成する方法がいくつか知られている。   In order to avoid such a problem, several methods for forming an MgO tunnel barrier layer without using an MgO sintered target are known.

TsannらはMgOトンネルバリア層の形成方法として、第1に、金属Mg層を成膜し、第2に、酸素ドープした金属Mg層を積層し、第3に、その積層体を酸化処理するという3段階の形成方法を提案している(特許文献2)。
赴らはMgOトンネルバリア層の形成方法として、第1Mg層を成膜し、前記第1Mg層を自然酸化法によってMgO層とし、前記MgO層の上に第2Mg層を成膜するという3段階の形成方法と、第1Mg層を成膜し、前記第1Mg層上に反応性スパッタによってMgO層を形成し、前記MgO層の上に第2Mg層を成膜するという3段階の形成方法を提案している(特許文献3)。
As a method for forming the MgO tunnel barrier layer, Tsann et al. Firstly formed a metal Mg layer, secondly laminated an oxygen-doped metal Mg layer, and thirdly, oxidized the laminated body. A three-stage formation method has been proposed (Patent Document 2).
As a method for forming the MgO tunnel barrier layer, the first Mg layer is formed, the first Mg layer is formed into a MgO layer by a natural oxidation method, and the second Mg layer is formed on the MgO layer. And a three-stage formation method in which a first Mg layer is formed, an MgO layer is formed on the first Mg layer by reactive sputtering, and a second Mg layer is formed on the MgO layer. (Patent Document 3).

洪らはMgOトンネルバリア層の形成方法として、第1Mg層を成膜し、前記第1Mg層をラジカル酸化によって第1MgO層とし、前記第1MgO層をアニールして(001)結晶配向性を持たせ、前記第1MgO層の上に第2Mg層を成膜し、前記第2Mg層を自然酸化して第2MgO層とするという5段階の形成方法を提案している。洪らはまた、第1Mg層を成膜し、前記第1Mg層をラジカル酸化によって第1MgO層とし、前記第1MgO層の上に第2Mg層を成膜し、前記第2Mg層をラジカル酸化して第2MgO層とし、前記第2MgO層の上に第3Mg層を成膜するという5段階の形成方法も提案している(特許文献4)。   Hong et al., As a method of forming the MgO tunnel barrier layer, formed a first Mg layer, converted the first Mg layer into a first MgO layer by radical oxidation, and annealed the first MgO layer to give (001) crystal orientation. A five-stage formation method is proposed in which a second Mg layer is formed on the first MgO layer, and the second Mg layer is naturally oxidized to form a second MgO layer. Hong et al. Also formed a first Mg layer, converted the first Mg layer into a first MgO layer by radical oxidation, formed a second Mg layer on the first MgO layer, and radically oxidized the second Mg layer. A five-stage formation method has also been proposed in which a second MgO layer is formed and a third Mg layer is formed on the second MgO layer (Patent Document 4).

三浦らはMgOトンネルバリア層の形成方法として、第1Mg層を成膜し、前記第1Mg層を自然酸化し、前記第1Mg層の上に第2Mg層を成膜し、前記第2Mg層を前記第1Mg層の酸化時よりも低い酸素圧力で自然酸化するという4段階の形成方法を提案している(特許文献5)。   Miura et al., As a method for forming an MgO tunnel barrier layer, formed a first Mg layer, naturally oxidized the first Mg layer, formed a second Mg layer on the first Mg layer, and formed the second Mg layer on the first Mg layer. A four-stage formation method has been proposed in which natural oxidation is performed at an oxygen pressure lower than that during oxidation of the first Mg layer (Patent Document 5).

DaveらはMgOトンネルバリア層の形成方法として、金属Mgをプラズマ酸化する方法、金属Mgをラジカル酸化する方法、Arと酸素の比を5:3とした反応性スパッタリング、MgO焼結ターゲットを用いたRFスパッタリングの4種類の方法を紹介している(非特許文献6)。OhらもまたMgOトンネルバリア層の形成方法として、金属Mgをラジカル酸化する方法を紹介している(非特許文献7)。   Dave et al. Used MgO tunnel barrier layer formation method by plasma oxidation of metal Mg, radical oxidation of metal Mg, reactive sputtering with Ar: oxygen ratio of 5: 3, and MgO sintered target. Four types of RF sputtering methods are introduced (Non-Patent Document 6). Oh et al. Also introduced a method for radical oxidation of metallic Mg as a method for forming an MgO tunnel barrier layer (Non-patent Document 7).

特開2006−080116号公報JP 2006-080116 A 米国特許第6,841,395号US Pat. No. 6,841,395 特開2007−142424号公報JP 2007-142424 A 特開2007−173843号公報JP 2007-173843 A 特開2007−305768号公報JP 2007-305768 A

D.D.Djayaprawiraら「Applied Physics Letter」,86,092502(2005)D. D. Djayapraira et al. “Applied Physics Letter”, 86, 092502 (2005). J.Hayakawaら、「Japanese Journal of Applied Physics」,44,L587(2005)J. et al. Hayagawa et al., “Japan Journal of Applied Physics”, 44, L587 (2005). K.Tsunekawaら、「Applied Physics Letter」,87,072503(2005)K. Tsunekawa et al., "Applied Physics Letter", 87, 072503 (2005). S.Ikedaら、「Japanese Journal of Applied Physics」,44,L1442(2005)S. Ikeda et al., “Japan Journal of Applied Physics”, 44, L1442 (2005). Y.Nagamineら、「Applied Physics Letter」,89,162507(2006)Y. Nagamine et al., "Applied Physics Letter", 89, 162507 (2006). R.W.Daveら、「IEEE Transactions on Magnetics」,42,1935(2006)R. W. Dave et al., “IEEE Transactions on Magnetics”, 42, 1935 (2006). S.C.Ohら、「IEEE Transactions on Magnetics」,42,2642(2006)S. C. Oh et al., “IEEE Transactions on Magnetics”, 42, 2642 (2006).

単に金属Mgを酸化してMgOトンネルバリア層を形成しようとすると、非特許文献6や非特許文献7に紹介されているように、数100Ω・μm以下のRAを得ることは困難である。これは金属Mgが酸素雰囲気に曝されると表面に不動態皮膜が形成されて、それより深く酸化が進行しにくくなるためと考えられている。 If an attempt is made to form an MgO tunnel barrier layer by simply oxidizing metal Mg, it is difficult to obtain an RA of several hundred Ω · μm 2 or less, as introduced in Non-Patent Document 6 and Non-Patent Document 7. This is considered to be because when Mg metal is exposed to an oxygen atmosphere, a passive film is formed on the surface and oxidation is less likely to proceed deeper than that.

そのため、特許文献4や特許文献5には、金属Mgの成膜と酸化を2回繰り返すことによって上記問題を解決する方法が提案されている。しかしながら金属Mgの成膜と酸化を2回繰り返す方法では、成膜チャンバーと酸化処理チャンバーを行ったり来たりして生産のスループットを著しく低下させてしまうという問題がある。もしくは、繰り返し搬送によるスループット低下を避けるために金属Mgの成膜チャンバーと酸化処理チャンバーを2チャンバーずつ設ける方法が考えられるが、その場合には装置コストの増加、設置面積の増加などによりデバイスの生産コストを増加させてしまうという問題が生じる。   Therefore, Patent Document 4 and Patent Document 5 propose a method for solving the above problem by repeating film formation and oxidation of metal Mg twice. However, the method of repeating the film formation and oxidation of metal Mg twice has a problem that the production throughput is remarkably lowered by going back and forth between the film formation chamber and the oxidation treatment chamber. Alternatively, in order to avoid a decrease in throughput due to repeated conveyance, a method of providing two metal Mg film forming chambers and two oxidation processing chambers can be considered. The problem of increasing the cost arises.

特許文献2と特許文献3の方法においては比較的工程数が少なく済み、スループットや生産コストの問題は解消される。しかしながら、低RA領域におけるMR比が40%以下と、MgOトンネルバリア層を用いたトンネル磁気抵抗素子の性能が十分に発揮されていない。また、歩留まりに大きく影響するRAのバラツキについての実施例がないため、生産に適したプロセスかどうか不明である。   In the methods of Patent Document 2 and Patent Document 3, the number of processes is relatively small, and the problems of throughput and production cost are solved. However, the MR ratio in the low RA region is 40% or less, and the performance of the tunnel magnetoresistive element using the MgO tunnel barrier layer is not sufficiently exhibited. Further, since there is no example of RA variation that greatly affects the yield, it is unclear whether the process is suitable for production.

本発明は、工程数が比較的少なく、なおかつRAの均一性に優れた特性を有するとともに、低RAにおいて高MR比が得られるトンネル磁気抵抗素子の製造方法および製造装置を提供することを目的とする。   An object of the present invention is to provide a method and an apparatus for manufacturing a tunnel magnetoresistive element that has a relatively small number of steps and has excellent characteristics of RA uniformity and a high MR ratio at low RA. To do.

このような目的を達成するために、本発明の一態様は、第1強磁性層、トンネルバリア層、および第2強磁性層を有するトンネル磁気抵抗素子の製造方法であって、前記トンネルバリア層を作製する工程が、金属ターゲットに電力を投入してプラズマを形成することで該金属ターゲットをスパッタして前記第1強磁性層の上に第1の金属層を成膜する工程であって、成膜の初期段階と後期段階のうち、いずれか一方の段階だけ酸素ガスを導入せずに、他方の段階だけ酸素ガスを導入することで酸素ドープされた第1の金属層を形成する工程と、前記酸素ドープされた第1の金属層を酸化処理して金属酸化物層とする工程と、前記金属酸化物層の上に第2の金属層を成膜する工程とを有することを特徴としている。   In order to achieve such an object, one aspect of the present invention is a method of manufacturing a tunnel magnetoresistive element having a first ferromagnetic layer, a tunnel barrier layer, and a second ferromagnetic layer, the tunnel barrier layer being Forming a first metal layer on the first ferromagnetic layer by sputtering the metal target by applying power to the metal target to form plasma, A step of forming an oxygen-doped first metal layer by introducing oxygen gas only in the other stage without introducing oxygen gas in any one of the initial stage and the later stage of film formation; and And a step of oxidizing the oxygen-doped first metal layer to form a metal oxide layer, and a step of forming a second metal layer on the metal oxide layer. Yes.

本発明によれば、RAのバラツキが少なく、低RAにおいて高MR比が得られるトンネル磁気抵抗素子の製造方法および製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and manufacturing apparatus of a tunnel magnetoresistive element which have few dispersion | variations in RA and can obtain a high MR ratio in low RA can be provided.

本発明のトンネル磁気抵抗素子の製造に使用しうるスパッタリング装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the sputtering device which can be used for manufacture of the tunnel magnetoresistive element of this invention. 本実施形態に係るトンネル磁気抵抗素子の断面模式図である。It is a cross-sectional schematic diagram of the tunnel magnetoresistive element which concerns on this embodiment. 本発明の製造方法および製造装置を用いて作製したトンネル磁気抵抗素子の膜構成図である。It is a film | membrane block diagram of the tunnel magnetoresistive element produced using the manufacturing method and manufacturing apparatus of this invention. 本実施例によるトンネルバリア層の形成フローである。It is a formation flow of the tunnel barrier layer by a present Example. 図5a、および図5bは、本トンネル磁気抵抗素子のMR比およびRAを酸化時間に対してプロットしたグラフである。5a and 5b are graphs in which the MR ratio and RA of the present tunnel magnetoresistive element are plotted with respect to the oxidation time. 第1の金属層成膜時に酸素をドープする際、成膜の初期と最後に酸素ガスの混合を止めた場合のトンネルバリア層の形成フローである。This is a flow of forming a tunnel barrier layer when oxygen gas mixing is stopped at the beginning and end of film formation when oxygen is doped during film formation of the first metal layer. 金属Mg層成膜時の投入Powerとシャッター開閉とArガス導入と酸素ガス導入の概略タイムチャートである。6 is a schematic time chart of input power, shutter opening / closing, Ar gas introduction, and oxygen gas introduction when forming a metal Mg layer. 本方法によって作製したトンネル磁気抵抗素子のRAとMR比の関係を示したグラフである。It is the graph which showed the relationship between RA and MR ratio of the tunnel magnetoresistive element produced by this method. 実施例3に係るトンネル磁気抵抗素子において、ラジカル酸化の酸化時間のみを100秒とした時のRAの基板面内分布を示したグラフである。In the tunnel magnetoresistive element which concerns on Example 3, it is the graph which showed the board | substrate surface distribution of RA when only the oxidation time of radical oxidation was 100 second. 実施例4に係るトンネル磁気抵抗素子であって、ラジカル酸化の酸化時間のみを20秒とした時のRAの基板間バラツキを示したグラフである。10 is a graph showing variations between RA substrates when the oxidation time of radical oxidation is only 20 seconds in the tunnel magnetoresistive element according to Example 4. FIG. 実施例1の磁気トンネル素子において、第2の金属Mg層の膜厚を変えた時のMR比を示したグラフである。6 is a graph showing the MR ratio when the thickness of the second metal Mg layer is changed in the magnetic tunnel element of Example 1.

本発明の実施の形態について図面を用いて説明する。
図1は、本発明のトンネル磁気抵抗素子の製造に使用しうるスパッタリング装置の構成を模式的に示す平面図である。係る装置においては、基板搬送用のロボット28が2機搭載された真空搬送室20と、真空搬送室20に接続されたスパッタリング室21乃至24と、基板前処理室25と酸化処理室26とロードロック室27から構成されている。ロードロック室27を除く全ての部屋は2×10−6Pa以下の真空室であり、各真空室間の基板の移動は真空搬送ロボット28によって真空中にて行われる。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view schematically showing the configuration of a sputtering apparatus that can be used for manufacturing the tunnel magnetoresistive element of the present invention. In such an apparatus, a vacuum transfer chamber 20 in which two robots 28 for substrate transfer are mounted, sputtering chambers 21 to 24 connected to the vacuum transfer chamber 20, a substrate pretreatment chamber 25, an oxidation treatment chamber 26, and a load. The lock chamber 27 is configured. All the rooms except the load lock chamber 27 are vacuum chambers of 2 × 10 −6 Pa or less, and the movement of the substrate between the vacuum chambers is performed in a vacuum by the vacuum transfer robot 28.

スピンバルブ型トンネル磁気抵抗薄膜を形成するための基板は、初め大気圧にされたロードロック室27に配置され、ロードロック室27を真空排気した後、真空搬送ロボット28によって所望の真空室に搬送される。   A substrate for forming a spin-valve type tunnel magnetoresistive thin film is placed in a load lock chamber 27 which is first brought to atmospheric pressure. After the load lock chamber 27 is evacuated, it is transferred to a desired vacuum chamber by a vacuum transfer robot 28. Is done.

一例として、後述する実施例で作製した磁化固定層として積層フェリ固定層を有するボトム型のスピンバルブ型トンネル磁気抵抗薄膜を製造する場合について説明する。
図2は本実施形態に係るトンネル磁気抵抗素子の断面模式図である。
As an example, a case where a bottom type spin-valve type tunnel magnetoresistive thin film having a laminated ferrimagnetic pinned layer as a pinned magnetic layer produced in an example described later will be described.
FIG. 2 is a schematic cross-sectional view of the tunnel magnetoresistive element according to this embodiment.

図2を参照して各層の具体的構成を説明する。下部電極層2は、Ta(5nm)/CuN(20nm)/Ta(3nm)/CuN(20nm)/Ta(3nm)の積層構造を有する。反強磁性層3がPtMn(15nm)、磁化固定層4がCoFe(2.5nm)/Ru(0.85nm)/CoFeB(3nm)からなる積層フェリ固定層であり、4bのCoFeBが第1強磁性層に相当する。トンネルバリア層6がMgO(1.5nm)である。磁化自由層7がCoFeB(3nm)で、第2強磁性層に相当する。保護層8としては、Ta(8nm)/Cu(30nm)/Ta(5nm)/Ru(7nm)の積層構造を使用する。尚、( )内は膜厚を示す。   A specific configuration of each layer will be described with reference to FIG. The lower electrode layer 2 has a stacked structure of Ta (5 nm) / CuN (20 nm) / Ta (3 nm) / CuN (20 nm) / Ta (3 nm). The antiferromagnetic layer 3 is a laminated ferrimagnetic fixed layer made of PtMn (15 nm), the magnetization fixed layer 4 is made of CoFe (2.5 nm) / Ru (0.85 nm) / CoFeB (3 nm), and 4b CoFeB is the first strong. Corresponds to the magnetic layer. The tunnel barrier layer 6 is MgO (1.5 nm). The magnetization free layer 7 is CoFeB (3 nm) and corresponds to the second ferromagnetic layer. As the protective layer 8, a stacked structure of Ta (8 nm) / Cu (30 nm) / Ta (5 nm) / Ru (7 nm) is used. In addition, () shows the film thickness.

PtMn層は、アニールによって規則化し反強磁性が発現するように、スパッタリングターゲットの組成と成膜条件(ガス種、ガス圧、投入電力)を調整して、Pt含有量が47〜51(atomic%)となるようにPtMn層を形成する。   The PtMn layer has a Pt content of 47 to 51 (atomic%) by adjusting the composition of the sputtering target and the film formation conditions (gas type, gas pressure, input power) so as to be ordered by annealing and to exhibit antiferromagnetism. ) To form a PtMn layer.

上記のような膜構成を効率的に成膜するために、次のようにスパッタリングターゲットを各スパッタリング室に配置する。スパッタリング室21にはTa(タンタル)、Cu(銅)を、スパッタリング室22には、Co70Fe30(コバルト−鉄)、PtMn(プラチナ−マンガン)、Ru(ルテニウム)、Co60Fe2020(コバルト−鉄−ボロン)を、スパッタリング室23にはMgをそれぞれスパッタリングターゲット21a〜21b、22a〜22d、23aとして配置する。また、スパッタリング室24にはTa、Co60Fe2020、Mg、Ru、Cuをスパッタリングターゲット24a〜24eとして配置する。 In order to efficiently form the film configuration as described above, a sputtering target is disposed in each sputtering chamber as follows. The sputtering chamber 21 is Ta (tantalum) and Cu (copper), and the sputtering chamber 22 is Co 70 Fe 30 (cobalt-iron), PtMn (platinum-manganese), Ru (ruthenium), Co 60 Fe 20 B 20. (Cobalt-iron-boron) and Mg are arranged in the sputtering chamber 23 as sputtering targets 21a to 21b, 22a to 22d, and 23a, respectively. Further, the sputtering chamber 24 to place Ta, Co 60 Fe 20 B 20 , Mg, Ru, Cu as the sputtering target 24 a to 24 e.

本発明において最も複雑な膜構成である積層フェリ構造を持ったスピンバルブ型トンネル磁気抵抗薄膜は、次のようにして形成される。
初めに、基板1を基板前処理室25に搬送し、逆スパッタエッチングにより、大気中で汚染された表面層の約2nmを物理的に除去する。その後、基板1をスパッタリング室21に搬送して、Ta/CuN/Ta/CuN/Taの積層構造からなる下部電極層2を成膜する。この時、CuNの成膜時にはCuターゲットを用い、スパッタリングガスとしてArの他に微量の窒素を添加することによってCuNを形成している。その後、基板をスパッタリング室22に移動してPtMn/CoFe/Ruからなる反強磁性層3及びCoFeBからなる磁化固定層4(第1強磁性層)を成膜する。なお、ここで、反強磁性層3としてPtMnの代わりにIrMn(イリジウム−マンガン)を用いてもよく、その場合はIrMn層の下地層9としてRu層を用いるのが好ましい。そのような場合、スパッタリング室22で成膜される膜構成は、Ru/IrMn/CoFe/Ru/CoFeBとなる。
The spin valve tunnel magnetoresistive thin film having the laminated ferrimagnetic structure which is the most complicated film structure in the present invention is formed as follows.
First, the substrate 1 is transferred to the substrate pretreatment chamber 25, and about 2 nm of the surface layer contaminated in the atmosphere is physically removed by reverse sputter etching. Thereafter, the substrate 1 is transferred to the sputtering chamber 21 to form the lower electrode layer 2 having a laminated structure of Ta / CuN / Ta / CuN / Ta. At this time, CuN is formed by adding a small amount of nitrogen in addition to Ar as a sputtering gas, using a Cu target when forming a CuN film. Thereafter, the substrate is moved to the sputtering chamber 22 to form an antiferromagnetic layer 3 made of PtMn / CoFe / Ru and a magnetization fixed layer 4 (first ferromagnetic layer) made of CoFeB. Here, IrMn (iridium-manganese) may be used as the antiferromagnetic layer 3 instead of PtMn. In that case, it is preferable to use a Ru layer as the underlying layer 9 of the IrMn layer. In such a case, the film configuration formed in the sputtering chamber 22 is Ru / IrMn / CoFe / Ru / CoFeB.

次に、トンネルバリア層の形成方法を説明する。第1強磁性層となるCoFeBまでをスパッタリング室22で成膜した後、基板1をスパッタリング室23に移動して酸素をドープしながら金属Mgを成膜する。酸素のドープ方法の例としては、スパッタリングガスとしてArと酸素を用いる。なお、ここで、混入させる酸素ガスは、スパッタリングガスの30%以下にすることが好ましい。これは、Mgターゲットの表面酸化を抑制するためである。   Next, a method for forming a tunnel barrier layer will be described. After forming the film up to CoFeB as the first ferromagnetic layer in the sputtering chamber 22, the substrate 1 is moved to the sputtering chamber 23, and metal Mg is formed while doping oxygen. As an example of the oxygen doping method, Ar and oxygen are used as the sputtering gas. Here, the oxygen gas to be mixed is preferably 30% or less of the sputtering gas. This is to suppress the surface oxidation of the Mg target.

それぞれ個別のガス導入口を真空室に設けており、Arと酸素の流量を個別に制御しながらガスを導入する。酸素ドープ時における酸素ガスの導入のタイミングとしては、スパッタリングガスのArの導入タイミングと常に同じにする必要はなく、Arの導入タイミングより遅らせたり、Arの停止タイミングよりも早めたりしても良い。   Individual gas inlets are provided in the vacuum chamber, and gas is introduced while individually controlling the flow rates of Ar and oxygen. The oxygen gas introduction timing at the time of oxygen doping need not always be the same as the Ar introduction timing of the sputtering gas, and may be delayed from the Ar introduction timing or earlier than the Ar stop timing.

次に、基板1を酸化処理室26に移動し酸化処理を行う。酸化処理の方法としては自然酸化とラジカル酸化のどちらを用いても良い。自然酸化の場合は、酸素雰囲気の圧力を0.01〜10Torrに維持し、所定の時間放置する。ラジカル酸化の場合は、酸素雰囲気の中で電極に高周波を印加して酸素プラズマを発生させ、長さ10mm程度、直径1mm程度の穴が複数個空いたシャワープレートを通過させることによってプラズマ中の荷電粒子以外の粒子(活性酸素種および酸素)を基板に照射させる。   Next, the substrate 1 is moved to the oxidation treatment chamber 26 and oxidation treatment is performed. As the method of oxidation treatment, either natural oxidation or radical oxidation may be used. In the case of natural oxidation, the pressure in the oxygen atmosphere is maintained at 0.01 to 10 Torr and left for a predetermined time. In the case of radical oxidation, a high frequency is applied to an electrode in an oxygen atmosphere to generate oxygen plasma, and the charge in the plasma is passed through a shower plate having a plurality of holes having a length of about 10 mm and a diameter of about 1 mm. The substrate is irradiated with particles (active oxygen species and oxygen) other than the particles.

次いで、基板1をスパッタリング室24に移動し、Mg/CoFeB/Ta/Cu/Ta/Ruを成膜する。Mgの膜厚は0.1nm以上0.6nm以下とすることが好ましい。こうすることにより、図11を用いて後述するように、100%以上のMR比を発現することができる。   Next, the substrate 1 is moved to the sputtering chamber 24 to form a film of Mg / CoFeB / Ta / Cu / Ta / Ru. The thickness of Mg is preferably 0.1 nm or more and 0.6 nm or less. By doing so, as will be described later with reference to FIG. 11, an MR ratio of 100% or more can be expressed.

この後、作製したトンネル磁気抵抗薄膜は、磁場中アニール炉に入れ、強さ8kOe以上の一方向に平行な磁場を印加しながら、真空中にて所望の温度と時間でアニール処理を行う。経験的には250℃以上360℃以下であり、低温の場合には5時間以上の長時間を、高温の場合には2時間以下の短時間が好ましい。   Thereafter, the produced tunnel magnetoresistive thin film is put in an annealing furnace in a magnetic field, and is annealed at a desired temperature and time in a vacuum while applying a magnetic field parallel to one direction with a strength of 8 kOe or more. Empirically, the temperature is 250 ° C. or higher and 360 ° C. or lower. A long time of 5 hours or more is preferable at a low temperature, and a short time of 2 hours or less is preferable at a high temperature.

なお、上述の実施形態においては、スパッタリングガスとして、Ar(アルゴン)を主成分としたが、これに限定されるものではなく、例えば、He(ヘリウム)、Ne(ネオン)、Kr(クリプトン)、Xe(キセノン)のうち少なくとも1種類を主成分とするスパッタリングガスを用いても良い。   In the above-described embodiment, Ar (argon) is a main component as a sputtering gas. However, the present invention is not limited to this. For example, He (helium), Ne (neon), Kr (krypton), A sputtering gas mainly containing at least one of Xe (xenon) may be used.

次に本発明の実施例について図面を用いて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

(実施例1)
図3は、本発明に係る製造方法および製造装置を用いて作製したトンネル磁気抵抗素子の膜構成図である。反強磁性層3として厚さ7nmのIrMnを用い、その下地層9として5nmのRu層を使用した以外は、図2の膜構成と同じである。
Example 1
FIG. 3 is a film configuration diagram of a tunnel magnetoresistive element manufactured by using the manufacturing method and manufacturing apparatus according to the present invention. The film configuration is the same as that shown in FIG. 2 except that IrMn having a thickness of 7 nm is used as the antiferromagnetic layer 3 and a Ru layer having a thickness of 5 nm is used as the underlayer 9.

図4を参照して、本実施例に係るトンネルバリア層の形成方法を説明する。
図4は、本実施例によるトンネルバリア層の形成フローである。
ステップS401においては、前述した実施形態と同様にして、第1強磁性層までを成膜した。
ステップS403においては、第1強磁性層となるCoFeB層の上に、1.2nmの金属Mgを15sccmのArガスと5sccmの酸素を独立に導入した雰囲気中で成膜した(混合した酸素濃度は25%である)。次いでステップS405においては、酸化処理室で0.1Torrまたは1Torrの酸素雰囲気に60〜600秒放置して酸化処理した。
最後に、ステップS407においては、Arガスを15sccmのみ導入した雰囲気中で0.2nmの金属Mgを成膜した。その後、ステップS409においては、CoFeB/Ta/Cu/Ta/Ruまで成膜してトンネル磁気抵抗素子の成膜を終了した。
With reference to FIG. 4, the formation method of the tunnel barrier layer according to the present embodiment will be described.
FIG. 4 is a flow chart for forming a tunnel barrier layer according to this embodiment.
In step S401, the layers up to the first ferromagnetic layer were formed in the same manner as in the above-described embodiment.
In step S403, a film of 1.2 nm metal Mg was deposited on the CoFeB layer serving as the first ferromagnetic layer in an atmosphere into which 15 sccm of Ar gas and 5 sccm of oxygen were independently introduced (the mixed oxygen concentration was 25%). Next, in step S405, the substrate was oxidized by being left in an oxygen atmosphere of 0.1 Torr or 1 Torr for 60 to 600 seconds in an oxidation treatment chamber.
Finally, in step S407, a 0.2-nm metallic Mg film was formed in an atmosphere into which only Ar gas was introduced at 15 sccm. After that, in step S409, the film formation of the tunnel magnetoresistive element was completed by forming the film up to CoFeB / Ta / Cu / Ta / Ru.

本トンネル磁気抵抗素子は成膜後に磁場中アニール炉に入れ、真空中で1Tの磁場を印加しながら360℃で2時間の磁場中アニール処理を行った。   The tunnel magnetoresistive element was placed in an annealing furnace in a magnetic field after film formation, and annealed in a magnetic field at 360 ° C. for 2 hours while applying a 1 T magnetic field in a vacuum.

図5a、および図5bは、本トンネル磁気抵抗素子のMR比およびRAを酸化時間に対してプロットしたグラフである。図5aに示すように、いずれの酸化条件においても100%を超えるMR比が得られていることがわかる。図5bに示すように、RAについては、いずれの酸化条件においても酸化時間が増すにつれてRAが増大しているが、0.1Torrの低圧条件の方が1Torrの高圧条件に比べて約半分の値に低くなっている。最も低いRAが得られたのは、0.1Torr条件で60秒の酸化処理を行った時で、2.6ΩμmのRAで121%のMR比を達成している。 5a and 5b are graphs in which the MR ratio and RA of the present tunnel magnetoresistive element are plotted with respect to the oxidation time. As shown in FIG. 5a, it can be seen that an MR ratio exceeding 100% is obtained under any oxidation conditions. As shown in FIG. 5b, for RA, the RA increases as the oxidation time increases under any oxidation condition, but the value of 0.1 Torr is about half that of the low pressure condition of 1 Torr compared to the high pressure condition of 1 Torr. It is low. The lowest RA was obtained when an oxidation treatment of 0.1 seconds was performed for 60 seconds, and an MR ratio of 121% was achieved with 2.6 Ωμm 2 of RA.

なお、MR比とRAは、12端子プローブを用いたCurrent−In−Plane−Tunneling(CIPT)法によって測定した。CIPT法の測定原理はD.C.Worledge,P.L.Trouilloud,「アプライド・フィジックス・レターズ(Applied Physics Letters)」,83(2003),84−86に記載されている。   The MR ratio and RA were measured by the Current-In-Plane-Tunneling (CIPT) method using a 12-terminal probe. The measurement principle of the CIPT method is D.C. C. Worledge, P.M. L. Troilloud, “Applied Physics Letters”, 83 (2003), 84-86.

(実施例2)
図6は、第1の金属層成膜時に酸素をドープする際、成膜の初期と最後に酸素ガスの混合を止めた場合のトンネルバリア層の形成フローを示している。この時、第1の金属層を酸化する方法としてラジカル酸化を用いた。トンネル磁気抵抗素子の膜構成は、図2の膜構成を用いた。
(Example 2)
FIG. 6 shows a flow of forming a tunnel barrier layer when oxygen gas mixing is stopped at the beginning and the end of film formation when oxygen is doped during film formation of the first metal layer. At this time, radical oxidation was used as a method of oxidizing the first metal layer. The film configuration of FIG. 2 was used as the film configuration of the tunnel magnetoresistive element.

以下に、図6を参照してトンネルバリア層の形成フローを説明する。
ステップS601においては、前述した実施形態と同様にして、第1強磁性層までを成膜した。
ステップS603においては、以下の3つの工程を経て、第1強磁性層上に第1の金属層を成膜した。すなわち第1の金属層の成膜初期段階は、酸素ガスを導入せずに、Arガス雰囲気で第1の金属層を成膜した(第1の金属層の下部層)。成膜中期段階において、Arガスと酸素ガスを導入した雰囲気で第1の金属層を成膜した(第1の金属層の中間層)。さらに成膜後期段階は、酸素ガスを導入せずに、Arガス雰囲気で第1の金属層を成膜した(第1の金属層の上部層)。こうすることにより、第1強磁性層および第2強磁性層が酸化されてしまうことを抑制することができる。
Hereinafter, the flow of forming the tunnel barrier layer will be described with reference to FIG.
In step S601, the layers up to the first ferromagnetic layer were formed in the same manner as in the above-described embodiment.
In step S603, the first metal layer was formed on the first ferromagnetic layer through the following three steps. That is, in the initial stage of film formation of the first metal layer, the first metal layer was formed in an Ar gas atmosphere without introducing oxygen gas (lower layer of the first metal layer). In the middle stage of film formation, the first metal layer was formed in an atmosphere into which Ar gas and oxygen gas were introduced (intermediate layer of the first metal layer). Further, in the latter stage of film formation, the first metal layer was formed in an Ar gas atmosphere without introducing oxygen gas (upper layer of the first metal layer). By doing so, it is possible to prevent the first ferromagnetic layer and the second ferromagnetic layer from being oxidized.

以下、上記ステップS603をより詳細に説明する。
まず初めに、スパッタリング室23の中で第1強磁性層となるCoFeB層の上に1.2nmの金属Mg(第1の金属層)を成膜する。
この1.2nmの金属Mg層成膜時の投入Powerとシャッター開閉とArガス導入と酸素ガス導入の概略タイムチャートを図7に示す。まず初めにMgターゲットのついたカソードへのパワー投入と真空チャンバー内へのArガスの導入をほぼ同時に行いプラズマを発生させる。投入するパワーはDC50W,導入するArガスの流量は100sccmである。このプリスパッタ時間においては、ターゲットと基板の間に配置されたシャッターは閉じているので、基板には膜が付着しない。
Hereinafter, step S603 will be described in more detail.
First, in the sputtering chamber 23, a 1.2 nm-thick metal Mg (first metal layer) is formed on the CoFeB layer serving as the first ferromagnetic layer.
FIG. 7 shows a schematic time chart of the input power, shutter opening / closing, Ar gas introduction, and oxygen gas introduction during the deposition of the 1.2 nm metal Mg layer. First, power is supplied to the cathode with the Mg target and Ar gas is introduced into the vacuum chamber almost simultaneously to generate plasma. The power to be input is DC 50 W, and the flow rate of Ar gas to be introduced is 100 sccm. In this pre-sputtering time, the shutter disposed between the target and the substrate is closed, so that no film adheres to the substrate.

次に、シャッターを開けて成膜を開始する。膜厚が0.6nmに達したら(第1の金属層の下部層に相当する)、5sccm(酸素濃度=4.76%)の酸素ガスを導入し、Mg層に微量の酸素をドープする。Mg層の膜厚が1.0nmに達したら(第1の金属層の中間層に相当する)酸素の導入を停止する。引き続き、残りの0.2nmのMg層をAr雰囲気中で成膜し(第1の金属層の上部層に相当する)、1.2nmの第1の金属層の成膜を完了する。   Next, the shutter is opened and film formation is started. When the film thickness reaches 0.6 nm (corresponding to the lower layer of the first metal layer), 5 sccm (oxygen concentration = 4.76%) of oxygen gas is introduced, and the Mg layer is doped with a small amount of oxygen. When the thickness of the Mg layer reaches 1.0 nm (corresponding to the intermediate layer of the first metal layer), the introduction of oxygen is stopped. Subsequently, the remaining 0.2 nm Mg layer is deposited in an Ar atmosphere (corresponding to the upper layer of the first metal layer), and the deposition of the 1.2 nm first metal layer is completed.

なお、本実施例においては、第1の金属層の成膜初期段階と成膜後期段階において、酸素を導入せず、Ar雰囲気で第1の金属層を成膜したが、必ずしも両段階で行う必要はなく、どちらか一方の成膜段階だけ酸素を導入せず、Ar雰囲気で第1の金属層を成膜する方法を採用してもよい。   In this embodiment, the first metal layer is formed in an Ar atmosphere without introducing oxygen in the initial stage and the late stage of forming the first metal layer. There is no need, and a method of forming the first metal layer in an Ar atmosphere without introducing oxygen only in one of the film forming steps may be adopted.

次に、ステップS605においては、基板を酸化処理室26へ移動しラジカル酸化する。ラジカル酸化時には真空チャンバー内に700sccmの酸素ガスを導入し、電極に300WのRFパワーを投入した。酸化時間は10秒とした。   Next, in step S605, the substrate is moved to the oxidation treatment chamber 26 and radical oxidation is performed. During radical oxidation, 700 sccm of oxygen gas was introduced into the vacuum chamber, and 300 W of RF power was applied to the electrodes. The oxidation time was 10 seconds.

最後に、ステップS607もおいては、基板をスパッタリング室24に移動し、0.3nmの金属Mg(第2の金属層に相当する)を成膜する。次いでステップS609においては、前述の実施形態と同様にして、第2強磁性層以降を成膜した。   Finally, also in step S607, the substrate is moved to the sputtering chamber 24, and 0.3 nm of metal Mg (corresponding to the second metal layer) is formed. Next, in step S609, the second and subsequent ferromagnetic layers were formed in the same manner as in the previous embodiment.

図8は、本方法によって作製したトンネル磁気抵抗素子のRAとMR比の関係を示したグラフである。比較のために、第1の金属Mg層成膜時に酸素を導入しない場合のデータもプロットした。第1の金属Mg層成膜時に酸素を導入し、金属Mg層に酸素をドープすることによって、2.5Ωμmの低RAで86%の高MR比を達成することができた。 FIG. 8 is a graph showing the relationship between the RA and MR ratio of a tunnel magnetoresistive element manufactured by this method. For comparison, data when oxygen was not introduced during the formation of the first metal Mg layer was also plotted. By introducing oxygen at the time of forming the first metal Mg layer and doping the metal Mg layer with oxygen, a high MR ratio of 86% was achieved with a low RA of 2.5 Ωμm 2 .

(実施例3)
図9は、実施例2で使用したトンネル磁気抵抗素子の膜構成およびMgOトンネルバリアの形成方法と同様のトンネル磁気抵抗素子において、ラジカル酸化の酸化時間のみを100秒とした時のRAの基板面内分布を示したグラフである。横軸は直径300mmウエハの中心からの距離である。比較のためにMgOの焼結ターゲットからRFスパッタリングによってダイレクトにMgOトンネルバリアを形成したトンネル磁気抵抗素子のRA分布も載せた。これによれば、本発明の方法によって形成したトンネル磁気抵抗素子のRA分布は1.6%であり、MgO焼結ターゲットのRFスパッタリングによる方法のRA分布9.4%よりも明らかに良い結果であることがわかる。
(Example 3)
FIG. 9 shows the substrate surface of the RA when only the oxidation time of radical oxidation is set to 100 seconds in the tunnel magnetoresistive element similar to the film configuration of the tunnel magnetoresistive element used in Example 2 and the MgO tunnel barrier forming method. It is the graph which showed internal distribution. The horizontal axis is the distance from the center of the 300 mm diameter wafer. For comparison, an RA distribution of a tunnel magnetoresistive element in which an MgO tunnel barrier is directly formed from an MgO sintered target by RF sputtering is also shown. According to this, the RA distribution of the tunnel magnetoresistive element formed by the method of the present invention is 1.6%, which is clearly better than the RA distribution of 9.4% by the RF sputtering method of the MgO sintered target. I know that there is.

(実施例4)
図10もまた実施例2で使用したトンネル磁気抵抗素子の膜構成およびMgOトンネルバリアの形成方法と同様のトンネル磁気抵抗素子であって、ラジカル酸化の酸化時間のみを20秒とした時のRAの基板間バラツキを示したグラフである。横軸は連続処理した基板の枚数である。比較のためにMgOの焼結ターゲットからRFスパッタリングによってダイレクトにMgOトンネルバリアを形成したトンネル磁気抵抗素子のRAバラツキも載せた。これによれば、本発明の方法によって形成したトンネル磁気抵抗素子の基板間RAバラツキは1.3%であり、MgO焼結ターゲットのRFスパッタリングによる方法のRAバラツキ6.7%よりも明らかに良い結果であることがわかる。
Example 4
FIG. 10 is also a tunnel magnetoresistive element similar to the film configuration of the tunnel magnetoresistive element used in Example 2 and the method of forming the MgO tunnel barrier, and the RA resistance when only the oxidation time of radical oxidation is set to 20 seconds. It is the graph which showed the variation between board | substrates. The horizontal axis represents the number of substrates processed continuously. For comparison, the RA variation of the tunnel magnetoresistive element in which the MgO tunnel barrier is directly formed by RF sputtering from the MgO sintered target is also shown. According to this, the RA variation between the substrates of the tunnel magnetoresistive element formed by the method of the present invention is 1.3%, which is clearly better than the RA variation of 6.7% of the method by RF sputtering of the MgO sintered target. It turns out that it is a result.

(実施例5)
図10は、実施例1の磁気トンネル素子において、第2の金属Mg層の膜厚を変えた時のMR比を示したグラフである。第2の金属Mg層を成膜することによって著しくMR比が増大することがわかった。本結果から第2に金属層として成膜する金属Mg層の膜厚は0.1nm以上0.6nm以下が好ましい。こうすることにより、100%以上のMR比を実現することができる。
(Example 5)
FIG. 10 is a graph showing the MR ratio when the thickness of the second metal Mg layer is changed in the magnetic tunnel element of Example 1. It was found that the MR ratio was remarkably increased by forming the second metal Mg layer. From this result, the thickness of the metal Mg layer formed as the second metal layer is preferably 0.1 nm or more and 0.6 nm or less. By doing so, an MR ratio of 100% or more can be realized.

Claims (9)

第1強磁性層、トンネルバリア層、および第2強磁性層を有するトンネル磁気抵抗素子の製造方法であって、
前記トンネルバリア層を作製する工程が、
金属ターゲットに電力を投入してプラズマを形成することで該金属ターゲットをスパッタして前記第1強磁性層の上に第1の金属層を成膜する工程であって、成膜の初期段階と後期段階のうち、いずれか一方の段階だけ酸素ガスを導入せずに、他方の段階だけ酸素ガスを導入することで酸素ドープされた第1の金属層を形成する工程と、
前記酸素ドープされた第1の金属層を酸化処理して金属酸化物層とする工程と、
前記金属酸化物層の上に第2の金属層を成膜する工程と
を有することを特徴としたトンネル磁気抵抗素子の製造方法。
A method of manufacturing a tunnel magnetoresistive element having a first ferromagnetic layer, a tunnel barrier layer, and a second ferromagnetic layer,
The step of producing the tunnel barrier layer comprises
Forming a first metal layer on the first ferromagnetic layer by sputtering the metal target by applying power to the metal target to form a plasma, A step of forming an oxygen-doped first metal layer by introducing oxygen gas only in the other stage without introducing oxygen gas only in one of the latter stages;
Oxidizing the oxygen-doped first metal layer to form a metal oxide layer;
And a step of forming a second metal layer on the metal oxide layer.
前記第1および第2の金属層がMg(マグネシウム)であることを特徴とした請求項1に記載のトンネル磁気抵抗素子の製造方法。   2. The method of manufacturing a tunnel magnetoresistive element according to claim 1, wherein the first and second metal layers are Mg (magnesium). 前記第1および第2の金属層の成膜方法が、He(ヘリウム)、Ne(ネオン)、Ar(アルゴン)、Kr(クリプトン)、Xe(キセノン)のうち少なくとも1種類をスパッタリングガスの主成分とするスパッタリング法であることを特徴とした請求項1に記載のトンネル磁気抵抗素子の製造方法。   In the first and second metal layer deposition methods, at least one of He (helium), Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon) is used as the main component of the sputtering gas. The method of manufacturing a tunnel magnetoresistive element according to claim 1, wherein the method is a sputtering method. 前記第1の金属層の成膜中に酸素をドープする方法として、前記スパッタリングガスに30%以下の酸素ガスを混合することを特徴とした請求項1に記載のトンネル磁気抵抗素子の製造方法。   2. The method of manufacturing a tunnel magnetoresistive element according to claim 1, wherein, as a method of doping oxygen during the formation of the first metal layer, an oxygen gas of 30% or less is mixed with the sputtering gas. 3. 前記第1の金属層の成膜中に酸素をドープする方法として、スパッタリングガスの導入口と酸素ガスの導入口を個別に設け、スパッタリングガスの流量と酸素ガスの流量を独立に制御することを特徴とした、請求項1に記載のトンネル磁気抵抗素子の製造方法。   As a method of doping oxygen during the formation of the first metal layer, a sputtering gas inlet and an oxygen gas inlet are provided separately, and the flow rate of the sputtering gas and the flow rate of the oxygen gas are controlled independently. 2. The method of manufacturing a tunnel magnetoresistive element according to claim 1, wherein 前記酸素ドープされた第1の金属層を酸化処理する方法として、0.01〜10Torrの範囲の酸素圧力雰囲気に曝露することを特徴とした請求項1に記載のトンネル磁気抵抗素子の製造方法。   2. The method of manufacturing a tunnel magnetoresistive element according to claim 1, wherein the oxygen-doped first metal layer is exposed to an oxygen pressure atmosphere in a range of 0.01 to 10 Torr as a method of oxidizing the first metal layer. 前記酸素ドープされた第1の金属層を酸化処理する方法として、活性酸素種を用いたラジカル酸化であることを特徴とした請求項1に記載のトンネル磁気抵抗素子の製造方法。   2. The method of manufacturing a tunnel magnetoresistive element according to claim 1, wherein the method for oxidizing the oxygen-doped first metal layer is radical oxidation using active oxygen species. 前記第2の金属層がMgであって、その膜厚が0.1nm以上0.6nm以下であることを特徴とした請求項1に記載のトンネル磁気抵抗素子の製造方法。   2. The method of manufacturing a tunnel magnetoresistive element according to claim 1, wherein the second metal layer is Mg and has a thickness of 0.1 nm to 0.6 nm. 前記第1の金属層を成膜する工程において、前記金属ターゲットにプラズマ発生のための電力を印加し続けることを特徴とする請求項1に記載のトンネル磁気抵抗素子の製造方法。   2. The method of manufacturing a tunnel magnetoresistive element according to claim 1, wherein in the step of forming the first metal layer, a power for generating plasma is continuously applied to the metal target.
JP2013163153A 2013-08-06 2013-08-06 Method for manufacturing tunnel magnetoresistive element Active JP5689932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163153A JP5689932B2 (en) 2013-08-06 2013-08-06 Method for manufacturing tunnel magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163153A JP5689932B2 (en) 2013-08-06 2013-08-06 Method for manufacturing tunnel magnetoresistive element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010517620A Division JP5341082B2 (en) 2008-06-25 2008-06-25 Tunnel magnetoresistive element manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2014003313A true JP2014003313A (en) 2014-01-09
JP5689932B2 JP5689932B2 (en) 2015-03-25

Family

ID=50036140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163153A Active JP5689932B2 (en) 2013-08-06 2013-08-06 Method for manufacturing tunnel magnetoresistive element

Country Status (1)

Country Link
JP (1) JP5689932B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535073A (en) * 2014-10-16 2017-11-24 マイクロン テクノロジー, インク. Memory cell, semiconductor device, and manufacturing method
US10290799B2 (en) 2013-09-13 2019-05-14 Micron Technology, Inc. Magnetic memory cells and semiconductor devices
US10396278B2 (en) 2013-09-18 2019-08-27 Micron Technology, Inc. Electronic devices with magnetic and attractor materials and methods of fabrication
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
US10505104B2 (en) 2014-04-09 2019-12-10 Micron Technology, Inc. Electronic devices including magnetic cell core structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101978A1 (en) * 2002-11-25 2004-05-27 Tsann Linn Method of forming a barrier layer of a tunneling magnetoresistive sensor
JP2007142424A (en) * 2005-11-16 2007-06-07 Headway Technologies Inc Method of forming tunnel barrier layer, and tmr sensor and method of manufacturing the sensor
JP2007173809A (en) * 2005-12-16 2007-07-05 Seagate Technology Llc Magnetism sensing device including sense enhancing layer
JP2008028362A (en) * 2006-06-22 2008-02-07 Toshiba Corp Magnetoresistive element and magnetic memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101978A1 (en) * 2002-11-25 2004-05-27 Tsann Linn Method of forming a barrier layer of a tunneling magnetoresistive sensor
JP2007142424A (en) * 2005-11-16 2007-06-07 Headway Technologies Inc Method of forming tunnel barrier layer, and tmr sensor and method of manufacturing the sensor
JP2007173809A (en) * 2005-12-16 2007-07-05 Seagate Technology Llc Magnetism sensing device including sense enhancing layer
JP2008028362A (en) * 2006-06-22 2008-02-07 Toshiba Corp Magnetoresistive element and magnetic memory

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290799B2 (en) 2013-09-13 2019-05-14 Micron Technology, Inc. Magnetic memory cells and semiconductor devices
US11211554B2 (en) 2013-09-13 2021-12-28 Micron Technology, Inc. Electronic systems including magnetic regions
US10396278B2 (en) 2013-09-18 2019-08-27 Micron Technology, Inc. Electronic devices with magnetic and attractor materials and methods of fabrication
US10505104B2 (en) 2014-04-09 2019-12-10 Micron Technology, Inc. Electronic devices including magnetic cell core structures
US11251363B2 (en) 2014-04-09 2022-02-15 Micron Technology, Inc. Methods of forming electronic devices
JP2017535073A (en) * 2014-10-16 2017-11-24 マイクロン テクノロジー, インク. Memory cell, semiconductor device, and manufacturing method
US10347689B2 (en) 2014-10-16 2019-07-09 Micron Technology, Inc. Magnetic devices with magnetic and getter regions and methods of formation
US10355044B2 (en) 2014-10-16 2019-07-16 Micron Technology, Inc. Magnetic memory cells, semiconductor devices, and methods of formation
US10680036B2 (en) 2014-10-16 2020-06-09 Micron Technology, Inc. Magnetic devices with magnetic and getter regions
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials

Also Published As

Publication number Publication date
JP5689932B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5341082B2 (en) Tunnel magnetoresistive element manufacturing method and manufacturing apparatus
JP4908556B2 (en) Method for manufacturing magnetoresistive element
US8993351B2 (en) Method of manufacturing tunneling magnetoresistive element
US20130134032A1 (en) Method of fabricating and apparatus of fabricating tunnel magnetic resistive element
US10002973B2 (en) Magnetic tunnel junction with an improved tunnel barrier
JP5149285B2 (en) Magnetic device manufacturing apparatus and magnetic device manufacturing method for film formation by sputtering
JP5351140B2 (en) Manufacturing method of magnetic tunnel junction device
JP2006080116A (en) Magnetoresistive effect element and its manufacturing method
JP5689932B2 (en) Method for manufacturing tunnel magnetoresistive element
US20110143460A1 (en) Method of manufacturing magnetoresistance element and storage medium used in the manufacturing method
JP4774082B2 (en) Method for manufacturing magnetoresistive element
WO2017134697A1 (en) Method for manufacturing magnetoresistive effect element
WO2007105472A1 (en) Method for manufacturing magnetoresistance element and apparatus for manufacturing magnetoresistance element
US20110084348A1 (en) Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method
JP6353901B2 (en) Magnetic material
JP4774092B2 (en) Magnetoresistive element and MRAM using the same
JP4902686B2 (en) Method for manufacturing magnetoresistive element
JP4774116B2 (en) Magnetoresistive effect element
WO2009096033A1 (en) Method for manufacturing tunnel magnetoresistive effect element
JP2009044173A (en) Magnetic multilayer film forming apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150129

R150 Certificate of patent or registration of utility model

Ref document number: 5689932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250