JP2008239414A - Ceramic member and corrosion-resistant member - Google Patents

Ceramic member and corrosion-resistant member Download PDF

Info

Publication number
JP2008239414A
JP2008239414A JP2007083165A JP2007083165A JP2008239414A JP 2008239414 A JP2008239414 A JP 2008239414A JP 2007083165 A JP2007083165 A JP 2007083165A JP 2007083165 A JP2007083165 A JP 2007083165A JP 2008239414 A JP2008239414 A JP 2008239414A
Authority
JP
Japan
Prior art keywords
ceramic member
rare earth
less
firing
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083165A
Other languages
Japanese (ja)
Inventor
Takayuki Ide
貴之 井出
Masami Ando
正美 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2007083165A priority Critical patent/JP2008239414A/en
Publication of JP2008239414A publication Critical patent/JP2008239414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic member having high density, a small particle diameter and excellent plasma resistance. <P>SOLUTION: A ceramic member consisting essentially of a rare earth oxide is composed of a fine structure comprising fine particles. By constituting the ceramic member to have an average particle diameter of less than 3 μm, an open porosity of less than 0.3% measured by an Archimedes method and the maximum particle diameter of less than 5 μm so as to decrease open pores, portions as start points of plasma corrosion can be decreased, and thereby, the obtained ceramic member is excellent in plasma resistance. By constituting the member of small particles while suppressing abnormal particle growth, particle contamination due to production of dust can be decreased. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被処理基板を処理する処理装置に用いられる耐蝕性部材に係り、耐プラズマ特性に優れ、かつ耐パーティクル特性に優れたセラミック部材に関する発明である。 The present invention relates to a corrosion-resistant member used in a processing apparatus for processing a substrate to be processed, and is an invention related to a ceramic member having excellent plasma resistance and particle resistance.

半導体または液晶製造装置用のチャンバー内部の部材は、フッ素系、塩素系ガスを導入したプラズマ処理装置内にあり、高い耐プラズマ性の材料が求められている。耐プラズマ性に優れる材料としては高純度酸化アルミニウムなどの高純度セラミック材料の提案が多くなされている。近年イットリアが耐プラズマ性に優れていると注目されている。また、エッチングの際、高いプラズマ性を有するとともに、部材の侵食に伴うダストが発生し、処理基板に付着しパーティクル汚染を生じる不具合があるとされていることから、微細な粒子からなる部材の提案や、粒界侵食の少ない不純物量の少ない材料の提案がなされている。 A member inside a chamber for a semiconductor or liquid crystal manufacturing apparatus is in a plasma processing apparatus into which fluorine-based or chlorine-based gas is introduced, and a material having high plasma resistance is required. Many proposals of high-purity ceramic materials such as high-purity aluminum oxide have been made as materials having excellent plasma resistance. In recent years, it has been noted that yttria is excellent in plasma resistance. In addition, it has a high plasma property during etching, and dust due to erosion of the member is generated, and it is said that there is a problem that particle contamination is caused by adhering to the processing substrate, so proposal of a member made of fine particles In addition, a material with a small amount of impurities with little grain boundary erosion has been proposed.

セラミックスは一般的にその焼成の過程で高温を必要とするため、粒子成長を伴う焼結がなされるため出発原料の粒子径よりも大きくなることが知られている。大きな粒子で構成されたセラミックスは脱落が生じやすくなる事が知られている。 It is known that ceramics generally require a high temperature during the firing process, and are therefore sintered with particle growth, and thus become larger than the particle diameter of the starting material. It is known that ceramics composed of large particles are likely to fall off.

また、プラズマに曝される部分に気孔があると、プラズマ侵食の起点となり耐プラズマ性が悪くなる事が知られている。 Further, it is known that if there are pores in a portion exposed to plasma, plasma erosion becomes a starting point and plasma resistance deteriorates.

プラズマ部材としての従来の技術は、粒子径を小さくして脱粒しにくくさせることや焼結体中に含まれる気孔率を少なくする方法がとられている。イットリアは難焼結材料のため、緻密な焼結体を得るためには高温での焼成が必要となり、粒子成長が進み、小さな粒子径で構成される焼結体を得ることができない。たとえば、特許文献1には、平均粒子径0.7μmの原料粉末を用いて、1700℃で焼成した場合に、平均粒子径4μm、嵩密度4.90g/cmのイットリア焼結体が開示されている。 In the conventional technology as a plasma member, a method is adopted in which the particle size is reduced to make it difficult to degranulate and the porosity contained in the sintered body is reduced. Since yttria is a difficult-to-sinter material, firing at a high temperature is necessary to obtain a dense sintered body, particle growth proceeds, and a sintered body having a small particle diameter cannot be obtained. For example, Patent Document 1 discloses a yttria sintered body having an average particle diameter of 4 μm and a bulk density of 4.90 g / cm 3 when fired at 1700 ° C. using a raw material powder having an average particle diameter of 0.7 μm. ing.

特許文献2には3a族元素の酸化物、窒化物、炭化物、フッ化物などの化合物の薄膜や単結晶等によって形成することで耐プラズマ性の高い部材が得られることが開示され、Sc2O3、Yb2O3、Eu2O3、Dy2O3のPVD膜に関して開示されている。
特開2006−21990号公報 特開平10−4083号公報
Patent Document 2 discloses that a member having high plasma resistance can be obtained by forming a thin film or a single crystal of a compound such as an oxide, nitride, carbide or fluoride of a group 3a element, and Sc2O3 and Yb2O3. , Eu2O3, Dy2O3 PVD films.
JP 2006-21990 A Japanese Patent Laid-Open No. 10-4083

本発明は、前記課題を解決するためになされたもので、本発明の課題は、セラミック部材中の異常粒成長を抑制し、気孔の生成を少なくするとともに小さな粒子から構成させることで脱粒の生じにくい耐プラズマ性の優れるセラミック部材を提供する事にある。 The present invention has been made in order to solve the above-mentioned problems. The problem of the present invention is to suppress abnormal grain growth in the ceramic member, to reduce the generation of pores, and to generate degranulation by constituting from small particles. It is to provide a ceramic member that is difficult to plasma and excellent in plasma resistance.

前記目的を達成するために、本発明においては、希土類酸化物主成分とし、焼成により得られるセラミック部材において、このセラミック部材を構成する粒子の平均粒子径が3μm未満、かつアルキメデス法による測定で得られる開気孔率が0.3%未満であるセラミック部材とした。 In order to achieve the above object, in the present invention, in a ceramic member made of rare earth oxide as a main component and obtained by firing, the average particle diameter of particles constituting the ceramic member is less than 3 μm, and obtained by measurement by the Archimedes method. A ceramic member having an open porosity of less than 0.3% was obtained.

本発明の他の実施形態においては、希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材を構成する粒子の最大粒子径が5μm未満であり、かつアルキメデス法による測定で得られる開気孔率が0.3%未満であるセラミック部材とした。 In another embodiment of the present invention, in a ceramic member obtained by firing with a rare earth oxide as a main component, the maximum particle size of particles constituting the ceramic member is less than 5 μm, and obtained by measurement by the Archimedes method. A ceramic member having an open porosity of less than 0.3% was obtained.

本発明の好ましい形態においては、前記希土類酸化物がHo元素もしくはEr元素の酸化物から構成されるセラミック部材とした。 In a preferred embodiment of the present invention, the rare earth oxide is a ceramic member composed of an oxide of Ho element or Er element.

本発明の好ましい形態においては、希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材中に希土類元素とほう素との化合物含むセラミック部材とした。 In a preferred embodiment of the present invention, a ceramic member containing a rare earth oxide as a main component and a ceramic member obtained by firing is a ceramic member containing a compound of a rare earth element and boron in the ceramic member.

本発明の好ましい形態においては、前記希土類元素とほう素との化合物が、LnBO、LnBO(Ln:Ho、Er)の少なくとも1種を含むセラミック部材とした。 In a preferred embodiment of the present invention, the ceramic member includes the rare earth element and boron compound containing at least one of LnBO 3 and Ln 3 BO 6 (Ln: Ho, Er).

本発明の好ましい形態においては、希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材の厚さが0.3mm以上であるセラミック部材とした。 In a preferred embodiment of the present invention, a ceramic member mainly composed of a rare earth oxide and obtained by firing is a ceramic member having a thickness of 0.3 mm or more.

本発明の好ましい形態においては、前記セラミック部材を耐蝕性を必要とする部位に配設して成る耐蝕性部材とした。 In a preferred embodiment of the present invention, the ceramic member is a corrosion-resistant member formed by disposing the ceramic member in a portion requiring corrosion resistance.

本発明によれば、開気孔を少なくすることで,プラズマ侵食の起点となる個所を低減できることから耐プラズマ性に優れたセラミック部材を提供でき、かつ異常粒子成長を抑制させ小さい粒子で構成させることで発塵によるパーティクル汚染を低減させることが可能となる。 According to the present invention, by reducing the number of open pores, it is possible to provide a ceramic member excellent in plasma resistance because the number of starting points of plasma erosion can be reduced, and to suppress abnormal particle growth and to configure with small particles. This makes it possible to reduce particle contamination due to dust generation.

本件で使用する語句の説明を以下に行う The words used in this case are explained below.

(セラミック部材)
本発明におけるセラミック部材とは、希土類酸化物粉末の焼成により得られるセラミック部材であって、セラミック部材表面は、焼き肌、研磨・研削面等は問わない。希土類酸化物を主成分とするとは、セラミック部材を構成する金属元素のうち主たる部分を占めるものが希土類元素であることをさす。
(Ceramic material)
The ceramic member in the present invention is a ceramic member obtained by firing rare earth oxide powder, and the surface of the ceramic member may be a burned surface, a polished / ground surface, or the like. The phrase “having a rare earth oxide as a main component” means that a metal element constituting a ceramic member occupies a main part is a rare earth element.

(粒子径)
本発明における粒子径とは、セラミック部材を構成する一つ一つの固体結晶粒子の大きさであり、セラミック部材中では相互が粒子界面で区切られた個々の粒子の大きさをさす。
(Particle size)
The particle diameter in the present invention is the size of each solid crystal particle constituting the ceramic member, and in the ceramic member is the size of individual particles separated from each other at the particle interface.

(平均粒子径)
本発明における平均粒子径は、プラニメトリック法により算出した値をさす。平均粒子径の測定は、試料を鏡面研磨した後、大気雰囲気中でサーマルエッチングを行い、SEMによる観察像を用いて、プラニメトリック法により平均粒子径を算出した。
(Average particle size)
The average particle diameter in the present invention refers to a value calculated by a planimetric method. The average particle size was measured by mirror-polishing the sample, performing thermal etching in the air atmosphere, and calculating the average particle size by a planimetric method using an image observed by SEM.

(プラニメトリック法)
本発明における平均粒子径の測定は、Jeffriesのプラニメトリック法を用いて行った。(参考文献:Z.Feffries,Chem.Met.Engrs.,16,503-504(1917);ibid.,18,185(1918).)サーマルエッチングを行った試料の任意の2〜3箇所を10000倍でSEM撮影を行い、写真上で面積(A)の既知の円を描き、円内の粒子数nと円周にかかった粒子数nから次式によって単位面積あたりの粒子数Nを求める。
=(n+1/2n)/(A/10000
1/Nが1個の粒子が占める面積である。これより次式を用いて円相当径(D)を算出し平均粒子径とした。
D=2/(πN1/2
(Planimetric method)
The average particle size in the present invention was measured using Jeffries' planimetric method. (Reference: Z. Feffries, Chem. Met. Engrs., 16,503-504 (1917); ibid., 18, 185 (1918)) It was carried out, draw a known circular area (a) on the photograph to determine the number of particles n C per unit area from suffering particle number n i the number of particles n C and the circumference of the circle by the following equation.
N G = (n C + 1 / 2n i ) / (A / 10000 2 )
1 / NG is the area occupied by one particle. From this, the equivalent circle diameter (D) was calculated using the following formula, and the average particle diameter was determined.
D = 2 / (πN G ) 1/2

(サーマルエッチング)
本発明におけるサーマルエッチングは、試料を鏡面研磨した後,焼成温度に対して300〜500℃低い温度まで昇温速度300℃/hで昇温し、10〜30分間保持した後炉内放冷を行う工程である。この熱処理により、粒子一つ一つが熱膨張をし、冷却による収縮時に粒子界面に凹みができる。これにより、粒子の大きさを観察できる。
(Thermal etching)
In the thermal etching in the present invention, the sample is mirror-polished, then heated to a temperature lower by 300 to 500 ° C. than the firing temperature at a heating rate of 300 ° C./h, held for 10 to 30 minutes, and then allowed to cool in the furnace. It is a process to be performed. By this heat treatment, each particle is thermally expanded, and a dent is formed at the particle interface when shrinking due to cooling. Thereby, the size of the particles can be observed.

(最大粒子径)
本発明における最大粒子径とは、サーマルエッチングを施した試料を10000倍のSEM観察で撮影し、観察される最大粒子の定方向最大径(Krumbein径)によって得られる大きさである。
(Maximum particle size)
The maximum particle diameter in the present invention is a size obtained by taking a sample subjected to thermal etching by SEM observation at a magnification of 10,000 times and obtaining the maximum diameter (Krumbein diameter) of the maximum particle observed.

(アルキメデス法)
本発明におけるアルキメデス法とは、JIS規格(JIS R 1634)に示される密度測定方法である。飽水方法は真空法、媒液には蒸留水を用いて測定を行った。
(Archimedes method)
The Archimedes method in the present invention is a density measuring method shown in the JIS standard (JIS R 1634). The water saturation method was measured using a vacuum method, and the medium was measured using distilled water.

(比表面積)
本発明における原料粉末粒子径の表記に用いた比表面積は、JIS規格(JIS R 1626)に示されるBET法によるものである。
(Specific surface area)
The specific surface area used for the description of the raw material powder particle diameter in the present invention is based on the BET method shown in the JIS standard (JIS R 1626).

耐プラズマ性を向上させるには気孔の存在を少なくする必要があることは良く知られている。一般にHIP処理で気孔を減らす処理が知られているが、緻密化が完了した焼結体中に存在する数μm以上の粗大な気孔は除去困難となる。よって、焼結時に気孔を減らす必要がある。
一般に、気孔の大きさは構成する焼結体の粒子径の約1/10といわれている。また、焼結体を構成する限界の粒子径と気孔の平均径および気孔の体積には以下のような関係式が成り立つことが知られている。
D=d/f
D: 構成粒子の限界粒子径
d: 気孔の平均径
f: 気孔の体積
気孔の体積を減らすためには、気孔の大きさを小さくする必要がある。そのためには、構成する焼結体の粒子を小さくすると同時に異常粒子成長を抑制させ、均質な粒子から構成する必要がある。しかしながら粒子成長は焼結の過程では、緻密化を促進させ気孔除去するためにはで不可欠であり、ある程度の粒子成長は必要である。
本発明では、平均粒子径が1〜3μm程度であり、最大粒子径が5μm未満の条件を満たした場合に、焼結体中の気孔の抑制に効果があることを見出した。
耐パーティクル特性の観点から、平均粒子径と最大粒子径はさらに小さくすることが望ましいが、緻密質なセラミック部材は得られない。セラミック部材を構成する粒子の移動は温度に依存すると同時に焼結が促進される温度にも依存する。本発明では、十分な焼結と同時に微細構造を達成できる構成粒子サイズ領域と判断できる限界値を見出した。
It is well known that it is necessary to reduce the presence of pores in order to improve plasma resistance. In general, a process of reducing pores by HIP processing is known, but coarse pores of several μm or more existing in a sintered body that has been densified are difficult to remove. Therefore, it is necessary to reduce pores during sintering.
In general, the pore size is said to be about 1/10 of the particle size of the sintered body constituting the pores. Further, it is known that the following relational expressions hold for the limit particle diameter, the average pore diameter, and the pore volume constituting the sintered body.
D = d / f
D: Limit particle diameter of constituent particles d: Average diameter of pores f: Volume of pores In order to reduce the volume of pores, it is necessary to reduce the size of the pores. For that purpose, it is necessary to make the sintered compact particles smaller and to suppress abnormal particle growth and to make the particles from homogeneous particles. However, grain growth is indispensable in the sintering process in order to promote densification and remove pores, and a certain degree of grain growth is necessary.
In the present invention, it has been found that when the average particle size is about 1 to 3 μm and the maximum particle size is less than 5 μm, the pores in the sintered body are effectively suppressed.
From the viewpoint of particle resistance, it is desirable to further reduce the average particle size and the maximum particle size, but a dense ceramic member cannot be obtained. The movement of the particles constituting the ceramic member depends on the temperature and also on the temperature at which sintering is promoted. In the present invention, a limit value that can be determined as a constituent particle size region in which a fine structure can be achieved simultaneously with sufficient sintering has been found.

本発明では希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材を構成する粒子の平均粒子径が3μm未満、より好ましくは2.5μm未満であり、かつアルキメデス法による測定で得られる開気孔率が0.3%未満、より好ましくは0.2%未満とすることで緻密で気孔の少ない微細な粒子から成るセラミック部材が得られることにより、耐プラズマ性、耐パーティクル特性を向上できる。 In the present invention, in a ceramic member mainly composed of a rare earth oxide and obtained by firing, the average particle size of particles constituting the ceramic member is less than 3 μm, more preferably less than 2.5 μm, and the measurement by Archimedes method is used. By obtaining a ceramic member composed of fine particles having fine pores with small pores when the obtained open porosity is less than 0.3%, more preferably less than 0.2%, the plasma resistance and particle resistance characteristics are improved. It can be improved.

本発明の好ましい形態においては、希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材を構成する粒子の最大粒子径が5μm未満であり、かつアルキメデス法による測定で得られる開気孔率が0.3%未満、より好ましくは0.2%未満であることを特徴とすることで緻密で気孔の少ない微細な粒子から成るセラミック部材が得られることにより、耐プラズマ性、耐パーティクル特性を向上できる。 In a preferred embodiment of the present invention, in a ceramic member obtained by firing with a rare earth oxide as a main component, the maximum particle size of the particles constituting the ceramic member is less than 5 μm, and an opening obtained by measurement by the Archimedes method is used. By having a porosity of less than 0.3%, more preferably less than 0.2%, it is possible to obtain a ceramic member composed of fine particles with dense and few pores. The characteristics can be improved.

前記希土類酸化物が、La、Nd、Sm、Eu、Dy、Ho、Er、Tm、Yb、LuまたはScの少なくとも1種の元素の酸化物、より好ましくはHo元素もしくはEr元素の酸化物から構成されるセラミック部材とすることで、耐プラズマ性、耐パーティクル特性を向上できる。 The rare earth oxide is composed of an oxide of at least one element of La, Nd, Sm, Eu, Dy, Ho, Er, Tm, Yb, Lu, or Sc, more preferably an oxide of Ho element or Er element. By using a ceramic member, plasma resistance and particle resistance can be improved.

希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材中に希土類元素とほう素との化合物含むセラミック部材とすることで緻密で気孔の少ない微細な粒子からなるセラミック部材が得られることにより、耐プラズマ性、耐パーティクル特性を向上できる。 A ceramic member mainly composed of a rare earth oxide and obtained by firing is a ceramic member including a compound of a rare earth element and boron in the ceramic member, thereby obtaining a ceramic member composed of fine particles having fine pores and few pores. As a result, plasma resistance and particle resistance can be improved.

前記希土類元素とほう素との化合物が、LnBO、LnBO(Ln:La、Nd、Sm、Eu、Dy、Ho、Er、Tm、Yb、LuまたはSc、より好ましくはHo、Er)の少なくとも1種を含むセラミック部材とすることで緻密で気孔の少ない微細な粒子からなるセラミック部材が得られることにより、耐プラズマ性、耐パーティクル特性を向上できる。 The compound of the rare earth element and boron is LnBO 3 , Ln 3 BO 6 (Ln: La, Nd, Sm, Eu, Dy, Ho, Er, Tm, Yb, Lu or Sc, more preferably Ho, Er). By using a ceramic member containing at least one of the above, a ceramic member composed of fine particles with fine pores and few pores can be obtained, whereby plasma resistance and particle resistance characteristics can be improved.

さらに、希土類酸化物を主成分とし、焼成により得られるセラミック部材において、セラミック部材の厚みは、0.3mm以上、より好ましくは1mm以上であることが好ましい。セラミック部材を厚くすることで、腐食環境下で長時間の使用が可能となる。 Furthermore, in the ceramic member obtained by firing with a rare earth oxide as a main component, the thickness of the ceramic member is preferably 0.3 mm or more, more preferably 1 mm or more. By making the ceramic member thick, it can be used for a long time in a corrosive environment.

本発明における好ましい形態においては、希土類酸化物粉末を成形し、1200〜1600℃、好ましくは1300〜1550℃で焼成し、必要に応じて研削・研磨加工をする。この温度で焼成することで、粒成長を抑制し微細な粒子からなるセラミック部材を得ることができる。 In a preferred form of the present invention, the rare earth oxide powder is molded and fired at 1200 to 1600 ° C., preferably 1300 to 1550 ° C., and ground and polished as necessary. By firing at this temperature, a ceramic member composed of fine particles can be obtained while suppressing grain growth.

より好ましくは、希土類酸化物に対し前記温度で液相を生成する助剤を添加する。焼結助剤を添加することにより焼結性を高めることができ、前記温度での焼成がしやすくなる。 More preferably, an auxiliary agent that generates a liquid phase at the above temperature is added to the rare earth oxide. By adding a sintering aid, the sinterability can be enhanced, and firing at the above temperature becomes easy.

前記助剤としては例えば、酸化ほう素やほう酸等のほう素化合物や、フッ化リチウム等のリチウム化合物、フッ化カリウム等のカリウム化合物等が好適に利用できる。最も好ましくは、ほう素化合物を添加する。 As the auxiliary, for example, boron compounds such as boron oxide and boric acid, lithium compounds such as lithium fluoride, potassium compounds such as potassium fluoride, and the like can be suitably used. Most preferably, a boron compound is added.

(混合・原料粉末)
原料の混合方法は、ボールミルのようなセラミックスの製造工程に利用される一般的な方法が利用できる。希土類酸化物原料粉末の粒子径に制限はないが、平均10μm以下が好ましく、より好ましくは2μm以下が好ましい。下限値の制限はないが、成形性の低下があることから、サブミクロン程度が好ましい。ボールミルのような粉砕工程を伴う混合方法は、粒子径を細かくするだけでなく粗大粒子を粉砕する効果があり、均質で微細な粒子からなるセラミック部材を得るには好ましい。
(Mixed and raw powder)
As a raw material mixing method, a general method used in a ceramic manufacturing process such as a ball mill can be used. The particle diameter of the rare earth oxide raw material powder is not limited, but is preferably 10 μm or less on average, more preferably 2 μm or less. Although there is no restriction | limiting of a lower limit, since there exists a fall of a moldability, about submicron is preferable. A mixing method involving a pulverizing step such as a ball mill has an effect of not only reducing the particle diameter but also pulverizing coarse particles, and is preferable for obtaining a ceramic member composed of uniform and fine particles.

(成形)
本発明の実施形態における成形方法は、造粒した粉末をプレス成形やCIPなどの乾式成形方法により成形体を得ることができる。成形は乾式成形に限らず、押し出し成形、射出成形、シート成形、鋳込み成形、ゲルキャスト成形などの成形方法を利用して成形体を得ることができる。乾式成形の場合、バインダーを加えてスプレードライヤーなどを利用し、顆粒にし利用できる。
(Molding)
In the molding method according to the embodiment of the present invention, a granulated powder can be obtained by a dry molding method such as press molding or CIP. The molding is not limited to dry molding, and a molded body can be obtained using a molding method such as extrusion molding, injection molding, sheet molding, cast molding, gel cast molding, and the like. In the case of dry molding, it can be used as a granule by adding a binder and using a spray dryer.

(焼成)
本発明の実施形態において、焼成は大気雰囲気で1700℃未満の焼成が可能であり、SiC発熱体やカンタル発熱体を有する電気炉での焼成が可能である。焼成は大気雰囲気中に限らず、窒素やアルゴンなどの不活性雰囲気中や真空中の焼成でも可能である。焼成時間は0.5〜8時間の間で選択することができる。焼成温度は1200〜1600℃の範囲で選択することができ、好ましくは、1300〜1550℃での焼成が良い。この温度で焼成することで、粒成長を抑制し微細な粒子からなるセラミック部材を得られる。
(Baking)
In the embodiment of the present invention, the baking can be performed at a temperature lower than 1700 ° C. in an air atmosphere, and can be performed in an electric furnace having a SiC heating element or a Kanthal heating element. Firing is not limited to the air atmosphere, but can be performed in an inert atmosphere such as nitrogen or argon or in a vacuum. The firing time can be selected between 0.5 and 8 hours. The firing temperature can be selected in the range of 1200 to 1600 ° C, and preferably firing at 1300 to 1550 ° C. By firing at this temperature, a ceramic member composed of fine particles can be obtained while suppressing grain growth.

焼結性を高めるために、セラミック部材中にほう素化合物を入れた場合には、焼成中にほう素化合物が蒸散しやすいことから、マッフル等を施し焼成することが好ましい。ほう素化合物は焼成の過程で希土類とほう素の化合物を形成し、1100〜1600℃の温度で液相を形成し焼結を促進する。この希土類−ほう素化合物液相の生成が低温での焼成でセラミック粒子の粒子成長を抑制し、微細な粒子から構成されるセラミック部材を得ることが可能となる。 In order to enhance the sinterability, when a boron compound is put in the ceramic member, the boron compound is likely to evaporate during firing. The boron compound forms a rare earth and boron compound during the firing process, and forms a liquid phase at a temperature of 1100 to 1600 ° C. to promote sintering. The generation of the rare earth-boron compound liquid phase suppresses the particle growth of the ceramic particles by firing at a low temperature, and a ceramic member composed of fine particles can be obtained.

得られた焼結体は焼成温度以下の温度領域でのHIP処理を施すことができる。これによりほぼ理論密度の緻密質焼結体を得ることができる。 The obtained sintered body can be subjected to HIP treatment in a temperature range below the firing temperature. Thereby, a dense sintered body having a theoretical density can be obtained.

前記希土類―ほう素化合物結晶相を生成するほう素化合物としては、酸化ほう素に限らず、ほう酸、窒化ほう素、炭化ほう素、LnBO、LnBO等のほう素化合物が利用可能であり、中でも酸化ほう素、ほう酸、LnBOが好適に利用できる。LnはHoもしくはErである。 The boron compound that forms the rare earth-boron compound crystal phase is not limited to boron oxide, and boron compounds such as boric acid, boron nitride, boron carbide, LnBO 3 , and Ln 3 BO 6 can be used. Among them, boron oxide, boric acid, and LnBO 3 can be preferably used. Ln is Ho or Er.

得られたセラミック部材は、鏡面研磨を行い、焼成温度に対して300〜500℃低い温度まで昇温速度300℃/hで昇温し、10〜30分間保持しサーマルエッチングを施した。得られた試料はSEMを用いて粒子形状を観察することが可能である。 The obtained ceramic member was mirror-polished, heated to a temperature lower by 300 to 500 ° C. than the firing temperature at a heating rate of 300 ° C./h, held for 10 to 30 minutes, and subjected to thermal etching. The obtained sample can be observed for particle shape using SEM.

本発明により得られるセラミック部材は、チャンバー、ベルジャー、サセプター、クランプリング、フォーカスリング、キャプチャーリング、シャドーリング、絶縁リング、ライナー、ダミーウエハー、高周波プラズマを発生させるためのチューブ、高周波プラズマを発生させるためのドーム、半導体ウエハーを支持するためのリフトピン、シャワー板、バッフル板、ベローズカバー、上部電極、下部電極、チャンバー内部の部材固定用のネジ、ネジキャップ、ロボットアームなどのプラズマ雰囲気に曝される半導体または液晶製造装置用部材に利用することができる。 The ceramic member obtained by the present invention includes a chamber, a bell jar, a susceptor, a clamp ring, a focus ring, a capture ring, a shadow ring, an insulating ring, a liner, a dummy wafer, a tube for generating high-frequency plasma, and a high-frequency plasma. Semiconductors exposed to plasma atmosphere such as dome, lift pins to support semiconductor wafer, shower plate, baffle plate, bellows cover, upper electrode, lower electrode, screws for fixing members inside chamber, screw cap, robot arm, etc. Or it can utilize for the member for liquid crystal manufacturing apparatuses.

さらに、本発明のセラミック部材は、半導体ウエハーや石英ウエハーに微細な加工を施すエッチング装置などの静電チャックに利用することが可能である。 Furthermore, the ceramic member of the present invention can be used in an electrostatic chuck such as an etching apparatus that performs fine processing on a semiconductor wafer or a quartz wafer.

また、本発明のセラミック部材は、フッ化水素等の腐食溶液や腐食ガス等を搬送するための搬送管等の腐食防止用部材や、腐食溶液用た化学的処理等を行う際に使用する坩堝等に利用することができる。 In addition, the ceramic member of the present invention includes a corrosion prevention member such as a transport pipe for transporting a corrosive solution or corrosive gas such as hydrogen fluoride, or a crucible used when performing a chemical treatment for a corrosive solution. Etc. can be used.

(実施例)
原料として酸化ホルミウム粉末(粒径:0.41μm)、酸化エルビウム粉末(粒径:1.31μm)および酸化ガドリニウム粉末(粒径:0.41μm)と酸化ほう素(試薬級)を用意し、酸化ほう素添加量を4.5および9mol%とし、分散剤・バインダー・離型剤を加えてボールミルによる粉砕攪拌混合後、造粒を行った。得られた造粒粉末はプレス成形を行った後、CIP成形を行った。造粒はスプレードライヤーによる造粒でもよい。得られた成形体は、脱脂した後、大気雰囲気中1400℃〜1500℃で焼成した。表1は得られた焼結体と平均粒子径、最大粒子径および開気孔率の関係である。
(Example)
Prepare holmium oxide powder (particle size: 0.41 μm), erbium oxide powder (particle size: 1.31 μm), gadolinium oxide powder (particle size: 0.41 μm) and boron oxide (reagent grade) as raw materials. The amount of boron added was 4.5 and 9 mol%, a dispersant, a binder, and a release agent were added, and the mixture was pulverized, stirred and mixed by a ball mill, and granulated. The obtained granulated powder was press-molded and then CIP-molded. Granulation may be performed by a spray dryer. The obtained molded body was degreased and then fired at 1400 ° C. to 1500 ° C. in an air atmosphere. Table 1 shows the relationship between the obtained sintered body, the average particle size, the maximum particle size, and the open porosity.

Figure 2008239414
Figure 2008239414

実施例1〜3はErおよびHoの焼成試験を行った結果である。焼結体の平均粒子径は1〜3μmの範囲にあり、微細な粒子から構成されている。さらに最大粒子径は5μm以下であり狭い粒度分布を有する焼結体である。これより開気孔率は1.15%以下の低い値を示した。 Examples 1 to 3 are results of performing a firing test of Er 2 O 3 and Ho 2 O 3 . The average particle diameter of the sintered body is in the range of 1 to 3 μm and is composed of fine particles. Furthermore, the maximum particle size is 5 μm or less, and the sintered body has a narrow particle size distribution. As a result, the open porosity showed a low value of 1.15% or less.

(比較例)
比較例1および比較例2はGdにほう素を添加した試料を1400℃で焼成した結果である。開気孔率1.67〜1.85%と多くの気孔を有する。比較例1および比較例2では比較的緻密な焼結体となってはいるものの、微細なクラックが多く存在し、開気孔率が高くなっていた。
(Comparative example)
Comparative Example 1 and Comparative Example 2 are the results of firing a sample obtained by adding boron to Gd 2 O 3 at 1400 ° C. It has an open porosity of 1.67 to 1.85% and many pores. In Comparative Example 1 and Comparative Example 2, although they were relatively dense sintered bodies, there were many fine cracks and the open porosity was high.

耐プラズマ性の評価方法は以下の通りである。
評価試料には各焼成体の表面粗さ(Ra)が0.1μm以下になるように研磨したものを用いた。この試料の表面の半分をマスキングしてから、平行平板型RIE装置(DEA506/ANELVA製)を用いて、エッチングガスはCF(40sccm)+O(10sccm)で1000W、13.56MHz、30時間プラズマを照射した。照射後マスキングを除去し、マスキング部分とマスキングしていなかった部分の段差を測定し、侵食深さを計測した。気孔率が高い試料は侵食されやすい傾向が侵食深さからわかる。
The evaluation method of plasma resistance is as follows.
As the evaluation sample, one that was polished so that the surface roughness (Ra) of each fired body was 0.1 μm or less was used. After masking half of the surface of this sample, a parallel plate type RIE apparatus (DEA506 / ANEVA) is used, and the etching gas is CF 4 (40 sccm) + O 2 (10 sccm), 1000 W, 13.56 MHz, plasma for 30 hours. Was irradiated. After irradiation, the masking was removed, the level difference between the masked part and the unmasked part was measured, and the erosion depth was measured. It can be seen from the erosion depth that the sample with a high porosity is easily eroded.

以上の結果より、平均粒子径が3μm未満と微細な粒子から構成されており、焼結体中に存在する異常粒成長した粒子が5μm未満を同時みたすことは、プラズマ侵食の起点となりうる開気孔の存在を抑制する効果があり、耐プラズマ性に有効であり、微細な粒子で構成されていることから耐パーティクルに性にも有効である。 From the above results, it is composed of fine particles having an average particle diameter of less than 3 μm, and that the abnormally grown particles present in the sintered body are less than 5 μm at the same time can be the starting point of plasma erosion. Is effective for plasma resistance, and is effective for resistance to particles because it is composed of fine particles.

Claims (7)

希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材を構成する粒子の平均粒子径が3μm未満であり、かつアルキメデス法による測定で得られる開気孔率が0.3%未満であることを特徴とするセラミック部材。 In a ceramic member mainly composed of a rare earth oxide and obtained by firing, the average particle diameter of particles constituting the ceramic member is less than 3 μm, and the open porosity obtained by measurement by the Archimedes method is less than 0.3% A ceramic member characterized by the above. 希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材を構成する粒子の最大粒子径が5μm未満であり、かつアルキメデス法による測定で得られる開気孔率が0.3%未満であることを特徴とするセラミック部材。 In a ceramic member mainly composed of a rare earth oxide and obtained by firing, the maximum particle size of particles constituting the ceramic member is less than 5 μm, and the open porosity obtained by measurement by the Archimedes method is less than 0.3% A ceramic member characterized by the above. 前記希土類酸化物がHo元素もしくはEr元素の酸化物から構成されることを特徴とする請求項1または請求項2に記載のセラミック部材。 The ceramic member according to claim 1 or 2, wherein the rare earth oxide is composed of an oxide of Ho element or Er element. 希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材中に希土類元素とほう素との化合物を含むことを特徴とする請求項1乃至請求項3のいずれかに記載のセラミック部材。 4. A ceramic member comprising a rare earth oxide as a main component and obtained by firing, wherein the ceramic member contains a compound of a rare earth element and boron. Element. 前記希土類元素とほう素との化合物が、LnBO、LnBO(Ln:Ho、Er)の少なくとも1種を含むことを特徴とする請求項1乃至請求項4のいずれかに記載のセラミック部材。 5. The ceramic according to claim 1, wherein the rare earth element and boron compound includes at least one of LnBO 3 and Ln 3 BO 6 (Ln: Ho, Er). Element. 希土類酸化物を主成分とし、焼成により得られるセラミック部材において、このセラミック部材の厚さが0.3mm以上であることを特徴とする請求項1乃至請求項5のいずれかに記載のセラミック部材。 The ceramic member according to any one of claims 1 to 5, wherein a ceramic member comprising a rare earth oxide as a main component and obtained by firing has a thickness of 0.3 mm or more. 請求項1乃至請求項6のいずれかに記載のセラミック部材であって耐蝕性を必要とする部位に配設して成る耐蝕性部材。 The ceramic member according to any one of claims 1 to 6, wherein the corrosion-resistant member is disposed at a site requiring corrosion resistance.
JP2007083165A 2007-03-28 2007-03-28 Ceramic member and corrosion-resistant member Pending JP2008239414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083165A JP2008239414A (en) 2007-03-28 2007-03-28 Ceramic member and corrosion-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083165A JP2008239414A (en) 2007-03-28 2007-03-28 Ceramic member and corrosion-resistant member

Publications (1)

Publication Number Publication Date
JP2008239414A true JP2008239414A (en) 2008-10-09

Family

ID=39911194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083165A Pending JP2008239414A (en) 2007-03-28 2007-03-28 Ceramic member and corrosion-resistant member

Country Status (1)

Country Link
JP (1) JP2008239414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194248A1 (en) * 2018-04-03 2019-10-10 京セラ株式会社 Plasma processing device member and plasma processing device provided with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194248A1 (en) * 2018-04-03 2019-10-10 京セラ株式会社 Plasma processing device member and plasma processing device provided with same
KR20200124269A (en) * 2018-04-03 2020-11-02 교세라 가부시키가이샤 Plasma processing apparatus member and plasma processing apparatus including same
JPWO2019194248A1 (en) * 2018-04-03 2021-04-08 京セラ株式会社 A member for a plasma processing device and a plasma processing device including the member.
JP7048726B2 (en) 2018-04-03 2022-04-05 京セラ株式会社 Members for plasma processing equipment and plasma processing equipment equipped with this
KR102489368B1 (en) 2018-04-03 2023-01-17 교세라 가부시키가이샤 Member for plasma processing device and plasma processing device including the same

Similar Documents

Publication Publication Date Title
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP5819816B2 (en) Corrosion resistant member for semiconductor manufacturing equipment and method for manufacturing the same
US20130224498A1 (en) Semiconductor processing apparatus comprising a solid solution ceramic formed from yttrium oxide, zirconium oxide, and aluminum oxide
JP2003146751A (en) Plasma-resistant member and method of producing the same
JP2006273584A (en) Aluminum nitride sintered compact, member for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered compact
JPH11214365A (en) Member for semiconductor element manufacturing device
JP4197050B1 (en) Ceramic member and corrosion resistant member
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP2007112698A (en) Rare-earth sintered body and manufacturing method of the same
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP2004292270A (en) Corrosion resistant member and its manufacturing method
US20230174429A1 (en) Sintered material, semiconductor manufacturing apparatus including the same, and method of manufacturing the sintered material
JP2008239414A (en) Ceramic member and corrosion-resistant member
JP2009234877A (en) Member used for plasma processing apparatus
JP4811946B2 (en) Components for plasma process equipment
JP2001151559A (en) Corrosion-resistant member
JP2002293630A (en) Plasma resistant member and method of producing the same
JP3769416B2 (en) Components for plasma processing equipment
JP2008230901A (en) Ceramic member and corrosion resistant member
JP5305228B2 (en) Corrosion resistant material
JP2007217218A (en) Yttria ceramic for plasma process apparatus and method for manufacturing the same
JP2000313658A (en) Corrosion-resistant member
JP2009203113A (en) Ceramics for plasma treatment apparatus
JP2009149496A (en) Electroconductive ceramic material
JP2008174398A (en) Yttria ceramic fired body