JP2008236818A - thetaZ ACTUATOR - Google Patents

thetaZ ACTUATOR Download PDF

Info

Publication number
JP2008236818A
JP2008236818A JP2007068145A JP2007068145A JP2008236818A JP 2008236818 A JP2008236818 A JP 2008236818A JP 2007068145 A JP2007068145 A JP 2007068145A JP 2007068145 A JP2007068145 A JP 2007068145A JP 2008236818 A JP2008236818 A JP 2008236818A
Authority
JP
Japan
Prior art keywords
armature winding
axis
axis armature
actuator
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007068145A
Other languages
Japanese (ja)
Other versions
JP5093567B2 (en
Inventor
Kenichi Sadakane
健一 貞包
Mitsuhiro Matsuzaki
光洋 松崎
Toru Shikayama
透 鹿山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2007068145A priority Critical patent/JP5093567B2/en
Publication of JP2008236818A publication Critical patent/JP2008236818A/en
Application granted granted Critical
Publication of JP5093567B2 publication Critical patent/JP5093567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a θZ actuator for realizing exact rotating operation and rectilinear operation with a single actuator having a simple structure. <P>SOLUTION: The θZ actuator comprises a mover 200 equipped with a permanent magnet 203 as a field magnet or iron teeth, and a stator 100 equipped with a θ-axis armature winding 102 for generating rotary magnetic field in a rotary θ-axis direction and a Z-axis armature winding 103 for generating a progress magnetic field in a rectilinear Z-axis direction, wherein current is applied to the θ-axis armature winding 102 and the Z-axis armature winding 103, and a torque is generated in a θ-axis direction and a thrust force is generated in the Z-axis direction to execute the rotation operation and the rectilinear operation of the mover 200. In the θZ actuator, a hollow core portion of the θ-axis armature winding 102 is used as a crossover processing space 110a of the θ-axis armature winding 102 and the Z-axis armature winding 103. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転と直進の2つのモーションを精密に行うθZアクチュエータに関する。   The present invention relates to a θZ actuator that precisely performs two motions, rotation and rectilinear movement.

従来のθZアクチュエータとして、回転モータとリニアモータの電機子巻線を同心円状に重ね合わせ、出力軸に直接トルクと推力を発生させ回転動作と直動動作を行うものが開示されている(例えば、特許文献1、特許文献2)
図8はA−A断面図、図9は矢視B断面図である。
固定子100は、中空のモータフレーム101、θ軸電機子巻線102、Z軸電機子巻線103、L側ロータリーボールスプライン104、反L側ロータリーボールスプライン105、L側ブラケット106、反L側ブラケット107等より構成されている。中空のモータフレーム101内部の、同心円状外周側にθ軸電機子巻線102、内周側にZ軸電機子巻線103が設けられている。モータフレーム101の負荷側端面にL側ブラケット106、反負荷側端面に反L側ブラケット107、またそれぞれにL側ロータリーボールスプライン104、反L側ロータリーボールスプライン105が設けられている。モータフレーム101の外周部には、図示しない電力供給用のモータ端子が設けられている。
θ軸電機子巻線102、内周側にZ軸電機子巻線103の渡線は、図8に示す隣り合ったθ軸成形コイルとθ軸成形コイルのすきまである渡線処理スペース110Cや、モータフレーム101に加工等により確保された渡線処理スペース110bにて、接続されている。
As a conventional θZ actuator, there is disclosed an actuator in which armature windings of a rotary motor and a linear motor are concentrically overlapped to generate a torque and a thrust directly on an output shaft to perform a rotation operation and a linear motion operation (for example, (Patent Literature 1, Patent Literature 2)
8 is a cross-sectional view taken along the line AA, and FIG. 9 is a cross-sectional view taken along the arrow B.
The stator 100 includes a hollow motor frame 101, a θ-axis armature winding 102, a Z-axis armature winding 103, an L-side rotary ball spline 104, an anti-L-side rotary ball spline 105, an L-side bracket 106, and an anti-L side. It is comprised from the bracket 107 grade | etc.,. Inside the hollow motor frame 101, a θ-axis armature winding 102 is provided on the concentric outer circumference side, and a Z-axis armature winding 103 is provided on the inner circumference side. An L-side bracket 106 is provided on the load side end surface of the motor frame 101, an anti-L side bracket 107 is provided on the non-load side end surface, and an L-side rotary ball spline 104 and an anti-L side rotary ball spline 105 are provided on each. A motor terminal for supplying power (not shown) is provided on the outer periphery of the motor frame 101.
The connecting line of the θ-axis armature winding 102 and the Z-axis armature winding 103 on the inner peripheral side is a connecting line processing space 110C that extends between adjacent θ-axis forming coils and θ-axis forming coils shown in FIG. The motor frame 101 is connected to the motor frame 101 through a crossing processing space 110b secured by processing or the like.

一方、可動子200は、出力軸201、界磁ヨーク202、永久磁石203等より構成されている。θ軸電機子巻線102とZ軸電機子巻線103に対向する位置の出力軸201の外周に界磁ヨーク202、永久磁石203が同心円状に設けられており、可動子200は、出力軸201において、L側ロータリーボールスプライン104および反L側ロータリーボールスプライン105により支持され、θ軸方向およびZ軸方向に自由に移動可能となっている。   On the other hand, the mover 200 includes an output shaft 201, a field yoke 202, a permanent magnet 203, and the like. A field yoke 202 and a permanent magnet 203 are concentrically provided on the outer periphery of the output shaft 201 at a position opposite to the θ-axis armature winding 102 and the Z-axis armature winding 103. In 201, it is supported by the L-side rotary ball spline 104 and the non-L-side rotary ball spline 105, and can freely move in the θ-axis direction and the Z-axis direction.

このように構成されたθZアクチュエータは、電流をθ軸電機子巻線102に流すことにより永久磁石203の作る磁界との作用で可動子200にトルクを発生し、また電流をZ軸電機子巻線103に流すことにより永久磁石203の作る磁界との作用で可動子200に推力が発生する。このようにして、可動子200は回転と直進の両方向の動作を実現している。
特開2004−343903号公報 特開2005−20885号公報
The θZ actuator configured as described above generates torque in the mover 200 due to the action of the magnetic field generated by the permanent magnet 203 by passing a current through the θ-axis armature winding 102, and the current is supplied to the Z-axis armature winding. By flowing through the wire 103, a thrust is generated in the mover 200 by the action of the magnetic field created by the permanent magnet 203. In this way, the mover 200 realizes the operations in both directions of rotation and straight movement.
JP 2004-343903 A JP 2005-20885 A

θZアクチュエータは、主にチップマウンタのヘッドや実装基板の検査装置のプローブ等に用いられ、1本で用いられるというより多数本を並べて用いられるケースが多い。電子部品の実装などを想定すると、実装密度が高くなってきており、マウンタヘッドや検査プローブの配置間隔も狭くしていくことが要望されていた。また、実装密度が高くなってきているので、マウンタヘッドや検査プローブには、高速な動作が要望されていた。このような要望を解決するためには、小さな外形寸法で高トルクのθZアクチュエータが必要となってきている。
しかしながら、従来のθZアクチュエータには、以下の問題があった。
複数のθ軸成形コイルおよび複数のZ軸成形コイルを接続する際に、図8に示す隣り合ったθ軸成形コイルとθ軸成形コイルのすきまである渡線処理スペース110Cを利用した場合は、前記スペースを確保するためにθ軸成形コイルの大きさを幅方向に狭くする必要があり、そのためコイルの占める体積が減少しθ軸のトルクを大きくすることができないという問題が生じていた。
また、複数のθ軸成形コイルおよび複数のZ軸成形コイルを接続する際に、モータフレーム101に加工等により確保された渡線処理スペース110bを利用した場合は、モータフレームが非対称に形成されるため磁路がアンバランスになり磁気特性が悪くなる。このような磁界が形成されると、トルクむらが発生したり、発生トルク自体が小さくなるなどの問題が生じていた。また、フレームの所定の肉厚を確保しようとすると、外形寸法が大きくなるという問題が生じていた。
本発明は、上記問題を解決するためになされたものであり、簡素な構造で精密な回転動作と直進動作を一つのアクチュエータで実現するθZアクチュエータを提供することを目的とする。
The θZ actuator is mainly used for a chip mounter head, a probe of a mounting board inspection device, and the like. In many cases, a plurality of θZ actuators are used rather than one. Assuming the mounting of electronic components, etc., the mounting density has increased, and it has been demanded that the mounting intervals of mounter heads and inspection probes be narrowed. Further, since the mounting density has been increased, the mounter head and the inspection probe have been required to operate at high speed. In order to solve such a demand, a θZ actuator having a small outer dimension and a high torque is required.
However, the conventional θZ actuator has the following problems.
When connecting a plurality of θ-axis forming coils and a plurality of Z-axis forming coils, when using the connecting line processing space 110C that is between adjacent θ-axis forming coils and θ-axis forming coils shown in FIG. In order to secure the space, it is necessary to reduce the size of the θ-axis forming coil in the width direction, which causes a problem that the volume occupied by the coil decreases and the torque of the θ-axis cannot be increased.
Further, when connecting the plurality of θ-axis forming coils and the plurality of Z-axis forming coils, when the crossover processing space 110b secured by processing or the like is used for the motor frame 101, the motor frame is formed asymmetrically. For this reason, the magnetic path becomes unbalanced, and the magnetic characteristics are deteriorated. When such a magnetic field is formed, problems such as torque unevenness and the generated torque itself are reduced. In addition, when trying to secure a predetermined thickness of the frame, there has been a problem that the outer dimensions are increased.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a θZ actuator that realizes a precise rotation operation and a straight-ahead operation with a single actuator with a simple structure.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、界磁とする永久磁石もしくは鉄心歯を備えた可動子と、回転θ軸方向に回転磁界を発生するθ軸電機子巻線と直進Z軸方向に進行磁界を発生するZ軸電機子巻線を備えた固定子とで構成されるとともに、前記θ軸電機子巻線と前記Z軸電機子巻線に電流を通電し、θ軸方向にトルクを、Z軸方向に推力を発生させて前記可動子の回転動作と直進動作を行うθZアクチュエータにおいて、前記θ軸電機子巻線の空芯部を、前記θ軸電機子巻線および前記Z軸電機子巻線の渡線処理スペースとしたものである。
また、請求項2に記載の発明は、前記θ軸電機子巻線が、前記Z軸巻線に対して内周面または外周面のいずれか一方に配置されたものである。
また、請求項3に記載の発明は、前記θ軸電機子巻線の前記空芯部の長手方向の長さが前記Z軸電機子巻線の長手方向の長さより長いものである。
また、請求項4に記載の発明は、前記θ軸電機子巻線が、前記Z軸電機子巻線に対して内周面に配置され、前記θ軸電機子巻線の前記空芯部の長手方向の長さが前記Z軸電機子巻線の長手方向の長さより長いものである。
また、請求項5に記載の発明は、前記θ軸電機子巻線が、前記Z軸電機子巻線に対して外周面に配置され、前記θ軸電機子巻線の前記空芯部の長手方向の長さが前記Z軸電機子巻線の長手方向の長さより長いものである。
また、請求項6に記載の発明は、前記Z軸電機子巻線が、前記θ軸電機子巻線の前記空芯部で渡線処理され、前記θ軸電機子巻線の巻き始めと巻き終わりの2本のケーブルが同じ方向に引き出されるものである。
また、請求項7に記載の発明は、前記2本のケーブルが、前記Z軸電機子巻線と前記θ軸電機子巻線とのすきまから引き出すものである。
In order to solve the above problem, the present invention is configured as follows.
According to the first aspect of the present invention, a mover having a permanent magnet or iron core teeth as a magnetic field, a θ-axis armature winding that generates a rotating magnetic field in the rotating θ-axis direction, and a traveling magnetic field in the straight Z-axis direction are provided. And a stator having a Z-axis armature winding that is generated, and a current is passed through the θ-axis armature winding and the Z-axis armature winding to generate torque in the θ-axis direction. In a θZ actuator that generates a thrust in a direction to perform a rotation operation and a straight movement operation of the mover, an air core portion of the θ-axis armature winding is connected to the θ-axis armature winding and the Z-axis armature winding. This is a crossover processing space.
According to a second aspect of the present invention, the θ-axis armature winding is arranged on either the inner peripheral surface or the outer peripheral surface with respect to the Z-axis winding.
According to a third aspect of the present invention, the longitudinal length of the air core portion of the θ-axis armature winding is longer than the longitudinal length of the Z-axis armature winding.
According to a fourth aspect of the present invention, the θ-axis armature winding is disposed on an inner peripheral surface with respect to the Z-axis armature winding, and the air-core portion of the θ-axis armature winding The length in the longitudinal direction is longer than the length in the longitudinal direction of the Z-axis armature winding.
The invention according to claim 5 is characterized in that the θ-axis armature winding is disposed on the outer peripheral surface with respect to the Z-axis armature winding, and the longitudinal direction of the air core portion of the θ-axis armature winding. The length in the direction is longer than the length in the longitudinal direction of the Z-axis armature winding.
According to a sixth aspect of the present invention, the Z-axis armature winding is subjected to a crossover process at the air core portion of the θ-axis armature winding, and the winding start and winding of the θ-axis armature winding are performed. The last two cables are drawn in the same direction.
According to a seventh aspect of the invention, the two cables are drawn from a gap between the Z-axis armature winding and the θ-axis armature winding.

請求項1〜7に記載の発明によると、θZアクチュエータにおいて渡線処理スペースを確保する目的で、θ軸成形コイルの大きさを幅方向に狭くする必要がないため、同体格(同体積)でθ軸のトルク値を大きくすることが出来る。逆を言えば、同トルク値で小形化することが出来る。また、θ軸電機子巻線をZ軸電機子巻線の内周面または外周面のいずれか一方に配置するように選択することで、回転トルクと推力のいずれかをより大きくすることを選択することが可能である。
また、渡線処理スペースを確保する目的で、モータフレームに複雑な加工等を行う必要がないため、磁気特性のアンバランス量の小さいθZアクチュエータを提供することが出来る。
According to the first to seventh aspects of the present invention, it is not necessary to narrow the size of the θ-axis forming coil in the width direction for the purpose of securing a connecting line processing space in the θZ actuator. The torque value of the θ axis can be increased. In other words, it can be downsized with the same torque value. Also, by selecting to place the θ-axis armature winding on either the inner or outer peripheral surface of the Z-axis armature winding, select to increase either the rotational torque or thrust Is possible.
In addition, since it is not necessary to perform complicated processing or the like on the motor frame for the purpose of securing a wiring processing space, it is possible to provide a θZ actuator with a small magnetic property unbalance amount.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明実施例1の図1は正面図、図2はA−A断面図、図3は矢視B断面図である。本発明の構成要素が従来技術と同じものについては同一符号を付して説明する。 固定子100は、中空のモータフレーム101、θ軸電機子巻線102、Z軸電機子巻線103、L側ロータリーボールスプライン104、反L側ロータリーボールスプライン105、L側ブラケット106、反L側ブラケット107等より構成されている。中空のモータフレーム101内部の、同心円状外周側にθ軸電機子巻線102、内周側にZ軸電機子巻線103が設けられている。モータフレーム101の負荷側端面にL側ブラケット106、反負荷側端面に反L側ブラケット107、またそれぞれにL側ロータリーボールスプライン104、反L側ロータリーボールスプライン105が設けられている。モータフレーム101の外周部には、図示しない電力供給用のモータ端子が設けられている。
図4にθ軸電機子巻線結線図、図5にZ軸電機子巻線結線図を示す。θ軸電機子巻線102は、複数のθ軸成形コイルから構成され図4のとおり接続され、図示しない電力供給用のモータ端子に接続される。Z軸電機子巻線103は、複数のZ軸成形コイルから構成され図5のとおり接続され、図示しない電力供給用のモータ端子に接続される。複数のθ軸成形コイルおよび複数のZ軸成形コイルが前記それぞれの図4および図5のように接続され、図6に示す複数のθ軸成形コイルの空芯部を渡線処理スペース110aとして接続されている。たとえば、U1とU2の渡線160は渡線処理スペース110aで処理され、U1の巻き始め線161とU2の巻き終わり線162は一方方向に引き出され、θ軸電機子巻線102とZ軸電機子巻線103の隙間から端末処理される。また、外周に配置されたθ軸電機子巻線102のZ軸方向長さを、前記θ軸電機子巻線102の内周に配置されたZ軸電機子巻線103のZ軸方向長さより十分長くして、図1に示したL1およびL2寸法を確保し、前記すきまを利用して端末処理を行っている。
検出器150は、検出器フレーム151、θ軸検出ヘッド152、Z軸検出ヘッド153等より構成されている。検出器フレーム151に並べてθ軸検出ヘッド152、Z軸検出ヘッド153が設けられている。
1 of the first embodiment of the present invention is a front view, FIG. 2 is a cross-sectional view taken along the line AA, and FIG. Constituent elements of the present invention that are the same as those of the prior art will be described with the same reference numerals. The stator 100 includes a hollow motor frame 101, a θ-axis armature winding 102, a Z-axis armature winding 103, an L-side rotary ball spline 104, an anti-L-side rotary ball spline 105, an L-side bracket 106, and an anti-L side. It is comprised from the bracket 107 grade | etc.,. Inside the hollow motor frame 101, a θ-axis armature winding 102 is provided on the concentric outer circumference side, and a Z-axis armature winding 103 is provided on the inner circumference side. An L-side bracket 106 is provided on the load side end surface of the motor frame 101, an anti-L side bracket 107 is provided on the non-load side end surface, and an L-side rotary ball spline 104 and an anti-L side rotary ball spline 105 are provided on each. A motor terminal for supplying power (not shown) is provided on the outer periphery of the motor frame 101.
FIG. 4 shows a θ-axis armature winding connection diagram, and FIG. 5 shows a Z-axis armature winding connection diagram. The θ-axis armature winding 102 is composed of a plurality of θ-axis forming coils and is connected as shown in FIG. 4 and is connected to a motor terminal for power supply (not shown). The Z-axis armature winding 103 is composed of a plurality of Z-axis forming coils and is connected as shown in FIG. 5 and is connected to a power supply motor terminal (not shown). A plurality of θ-axis forming coils and a plurality of Z-axis forming coils are connected as shown in FIGS. 4 and 5, respectively, and the air core portions of the plurality of θ-axis forming coils shown in FIG. 6 are connected as a connecting line processing space 110a. Has been. For example, the U1 and U2 crossover lines 160 are processed in the crossover processing space 110a, the U1 winding start line 161 and the U2 winding end line 162 are drawn out in one direction, and the θ-axis armature winding 102 and the Z-axis electric machine Terminal processing is performed from the gap between the child windings 103. Further, the length in the Z-axis direction of the θ-axis armature winding 102 disposed on the outer periphery is greater than the length in the Z-axis direction of the Z-axis armature winding 103 disposed on the inner periphery of the θ-axis armature winding 102. It is made sufficiently long to secure the dimensions L1 and L2 shown in FIG. 1, and the terminal processing is performed using the clearance.
The detector 150 includes a detector frame 151, a θ-axis detection head 152, a Z-axis detection head 153, and the like. A θ-axis detection head 152 and a Z-axis detection head 153 are provided side by side on the detector frame 151.

一方、可動子200は、出力軸201、界磁ヨーク202、永久磁石203、θ軸スケール251、Z軸スケール252等より構成されている。θ軸電機子巻線102とZ軸電機子巻線103に対向する位置の出力軸201の外周に界磁ヨーク202、永久磁石203が同心円状に設けられており、θ軸検出ヘッド152、Z軸検出ヘッド153に対向する位置の出力軸201の外周にθ軸スケール251、Z軸スケール252が並べて設けられている。可動子200は、出力軸201において、L側ロータリーボールスプライン104および反L側ロータリーボールスプライン105により支持され、θ軸方向およびZ軸方向に自由に移動可能となっている。   On the other hand, the mover 200 includes an output shaft 201, a field yoke 202, a permanent magnet 203, a θ-axis scale 251, a Z-axis scale 252 and the like. A field yoke 202 and a permanent magnet 203 are provided concentrically on the outer periphery of the output shaft 201 at a position facing the θ-axis armature winding 102 and the Z-axis armature winding 103, and the θ-axis detection head 152, Z A θ-axis scale 251 and a Z-axis scale 252 are provided side by side on the outer periphery of the output shaft 201 at a position facing the axis detection head 153. The mover 200 is supported on the output shaft 201 by the L-side rotary ball spline 104 and the anti-L-side rotary ball spline 105, and can move freely in the θ-axis direction and the Z-axis direction.

このように構成されたθZアクチュエータは、電流をθ軸電機子巻線102に流すことにより永久磁石203の作る磁界との作用で可動子200にトルクを発生し、また電流をZ軸電機子巻線103に流すことにより永久磁石203の作る磁界との作用で可動子200に推力が発生する。このようにして、可動子200は回転と直進の両方向の動作を実現している。   The θZ actuator configured in this manner generates torque in the mover 200 due to the action of the magnetic field generated by the permanent magnet 203 by flowing a current through the θ-axis armature winding 102, and also transmits the current to the Z-axis armature winding. By flowing through the wire 103, a thrust is generated in the mover 200 by the action of the magnetic field created by the permanent magnet 203. In this manner, the mover 200 realizes both rotational and straight movements.

本発明の実施例2を前記実施例1との相違点のみ抽出して説明する。
図7に示すように内周に配置されたθ軸電機子巻線のZ軸方向長さを、前記θ軸電機子巻線の外周に配置されたZ軸電機子巻線のZ軸方向長さより十分長くして、両電機子巻線のZ軸方向のすきまを利用して渡線処理を行っている。
The second embodiment of the present invention will be described by extracting only the differences from the first embodiment.
As shown in FIG. 7, the length in the Z-axis direction of the θ-axis armature winding arranged on the inner circumference is the length of the Z-axis armature winding arranged in the outer circumference of the θ-axis armature winding. The crossover process is performed by making use of the clearance in the Z-axis direction of both armature windings.

本発明の構成により、θZアクチュエータにおいて渡線処理スペースを確保する目的で、θ軸成形コイルの大きさを幅方向に狭くする必要がないため、同体格(同体積)でθ軸のトルク値を大きくすることが出来る。逆を言えば、同トルク値で小形化することが出来る。また、渡線処理スペースを確保する目的で、モータフレームに複雑な加工等を行う必要がないため、比較的安価で磁気特性のアンバランス量の小さいθZアクチュエータを提供することが出来る。
また、θ軸電機子巻線をZ軸電機子巻線の内周面または外周面のいずれか一方に配置したことで、回転トルクをより大きくしたい場合には、θ軸電機子巻線をZ軸電機子巻線の内周面に配置し、磁路長が短くなるようにし、推力をより大きくしたい場合には、θ軸電機子巻線をZ軸電機子巻線の外周面に配置し、Z軸電機子巻線と可動子間の磁路長が短くなるようにする。
With the configuration of the present invention, it is not necessary to reduce the size of the θ-axis forming coil in the width direction for the purpose of securing a connecting line processing space in the θZ actuator. It can be enlarged. In other words, it can be downsized with the same torque value. Further, since it is not necessary to perform complicated processing or the like on the motor frame for the purpose of securing the wiring processing space, it is possible to provide a θZ actuator that is relatively inexpensive and has a small unbalanced magnetic property.
In addition, when the θ-axis armature winding is arranged on either the inner peripheral surface or the outer peripheral surface of the Z-axis armature winding, and the rotation torque is to be increased, the θ-axis armature winding is If you want to reduce the magnetic path length and increase the thrust by placing it on the inner peripheral surface of the shaft armature winding, place the θ-axis armature winding on the outer peripheral surface of the Z-axis armature winding. The magnetic path length between the Z-axis armature winding and the mover is shortened.

本発明は、1つのアクチュエータで、精密な回転動作と直進動作を実現するθZアクチュエータを提供することが出来る。よって、θZの2自由度動作が要求されるチップマウンタ装置のマウンタヘッドや各種検査装置の検査ヘッドなどの用途に適用することが出来る。   The present invention can provide a θZ actuator that realizes a precise rotational operation and straight-ahead operation with a single actuator. Therefore, the present invention can be applied to applications such as a mounter head of a chip mounter device that requires two-degree-of-freedom movement of θZ and an inspection head of various inspection devices.

本発明実施例のA−A断面図AA sectional view of an embodiment of the present invention 本発明実施例の正面図Front view of the embodiment of the present invention 本発明実施例の矢視B断面図B sectional view of the embodiment of the present invention 本発明実施例のθ軸電機子巻線結線図Θ-axis armature winding connection diagram of the embodiment of the present invention 本発明実施例のZ軸電機子巻線結線図Z-axis armature winding connection diagram of the embodiment of the present invention 本発明実施例の電機子巻線の模式図Schematic diagram of armature winding of an embodiment of the present invention 第2の本発明実施例の断面図Sectional view of the second embodiment of the present invention 従来技術のA−A断面図AA sectional view of the prior art 従来技術の矢視B断面図Cross-sectional view of prior art arrow B

符号の説明Explanation of symbols

100 固定子
101 モータフレーム
102 θ軸電機子巻線
103 Z軸電機子巻線
104 L側ロータリーボールスプライン
105 反L側ロータリーボールスプライン
106 L側ブラケット
107 反L側ブラケット
110a、110b、110c 渡線処理スペース
150 検出器
151 検出器フレーム
152 θ軸検出ヘッド
153 Z軸検出ヘッド
200 可動子
201 出力軸
202 界磁ヨーク
203 永久磁石
251 θ軸スケール
252 Z軸スケール
100 Stator 101 Motor frame 102 θ-axis armature winding 103 Z-axis armature winding 104 L-side rotary ball spline 105 Anti-L-side rotary ball spline 106 L-side bracket 107 Anti-L-side brackets 110a, 110b, 110c Space 150 Detector 151 Detector frame 152 θ-axis detection head 153 Z-axis detection head 200 Movable element 201 Output shaft 202 Field yoke 203 Permanent magnet 251 θ-axis scale 252 Z-axis scale

Claims (7)

界磁とする永久磁石もしくは鉄心歯を備えた可動子と、回転θ軸方向に回転磁界を発生するθ軸電機子巻線と直進Z軸方向に進行磁界を発生するZ軸電機子巻線を備えた固定子とで構成されるとともに、前記θ軸電機子巻線と前記Z軸電機子巻線に電流を通電し、θ軸方向にトルクを、Z軸方向に推力を発生させて前記可動子の回転動作と直進動作を行うθZアクチュエータにおいて、
前記θ軸電機子巻線の空芯部を、前記θ軸電機子巻線および前記Z軸電機子巻線の渡線処理スペースとしたことを特徴とするθZアクチュエータ。
A mover having a permanent magnet or iron core teeth as a field, a θ-axis armature winding that generates a rotating magnetic field in the rotating θ-axis direction, and a Z-axis armature winding that generates a traveling magnetic field in the straight Z-axis direction And a movable current by passing a current through the θ-axis armature winding and the Z-axis armature winding to generate torque in the θ-axis direction and thrust in the Z-axis direction. In the θZ actuator that performs rotation and straight movement of the child,
An θZ actuator characterized in that the air-core portion of the θ-axis armature winding is used as a crossover processing space for the θ-axis armature winding and the Z-axis armature winding.
前記θ軸電機子巻線は、前記Z軸巻線に対して内周面または外周面のいずれか一方に配置されたことを特徴とする請求項1記載のθZアクチュエータ。   The θZ actuator according to claim 1, wherein the θ-axis armature winding is disposed on either the inner peripheral surface or the outer peripheral surface with respect to the Z-axis winding. 前記θ軸電機子巻線の前記空芯部の長手方向の長さが前記Z軸電機子巻線の長手方向の長さより長いことを特徴とする請求項1記載のθZアクチュエータ。   2. The θZ actuator according to claim 1, wherein a length in a longitudinal direction of the air core portion of the θ-axis armature winding is longer than a length in a longitudinal direction of the Z-axis armature winding. 前記θ軸電機子巻線は、前記Z軸電機子巻線に対して内周面に配置され、前記θ軸電機子巻線の前記空芯部の長手方向の長さが前記Z軸電機子巻線の長手方向の長さより長いことを特徴とする請求項1記載のθZアクチュエータ。   The θ-axis armature winding is disposed on the inner peripheral surface with respect to the Z-axis armature winding, and the length in the longitudinal direction of the air core portion of the θ-axis armature winding is the Z-axis armature. The θZ actuator according to claim 1, wherein the θZ actuator is longer than a length in a longitudinal direction of the winding. 前記θ軸電機子巻線は、前記Z軸電機子巻線に対して外周面に配置され、前記θ軸電機子巻線の前記空芯部の長手方向の長さが前記Z軸電機子巻線の長手方向の長さより長いことを特徴とする請求項1記載のθZアクチュエータ。   The θ-axis armature winding is disposed on the outer peripheral surface with respect to the Z-axis armature winding, and the length in the longitudinal direction of the air core portion of the θ-axis armature winding is the Z-axis armature winding. The θZ actuator according to claim 1, wherein the θZ actuator is longer than a length in a longitudinal direction of the line. 前記Z軸電機子巻線は、前記θ軸電機子巻線の前記空芯部で渡線処理され、前記θ軸電機子巻線の巻き始めと巻き終わりの2本のケーブルが同じ方向に引き出されることを特徴とする請求項1記載のθZアクチュエータ。   The Z-axis armature winding is subjected to a crossover process at the air core portion of the θ-axis armature winding, and the two cables at the start and end of winding of the θ-axis armature winding are pulled out in the same direction. The θZ actuator according to claim 1, wherein: 前記2本のケーブルは、前記Z軸電機子巻線と前記θ軸電機子巻線とのすきまから引き出すことを特徴とする請求項4記載のθZアクチュエータ。   5. The θZ actuator according to claim 4, wherein the two cables are led out from a gap between the Z-axis armature winding and the θ-axis armature winding.
JP2007068145A 2007-03-16 2007-03-16 θZ actuator Expired - Fee Related JP5093567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068145A JP5093567B2 (en) 2007-03-16 2007-03-16 θZ actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068145A JP5093567B2 (en) 2007-03-16 2007-03-16 θZ actuator

Publications (2)

Publication Number Publication Date
JP2008236818A true JP2008236818A (en) 2008-10-02
JP5093567B2 JP5093567B2 (en) 2012-12-12

Family

ID=39908942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068145A Expired - Fee Related JP5093567B2 (en) 2007-03-16 2007-03-16 θZ actuator

Country Status (1)

Country Link
JP (1) JP5093567B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142725A (en) * 2010-01-06 2011-07-21 Yaskawa Electric Corp thetaZ ACTUATOR
JP2011239661A (en) * 2010-04-14 2011-11-24 Yaskawa Electric Corp Linear rotary actuator
JP2012016180A (en) * 2010-07-01 2012-01-19 Yaskawa Electric Corp Actuator
JP2012034508A (en) * 2010-07-30 2012-02-16 Yaskawa Electric Corp Actuator
JP2012205364A (en) * 2011-03-24 2012-10-22 Yaskawa Electric Corp Positioning device
US8860261B2 (en) 2010-07-01 2014-10-14 Kabushiki Kaisha Yaskawa Denki Actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275498A (en) * 1995-03-31 1996-10-18 Minolta Co Ltd Linear motor
JP2001333567A (en) * 2000-05-20 2001-11-30 Mirae Corp Linear motor
JP2002354780A (en) * 2001-05-24 2002-12-06 Yaskawa Electric Corp Cylindrical magnetic field liner motor
JP2004343903A (en) * 2003-05-16 2004-12-02 Meidensha Corp Rotary linear synchronous motor
JP2005020885A (en) * 2003-06-26 2005-01-20 Meidensha Corp Rotary linear dc motor
JP2006223090A (en) * 2005-01-17 2006-08-24 Yaskawa Electric Corp Method of winding cylindrical linear motor armature coil, and stator of cylindrical linear motor and cylindrical linear motor using it
JP2007143385A (en) * 2005-10-21 2007-06-07 Yaskawa Electric Corp Direct acting rotation actuator and system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275498A (en) * 1995-03-31 1996-10-18 Minolta Co Ltd Linear motor
JP2001333567A (en) * 2000-05-20 2001-11-30 Mirae Corp Linear motor
JP2002354780A (en) * 2001-05-24 2002-12-06 Yaskawa Electric Corp Cylindrical magnetic field liner motor
JP2004343903A (en) * 2003-05-16 2004-12-02 Meidensha Corp Rotary linear synchronous motor
JP2005020885A (en) * 2003-06-26 2005-01-20 Meidensha Corp Rotary linear dc motor
JP2006223090A (en) * 2005-01-17 2006-08-24 Yaskawa Electric Corp Method of winding cylindrical linear motor armature coil, and stator of cylindrical linear motor and cylindrical linear motor using it
JP2007143385A (en) * 2005-10-21 2007-06-07 Yaskawa Electric Corp Direct acting rotation actuator and system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142725A (en) * 2010-01-06 2011-07-21 Yaskawa Electric Corp thetaZ ACTUATOR
JP2011239661A (en) * 2010-04-14 2011-11-24 Yaskawa Electric Corp Linear rotary actuator
JP2012016180A (en) * 2010-07-01 2012-01-19 Yaskawa Electric Corp Actuator
US8860261B2 (en) 2010-07-01 2014-10-14 Kabushiki Kaisha Yaskawa Denki Actuator
EP2403118A3 (en) * 2010-07-01 2014-10-29 Kabushiki Kaisha Yaskawa Denki Actuator
KR101475555B1 (en) * 2010-07-01 2014-12-31 가부시키가이샤 야스카와덴키 Actuator
JP2012034508A (en) * 2010-07-30 2012-02-16 Yaskawa Electric Corp Actuator
JP2012205364A (en) * 2011-03-24 2012-10-22 Yaskawa Electric Corp Positioning device

Also Published As

Publication number Publication date
JP5093567B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
TWI657645B (en) Linear motor unit
JP4912417B2 (en) Rotary / linear motor
JP5093567B2 (en) θZ actuator
JP2004088992A (en) Production of voice-coil type linear actuators, arrangement using the actuators, and the actuators
JP2011010375A (en) Axial motor
WO2018180721A1 (en) Electric motor
JP2013544483A (en) Rotating electric machine
JP2007267565A (en) Coreless motor
TWI649942B (en) Linear motor
JP2014121102A (en) Coreless electromechanical device, method of manufacturing the same, mobile body, and robot
JP5150123B2 (en) Direct acting electric actuator for vibration control
WO2017047783A1 (en) Linear motor
JP2010093930A (en) Electric motor
JP2014121104A (en) Brushless dc motor, motor unit, optical element driving device and imaging apparatus
JPWO2019008930A1 (en) Stator and motor
JP2010141991A (en) Rotating motor
JP5540482B2 (en) Actuator
JP2010051158A (en) Gap winding motor
JP2011151914A (en) Stator for brushless motors and brushless motor
JP5412720B2 (en) Linear rotary actuator
JP6121784B2 (en) Brushless DC motor, lens barrel and imaging device
JP6761620B2 (en) Rotor
KR20140141858A (en) Sensing module
CN100409544C (en) Flat vibrating motor
JP5685847B2 (en) Electric motor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees