JP2008231677A - Pit mouth forming method - Google Patents

Pit mouth forming method Download PDF

Info

Publication number
JP2008231677A
JP2008231677A JP2007068759A JP2007068759A JP2008231677A JP 2008231677 A JP2008231677 A JP 2008231677A JP 2007068759 A JP2007068759 A JP 2007068759A JP 2007068759 A JP2007068759 A JP 2007068759A JP 2008231677 A JP2008231677 A JP 2008231677A
Authority
JP
Japan
Prior art keywords
discharge
wellhead
forming
retaining wall
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007068759A
Other languages
Japanese (ja)
Inventor
Masaru Kawagoe
勝 河越
Shinji Masuzawa
伸司 増澤
Yukio Kakiuchi
幸雄 垣内
Mamoru Hirabayashi
守 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Fatec Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Fatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, Fatec Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2007068759A priority Critical patent/JP2008231677A/en
Publication of JP2008231677A publication Critical patent/JP2008231677A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pit mouth forming method for forming a pit mouth efficiently at a site located in a city area, a place near a residential area, and the neighborhood where the reduction of underwater level is undesirable. <P>SOLUTION: In this pit mouth forming method for forming the pit mouth for start or arrival of a shield machine on an earth retaining wall 3 provided in a vertical shaft 2, a hole 82 for discharge extended from a wall surface 80 of the earth retaining wall 3 to the inside of the earth retaining wall is formed in a pit mouth forming part 4 of the earth retaining wall, a discharge part 46 of an electrode 40 of a discharge breakdown device 5 and a pressure transmitting medium 83 surrounding the discharge part are installed in the hole 82 for discharge, and then voltage is applied to the electrode 40 for discharge to crush the pit mouth forming part 4 and form the pit mouth. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、都市部、住宅近隣地、近隣の地下水位を下げたくない現場などにおいて放電によって坑口を形成する方法に関する。   The present invention relates to a method of forming a wellhead by electric discharge in an urban area, a residential neighborhood, a site where it is not desired to lower the groundwater level nearby.

立坑の土留め壁にシールドマシンの発進又は到達用の坑口を形成する際、土留め壁の坑口形成部分を発破により破砕して撤去することで坑口を形成する方法が知られている(例えば、特許文献1参照)。
特開平8−246782号公報
When forming a wellhead for starting or reaching a shield machine on the earth retaining wall of a shaft, a method of forming a well opening by crushing and removing the well opening forming part of the earth retaining wall by blasting is known (for example, Patent Document 1).
Japanese Patent Laid-Open No. 8-246782

しかしながら、土留め壁の坑口形成部分を発破により破砕する方法では、破砕時の音(爆発音)が大きいために、都市部、住宅近隣地などにおいては使用できない。また、発破を用いた場合には近隣の地盤への影響が大きく、近隣の地下水位を下げたくない現場などにおいては使用できないことが多い。即ち、発破を用いる方法では、使用できる場所が限られてしまうという問題点があった。
本発明は、上記問題点に鑑み、都市部、住宅近隣地、近隣の地下水位を下げたくない現場などにおいて坑口を効率的に形成できる坑口形成方法を提供する。
However, the method of crushing the pit-forming part of the retaining wall by blasting cannot be used in urban areas, residential areas, etc. because of the loud noise (explosive sound) at the time of crushing. In addition, when blasting is used, it has a large effect on the nearby ground, and it is often not possible to use it at a site where it is not desired to lower the groundwater level in the vicinity. That is, in the method using blasting, there is a problem that the place where it can be used is limited.
In view of the above problems, the present invention provides a wellhead forming method capable of efficiently forming a wellhead in an urban area, a residential neighborhood, a site where it is not desired to lower the groundwater level nearby.

本発明の坑口形成方法は、立坑に設けられた土留め壁にシールドマシンの発進用又は到達用の坑口を形成する坑口形成方法において、土留め壁の坑口形成部分に土留め壁の壁面から土留め壁の内部に延長する放電用孔を形成し、放電用孔内に放電破砕装置の電極の放電部と放電部を取り囲む圧力伝達媒体とを設置した後に、電極に電圧を印加して放電させることによって坑口形成部分を破砕して坑口を形成したことを特徴とする。
土留め壁の壁面から土留め壁の内部に向けて斜め下方向に延長する放電用孔を形成したことも特徴とする。
坑口形成部分において坑口の周面となる部分に沿って自由面形成孔を形成した後に放電用孔内での放電を行ったことも特徴とする。
The wellhead forming method of the present invention is a wellhead forming method for forming a shield machine start or reach wellhead on a retaining wall provided on a vertical shaft, and the earth wall is formed from the wall of the retaining wall to a wellhead forming portion of the retaining wall. A discharge hole extending inside the retaining wall is formed, and after the discharge part of the electrode of the discharge crushing device and the pressure transmission medium surrounding the discharge part are installed in the discharge hole, a voltage is applied to the electrode to cause discharge. Thus, the wellhead forming portion was crushed to form a wellhead.
It is also characterized in that a discharge hole extending obliquely downward from the wall surface of the retaining wall toward the interior of the retaining wall is also characterized.
It is also characterized in that the discharge in the discharge hole is performed after the free surface formation hole is formed along the portion that becomes the peripheral surface of the wellhead in the wellhead formation portion.

本発明の坑口形成方法によれば、都市部、住宅近隣地、近隣の地下水位を下げたくない現場などにおいて坑口を効率的に形成できる。
放電用孔を、土留め壁の壁面から土留め壁の内部に向けて斜め下方向に延長するように形成したので、放電用孔内に充填される圧力伝達媒体の放電用孔からの洩れを防止できる。よって、圧力伝達媒体中での放電を維持できるので、破砕力の低下を防止できる。
坑口形成部分において坑口の周面となる部分に沿って自由面形成孔を形成したので、放電により生じた亀裂が自由面に到達しやすくなり、坑口形成部分を効率的に破砕できる。
According to the wellhead forming method of the present invention, it is possible to efficiently form a wellhead in an urban area, a residential neighborhood, a site where it is not desired to lower the groundwater level nearby.
Since the discharge hole is formed to extend obliquely downward from the wall of the retaining wall toward the interior of the retaining wall, leakage of the pressure transmission medium filled in the discharge hole from the discharge hole is prevented. Can be prevented. Therefore, since the discharge in the pressure transmission medium can be maintained, a reduction in crushing force can be prevented.
Since the free surface forming hole is formed along the portion that becomes the peripheral surface of the wellhead in the wellhead forming portion, the crack generated by the discharge easily reaches the free surface, and the wellhead forming portion can be efficiently crushed.

図1乃至図7は最良の形態1を示し、図1は坑口形成装置を示し、図2は坑口形成部分を備えた土留め壁を正面から見て示し、図3は土留め壁の断面を示し、図4は芯柱体を分解して示し、図5は芯柱体の接続部による接続を示し、図6は放電破砕装置を示し、図7は間隔保持材による電線間の間隔保持状態を断面で示す。   1 to FIG. 7 show the best mode 1, FIG. 1 shows a wellhead forming apparatus, FIG. 2 shows a retaining wall provided with a wellhead forming portion as viewed from the front, and FIG. 3 shows a cross section of the retaining wall. 4 shows an exploded view of the core column body, FIG. 5 shows the connection by the connecting portion of the core column body, FIG. 6 shows the electric discharge crushing device, and FIG. Is shown in cross section.

図1に示すように、坑口形成装置1は、立坑2の土留め壁3に設けられた坑口形成部分4、放電破砕装置5を備える。   As shown in FIG. 1, the wellhead forming device 1 includes a wellhead forming portion 4 and a discharge crushing device 5 provided on the earth retaining wall 3 of the shaft 2.

図2に示すように、土留め壁3は、地盤の地山7に複数の土留め柱体51が横に複数並設されたことによって形成される。図3に示すように、土留め柱体51は、芯柱体52、止水部53を備える。止水部53は、例えば、強度の小さいソイルセメントと呼ばれるような固化材により形成される。図4に示すように、芯柱体52は、坑口形成部55と鋼材56とを備える。   As shown in FIG. 2, the retaining wall 3 is formed by arranging a plurality of retaining pillars 51 side by side on the ground ground 7. As shown in FIG. 3, the earth retaining column 51 includes a core column 52 and a water stop 53. The water stop part 53 is formed of a solidified material called a soil cement having a low strength, for example. As shown in FIG. 4, the core column body 52 includes a wellhead forming portion 55 and a steel material 56.

坑口形成部55は、例えば高強度モルタル又はコンクリートのような固化材により形成される。坑口形成部55は、上下に設けられた鋼材接続用の接続部57とを備える。このような坑口形成部55は、接続部57の一部が図外の型枠の両端より突出するように接続部57が型枠に設置された状態で、型枠内に固化材を充填して硬化させることによって形成できる。坑口形成部55の上の接続部57aに上部鋼材56aが繋がれ、坑口形成部55の下の接続部57bに下部鋼材56bが繋がれる。接続部57及び鋼材56は例えばH形鋼により形成される。接続部57と鋼材56との接続は、リベット継手、溶接、ボルト及びナット等の接続手段により接続される。例えば、図5に示すように、接続部57と鋼材56とがこれらボルト59a及びナット59bで連結された連結板60によって互いに接続されたことによって、上部鋼材56aと下部鋼材56bとの間に坑口形成部55が設けられた芯柱体52が形成される。尚、坑口形成部分4の径は図外のシールドマシンの外径以上に設定され、芯柱体52の長さは地上10から坑口形成部分4を超えた長さに形成される。芯柱体52の上部鋼材56aや下部鋼材56bや坑口形成部55の長さは、坑口形成部分4の場所によって各々異なる。即ち、上の接続部57aには坑口形成部分4の上端部から地上10までの長さに合わせた長さの上部鋼材56aが接続され、下の接続部57bには坑口形成部分4の下端部から土留め壁3の下端までの長さに合わせた長さの鋼材56が接続されることによって、芯柱体52が形成される。   The wellhead forming portion 55 is formed of a solidified material such as high strength mortar or concrete. The wellhead formation part 55 is provided with the connection part 57 for the steel material connection provided up and down. Such a wellhead forming part 55 is filled with a solidifying material in the mold with the connecting part 57 installed on the mold so that a part of the connecting part 57 protrudes from both ends of the mold not shown. It can be formed by curing. The upper steel material 56a is connected to the connecting portion 57a above the wellhead forming portion 55, and the lower steel material 56b is connected to the connecting portion 57b below the wellhead forming portion 55. The connecting portion 57 and the steel material 56 are formed of, for example, H-shaped steel. The connection part 57 and the steel material 56 are connected by connection means such as a rivet joint, welding, a bolt, and a nut. For example, as shown in FIG. 5, the connecting portion 57 and the steel material 56 are connected to each other by a connecting plate 60 connected by these bolts 59a and nuts 59b, so that a wellhead is formed between the upper steel material 56a and the lower steel material 56b. The core column body 52 provided with the forming portion 55 is formed. The diameter of the wellhead forming portion 4 is set to be equal to or larger than the outside diameter of the shield machine (not shown), and the length of the core column body 52 is formed from the ground 10 to the length beyond the wellhead forming portion 4. The lengths of the upper steel member 56a, the lower steel member 56b, and the wellhead forming portion 55 of the core column body 52 are different depending on the location of the wellhead forming portion 4. That is, the upper connecting portion 57a is connected to the upper steel material 56a having a length corresponding to the length from the upper end portion of the wellhead forming portion 4 to the ground 10 and the lower connecting portion 57b is the lower end portion of the wellhead forming portion 4. A core column body 52 is formed by connecting a steel material 56 having a length matching the length from the bottom to the bottom of the retaining wall 3.

最良の形態1の芯柱体52によれば、坑口形成部55が高強度モルタル又はコンクリートのような固化材により形成されたので、シールドマシンのカッタで切削可能な炭素繊維含有コンクリートなどの材料で形成された坑口形成部分を備えた構成と比べて、芯柱体52及びこれを用いた土留め壁3のコスト、ひいては、坑口形成作業に係るコストを削減できる。尚、この芯柱体52によって坑口形成前の土留め壁3の強度を持たせているとともに、坑口形成部55が後述する放電によって壊れやすい高強度モルタル又はコンクリートのような固化材のみにより形成されたので、坑口形成部55を後述する放電破砕装置5による放電で容易に壊せて、シールドマシンの負担を軽減できる。   According to the core column body 52 of the best mode 1, since the wellhead forming portion 55 is formed of a solidified material such as high-strength mortar or concrete, it is made of a material such as carbon fiber-containing concrete that can be cut with a cutter of a shield machine. Compared with the structure provided with the formed wellhead formation part, the cost of the core pillar body 52 and the earth retaining wall 3 using the same, and the cost concerning the wellhead formation work can be reduced. The core column body 52 provides the strength of the retaining wall 3 before the formation of the wellhead, and the wellhead forming portion 55 is formed only by a solidified material such as high-strength mortar or concrete that is easily broken by discharge described later. Therefore, the wellhead forming portion 55 can be easily broken by discharge by the discharge crushing device 5 described later, and the burden on the shield machine can be reduced.

土留め壁3の形成方法を説明する。地上10からアースオーガーのような掘削機械を使用して地盤の地山7を掘削して地山7の深さ方向に断面円形の孔99(図1;3参照)を形成する。この場合、孔99を形成しながら孔99内に止水部53を形成する固化材としてのセメントミルクを注入し、現位置の土砂と攪拌してソイルセメントを形成していく。孔99を所望の深さまで形成した後に、未固結状態のソイルセメントが入った孔99内に、芯柱体52を下部鋼材56b側から建て込むことによって、硬化したソイルセメントが止水部53として機能する。図2に示すように、複数の土留め柱体51が横に複数並設されることによって、複数の土留め柱体51の坑口形成部55から成る坑口形成部分4を備えた土留め壁3が形成される。
尚、図2の4Aは坑口形成部分4に形成しようとする坑口の予想線である。また、図3の左の土留め柱体51の断面は土留め柱体51の上部鋼材56aの部分を切断した断面を図示し、図3の中央の土留め柱体51の断面は土留め柱体51の坑口形成部55の部分を切断した断面を図示し、図3の右の土留め柱体51の断面は土留め柱体51の下部鋼材56bの部分を切断した断面を図示した。
A method for forming the earth retaining wall 3 will be described. A ground ground 7 is excavated from the ground 10 using an excavating machine such as an earth auger to form a hole 99 (see FIGS. 1 and 3) having a circular cross section in the depth direction of the ground 7. In this case, cement milk as a solidifying material for forming the water stop portion 53 is poured into the hole 99 while forming the hole 99, and stirred with the earth and sand at the current position to form a soil cement. After the hole 99 is formed to a desired depth, the core column body 52 is built from the lower steel material 56b side into the hole 99 containing the unconsolidated soil cement, so that the hardened soil cement is stopped. Function as. As shown in FIG. 2, a plurality of retaining pillars 51 are arranged side by side so that the retaining wall 3 provided with a wellhead forming portion 4 including a wellhead forming portion 55 of the plurality of retaining pillars 51. Is formed.
2A is an expected line of the wellhead to be formed in the wellhead forming portion 4. FIG. Further, the cross section of the left retaining column 51 in FIG. 3 shows a cross section obtained by cutting the portion of the upper steel material 56a of the retaining column 51, and the cross section of the central retaining column 51 in FIG. 3 is the retaining column. The cross section which cut | disconnected the part of the wellhead formation part 55 of the body 51 was illustrated, and the cross section of the earth retaining column body 51 of the right of FIG. 3 illustrated the cross section which cut | disconnected the part of the lower steel material 56b of the earth retaining column body 51.

図6;7を参照し、放電破砕装置5を説明する。放電破砕装置5は、電源装置8、電極装置9を備える。
電源装置8は、昇圧装置12、パルスパワー出力装置13を備える。昇圧装置12は、電源電圧入力部14A、図外の変圧器を備えた昇圧回路15、出力部14を備える。昇圧回路15は、電源電圧入力部14Aに接続された電源ケーブル14C経由で三相交流200V電源電圧を入力して例えば直流22kVの電圧を生成し、直流22kVの電圧を出力部14より出力する。出力部14は、正極端子14aと負極端子14bとを備える。パルスパワー出力装置13は、入力端子16、充電回路17、出力部としての電極接続部18を備える。入力端子16は、正極端子16aと負極端子16bとを備える。電極接続部18は、正極端子18aと負極端子18bとを備える。充電回路17は、正極線17a、負極線17b、コンデンサ装置19、コンデンサ装置接続部20、スイッチ21;22を備える。正極線17aには、スイッチ21とスイッチ22とが直列に接続される。正極線17aの一端が入力端子16の正極端子16aに接続され、正極線17aの他端が電極接続部18の正極端子18aに接続される。負極線17bの一端が入力端子16の負極端子16bに接続され、負極線17bの他端が電極接続部18の負極端子18bに接続される。コンデンサ装置接続部20は、正極線17aにおけるスイッチ21とスイッチ22との間に並列に接続された複数の正極接続端子20aと、負極線17bに並列に接続された複数の負極接続端子20bとを備える。1対の正極接続端子20aと負極接続端子20bとによりコンデンサ装置19を1つ接続するためのコンデンサ装置接続端子20Aが形成される。即ち、コンデンサ装置接続部20は、複数のコンデンサ装置接続端子20Aを備えるため、昇圧装置12及び電極接続部18に複数のコンデンサ装置19を接続可能である。コンデンサ装置接続部20は、例えば6個のコンデンサ装置接続端子20Aを備え、1個から6個までの任意の数のコンデンサ装置19を接続可能である。即ち、コンデンサ装置19を1個から6個まで任意に増減可能な電源装置8を得ることができる。スイッチ21はコンデンサ装置19に昇圧装置12から供給された電圧を充電させるためのスイッチ、スイッチ22はコンデンサ装置19に充電された電荷を放電させて電極接続部18経由で電極装置9に出力させるためのスイッチである。図示しないが、充電回路17は接地(アース)されている。
The electric discharge crushing apparatus 5 is demonstrated with reference to FIG. The discharge crushing device 5 includes a power supply device 8 and an electrode device 9.
The power supply device 8 includes a booster device 12 and a pulse power output device 13. The booster 12 includes a power supply voltage input unit 14A, a booster circuit 15 including a transformer (not shown), and an output unit 14. The booster circuit 15 inputs a three-phase AC 200V power supply voltage via a power supply cable 14C connected to the power supply voltage input unit 14A, generates a 22 kV DC voltage, for example, and outputs a 22 kV DC voltage from the output unit 14. The output unit 14 includes a positive terminal 14a and a negative terminal 14b. The pulse power output device 13 includes an input terminal 16, a charging circuit 17, and an electrode connection unit 18 as an output unit. The input terminal 16 includes a positive terminal 16a and a negative terminal 16b. The electrode connecting portion 18 includes a positive terminal 18a and a negative terminal 18b. The charging circuit 17 includes a positive electrode line 17a, a negative electrode line 17b, a capacitor device 19, a capacitor device connection unit 20, and switches 21; 22. A switch 21 and a switch 22 are connected in series to the positive electrode line 17a. One end of the positive electrode line 17 a is connected to the positive electrode terminal 16 a of the input terminal 16, and the other end of the positive electrode line 17 a is connected to the positive electrode terminal 18 a of the electrode connection part 18. One end of the negative electrode wire 17 b is connected to the negative electrode terminal 16 b of the input terminal 16, and the other end of the negative electrode wire 17 b is connected to the negative electrode terminal 18 b of the electrode connection portion 18. The capacitor device connection unit 20 includes a plurality of positive electrode connection terminals 20a connected in parallel between the switch 21 and the switch 22 in the positive electrode line 17a and a plurality of negative electrode connection terminals 20b connected in parallel to the negative electrode line 17b. Prepare. A capacitor device connection terminal 20A for connecting one capacitor device 19 is formed by the pair of positive electrode connection terminal 20a and negative electrode connection terminal 20b. That is, since the capacitor device connection unit 20 includes a plurality of capacitor device connection terminals 20 </ b> A, a plurality of capacitor devices 19 can be connected to the booster device 12 and the electrode connection unit 18. The capacitor device connection unit 20 includes, for example, six capacitor device connection terminals 20A and can connect any number of capacitor devices 19 from one to six. That is, it is possible to obtain the power supply device 8 capable of arbitrarily increasing or decreasing the capacitor device 19 from one to six. The switch 21 is a switch for charging the voltage supplied from the booster 12 to the capacitor device 19, and the switch 22 is for discharging the charge charged in the capacitor device 19 and outputting it to the electrode device 9 via the electrode connection portion 18. It is a switch. Although not shown, the charging circuit 17 is grounded.

電極装置9は、接続コード部31、電極部32を備える。接続コード部31は、電源装置8の電極接続部18の正極端子18a及び負極端子18bの各々に接続される正極端子35a及び負極端子35bを備えた入力側コネクタ35と、電極部32の電極接続コネクタ36に接続される出力側コネクタ37と、入力側コネクタ35と出力側コネクタ37とを接続する電気接続コード38とを備える。
電極部32は、出力側コネクタ37と接続される電極接続コネクタ36と、電極40とを備える。つまり、電極部32は、接続コード部31の出力側コネクタ37に着脱可能な電極接続コネクタ36を備え、電極接続コネクタ36が電線43を着脱自在に接続できる図外の電線取付部を備えるため、後述するワイヤ電極41を容易に交換できる。
The electrode device 9 includes a connection cord portion 31 and an electrode portion 32. The connection cord part 31 includes an input side connector 35 having a positive terminal 35a and a negative terminal 35b connected to each of the positive terminal 18a and the negative terminal 18b of the electrode connection part 18 of the power supply device 8, and an electrode connection of the electrode part 32. An output side connector 37 connected to the connector 36 and an electrical connection cord 38 for connecting the input side connector 35 and the output side connector 37 are provided.
The electrode unit 32 includes an electrode connection connector 36 connected to the output side connector 37 and an electrode 40. That is, since the electrode portion 32 includes an electrode connection connector 36 that can be attached to and detached from the output-side connector 37 of the connection cord portion 31, and the electrode connection connector 36 includes an unillustrated electric wire attachment portion that can connect the electric wire 43 detachably, The wire electrode 41 described later can be easily replaced.

図6に示すように、電極40は、例えば、ワイヤ電極41、あるいは、同軸電極42を用いる。
ワイヤ電極41は、電線43が切断され、電線43の切断面と電線43の切断面との間が間隔保持材45によって一定の放電間隔(ギャップ)に維持されたことによって放電部46が形成された構成である。電線43は、例えば線径2mm〜3mm程度の銅線のような導体線の周囲がビニル樹脂などの樹脂で被覆された線径4mm〜5mm程度の、いわゆる被覆線により形成される。ワイヤ電極41は放電部46を1つ以上備える。
As shown in FIG. 6, for example, a wire electrode 41 or a coaxial electrode 42 is used as the electrode 40.
In the wire electrode 41, the electric wire 43 is cut, and a discharge portion 46 is formed by maintaining a constant discharge interval (gap) between the cut surface of the electric wire 43 and the cut surface of the electric wire 43 by the interval holding member 45. It is a configuration. The electric wire 43 is formed of a so-called covered wire having a wire diameter of about 4 mm to 5 mm in which a conductor wire such as a copper wire having a wire diameter of about 2 mm to 3 mm is covered with a resin such as vinyl resin. The wire electrode 41 includes one or more discharge portions 46.

図7に示すように、間隔保持材45は、筒状に形成され、筒孔の両端部により形成された電線固定部61;62と、筒孔の中央部により形成された間隔維持部63とを備える。電線固定部61;62の孔径は電線43が嵌合する寸法の径に形成される。間隔維持部63の孔径は電線固定部61;62の径よりも小さい径に形成される。電線固定部61、電線固定部62、間隔維持部63の中心軸は同一である。間隔維持部63と電線固定部61;62との段差部である段差面によりストッパとしての電線端面突当面64;65が形成される。
電線固定部61;62に嵌合された電線43;43の端面がそれぞれ電線端面突当面64;65に突き当てられた状態で、間隔保持材45と電線43とが図外の接着テープや接着剤などで互いに固定されることによって、間隔維持部63が電線43と電線43との間に放電ギャップgを形成する。即ち、間隔維持部63が電線固定部61;62に固定された電線43の端面と電線43の端面との間に放電ギャップとしての間隔gを維持するので、放電部46の放電ギャップを簡単かつ正確に設定できる。尚、絶縁ビニル粘着テープ、締結バンド、ゴムバンド、専用の接続具などを間隔保持材45として使用してもよい。
As shown in FIG. 7, the spacing member 45 is formed in a cylindrical shape, and is a wire fixing portion 61; 62 formed by both end portions of the cylindrical hole, and a spacing maintaining portion 63 formed by the central portion of the cylindrical hole. Is provided. The hole diameters of the electric wire fixing portions 61; 62 are formed to have a diameter with which the electric wires 43 can be fitted. The hole diameter of the space | interval maintenance part 63 is formed in the diameter smaller than the diameter of the electric wire fixing | fixed part 61; 62. The central axes of the wire fixing portion 61, the wire fixing portion 62, and the interval maintaining portion 63 are the same. Electric wire end face abutting surfaces 64; 65 as stoppers are formed by step surfaces which are step portions between the spacing maintaining portion 63 and the electric wire fixing portions 61; 62.
In the state where the end surfaces of the wires 43; 43 fitted to the wire fixing portions 61; 62 are respectively abutted against the wire end surface abutting surfaces 64; 65, the spacing member 45 and the wires 43 are not shown in the figure. The gap maintaining part 63 forms a discharge gap g between the electric wires 43 by being fixed to each other with an agent or the like. That is, the gap maintaining unit 63 maintains the gap g as a discharge gap between the end surface of the electric wire 43 fixed to the electric wire fixing unit 61; 62 and the end surface of the electric wire 43. It can be set accurately. Note that an insulating vinyl adhesive tape, a fastening band, a rubber band, a dedicated connector, or the like may be used as the spacing member 45.

図6に示すように、同軸電極42は、例えば、+電極のような一方電極としての棒状の内部導体73と、内部導体73の外周囲を被覆する筒状の絶縁体74と、絶縁体74の外周囲に設けられた−電極のような他方電極としての外部導体75とにより構成される。外部導体75は、内部導体73の中心線に沿った方向に間隔を隔てて設けられた複数の浮遊電極76を構成する。浮遊電極76とは、電源側と電気的に絶縁された電極のことである。絶縁体74の先端74tより突出して露出する内部導体73の先端部により形成された先端電極73tとこの先端電極73tに最も近い浮遊電極76である先端側浮遊電極76tとの間で先端側放電ギャップ77が形成され、互いに対向する浮遊電極76同士の端部76sと端部76sとの間で中間側放電ギャップ78が形成される。中間側放電ギャップ78は複数形成される。先端側放電ギャップ77を隔てて配置された先端電極73tと先端側浮遊電極76tとによって放電部が形成される。中間側放電ギャップ78を隔てて配置された浮遊電極76と浮遊電極76とによって放電部が形成される。即ち、同軸電極42は、複数の放電部を備える。この場合、電極部32は、出力側コネクタ37と接続される電極接続コネクタ36と、同軸電極42とを備えるので、出力側コネクタ37に対する電極接続コネクタ36の着脱により同軸電極42を容易に交換できる。   As shown in FIG. 6, the coaxial electrode 42 includes, for example, a rod-shaped inner conductor 73 as one electrode such as a + electrode, a cylindrical insulator 74 that covers the outer periphery of the inner conductor 73, and an insulator 74. And an outer conductor 75 as the other electrode, such as a negative electrode. The outer conductor 75 constitutes a plurality of floating electrodes 76 provided at intervals in a direction along the center line of the inner conductor 73. The floating electrode 76 is an electrode that is electrically insulated from the power supply side. A tip-side discharge gap between the tip electrode 73t formed by the tip of the internal conductor 73 protruding and exposed from the tip 74t of the insulator 74 and the tip-side floating electrode 76t that is the floating electrode 76 closest to the tip electrode 73t. 77 is formed, and an intermediate discharge gap 78 is formed between the end 76s and the end 76s of the floating electrodes 76 facing each other. A plurality of intermediate discharge gaps 78 are formed. A discharge portion is formed by the tip electrode 73t and the tip side floating electrode 76t arranged with the tip side discharge gap 77 therebetween. A discharge portion is formed by the floating electrode 76 and the floating electrode 76 arranged with the intermediate discharge gap 78 therebetween. That is, the coaxial electrode 42 includes a plurality of discharge portions. In this case, since the electrode portion 32 includes the electrode connection connector 36 connected to the output side connector 37 and the coaxial electrode 42, the coaxial electrode 42 can be easily replaced by attaching and detaching the electrode connection connector 36 to the output side connector 37. .

次に坑口形成方法を説明する。土留め壁3を形成し、土留め壁3で囲まれた内側の地盤を掘削してシールドマシンの発進用の立坑2を形成する。そして、土留め壁3の坑口形成部分4に土留め壁3の壁面80(立坑2の内壁面)から土留め壁3の内部に延長する自由面形成孔81及び放電用孔82を形成する。例えば、図2に示すように、坑口形成部分4において坑口の周面となる部分に沿って自由面形成孔81を形成するとともに、坑口形成部分4において坑口の周面の内側となる部分に放電用孔82を複数形成する。自由面形成孔81は、坑口形成部分4を取り囲むように坑口の予想線4Aに沿って連続する連続削孔により形成することが好ましい。放電用孔82は、土留め壁3の壁面80から土留め壁3の内部に向けて斜め下方向に延長するように形成する。放電用孔82と自由面形成孔81との間の距離a、互いに隣合う放電用孔82と放電用孔82との間の距離bは、経験によって決める。例えば、距離aは30cm程度、距離bは30cm程度とする。   Next, a method for forming a wellhead will be described. The earth retaining wall 3 is formed, and the inner ground surrounded by the earth retaining wall 3 is excavated to form the shaft 2 for starting the shield machine. Then, a free surface forming hole 81 and a discharge hole 82 extending from the wall surface 80 of the retaining wall 3 (inner wall surface of the shaft 2) to the inside of the retaining wall 3 are formed in the well opening forming portion 4 of the retaining wall 3. For example, as shown in FIG. 2, the free surface forming hole 81 is formed along the portion that becomes the peripheral surface of the wellhead in the wellhead forming portion 4, and the discharge is performed on the inside of the peripheral surface of the wellhead in the wellhead forming portion 4 A plurality of use holes 82 are formed. The free surface forming hole 81 is preferably formed by continuous drilling along the predicted line 4A of the wellhead so as to surround the wellhead forming portion 4. The discharge hole 82 is formed to extend obliquely downward from the wall surface 80 of the retaining wall 3 toward the interior of the retaining wall 3. The distance a between the discharge hole 82 and the free surface forming hole 81 and the distance b between the discharge hole 82 and the discharge hole 82 adjacent to each other are determined by experience. For example, the distance a is about 30 cm and the distance b is about 30 cm.

放電作業は、放電用孔82内に電極40の放電部46と放電部46を取り囲む水などの電解液やゲルのような圧力伝達媒体83とを設置した後に、電極40に電圧を印加して放電させる。これにより、坑口形成部分4を破砕できる。その後、シールドマシンを立坑2内に搬入して駆動し、その破砕された破片をシールドマシンの図外のスクリューコンベアや排土ポンプ等の排土装置でシールドマシンの後方に送って排出する。即ち、立坑2の内側の坑口形成部分4が放電によって破砕された後に、その破片がシールドマシンによって撤去される。この場合、放電による破砕によって坑口形成部分4を破砕するので、坑口形成部分4を細かく破砕できる。以上によって、発進用の坑口が形成される。尚、シールドマシンの到達用の坑口の形成も同様に行える。   The discharge operation is performed by applying a voltage to the electrode 40 after installing the discharge portion 46 of the electrode 40 in the discharge hole 82 and a pressure transmission medium 83 such as water or the like surrounding the discharge portion 46. Discharge. Thereby, the wellhead formation part 4 can be crushed. Thereafter, the shield machine is carried into the shaft 2 and driven, and the crushed pieces are sent to the rear of the shield machine by a soil removal device such as a screw conveyor or a soil discharge pump outside the shield machine. That is, after the pit formation portion 4 inside the shaft 2 is crushed by electric discharge, the fragments are removed by the shield machine. In this case, since the wellhead forming portion 4 is crushed by crushing by discharge, the wellhead forming portion 4 can be finely crushed. As a result, the starting wellhead is formed. It is also possible to form a wellhead for reaching the shield machine.

最良の形態によれば、放電による破砕時に生じる音は発破を用いて破砕する場合に比べて小さいので、都市部、住宅近隣地などにおいても使用でき、放電により瞬間的に発生する圧力波と圧力伝達媒体83の気化による体積膨張により放電用孔82内の圧力を高めることによって破砕するので、坑口を効率的に形成できる。また、放電による破砕は近隣の地盤への影響が少なく、近隣の地下水位を下げたくない現場においても使用でき、坑口を効率的に形成できる。
尚、上記放電を行う際に、鋼板などの蓋やシールドマシンのカッタヘッドの先端面で放電用孔82の壁面80側の開口を塞いだ後に放電を行えば、放電の際の放電用孔82内から外部への圧力漏れを防止できて破砕力を大きくでき、坑口形成部分4を効果的に破砕できる。
According to the best mode, the sound generated at the time of crushing by electric discharge is smaller than that when crushing by blasting, so it can be used in urban areas, residential areas, etc. Since the crushing is performed by increasing the pressure in the discharge hole 82 by the volume expansion caused by the vaporization of the transmission medium 83, the wellhead can be formed efficiently. Moreover, crushing due to electric discharge has little influence on the nearby ground, and can be used at a site where it is not desired to lower the groundwater level in the vicinity, so that a wellhead can be formed efficiently.
When performing the above-mentioned discharge, if discharge is performed after closing the opening on the wall surface 80 side of the discharge hole 82 with the lid of the steel plate or the cutter head of the shield machine, the discharge hole 82 at the time of discharge is used. The pressure leakage from the inside to the outside can be prevented, the crushing force can be increased, and the wellhead forming portion 4 can be effectively crushed.

最良の形態によれば、放電用孔82を、土留め壁3の壁面80から土留め壁3の内部に向けて斜め下方向に延長するように形成したので、放電用孔82内に充填される圧力伝達媒体83の放電用孔82からの洩れを防止できる。よって、圧力伝達媒体83中での放電を維持できるので、破砕力の低下を防止できる。また、放電用孔82内へ圧力伝達媒体83を充填しやすくなり、また、充填し直し作業なども少なくできる。   According to the best mode, the discharge hole 82 is formed so as to extend obliquely downward from the wall surface 80 of the retaining wall 3 toward the interior of the retaining wall 3, so that the discharge hole 82 is filled. Leakage from the discharge hole 82 of the pressure transmission medium 83 can be prevented. Therefore, since the discharge in the pressure transmission medium 83 can be maintained, a reduction in crushing force can be prevented. In addition, the pressure transmission medium 83 can be easily filled into the discharge hole 82, and refilling work can be reduced.

最良の形態によれば、坑口形成部分4において坑口の周面となる部分に沿って自由面形成孔81を形成したので、放電により生じた亀裂が自由面に到達しやすくなり、坑口形成部分4を効率的に破砕できる。特に、自由面形成孔81を連続削孔により形成したので、所望の径の坑口を効率的に形成できる。   According to the best mode, since the free surface forming hole 81 is formed along the portion that becomes the peripheral surface of the wellhead in the wellhead forming portion 4, cracks generated by the discharge easily reach the free surface, and the wellhead forming portion 4 is formed. Can be efficiently crushed. In particular, since the free surface forming hole 81 is formed by continuous drilling, a wellhead having a desired diameter can be formed efficiently.

最良の形態によれば、坑口形成部分4をシールドマシンで切削するのではなく、放電により破砕したので、坑口形成部分4をシールドマシンで切削するため専用の超硬カッタが不要となってコストを低減でき、切削に要するシールドマシンの作業負担もなくなる。   According to the best mode, the wellhead forming portion 4 is not cut by a shield machine, but is crushed by electric discharge, so that a dedicated cemented carbide cutter is not required because the wellhead forming portion 4 is cut by a shield machine. This can reduce the work load of the shield machine required for cutting.

最良の形態によれば、放電破砕によって坑口形成部分4を細かく破砕でき、その破片をシールドマシンの排土装置で効率的に排出できるので、破片の排出作業の効率化が図れる。   According to the best mode, the well opening forming portion 4 can be finely crushed by electric discharge crushing, and the fragments can be efficiently discharged by the earthing device of the shield machine.

最良の形態によれば、高強度モルタル又はコンクリートのような固化材により形成された坑口形成部55を備えた芯柱体52を使用したので、芯柱体52及びこれを用いた土留め壁3のコスト、ひいては、坑口形成作業に係るコストを削減できる。   According to the best mode, since the core column body 52 having the wellhead forming portion 55 formed of a solidified material such as high-strength mortar or concrete is used, the core column body 52 and the earth retaining wall 3 using the core column body 52 are used. Cost, and in turn, the cost related to the wellhead formation work can be reduced.

放電部46を囲むように圧力伝達媒体83を充填した袋や箱を備えた電極40を用いれば、放電用孔82の向きは下向きでなくとも良い。
本発明の放電による坑口形成方法は、H型鋼やシートパイル等の鋼矢板による鋼材を型枠として構築した鉄筋コンクリート製の土留め壁や、連壁(地中連続壁)による鉄筋コンクリート製の土留め壁に坑口を形成する場合にも適用できる。この場合、コンクリート部分を破砕した後、破砕されない鉄筋部分を除去すればよい。
If the electrode 40 including a bag or a box filled with the pressure transmission medium 83 so as to surround the discharge unit 46 is used, the direction of the discharge hole 82 may not be downward.
The method of forming a wellhead by electric discharge according to the present invention includes a reinforced concrete retaining wall constructed using steel sheet piles such as H-shaped steel and sheet pile as a formwork, and a reinforced concrete retaining wall made of continuous walls (continuous underground wall). The present invention can also be applied when forming a wellhead. In this case, after the concrete portion is crushed, the rebar portion that is not crushed may be removed.

坑口形成装置を示す構成図(最良の形態)。The block diagram which shows a well-hole formation apparatus (best form). 土留め壁の正面図(最良の形態)。Front view of earth retaining wall (best mode). 土留め壁の断面図(最良の形態)。Cross-sectional view of the earth retaining wall (best mode). 芯柱体の分解斜視図(最良の形態)。The exploded perspective view of the core pillar (the best form). 芯柱体の接続部と鋼材との接続状態を示す図(最良の形態)。The figure which shows the connection state of the connection part of a core pillar body, and steel materials (best form). 放電破砕装置を示す構成図(最良の形態)。The block diagram which shows an electric discharge crushing apparatus (best form). 間隔保持材を示す断面図(最良の形態)。Sectional drawing which shows a space | interval maintenance material (best form).

符号の説明Explanation of symbols

1 坑口形成装置、2 立坑、3 土留め壁、4 坑口形成部分、
5 放電破砕装置、40 電極、46 放電部、80 土留め壁の壁面、
81 自由面形成孔、82 放電用孔、83 圧力伝達媒体。
1 wellhead forming equipment, 2 shafts, 3 retaining walls, 4 wellhead forming parts,
5 discharge crushing device, 40 electrodes, 46 discharge section, 80 wall of earth retaining wall,
81 free surface forming holes, 82 discharge holes, 83 pressure transmission medium.

Claims (3)

立坑に設けられた土留め壁にシールドマシンの発進用又は到達用の坑口を形成する坑口形成方法において、土留め壁の坑口形成部分に土留め壁の壁面から土留め壁の内部に延長する放電用孔を形成し、放電用孔内に放電破砕装置の電極の放電部と放電部を取り囲む圧力伝達媒体とを設置した後に、電極に電圧を印加して放電させることによって坑口形成部分を破砕して坑口を形成したことを特徴とする坑口形成方法。   Discharge extending from the wall of the retaining wall to the inside of the retaining wall in the well opening forming method of forming a wellhead for starting or reaching the shield machine in the retaining wall provided in the shaft After forming the hole for discharge and installing the discharge part of the electrode of the discharge crushing device and the pressure transmission medium surrounding the discharge part in the discharge hole, the voltage is applied to the electrode to discharge and crush the wellhead forming part A wellhead formation method characterized by forming a wellhead. 土留め壁の壁面から土留め壁の内部に向けて斜め下方向に延長する放電用孔を形成したことを特徴とする請求項1に記載の坑口形成方法。   2. The wellhead forming method according to claim 1, wherein a discharge hole extending diagonally downward from the wall surface of the retaining wall toward the inside of the retaining wall is formed. 坑口形成部分において坑口の周面となる部分に沿って自由面形成孔を形成した後に放電用孔内での放電を行ったことを特徴とする請求項1又は請求項2に記載の坑口形成方法。   The method for forming a wellhead according to claim 1 or 2, wherein the discharge in the discharge hole is performed after the free surface forming hole is formed along the portion that becomes the peripheral surface of the wellhead in the wellhead forming portion. .
JP2007068759A 2007-03-16 2007-03-16 Pit mouth forming method Pending JP2008231677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068759A JP2008231677A (en) 2007-03-16 2007-03-16 Pit mouth forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068759A JP2008231677A (en) 2007-03-16 2007-03-16 Pit mouth forming method

Publications (1)

Publication Number Publication Date
JP2008231677A true JP2008231677A (en) 2008-10-02

Family

ID=39904815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068759A Pending JP2008231677A (en) 2007-03-16 2007-03-16 Pit mouth forming method

Country Status (1)

Country Link
JP (1) JP2008231677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053573A (en) * 2016-09-29 2018-04-05 国立研究開発法人海洋研究開発機構 Ground excavator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246782A (en) * 1995-03-14 1996-09-24 Kajima Corp Removal method of start pit wall with shield starting
JPH1113293A (en) * 1997-06-24 1999-01-19 Ohbayashi Corp Disrupting method
JP2002089167A (en) * 2000-09-21 2002-03-27 Sumitomo Electric Ind Ltd Crushing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246782A (en) * 1995-03-14 1996-09-24 Kajima Corp Removal method of start pit wall with shield starting
JPH1113293A (en) * 1997-06-24 1999-01-19 Ohbayashi Corp Disrupting method
JP2002089167A (en) * 2000-09-21 2002-03-27 Sumitomo Electric Ind Ltd Crushing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053573A (en) * 2016-09-29 2018-04-05 国立研究開発法人海洋研究開発機構 Ground excavator

Similar Documents

Publication Publication Date Title
US10577767B2 (en) In-situ piling and anchor shaping using plasma blasting
KR101875748B1 (en) Method for rock fracture and crack propagation by high voltage shock wave
JP4727256B2 (en) Electric discharge crushing method
US10866076B2 (en) Apparatus for plasma blasting
JP2008231677A (en) Pit mouth forming method
RU195888U1 (en) DEVICE FOR JET CEMENT CEMENTATION
JP5089164B2 (en) Wellhead formation method
US10767479B2 (en) Method and apparatus for removing pavement structures using plasma blasting
JP5860641B2 (en) Electric discharge crushing method
WO2005095758A1 (en) Discharge crushing method for crushing object to be crushed, method of excavating horizontal tunnel using discharge crushing method, and method of excavating vertical shaft
JP4931667B2 (en) Electric discharge crushing apparatus and electric discharge crushing method using this apparatus
JP6854626B2 (en) Pile head treatment method
JP4883994B2 (en) Tunnel drilling rig insulation structure
JP2008297843A (en) Method of crushing excess concrete portion at pile head part of cast-in-place concrete pile
JP2019167690A (en) Pile head processing method
JP4359700B2 (en) Precast concrete pile core and method for removing reinforced concrete structure using the same
KR102234635B1 (en) Earth Electrode Insertion Method
JP4202331B2 (en) Excavation method of horizontal shaft
JP4549877B2 (en) Crushing method for reinforced concrete structures
JP2007154514A (en) Method of excavating tunnel peripheral edge part
JP2005315057A (en) Excavation method of shaft
JP2008018399A (en) Discharge crushing method
JP2008274631A (en) Concrete structure and its construction method
JP2008018409A (en) Discharge crushing method
US11268796B2 (en) Apparatus for plasma blasting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110829

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403