JP2008231518A - Aluminum alloy with excellent bendability and brightness after anodizing treatment, and its extruded shape - Google Patents

Aluminum alloy with excellent bendability and brightness after anodizing treatment, and its extruded shape Download PDF

Info

Publication number
JP2008231518A
JP2008231518A JP2007073803A JP2007073803A JP2008231518A JP 2008231518 A JP2008231518 A JP 2008231518A JP 2007073803 A JP2007073803 A JP 2007073803A JP 2007073803 A JP2007073803 A JP 2007073803A JP 2008231518 A JP2008231518 A JP 2008231518A
Authority
JP
Japan
Prior art keywords
component
aluminum alloy
mass
less
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007073803A
Other languages
Japanese (ja)
Other versions
JP4942524B2 (en
Inventor
Karin Shibata
果林 柴田
Hitoshi Niimura
仁 新村
Hiroshi Tabuchi
宏 田渕
Hidetoshi Takagi
英俊 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA GOKIN KK
Aisin Keikinzoku Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
TOYAMA GOKIN KK
Aisin Keikinzoku Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA GOKIN KK, Aisin Keikinzoku Co Ltd, Sumitomo Chemical Co Ltd filed Critical TOYAMA GOKIN KK
Priority to JP2007073803A priority Critical patent/JP4942524B2/en
Publication of JP2008231518A publication Critical patent/JP2008231518A/en
Application granted granted Critical
Publication of JP4942524B2 publication Critical patent/JP4942524B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy in which the occurrence of cracks and orange peel can be suppressed at bending and which has excellent brightness after anodizing treatment and also to provide its extruded shape. <P>SOLUTION: The aluminum alloy has a composition, by mass, containing 0.10 to 0.50% Mg<SB>2</SB>Si as a stoichiometric composition of Mg<SB>2</SB>Si and 0.50 to 0.90% excess Si, also containing 0.10 to 0.60% Cu, 0.10 to 0.40% Mn, 0.005 to 0.1% Ti, ≤0.05% Fe, ≤0.10% Cr and ≤0.10% Zr and having the balance aluminum with inevitable impurities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、曲げ加工性及び外観意匠性が要求される分野に適したアルミニウム基合金及びその押出形材に関する。   The present invention relates to an aluminum-based alloy suitable for fields requiring bending workability and appearance design and an extruded shape thereof.

アルミニウム合金は軽量合金として住宅建材や自動車部品等幅広く採用されている。
近年、住宅分野あるいは自動車分野においてデザインの多様化に伴い押出形材を用いて製品化する際に、要求される製品形状に合わせた強い曲げ加工が必要になり、外観は高い光輝性が要求されている。
JIS6000系アルミニウム合金を用いて押出成形すると押出形材は表面部が一般的に粒状の再結晶組織になる。
この再結晶組織の結晶粒径が大きいと曲げ加工時に金属表面にオレンジの皮のような肌荒れのオレンジピールが発生しやすく、曲げ加工を施していない直線部分と表面性状が異なり外観品質が低下する。
そこでオレンジピールを消すために機械的なバフ研磨処理を施す場合が多く、製造コストアップの要因となっている。
また、曲げ加工が強いと曲げR外周部に割れや亀裂が発生しやすい問題もあった。
特に、防錆処理として陽極酸化処理を施す場合にアルミニウム合金中の添加成分に寄因して酸化皮膜に曇りが発生しやすく、再結晶粒の微細化元素の添加に制限があった。
特許文献1には、陽極酸化処理後の光輝性及び曲げ加工部の表面性状に優れたアルミニウム合金を開示するが強い曲げ加工の場合には材料に割れが生じる場合があった。
Aluminum alloys are widely used as lightweight alloys such as home building materials and automobile parts.
In recent years, with the diversification of designs in the residential field and automobile field, strong bending processing according to the required product shape is required when producing products using extruded profiles, and the appearance is required to have high glitter. ing.
When extrusion molding is performed using a JIS 6000 series aluminum alloy, the extruded portion generally has a granular recrystallized surface.
If the crystal grain size of this recrystallized structure is large, a rough orange peel like orange peel is likely to occur on the metal surface during bending, and the surface quality is different from that of the straight part that has not been bent and the appearance quality deteriorates. .
Therefore, mechanical buffing is often performed to remove the orange peel, which increases the manufacturing cost.
In addition, if the bending process is strong, there is a problem that cracks and cracks are likely to occur in the outer periphery of the bending R.
In particular, when anodizing is performed as a rust-preventing treatment, the oxide film tends to cloud due to the added components in the aluminum alloy, and there is a limitation on the addition of recrystallized grain refining elements.
Patent Document 1 discloses an aluminum alloy excellent in glitter after anodizing treatment and surface properties of the bent portion, but in the case of strong bending, the material may be cracked.

特許第3690623号公報Japanese Patent No. 3690623

本発明は、曲げ加工時に割れやオレンジピールの発生を抑え、陽極酸化処理後の光輝性に優れたアルミニウム合金及びその押出形材の提供を目的とする。   An object of the present invention is to provide an aluminum alloy that suppresses generation of cracks and orange peel during bending and is excellent in glitter after anodizing, and an extruded shape thereof.

請求項1記載に係る曲げ加工性及び陽極酸化処理後の光輝性に優れたアルミニウム合金は、MgSiの化学量論組成としてのMgSi成分0.10〜0.50質量%と過剰Si量を0.50〜0.90質量%を含有するとともに、Cu成分0.10〜0.60質量%、Mn成分0.10〜0.40質量%、Ti成分0.005〜0.1質量%を含有し、Fe成分0.05質量%以下、Cr成分0.10質量%以下、Zr成分0.10質量%以下で残部がアルミニウムと不可避的不純物であることを特徴とする。 Glitter excellent aluminum alloy after bending according to claim 1, wherein processability and anodic oxidation treatment, excess and 0.10 to 0.50 wt% Mg 2 Si component as stoichiometry of Mg 2 Si Si While containing 0.50-0.90 mass%, Cu component 0.10-0.60 mass%, Mn component 0.10-0.40 mass%, Ti component 0.005-0.1 mass %, Fe component 0.05 mass% or less, Cr component 0.10 mass% or less, Zr component 0.10 mass% or less, the balance being aluminum and inevitable impurities.

請求項2記載に係る曲げ加工性及び陽極酸化処理後の光輝性に優れた押出形材は請求項1記載のアルミニウム合金を用いて製造した押出形材であって、再結晶粒は平均粒径が100μm以下であることを特徴とする。   An extruded profile excellent in bending workability and brightness after anodizing according to claim 2 is an extruded profile manufactured using the aluminum alloy according to claim 1, wherein the recrystallized grains have an average grain size. Is 100 μm or less.

アルミニウム合金の押出形材を用いて要求される製品形状に合わせて曲げ加工を施し、その後に化学研磨処理、電解研磨処理等の光輝処理を行い、次に防錆目的に陽極酸化をする製造工程を採用した場合に、第1に曲げ加工時に曲げ外側に割れや亀裂が生じにくい材料が要求される。
第2に曲げ加工により材料表面に発生しやすいオレンジピールの発生を抑制できる表面性状に優れた押出形材が望ましい。
オレンジピールが大きいと、バフ研磨等の機械研磨が必要になり、製造コストが高くなる。
第3に外観意匠として光輝性が要求される場合には、陽極酸化処理にて形成される酸化皮膜に曇りが少なく、光沢低下が少ない材料が要求される。
しかし、陽極酸化皮膜はアルミニウム合金中に添加成分が多い程、その添加成分が酸化皮膜中に残りやすく曇りが生じやすいのに対して、曲げ加工時にオレンジピールの発生を抑えるには再結晶粒の微細化成分が必要となり、強度を確保するには析出成分が必要となるために強度、曲げ加工性、曲げ加工時の表面品質、陽極酸化処理後の光輝性はそれぞれ相反関係にある。
本発明はこれらの品質の両立を図るべく、精意検討した結果、完成に至ったものである。
A manufacturing process that uses aluminum alloy extruded shapes to bend to the required product shape, then performs brightening treatments such as chemical polishing and electrolytic polishing, and then anodizes for rust prevention purposes First, a material that does not easily cause cracks or cracks on the outside of the bend during bending is required.
Secondly, an extruded profile with excellent surface properties that can suppress the occurrence of orange peel that tends to occur on the surface of the material by bending is desirable.
If the orange peel is large, mechanical polishing such as buffing is required, which increases the manufacturing cost.
Thirdly, when glitter is required as an appearance design, an oxide film formed by anodizing treatment is required to be a material with little fogging and less gloss reduction.
However, as the anodic oxide film has more additive components in the aluminum alloy, the added components are more likely to remain in the oxide film and clouding tends to occur. On the other hand, in order to suppress orange peel during bending, Since a finer component is required and a precipitation component is required to ensure strength, the strength, bending workability, surface quality during bending, and glitter after anodization are in a reciprocal relationship.
The present invention has been completed as a result of extensive studies to achieve both of these qualities.

次にアルミニウム合金の成分範囲を設定した理由を説明する。
(Mg及びSi成分)
アルミニウム合金中のSi成分は陽極酸化処理後の光輝性を低下させる要因となるが6000系合金においては、MgSiの金属間化合物の析出にて強度の向上を図ることになるために、Mgとともに必要な成分であり、MgSiの化学量論組成として0.1〜0.5質量%(以下単に%と表示する。)の範囲がよい。
MgSi析出物の出現により強度が向上するがその析出物の大きさは微細化分散している方が曲げ加工性がよくなる。
そこでMgSiの化学量論組成に対して、バランスSi量よりも過剰のSi量を0.50〜0.90%の範囲にし、MgSi析出物の微細化分散化を図った。
過剰SiはMgと金属間加工物を形成しないで金属シリコンとして組織中に残存するがこの金属シリコンがMgSiの析出物の大きさを微細化する作用がある。
ここで過剰シリコンが0.50%未満であればMgSi析出物の微細化分散効果が少なく0.90%を超えると陽極酸化処理後の光輝性が低下する。
Mg成分は上述のように強度確保に必要な金属間化合物MgSiの析出に必要な成分であるが本発明においては化学量論的なSiよりも過剰のSiを0.50〜0.90%有することが重要であることから製品に要求される強度に必要な範囲でMg成分は少ない方が好ましく、Mg単独では0.10〜0.50%の範囲がよい。
Mg成分は添加量が多いと押出性が低下する要因ともなるので0.45%以下が好ましく、さらに望ましくは0.3%以下がよい。
Next, the reason for setting the component range of the aluminum alloy will be described.
(Mg and Si components)
The Si component in the aluminum alloy is a factor that decreases the brightness after the anodizing treatment. However, in the 6000 series alloy, the strength is improved by precipitation of the Mg 2 Si intermetallic compound. It is a necessary component, and the stoichiometric composition of Mg 2 Si is preferably in the range of 0.1 to 0.5% by mass (hereinafter simply referred to as “%”).
The strength is improved by the appearance of Mg 2 Si precipitates, but the size of the precipitates becomes finer and dispersed, and the bending workability is improved.
Relative Therefore Mg 2 Si stoichiometric composition, the excessive amount of Si than balance Si amount in the range of from 0.50 to 0.90%, tried to fine dispersion of the Mg 2 Si precipitate.
Excess Si remains in the structure as metallic silicon without forming an intermetallic workpiece with Mg, but this metallic silicon has the effect of reducing the size of the Mg 2 Si precipitate.
Here, if the excess silicon is less than 0.50%, the effect of miniaturizing and dispersing Mg 2 Si precipitates is small, and if it exceeds 0.90%, the glitter after anodizing treatment is lowered.
As described above, the Mg component is a component necessary for the precipitation of the intermetallic compound Mg 2 Si necessary for securing the strength, but in the present invention, an excess amount of Si is 0.50 to 0.90 more than stoichiometric Si. Therefore, it is preferable that the Mg content is as small as possible within the range required for the strength required for the product, and Mg alone is preferably in the range of 0.10 to 0.50%.
When the Mg component is added in a large amount, the extrudability is lowered. Therefore, the content is preferably 0.45% or less, and more preferably 0.3% or less.

(Cu成分)
Cu成分は化学研磨処理や電解研磨処理時に光輝性を向上させるのに有用であり、材料の強度向上にも寄与するが添加量が多いと耐食性が低下し、押出性も阻害するので、Cu成分量は0.10〜0.60%の範囲がよく、化学的、電気化学的研磨時に光沢を出現しやすい観点からは0.25〜0.60%の範囲がよく理想的には0.40〜0.60%の範囲である。
(Cu component)
The Cu component is useful for improving the glossiness during the chemical polishing process and the electrolytic polishing process, and contributes to the improvement of the strength of the material. However, if the added amount is large, the corrosion resistance is lowered and the extrudability is also inhibited. The amount is preferably in the range of 0.10 to 0.60%, and from the viewpoint that gloss is likely to appear during chemical and electrochemical polishing, the range is preferably 0.25 to 0.60% and ideally 0.40. It is in the range of ˜0.60%.

(Fe成分)
Fe成分は陽極酸化皮膜の透明度を低下させる要因となり陽極酸化処理後の光輝性を維持するには少ない方がよい。
また、Fe成分はSiと金属間化合物を形成し、金属シリコンを晶出物として取り込むので0.05%以下がよい。
(Fe component)
Fe component is a factor that lowers the transparency of the anodized film, and it is preferable that the Fe component is small in order to maintain the glitter after the anodizing treatment.
Moreover, since Fe component forms an intermetallic compound with Si and takes in metallic silicon as a crystallized substance, 0.05% or less is good.

(Mn,Cr及びZr成分)
Mn,Cr及びZr成分はいずれも再結晶の粗大化を抑制し、結晶粒微細化に効果があり、結晶粒の平均粒径を100μm以下に制御するには少なくともMn成分0.10〜0.40%必要である。
しかし、これらの成分は添加量が多くなると焼入れ感受性が鋭くなり、強度低下及び陽極酸化処理後の光輝性低下の要因ともなる。
従って、Mn成分を0.10〜0.40%の範囲にした場合に、Cr成分0.10%以下、Zr成分0.10%以下がよい。
(Mn, Cr and Zr components)
All of the Mn, Cr and Zr components suppress the recrystallization coarsening and are effective in refining the crystal grains. To control the average grain size of the crystal grains to 100 μm or less, at least a Mn component of 0.10 to 0. 40% is required.
However, when these components are added in an increased amount, the sensitivity to quenching becomes sharp, which causes a decrease in strength and a decrease in glitter after anodization.
Therefore, when the Mn component is in the range of 0.10 to 0.40%, the Cr component is preferably 0.10% or less and the Zr component is 0.10% or less.

(Ti成分)
Ti成分は押出成形用のビレットを鋳造する際に、結晶粒の微細化に効果があり、その効果が認められる範囲としてTi成分は0.005〜0.10%の範囲がよい。
(Ti component)
The Ti component is effective in refining crystal grains when casting a billet for extrusion molding, and the Ti component is preferably in the range of 0.005 to 0.10% as a range where the effect is recognized.

本発明において、上記に説明した以外の不可避的不純物の量は、単体で0.05%以下、合計で0.15%以下に抑えるようにするのが好ましい。   In the present invention, the amount of unavoidable impurities other than those described above is preferably 0.05% or less as a single substance, and is suppressed to 0.15% or less in total.

請求項1記載の発明においては、化学量論的MgSiバランス組成よりも過剰のSi量を0.50〜0.90%含有するうように合金設計したのでMgSiの析出物を微細化分散でき、且つ結晶粒微細化成分であるMn,Cr及びZr成分範囲を制御するとともにCu成分を0.10〜0.60%,Fe成分を0.05%以下に抑えたことにより、局部的伸び30%を超えるような強い曲げ加工においても割れが発生せず、材料表面のオレンジピールが従来よりも小さく機械的バフ仕上げ工数の低減を図ることができ、陽極酸化処理後の光輝性にも優れるアルミニウム合金を得ることができる。 In the first aspect of the present invention, since the alloy was designed so as to contain 0.50 to 0.90% of the Si amount in excess of the stoichiometric Mg 2 Si balance composition, the Mg 2 Si precipitate was finely formed. By controlling the range of Mn, Cr and Zr components, which are crystal grain refining components, and suppressing Cu components to 0.10 to 0.60% and Fe components to 0.05% or less, Even when a strong bending process exceeding 30% is not generated, cracks do not occur, the orange peel on the surface of the material is smaller than before, and the number of mechanical buffing processes can be reduced. Excellent aluminum alloy can be obtained.

請求項2記載の発明においては、請求項1記載のアルミニウム合金を用いてビレットを鋳造し、押出成形し押出形材の再結晶粒の平均粒径を100μm以下に制御したので曲げ加工性、曲げ部の表面性状及び光輝性がともに優れた押出形材を得ることができる。   In the second aspect of the invention, the billet is cast using the aluminum alloy of the first aspect, and the average grain size of the recrystallized grains of the extruded shape is controlled to 100 μm or less by extrusion molding. It is possible to obtain an extruded profile that is excellent in both the surface properties and the glitter of the part.

本発明に係るアルミニウム合金例を試作し、従来合金と比較評価をしたので以下説明する。
なお、本発明は試作したアルミニウム合金に限定されるものではない。
An example of an aluminum alloy according to the present invention was prototyped and compared with a conventional alloy, which will be described below.
The present invention is not limited to the prototype aluminum alloy.

図1の表に示した合金成分に調整した溶湯を用いて常法により円柱ビレットを鋳造した。
合金No.1〜7が本発明の実施例に該当するアルミニウム合金で、合金No.8〜11が比較例として、従来の光輝処理用合金を試作した。
図1の表中、Si,Fe,Cu,Mn,Mg,Cr,Zn,Zr,Tiは分析で確認した成分であり、残部がAlと不可避的不純物となる。
Si成分とMg成分の分析結果から計算で求めたMgSi成分量と、バランスSi量よりも過剰のSi量をexSiと表示して、それぞれ表中に示した。
鋳造した円柱ビレットは565〜595℃×4時間以上の条件にて均質化処理し、次にこのビレットを470〜510℃に予熱し、常法に従って試験評価用押出形材を押出成形した。
ビレットの均質化処理温度が565℃未満では、鋳造時の晶出物の分散が不充分となる。
また、押出成形時のビレットの予熱温度が470℃未満だと押出後の焼入れが不充分となる。
試験評価用押出形材は幅80mm×厚さ1.2mmの板材であり、押出直後はファン空冷にて70℃/min以上の冷却速度で冷却し、その後に175〜195℃×1〜24時間の人工時効処理を施した。
A cylindrical billet was cast by a conventional method using a melt adjusted to the alloy components shown in the table of FIG.
Alloy No. 1 to 7 are aluminum alloys corresponding to examples of the present invention. 8 to 11 are trial manufactures of conventional alloys for glittering treatment as comparative examples.
In the table of FIG. 1, Si, Fe, Cu, Mn, Mg, Cr, Zn, Zr, and Ti are components confirmed by analysis, and the balance is Al and inevitable impurities.
The amount of Mg 2 Si component obtained by calculation from the analysis results of the Si component and the Mg component, and the amount of Si excess from the balance Si amount are expressed as exSi, and are shown in the table.
The cast cylindrical billet was homogenized under the conditions of 565 to 595 ° C. × 4 hours or more, and then the billet was preheated to 470 to 510 ° C., and an extruded shape for test evaluation was extruded according to a conventional method.
When the homogenization temperature of the billet is less than 565 ° C., dispersion of the crystallized product during casting becomes insufficient.
Moreover, if the preheating temperature of the billet during extrusion molding is less than 470 ° C., quenching after extrusion becomes insufficient.
The extruded shape for test evaluation is a plate having a width of 80 mm and a thickness of 1.2 mm. Immediately after extrusion, the extruded shape is cooled by a fan air cooling at a cooling rate of 70 ° C./min or more, and then 175 to 195 ° C. for 1 to 24 hours. The artificial aging treatment was applied.

上記にて試作した押出形材を用いて各品質特性を評価した結果を図2の表に示し、評価方法を以下説明する。
なお、表中全ての品質項目が目標に達したものを判定「○」とした。
(T1及びT5材の機械的性質)
引張試験により引張強さ、耐力、破断伸びを調べた。
押出形材よりJIS5号引張試験片を作製し、JIS規格に準拠した引張試験機でJIS−Z2241に基づいて求めた。
ここでT1材とは押出及び空冷後の材料をいい、曲げ加工性から伸び(δ)20%以上を目標とした。
T5材は人工時効処理した材料をいい、製品強度を確保する観点から0.2%耐力(σ0.2)150MPa以上を目標とした。
(光輝性)
供試材をリン酸70〜85%、硝酸3〜3.5%の水溶液を用いて95〜100℃にて90秒間化学研磨処理後に硝酸20%で酸洗し、硫酸20%の電解液を用いて100〜120A/mで30分陽極酸化処理し、膜厚約10μmのアルマイト皮膜を化成したもので評価した。
アルミニウム合金の表面の色調をLab表色系(CIE規格)による色差計(村上色彩技術研究所製、鏡面色差計SCD−1)によりL値を測定した。
金属光沢に近い光輝性をねらいにL値80以上を目標とした。
(再結晶粒)
供試材を鏡面研磨仕上げを行い、その後、エッチングして400倍の光輝顕微鏡により金属組織を観察し、平均結晶粒径を測定した。
(表面性状)
供試材から20mm×150mmの板材を切り出し、曲げR1.5mmでU字形に加工したものについて評価した。
機械的バフ研磨が必要ない程度以下のオレンジピールを良好と評価した。
(曲げ性)
図5(a)に示すように、供試材より20×150mmの試験片を切り出し、治具にて固定し、上部から先端所定Rのパンチにて負荷を加え、その際の変位−荷重線図を図5(b)に示すように求めた。
このように曲げ加工するとU字先端部は30〜40%以上の伸びが必要である。
比較例アルミニウム合金(従来合金)はaのような変位−荷重線を示した。
それに対して、本発明によるアルミニウム合金を用いると、bに示すような変位−荷重線になる。
これは、従来のアルミニウム合金には、局部的な30%以上の伸びに耐えられず最大荷重付近で材料に亀裂が発生すると、すぐに大きく成長して割れとなり、荷重が急降下するのに対して、本発明合金による場合には割れが生じにくく、いわゆるねばりがあり、徐々に荷重が降下するためである。
割れ発生状況を図6の写真に示した。
また、参考に図7に示した模式図にて、外周の伸び率を試算した。
限界曲げRを予測するために図7のような曲げ角度90度の単純モデルを考える。
この部分の曲げ厚みの外周と内周の長さの差が材料伸びとなるので内周の伸びが無いと仮定した場合、外周長と伸びの関係から伸び率は、
中立軸を板厚中央とすると伸び率/2=40%と試算できる。
The result of evaluating each quality characteristic using the extruded profile prototyped above is shown in the table of FIG. 2, and the evaluation method will be described below.
In addition, the determination “◯” was made when all the quality items in the table reached the target.
(Mechanical properties of T1 and T5 materials)
Tensile strength, yield strength, and elongation at break were examined by a tensile test.
A JIS No. 5 tensile test piece was produced from the extruded profile, and obtained based on JIS-Z2241 with a tensile tester compliant with JIS standards.
Here, the T1 material means a material after extrusion and air cooling, and the elongation (δ) was set to 20% or more from the viewpoint of bending workability.
T5 material refers to a material subjected to artificial aging treatment, and the target was 0.2% proof stress (σ 0.2 ) of 150 MPa or more from the viewpoint of ensuring product strength.
(Brightness)
The test material was pickled with 20% nitric acid after chemical polishing for 90 seconds at 95-100 ° C. using an aqueous solution of 70-85% phosphoric acid and 3-3.5% nitric acid, and an electrolytic solution containing 20% sulfuric acid was used. Anodized at 100 to 120 A / m 2 for 30 minutes, and an anodized film having a film thickness of about 10 μm was formed and evaluated.
The L value of the color tone of the surface of the aluminum alloy was measured by a color difference meter (Murakami Color Research Laboratory, specular color difference meter SCD-1) using a Lab color system (CIE standard).
Aiming for a luster close to metallic luster, an L value of 80 or more was targeted.
(Recrystallized grains)
The sample material was mirror-polished and then etched, and the metal structure was observed with a 400 × bright microscope, and the average crystal grain size was measured.
(Surface properties)
A 20 mm × 150 mm plate was cut out from the test material and evaluated by bending it to a U shape with a radius of 1.5 mm.
The orange peel below the extent that mechanical buffing is not required was evaluated as good.
(Bendability)
As shown in FIG. 5A, a 20 × 150 mm test piece is cut out from the specimen, fixed with a jig, and a load is applied from the top with a punch with a predetermined radius R, and the displacement-load line at that time The figure was determined as shown in FIG.
When bending is performed in this manner, the U-shaped tip needs to be stretched by 30 to 40% or more.
The comparative example aluminum alloy (conventional alloy) showed a displacement-load line like a.
On the other hand, when the aluminum alloy according to the present invention is used, a displacement-load line as shown in b is obtained.
This is because conventional aluminum alloys cannot withstand a local elongation of 30% or more, and if a crack occurs in the material near the maximum load, it grows quickly and cracks, and the load drops rapidly. In the case of the alloy of the present invention, cracks are unlikely to occur, so-called stickiness occurs, and the load gradually drops.
The state of occurrence of cracks is shown in the photograph of FIG.
For reference, the elongation at the outer periphery was estimated using the schematic diagram shown in FIG.
To predict the limit bending R, consider a simple model with a bending angle of 90 degrees as shown in FIG.
Since the difference between the length of the outer circumference and the inner circumference of the bending thickness of this part is the material elongation, assuming that there is no elongation of the inner circumference, the elongation rate from the relationship between the outer circumference length and elongation is
Assuming that the neutral axis is the center of the plate thickness, it can be estimated that elongation / 2/2 = 40%.

実施例No.1〜7の合金及び比較例No.10,11の合金を用いた押出形材はバランスシリコンよりも過剰の過剰Si(exSi)の値が0.50〜0.90%の範囲にあり、図6(a)に示したように局部的に30%以上伸びるように曲げても割れが発生しなかったのに対して、比較例No.8,9は図6(b)に示すように割れが発生した。
また、比較例No.10は曲げ評価にて割れは発生しなかったが比較例No.8,9とともに再結晶粒の平均粒径が図3(b)に示すように200μmもあり、100μmを超えているので曲げ部表面に図4(b)に示すような大きいオレンジピールが発生した。
これに対して実施例No.1〜7の合金を用いた押出形材は再結晶粒の平均粒径が図3(a)に示すように100μm以下であり図4(a)に示すようにオレンジピールが小さかった。
膜厚10μmの陽極酸化処理した表面の鏡面L値を比較すると実施例No.1〜8は80以上あったのに対して比較例No.10,11は光輝性が低かった。
Example No. Alloys 1 to 7 and Comparative Example No. 1 Extruded shapes using alloys 10 and 11 have an excess Si (exSi) value in the range of 0.50 to 0.90% in excess of balance silicon, and as shown in FIG. In contrast, no cracking occurred even when bent to extend 30% or more. As for 8 and 9, the crack generate | occur | produced as shown in FIG.6 (b).
Comparative Example No. No cracks occurred in the bending evaluation of No. 10, but Comparative Example No. As shown in FIG. 3B, the average grain size of the recrystallized grains as well as 8 and 9 is 200 μm and exceeds 100 μm, so that a large orange peel as shown in FIG. .
On the other hand, Example No. The extruded shapes using the alloys 1 to 7 had an average grain size of recrystallized grains of 100 μm or less as shown in FIG. 3A and a small orange peel as shown in FIG.
When the mirror surface L values of the anodized surface having a thickness of 10 μm were compared, Example No. Comparative Examples No. 1 to 8 were 80 or more. Nos. 10 and 11 had low glitter.

以上、説明したとおり、本発明に係るアルミニウム合金を用いた押出形材は伸び30%以上の局部的曲げにも割れが発生しなく、陽極酸化処理後のL値で80以上の光輝性を得ることができる。   As described above, the extruded shape member using the aluminum alloy according to the present invention does not generate cracks even in local bending with an elongation of 30% or more, and obtains a glitter of 80 or more with an L value after anodizing treatment. be able to.

試験評価に用いたアルミニウム合金の成分表を示す。The component table | surface of the aluminum alloy used for test evaluation is shown. 押出形材の各特性の評価結果を示す。The evaluation result of each characteristic of an extrusion shape material is shown. 再結晶粒の顕微鏡写真を示す。The micrograph of a recrystallized grain is shown. 曲げ部の表面性状の写真を示す。The photograph of the surface property of a bending part is shown. 曲げ評価方法と変位−荷重線図を示す。A bending evaluation method and a displacement-load diagram are shown. 曲げ試験後の外観写真を示す。An appearance photograph after the bending test is shown. 曲げRと伸びの関係を示す模式図である。It is a schematic diagram which shows the relationship between bending R and elongation.

Claims (2)

MgSiの化学量論組成としてのMgSi成分0.10〜0.50質量%と過剰Si量を0.50〜0.90質量%を含有するとともに、Cu成分0.10〜0.60質量%、Mn成分0.10〜0.40質量%、Ti成分0.005〜0.1質量%を含有し、Fe成分0.05質量%以下、Cr成分0.10質量%以下、Zr成分0.10質量%以下で残部がアルミニウムと不可避的不純物であることを特徴とする曲げ加工性及び陽極酸化処理後の光輝性に優れたアルミニウム合金。 The Mg 2 Si component 0.10-0.50 wt% and an excess amount of Si as a stoichiometric composition of Mg 2 Si with containing 0.50 to 0.90 mass%, Cu component from 0.10 to 0. 60% by mass, Mn component 0.10 to 0.40% by mass, Ti component 0.005 to 0.1% by mass, Fe component 0.05% by mass or less, Cr component 0.10% by mass or less, Zr An aluminum alloy excellent in bending workability and brightness after anodizing treatment, wherein the component is 0.10% by mass or less and the balance is aluminum and inevitable impurities. 請求項1記載のアルミニウム合金を用いて製造した押出形材であって、
再結晶粒は平均粒径が100μm以下であることを特徴とする曲げ加工性及び陽極酸化処理後の光輝性に優れた押出形材。
An extruded profile produced using the aluminum alloy according to claim 1,
An extruded shape excellent in bendability and brightness after anodization, wherein the recrystallized grains have an average grain size of 100 μm or less.
JP2007073803A 2007-03-22 2007-03-22 Aluminum alloy excellent in bending workability and brightness after anodizing treatment, and its extruded shape Expired - Fee Related JP4942524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073803A JP4942524B2 (en) 2007-03-22 2007-03-22 Aluminum alloy excellent in bending workability and brightness after anodizing treatment, and its extruded shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073803A JP4942524B2 (en) 2007-03-22 2007-03-22 Aluminum alloy excellent in bending workability and brightness after anodizing treatment, and its extruded shape

Publications (2)

Publication Number Publication Date
JP2008231518A true JP2008231518A (en) 2008-10-02
JP4942524B2 JP4942524B2 (en) 2012-05-30

Family

ID=39904674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073803A Expired - Fee Related JP4942524B2 (en) 2007-03-22 2007-03-22 Aluminum alloy excellent in bending workability and brightness after anodizing treatment, and its extruded shape

Country Status (1)

Country Link
JP (1) JP4942524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162840A (en) * 2010-02-09 2011-08-25 Furukawa-Sky Aluminum Corp Aluminum alloy for extrusion having excellent corrosion resistance and brightness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272800A (en) * 1988-04-26 1989-10-31 Mitsubishi Kasei Corp Extruded aluminum section having bright specular surface and production thereof
JPH06100970A (en) * 1992-09-22 1994-04-12 Aisin Keikinzoku Kk Aluminum alloy for extrusion excellent in bright alumite @(3754/24)registered trademark) characteristic
JPH10226857A (en) * 1997-02-19 1998-08-25 Aisin Keikinzoku Kk Brightness aluminum alloy for extrusion excellent in surface property
JP2007536433A (en) * 2004-05-08 2007-12-13 エルプスロー・アクチエンゲゼルシヤフト Decoratively anodizable, well deformable, mechanically loadable aluminum alloy, process for its production and aluminum products comprising this alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272800A (en) * 1988-04-26 1989-10-31 Mitsubishi Kasei Corp Extruded aluminum section having bright specular surface and production thereof
JPH06100970A (en) * 1992-09-22 1994-04-12 Aisin Keikinzoku Kk Aluminum alloy for extrusion excellent in bright alumite @(3754/24)registered trademark) characteristic
JPH10226857A (en) * 1997-02-19 1998-08-25 Aisin Keikinzoku Kk Brightness aluminum alloy for extrusion excellent in surface property
JP2007536433A (en) * 2004-05-08 2007-12-13 エルプスロー・アクチエンゲゼルシヤフト Decoratively anodizable, well deformable, mechanically loadable aluminum alloy, process for its production and aluminum products comprising this alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162840A (en) * 2010-02-09 2011-08-25 Furukawa-Sky Aluminum Corp Aluminum alloy for extrusion having excellent corrosion resistance and brightness

Also Published As

Publication number Publication date
JP4942524B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
JP5640399B2 (en) Aluminum alloy plate with anodized film and method for producing the same
KR101773695B1 (en) Aluminum alloy plate for housing of electronic equipment having high-strength alumite coating film attached thereto and method of producing the same
JP6689291B2 (en) High strength 5xxx aluminum alloy and method of making same
JP2021059784A (en) Aluminum alloys with high strength and cosmetic appeal
KR101624111B1 (en) High-strength aluminum alloy material and method for producing same
WO2015025706A1 (en) High-strength aluminum alloy and method for producing same
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP2012207302A (en) METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
JP6433380B2 (en) Aluminum alloy rolled material
WO2017006490A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
EP3135790B1 (en) Method for manufacturing an aluminum alloy member and aluminum alloy member manufactured by the same
WO2015114880A1 (en) High-strength aluminum alloy and process for producing same
WO2021157356A1 (en) Production method of high-strength aluminum alloy extruded material
JP2009167464A (en) Method for producing aluminum alloy material having excellent toughness
JP2013108131A (en) Aluminum alloy expanded product and method for producing the same
JP2006241548A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
WO2017006816A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
JP4942524B2 (en) Aluminum alloy excellent in bending workability and brightness after anodizing treatment, and its extruded shape
JP3690623B2 (en) Bright aluminum alloy for extrusion with excellent surface properties
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP5745364B2 (en) Aluminum can plate for can body and method for manufacturing the same, and resin-coated aluminum alloy plate for can body and method for manufacturing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP5421067B2 (en) Resin-coated aluminum alloy plate for beverage can body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees