JP2008231044A - Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid - Google Patents
Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid Download PDFInfo
- Publication number
- JP2008231044A JP2008231044A JP2007074381A JP2007074381A JP2008231044A JP 2008231044 A JP2008231044 A JP 2008231044A JP 2007074381 A JP2007074381 A JP 2007074381A JP 2007074381 A JP2007074381 A JP 2007074381A JP 2008231044 A JP2008231044 A JP 2008231044A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- catalysts
- raw material
- reaction tube
- types
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/10—Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
- B01J2523/15—Caesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/50—Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
- B01J2523/53—Antimony
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/50—Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
- B01J2523/54—Bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/60—Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
- B01J2523/68—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/842—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/845—Cobalt
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる少なくとも1種の化合物と分子状酸素とを含む原料ガスを反応管に供給することにより、気相接触酸化して、対応する不飽和アルデヒド及び/又は不飽和カルボン酸を製造する方法に関する。 The present invention provides a corresponding unsaturated aldehyde by gas phase catalytic oxidation by supplying a reaction gas with a raw material gas containing at least one compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen. And / or a process for producing unsaturated carboxylic acids.
触媒を充填した反応管に、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる少なくとも1種の化合物と分子状酸素とを含む原料ガスを供給することにより、気相接触酸化して、対応する不飽和アルデヒド及び/又は不飽和カルボン酸を製造する方法として、例えば、触媒を構成する金属元素の種類や量を変更して触媒活性の異なる複数種の触媒を調製した後、これら触媒を原料ガス入口部から出口部に向け触媒活性がより高くなるように反応管に充填して、該反応管に原料ガスを供給する方法が提案されている(特許文献1〜3参照)。 By supplying a raw material gas containing at least one compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen to a reaction tube filled with a catalyst, gas phase catalytic oxidation is performed, and corresponding unsaturation occurs. As a method for producing an aldehyde and / or an unsaturated carboxylic acid, for example, after preparing a plurality of types of catalysts having different catalytic activities by changing the type and amount of metal elements constituting the catalyst, these catalysts are added to the raw material gas inlet. A method has been proposed in which a reaction tube is filled so as to have higher catalytic activity toward the outlet portion and a raw material gas is supplied to the reaction tube (see Patent Documents 1 to 3).
しかしながら、従来の方法では、プロピレンやイソブチレンターシャリーブチルアルコールの転化率や、不飽和アルデヒド及び/又は不飽和カルボン酸の収率の点で、必ずしも満足のいくものではなかった。 However, the conventional methods are not always satisfactory in terms of the conversion rate of propylene and isobutylene tertiary butyl alcohol and the yield of unsaturated aldehyde and / or unsaturated carboxylic acid.
そこで、本発明の目的は、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる少なくとも1種の化合物を良好な転化率で気相接触酸化して、対応する不飽和アルデヒド及び/又は不飽和カルボン酸を良好な収率で製造しうる方法を提供することにある。 Accordingly, an object of the present invention is to subject at least one compound selected from propylene, isobutylene and tertiary butyl alcohol to gas phase catalytic oxidation at a good conversion rate to obtain a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid. The object is to provide a process which can be produced in good yield.
本発明者等は鋭意研究を行った結果、構成金属元素の種類及び/又は含有比率が互いに相違する所定の複合酸化物からなる複数種の触媒であって、かつ、触媒の成分を含有する水溶液又は水性スラリーを乾燥した後、分子状酸素含有ガスの雰囲気下に焼成し、次いで還元性物質の存在下に熱処理して得られる複数種の触媒を、原料ガス入口部から出口部に向け触媒活性がより高くなるように反応管に充填して、該反応管に原料ガスを供給することにより、上記目的を達成しうることを見出し、本発明を完成するに至った。 As a result of diligent research, the present inventors have found that an aqueous solution containing a plurality of kinds of catalysts composed of predetermined complex oxides having different kinds and / or content ratios of constituent metal elements and containing the components of the catalyst. Or, after drying the aqueous slurry, calcining it in an atmosphere of molecular oxygen-containing gas, and then heat-treating it in the presence of a reducing substance, a plurality of types of catalysts are obtained from the raw material gas inlet to the outlet. It was found that the above object could be achieved by filling the reaction tube so as to be higher and supplying the raw material gas to the reaction tube, thereby completing the present invention.
すなわち本発明は、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる少なくとも1種の化合物と分子状酸素とを含む原料ガスを反応管に供給することにより、気相接触酸化して、対応する不飽和アルデヒド及び/又は不飽和カルボン酸を製造する方法であって、 That is, the present invention provides gas phase catalytic oxidation by supplying a raw material gas containing at least one compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen to a reaction tube, and corresponding unsaturation. A process for producing an aldehyde and / or an unsaturated carboxylic acid, comprising:
(1)前記反応管は、原料ガス入口部から出口部に向け触媒活性がより高くなるように、触媒活性の異なる複数種の触媒が充填されてなり、 (1) The reaction tube is filled with a plurality of types of catalysts having different catalytic activities so that the catalytic activity becomes higher from the raw material gas inlet to the outlet.
(2)前記複数種の触媒は、それぞれ独立して以下の式(I) (2) The plurality of types of catalysts are each independently represented by the following formula (I):
MoaBibFecAdBeCfDgOx (I) Mo a Bi b Fe c A d Be C f D g O x (I)
(式中、Mo、Bi及びFeはそれぞれモリブデン、ビスマス及び鉄を表し、Aはニッケル及び/又はコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズ及び鉛から選ばれる少なくとも1種の元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモン、ケイ素、アルミニウム、チタン、ジルコニウム及びセリウムから選ばれる少なくとも1種の元素を表し、Dはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素を表し、Oは酸素を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0<g≦2であり、xは各元素の酸化状態により定まる値である。) (Wherein Mo, Bi and Fe represent molybdenum, bismuth and iron, A represents nickel and / or cobalt, and B represents at least one element selected from manganese, zinc, calcium, magnesium, tin and lead) C represents at least one element selected from phosphorus, boron, arsenic, tellurium, tungsten, antimony, silicon, aluminum, titanium, zirconium and cerium, and D represents at least selected from potassium, rubidium, cesium and thallium. Represents one element, O represents oxygen, and when a = 12, 0 <b ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, (0 <g ≦ 2 and x is a value determined by the oxidation state of each element.)
で示される複合酸化物からなり、 Consisting of a complex oxide
(3)前記複数種の触媒は、それら触媒を構成する金属元素の種類及び/又は含有比率において、互いに相違し、さらに、 (3) The plurality of types of catalysts differ from each other in the types and / or content ratios of the metal elements constituting the catalysts,
(4)前記複数種の触媒は、それぞれ独立して、触媒の成分を含有する水溶液又は水性スラリーを乾燥した後、分子状酸素含有ガスの雰囲気下に焼成し、次いで還元性物質の存在下に熱処理して得られるものであること、 (4) The plurality of types of catalysts are each independently dried after drying an aqueous solution or aqueous slurry containing catalyst components, and then calcined in an atmosphere of molecular oxygen-containing gas, and then in the presence of a reducing substance. Be obtained by heat treatment,
を特徴とする不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法を提供するものである。 A method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid is provided.
本発明によれば、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる少なくとも1種の化合物を良好な転化率で気相接触酸化して、対応する不飽和アルデヒド及び/又は不飽和カルボン酸を良好な収率で製造することができる。 According to the present invention, at least one compound selected from propylene, isobutylene and tertiary butyl alcohol is vapor-phase catalytically oxidized at a good conversion rate, and the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid is obtained in good condition. It can be produced in a yield.
以下、本発明を詳細に説明する。本発明では、原料ガス入口部から出口部に向け触媒活性がより高くなるように、触媒活性の異なる複数種の触媒が充填された反応管に、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる少なくとも1種の化合物と分子状酸素とを含む原料ガスを供給する。触媒の種類は多いほど反応成績や反応管内の温度制御の点で効果的であるが、触媒の製造や充填操作が煩雑となるため、かかる点から、好ましくは2種の触媒が用いられる。 Hereinafter, the present invention will be described in detail. In the present invention, at least selected from propylene, isobutylene and tertiary butyl alcohol in a reaction tube filled with a plurality of types of catalysts having different catalytic activities so that the catalytic activity becomes higher from the raw material gas inlet to the outlet. A raw material gas containing one kind of compound and molecular oxygen is supplied. The more types of catalyst, the more effective in terms of reaction results and temperature control in the reaction tube. However, since the production and filling operation of the catalyst becomes complicated, two types of catalysts are preferably used.
本発明で用いる複数種の触媒は、それぞれ独立して以下の式(I) The plurality of types of catalysts used in the present invention are each independently represented by the following formula (I):
MoaBibFecAdBeCfDgOx (I) Mo a Bi b Fe c A d Be C f D g O x (I)
(式中、Mo、Bi及びFeはそれぞれモリブデン、ビスマス及び鉄を表し、Aはニッケル及び/又はコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズ及び鉛から選ばれる少なくとも1種の元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモン、ケイ素、アルミニウム、チタン、ジルコニウム及びセリウムから選ばれる少なくとも1種の元素を表し、Dはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素を表し、Oは酸素を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0<g≦2であり、xは各元素の酸化状態により定まる値である。) (Wherein Mo, Bi and Fe represent molybdenum, bismuth and iron, A represents nickel and / or cobalt, and B represents at least one element selected from manganese, zinc, calcium, magnesium, tin and lead) C represents at least one element selected from phosphorus, boron, arsenic, tellurium, tungsten, antimony, silicon, aluminum, titanium, zirconium and cerium, and D represents at least selected from potassium, rubidium, cesium and thallium. Represents one element, O represents oxygen, and when a = 12, 0 <b ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, (0 <g ≦ 2 and x is a value determined by the oxidation state of each element.)
で示される複合酸化物からなる。 It consists of complex oxide shown by these.
また、上記複数種の触媒は、これらを構成する金属元素の種類及び/又は含有比率において、互いに相違する。複数種の触媒が、これらを構成する金属元素の種類において、互いに相違するとは、一の触媒におけるA群、B群、C群及びD群の元素と、他の触媒におけるA群、B群、C群及びD群の元素をそれぞれ比較した場合、それら元素のうち少なくとも1種の元素が互いに相違することを意味する。また、複数種の触媒が、これらを構成する金属元素の含有比率において、互いに相違するとは、一の触媒において、a=12としたときのb、c、d、e、f及びgの値と、他の触媒において、a=12としたときのb、c、d、e、f及びgの値をそれぞれ比較した場合、それら値のうち少なくとも1つの値が互いに相違することを意味する。 The plurality of types of catalysts differ from each other in the types and / or content ratios of the metal elements constituting them. A plurality of types of catalysts differ from each other in the types of metal elements constituting them. The elements of Group A, Group B, Group C, and Group D in one catalyst, and Group A, Group B in another catalyst, When the elements of Group C and Group D are compared, it means that at least one of the elements is different from each other. Further, the plurality of types of catalysts are different from each other in the content ratio of the metal elements constituting them. In one catalyst, the values of b, c, d, e, f, and g when a = 12. In other catalysts, when the values of b, c, d, e, f, and g when a = 12, respectively, it means that at least one of the values is different from each other.
上記複数種の触媒は、好ましくは、以下の式(II) The plurality of types of catalysts are preferably represented by the following formula (II):
MoaBibFecCodSbfCsgOx (II) Mo a Bi b Fe c Co d Sb f Cs g O x (II)
(式中、Mo、Bi、Fe、Co、Sb及びCsはそれぞれモリブデン、ビスマス、鉄、コバルト、アンチモン及びセシウムを表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦f≦10、0<g≦2であり、xは各元素の酸化状態により定まる値である。) (Wherein Mo, Bi, Fe, Co, Sb and Cs represent molybdenum, bismuth, iron, cobalt, antimony and cesium, respectively, where a = 12, 0 <b ≦ 10, 0 <c ≦ 10, (1 ≦ d ≦ 10, 0 ≦ f ≦ 10, 0 <g ≦ 2, and x is a value determined by the oxidation state of each element.)
で示される複合酸化物からなる。この場合も、上述したとおり、上記複数種の触媒は、これらを構成する金属元素の種類及び/又は含有比率において、互いに相違する。 It consists of complex oxide shown by these. Also in this case, as described above, the plurality of types of catalysts differ from each other in the types and / or content ratios of the metal elements constituting them.
さらに好ましい触媒及び充填形態としては、2種の触媒が充填される場合であって、原料ガス入口部に、式(II)中のfの値が0でない複合酸化物からなる触媒が充填され、原料ガス出口部に、式(II)中のfの値が0である複合酸化物からなる触媒が充填され、かつ、これら触媒のモリブデン、ビスマス、鉄及びコバルトの含有比率が互いに同一である場合が挙げられる。 As a more preferable catalyst and packing form, two kinds of catalysts are filled, and the raw material gas inlet is filled with a catalyst made of a composite oxide having a value of f in formula (II) other than 0, When the raw material gas outlet is filled with a catalyst made of a composite oxide having a value of f of 0 in formula (II), and the content ratios of molybdenum, bismuth, iron and cobalt in these catalysts are the same Is mentioned.
次に、上記触媒の製造方法について説明する。本発明で使用する触媒活性の異なる複数種の触媒は、それぞれ独立して製造される。かかる触媒の原料としては、通常、それら触媒を構成する各元素の化合物、例えば、酸化物、硝酸塩、硫酸塩、炭酸塩、水酸化物、オキソ酸やそのアンモニウム塩、ハロゲン化物等が、所望の含有比率を満たすような割合で用いられる。例えば、モリブデン化合物としては、三酸化モリブデン、モリブデン酸、パラモリブデン酸アンモニウム等が、ビスマス化合物としては、酸化ビスマス、硝酸ビスマス、硫酸ビスマス等が、鉄化合物としては、硝酸鉄(III)、硫酸鉄(III)、塩化鉄(III)等が、コバルト化合物としては、硝酸コバルト、硫酸コバルト、塩化コバルト等が、アンチモン化合物としては、三酸化アンチモン、塩化アンチモン(III)等が、セシウム化合物としては、硝酸セシウム、炭酸セシウム、水酸化セシウム等が、それぞれ使用できる。 Next, the manufacturing method of the said catalyst is demonstrated. A plurality of types of catalysts having different catalytic activities used in the present invention are produced independently. As a raw material of such a catalyst, compounds of respective elements constituting the catalyst, for example, oxides, nitrates, sulfates, carbonates, hydroxides, oxoacids and ammonium salts thereof, halides and the like are usually desired. It is used at a ratio that satisfies the content ratio. For example, molybdenum trioxide, molybdic acid, ammonium paramolybdate, etc. as the molybdenum compound, bismuth oxide, bismuth nitrate, bismuth sulfate, etc. as the bismuth compound, and iron (III) nitrate, iron sulfate as the iron compound (III), iron (III) chloride, etc., as cobalt compounds, cobalt nitrate, cobalt sulfate, cobalt chloride, etc., as antimony compounds, antimony trioxide, antimony (III) chloride, etc., as cesium compounds, Cesium nitrate, cesium carbonate, cesium hydroxide and the like can be used.
本発明では、上記触媒原料を水中にて混合して水溶液又は水性スラリーを調製した後、乾燥し、次いで、該乾燥物を分子状酸素含有ガスの雰囲気下に焼成する。また、アンチモン化合物等の触媒原料の一部については、乾燥後に加えられてもよい。これら各工程は、従来法(例えば、特開昭59−46132号公報、特開昭60−163830号、特開2000−288396号公報参照)に準拠して行うことができる。例えば、上記乾燥は、ニーダー、箱型乾燥機、ドラム型通気乾燥装置、スプレードライヤー、気流乾燥機等を用いて行うことができる。また、分子状酸素含有ガス中の分子状酸素濃度は、通常1〜30容量%、好ましくは10〜25容量%である。分子状酸素源としては、通常、空気や純酸素が使用され、これが必要に応じて窒素、二酸化炭素、水、ヘリウム、アルゴン等で希釈されて、分子状酸素含有ガスとして使用される。焼成温度は、通常300〜600℃、好ましくは400〜550℃であり、焼成時間は、通常5分〜40時間、好ましくは1時間〜20時間である。 In the present invention, the catalyst raw material is mixed in water to prepare an aqueous solution or aqueous slurry, dried, and then the dried product is calcined in an atmosphere of molecular oxygen-containing gas. Moreover, some catalyst raw materials such as antimony compounds may be added after drying. Each of these steps can be performed in accordance with a conventional method (for example, see JP-A-59-46132, JP-A-60-163830, and JP-A-2000-288396). For example, the drying can be performed using a kneader, a box-type dryer, a drum-type aeration dryer, a spray dryer, an air dryer, or the like. The molecular oxygen concentration in the molecular oxygen-containing gas is usually 1 to 30% by volume, preferably 10 to 25% by volume. As the molecular oxygen source, air or pure oxygen is usually used, and this is diluted with nitrogen, carbon dioxide, water, helium, argon or the like as necessary, and used as a molecular oxygen-containing gas. The firing temperature is usually 300 to 600 ° C., preferably 400 to 550 ° C., and the firing time is usually 5 minutes to 40 hours, preferably 1 hour to 20 hours.
上記焼成により得られる焼成物を、還元性物質の存在下に熱処理する(以下、この還元性物質の存在下での熱処理を単に還元処理ということがある)。 The fired product obtained by the firing is heat-treated in the presence of a reducing substance (hereinafter, heat treatment in the presence of the reducing substance may be simply referred to as a reduction treatment).
還元性物質としては、例えば、水素、アンモニア、一酸化炭素、炭化水素、アルコール、アルデヒド、アミン等が挙げられ、必要に応じてそれらの2種以上を用いることができる。ここで、炭化水素、アルコール、アルデヒド及びアミンは、それぞれ、その炭素数が1〜6程度であるのがよく、かかる炭化水素の例としては、メタン、エタン、プロパン、n−ブタン、イソブタンの如き飽和脂肪族炭化水素、エチレン、プロピレン、α−ブチレン、β−ブチレン、イソブチレンの如き不飽和脂肪族炭化水素、ベンゼン等が挙げられ、アルコールの例としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、セカンダリーブチルアルコール、ターシャリーブチルアルコールの如き飽和脂肪族アルコール、アリルアルコール、クロチルアルコール、メタリルアルコールの如き不飽和脂肪族アルコール、フェノール等が挙げられる。また、アルデヒドの例としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒドの如き飽和脂肪族アルデヒド、アクロレイン、クロトンアルデヒド、メタクロレインの如き不飽和脂肪族アルデヒド等が挙げられ、アミンの例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミンの如き飽和脂肪族アミン、アリルアミン、ジアリルアミンの如き不飽和脂肪族アミン、アニリン等が挙げられる。 Examples of the reducing substance include hydrogen, ammonia, carbon monoxide, hydrocarbon, alcohol, aldehyde, amine, and the like, and two or more of them can be used as necessary. Here, hydrocarbons, alcohols, aldehydes and amines each preferably have about 1 to 6 carbon atoms, and examples of such hydrocarbons include methane, ethane, propane, n-butane, and isobutane. Examples include saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons such as ethylene, propylene, α-butylene, β-butylene, and isobutylene, benzene, etc. Examples of alcohols include methyl alcohol, ethyl alcohol, and n-propyl alcohol. , Saturated aliphatic alcohols such as isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, secondary butyl alcohol, and tertiary butyl alcohol, unsaturated aliphatic alcohols such as allyl alcohol, crotyl alcohol, and methallyl alcohol, and phenol. . Examples of aldehydes include saturated aliphatic aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, unsaturated aliphatic aldehydes such as acrolein, crotonaldehyde, and methacrolein. Examples include saturated aliphatic amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine and triethylamine, unsaturated aliphatic amines such as allylamine and diallylamine, and aniline.
還元処理は、通常、上記還元性物質を含むガスの雰囲気下に上記焼成物を熱処理することにより行われる。このガス中の還元性物質の濃度は、通常0.1〜50容量%、好ましくは1〜30容量%であり、このような濃度になるように、還元性物質を窒素、二酸化炭素、水、ヘリウム、アルゴン等で希釈すればよい。なお、分子状酸素は、還元処理の効果を損なわない範囲で存在させてもよいが、通常は存在させないのがよい。 The reduction treatment is usually performed by heat-treating the fired product in an atmosphere of a gas containing the reducing substance. The concentration of the reducing substance in the gas is usually 0.1 to 50% by volume, preferably 1 to 30% by volume, and the reducing substance is nitrogen, carbon dioxide, water, What is necessary is just to dilute with helium, argon, etc. In addition, although molecular oxygen may exist in the range which does not impair the effect of a reduction process, it is good not to exist normally.
還元処理の温度は、通常200〜600℃、好ましくは250〜550℃である。また、還元処理の時間は、通常5分〜20時間、好ましくは30分〜10時間である。還元処理は、上記焼成物を管型や箱型等の容器に入れ、ここに還元性物質を含むガスを流通させながら行うのが好ましく、その際、容器から排出されたガスは必要により循環再使用してもよい。 The temperature of the reduction treatment is usually 200 to 600 ° C, preferably 250 to 550 ° C. The reduction treatment time is usually 5 minutes to 20 hours, preferably 30 minutes to 10 hours. The reduction treatment is preferably carried out by putting the fired product into a tube-type or box-type container and circulating a gas containing a reducing substance therein. At this time, the gas discharged from the container is circulated and recycled as necessary. May be used.
還元処理により、通常、該還元処理の前後で質量減少が見られるが、これは、触媒が格子酸素を失うためと考えられる。そして、この質量減少率は、0.05〜6質量%であるのが好ましく、より好ましくは0.1〜5質量%である。還元が進み過ぎて質量減少率が6質量%を超えた場合は、再度、分子状酸素含有ガスの雰囲気下での焼成を行って、質量減少率を下げるのがよい。なお、質量減少率は、次の式により求められる。 A reduction in mass is usually observed before and after the reduction treatment, which is considered because the catalyst loses lattice oxygen. And it is preferable that this mass decreasing rate is 0.05-6 mass%, More preferably, it is 0.1-5 mass%. When the reduction has progressed too much and the mass reduction rate exceeds 6% by mass, it is preferable that the mass reduction rate is lowered again by firing in an atmosphere of molecular oxygen-containing gas. The mass reduction rate is obtained by the following formula.
質量減少率(%)=[(還元処理前の焼成物の質量)−(還元処理後の触媒の質量)]÷(還元処理前の焼成物の質量)×100 Mass reduction rate (%) = [(mass of calcined product before reduction treatment) − (mass of catalyst after reduction treatment)] ÷ (mass of calcined product before reduction treatment) × 100
なお、還元処理の際、用いる還元性物質の種類や熱処理条件等によっては、還元性物質自身や還元性物質由来の分解生成物等が還元処理後の触媒に残存することがある。このような場合は、別途、触媒中の該残存物質量を測定し、これを該残存物込みの触媒質量から差し引いて、還元処理後の質量を算出すればよい。該残存物は、典型的には炭素であるので、例えば、全炭素(TC:total carbon)測定等により、その質量を求めればよい。 In the reduction treatment, depending on the type of reducing substance used, the heat treatment conditions, and the like, the reducing substance itself or a decomposition product derived from the reducing substance may remain in the catalyst after the reduction treatment. In such a case, the amount of the residual substance in the catalyst may be separately measured, and this may be subtracted from the catalyst mass including the residue to calculate the mass after the reduction treatment. Since the residue is typically carbon, its mass may be determined by, for example, total carbon (TC) measurement.
触媒は通常、所望の形状に成型され用いられる。この成型は打錠成型や押出成型等によってリング状、ペレット、球状等にするのがよい。また、本発明で使用する複数種の触媒の形状は、同一であってもよいし、異なっていてもよい。なお、この成型は、分子状酸素含有ガス雰囲気下で焼成する前の段階で行ってもよいし、該焼成後に行ってもよいし、還元処理後に行ってもよい。また、この成型の際、触媒の機械的強度を向上させるために、例えば特開平9−52053号公報に記載される如く、対象とする酸化反応に対し実質的に不活性な無機ファイバー等を添加してもよい。 The catalyst is usually used after being molded into a desired shape. This molding is preferably formed into a ring shape, a pellet, a spherical shape or the like by tableting molding or extrusion molding. Moreover, the shape of the multiple types of catalyst used by this invention may be the same, and may differ. This molding may be performed at a stage before firing in a molecular oxygen-containing gas atmosphere, may be performed after the firing, or may be performed after a reduction treatment. Further, during this molding, in order to improve the mechanical strength of the catalyst, for example, inorganic fibers that are substantially inert to the target oxidation reaction are added as described in JP-A-9-52053, for example. May be.
かくして触媒活性の異なる複数種の触媒が調製される。これら触媒の触媒活性は、該触媒の存在下に、プロピレン、イソブチレン及びターシャリーブチルアルコールから選ばれる少なくとも1種の原料化合物を分子状酸素で気相接触酸化して、その転化率を測定することにより評価することができる。そして、これら触媒を、原料ガス入口部から出口部に向け触媒活性、すなわち上記転化率がより高くなるように反応管に充填し、この反応管に上記原料化合物と分子状酸素とを含む原料ガスを供給することにより、気相接触酸化反応を行う。なお、工業的には、上記反応管を含む固定床多管式反応器を使用するのが好ましい。 Thus, a plurality of types of catalysts having different catalytic activities are prepared. The catalytic activity of these catalysts is determined by subjecting at least one raw material compound selected from propylene, isobutylene and tertiary butyl alcohol to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst, and measuring the conversion rate. Can be evaluated. Then, these catalysts are filled into a reaction tube so that the catalytic activity from the raw material gas inlet portion to the outlet portion, that is, the conversion rate becomes higher, and the raw material gas containing the raw material compound and molecular oxygen is contained in the reaction tube. Is carried out to carry out a gas phase catalytic oxidation reaction. Industrially, it is preferable to use a fixed-bed multitubular reactor including the reaction tube.
分子状酸素源としては、通常、空気が用いられ、原料ガス中には、上記原料化合物及び分子状酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。 As the molecular oxygen source, air is usually used, and the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the raw material compound and molecular oxygen.
上記気相接触酸化により、プロピレンからアクロレイン及び/又はアクリル酸を収率良く製造することができ、また、イソブチレンやターシャリーブチルアルコールからメタクロレイン及び/又はメタクリル酸を収率良く製造することができる。 By the gas phase catalytic oxidation, acrolein and / or acrylic acid can be produced from propylene in a high yield, and methacrolein and / or methacrylic acid can be produced from isobutylene or tertiary butyl alcohol in a high yield. .
反応温度は通常250〜400℃、反応圧力は減圧でも可能であるが、通常、常圧〜500kPaである。原料化合物に対する分子状酸素の量は通常1〜3モル倍である。また、原料ガスの空間速度SVは、STP(Standard temperature and pressure)基準で
、通常500〜5000h-1である。
The reaction temperature is usually 250 to 400 ° C. and the reaction pressure can be reduced, but it is usually atmospheric pressure to 500 kPa. The amount of molecular oxygen relative to the raw material compound is usually 1 to 3 mol times. The space velocity SV of the source gas is usually 500 to 5000 h −1 on the basis of STP (Standard temperature and pressure).
以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。例中、ガスの流量を表すml/minは、特記ない限りSTP基準である。また、例中、転化率(%)及び収率(%)は次の如く定義した。 Examples of the present invention will be described below, but the present invention is not limited thereto. In the examples, ml / min representing the gas flow rate is based on STP unless otherwise specified. In the examples, the conversion rate (%) and yield (%) were defined as follows.
転化率(%)=[(供給イソブチレンのモル数)−(未反応イソブチレンのモル数)]÷(供給イソブチレンのモル数)×100 Conversion (%) = [(moles of supplied isobutylene) − (moles of unreacted isobutylene)] ÷ (moles of supplied isobutylene) × 100
合計収率(%)=(メタクロレイン及びメタクリル酸のモル数)÷(供給イソブチレンのモル数)×100 Total yield (%) = (moles of methacrolein and methacrylic acid) ÷ (moles of supplied isobutylene) × 100
参考例1 触媒a(還元処理未実施品)の調製
モリブデン酸アンモニウム[(NH4)6Mo7O24・4H2O]4414gを温水5000gに溶解し、これをA液とした。一方、硝酸鉄(III)[Fe(NO3)3・9H2O]2020g、硝酸コバルト[Co(NO3)2・6H2O]4366g及び硝酸セシウム[CsNO3]195gを温水2000gに溶解し、次いで硝酸ビスマス[Bi(NO3)3・5H2O]970gを溶解し、これをB液とした。A液を攪拌し、この中にB液を添加してスラリーを得、次いでこのスラリーを気流乾燥機を用いて乾燥し、乾燥物を得た。この乾燥物100質量部に対し6質量部のシリカアルミナファイバー(サンゴバン・ティーエム製、RFC400−SL)を添加して、外径6.3mm、内径2.5mm、長さ6mmのリング状に成型し、次いで、空気気流下に525℃で6時間焼成して、触媒aを得た。この触媒は、モリブデン12原子に対しビスマス0.96原子、鉄2.4原子、コバルト7.2原子、セシウム0.48原子を含んでいる。
Reference Example 1 Preparation of catalyst a (unreduced product) 4414 g of ammonium molybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 5000 g of warm water, and this was designated as solution A. Meanwhile, 2020 g of iron (III) nitrate [Fe (NO 3 ) 3 .9H 2 O], 4366 g of cobalt nitrate [Co (NO 3 ) 2 .6H 2 O] and 195 g of cesium nitrate [CsNO 3 ] are dissolved in 2000 g of hot water. Subsequently, 970 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] was dissolved, and this was used as B solution. A liquid A was stirred, B liquid was added in this, the slurry was obtained, and this slurry was then dried using the airflow dryer, and the dried material was obtained. 6 parts by mass of silica-alumina fiber (RFC400-SL, manufactured by Saint-Gobain TM) is added to 100 parts by mass of the dried product and molded into a ring shape having an outer diameter of 6.3 mm, an inner diameter of 2.5 mm, and a length of 6 mm. Subsequently, the catalyst a was obtained by calcination at 525 ° C. for 6 hours under an air stream. This catalyst contains 0.96 atoms of bismuth, 2.4 atoms of iron, 7.2 atoms of cobalt, and 0.48 atoms of cesium with respect to 12 atoms of molybdenum.
実施例1 触媒A(還元処理実施品)の調製
上記触媒aをガラス管に充填し、ここに水素/窒素=5/95(容積比)の混合ガスを空間速度240h−1で供給し、350℃で8時間還元処理を行って、触媒Aを得た。この触媒は、上記触媒aと同様、モリブデン12原子に対しビスマス0.96原子、鉄2.4原子、コバルト7.2原子、セシウム0.48原子を含んでおり、該還元処理前後での質量減少率は0.90質量%であった。
Example 1 Preparation of catalyst A (reduced product) Catalyst a was filled in a glass tube, and a mixed gas of hydrogen / nitrogen = 5/95 (volume ratio) was supplied thereto at a space velocity of 240 h −1. A reduction treatment was performed at 0 ° C. for 8 hours to obtain Catalyst A. This catalyst contains 0.96 atoms of bismuth, 2.4 atoms of iron, 7.2 atoms of cobalt, and 0.48 atoms of cesium with respect to 12 atoms of molybdenum as in the case of the catalyst a, and the mass before and after the reduction treatment. The reduction rate was 0.90% by mass.
参考例2 触媒b(還元処理未実施品)の調製
参考例1における乾燥物100質量部に対して2.54質量部の三酸化アンチモン(Sb2O3)を添加し、焼成温度を546℃に変更した以外は、参考例1と同様にして、触媒bを得た。この触媒は、モリブデン12原子に対しビスマス0.96原子、アンチモン0.48原子、鉄2.4原子、コバルト7.2原子、セシウム0.48原子を含んでいる。
Reference Example 2 Preparation of catalyst b (unreduced product) 2.54 parts by mass of antimony trioxide (Sb 2 O 3 ) was added to 100 parts by mass of the dried product in Reference Example 1, and the calcination temperature was 546 ° C. A catalyst b was obtained in the same manner as in Reference Example 1 except that the catalyst b was changed. This catalyst contains 0.96 atoms of bismuth, 0.48 atoms of antimony, 2.4 atoms of iron, 7.2 atoms of cobalt, and 0.48 atoms of cesium with respect to 12 atoms of molybdenum.
実施例2 触媒B(還元処理実施品)の調製
上記触媒bをガラス管に充填し、ここに水素/窒素=5/95(容積比)の混合ガスを空間速度240h−1で供給し、350℃で8時間還元処理を行って、触媒Bを得た。この触媒は、上記触媒bと同様、モリブデン12原子に対しビスマス0.96原子、アンチモン0.48原子、鉄2.4原子、コバルト7.2原子、セシウム0.48原子を含んでおり、該還元処理前後での質量減少率は1.28質量%であった。
Example 2 Preparation of catalyst B (reduced product) The above catalyst b was filled in a glass tube, and a mixed gas of hydrogen / nitrogen = 5/95 (volume ratio) was supplied thereto at a space velocity of 240 h −1. A reduction treatment was performed at 0 ° C. for 8 hours to obtain Catalyst B. Like the catalyst b, this catalyst contains bismuth 0.96 atoms, antimony 0.48 atoms, iron 2.4 atoms, cobalt 7.2 atoms, cesium 0.48 atoms with respect to 12 atoms of molybdenum, The mass reduction rate before and after the reduction treatment was 1.28% by mass.
参考例3 触媒c(還元処理未実施品)の調製
硝酸セシウムの使用量を273gに変更した以外は、参考例1と同様にして、触媒cを得た。この触媒は、モリブデン12原子に対しビスマス0.96原子、鉄2.4原子、コバルト7.2原子、セシウム0.67原子を含んでいる。
Reference Example 3 Preparation of Catalyst c (Product not Reduced) Catalyst c was obtained in the same manner as in Reference Example 1 except that the amount of cesium nitrate used was changed to 273 g. This catalyst contains 0.96 atoms of bismuth, 2.4 atoms of iron, 7.2 atoms of cobalt, and 0.67 atoms of cesium with respect to 12 atoms of molybdenum.
実施例3 触媒C(還元処理実施品)の調製
上記触媒cをガラス管に充填し、ここに水素/窒素=5/95(容積比)の混合ガスを空間速度240h−1で供給し、350℃で8時間還元処理を行って、触媒Cを得た。この触媒は、上記触媒cと同様、モリブデン12原子に対しビスマス0.96原子、鉄2.4原子、コバルト7.2原子、セシウム0.67原子を含んでおり、該還元処理前後での質量減少率は0.77質量%であった。
Example 3 Preparation of catalyst C (reduced product) The above catalyst c was filled in a glass tube, and a mixed gas of hydrogen / nitrogen = 5/95 (volume ratio) was supplied thereto at a space velocity of 240 h −1. A reduction treatment was performed at 0 ° C. for 8 hours to obtain Catalyst C. Like the catalyst c, this catalyst contains 0.96 atoms of bismuth, 2.4 atoms of iron, 7.2 atoms of cobalt, and 0.67 atoms of cesium with respect to 12 atoms of molybdenum, and the mass before and after the reduction treatment. The reduction rate was 0.77% by mass.
参考例4 触媒d(還元処理未実施品)の調製
参考例3における乾燥物100質量部に対し、6質量部のシリカアルミナファイバー(サンゴバン・ティーエム製、RFC400−SL)及び2.54質量部の三酸化アンチモン(Sb2O3)を添加して、外径6.3mm、内径2.5mm、長さ6mmのリング状に成型し、次いで、空気気流下に490℃で6時間焼成して、触媒dを得た。この触媒は、モリブデン12原子に対しビスマス0.96原子、アンチモン0.29原子、鉄2.4原子、コバルト7.2原子、セシウム0.67原子を含んでいる。
Reference Example 4 Preparation of Catalyst d (Unreduced Product) 6 parts by mass of silica-alumina fiber (manufactured by Saint-Gobain TM, RFC400-SL) and 2.54 parts by mass of 100 parts by mass of the dried product in Reference Example 3 Antimony trioxide (Sb 2 O 3 ) was added to form a ring shape having an outer diameter of 6.3 mm, an inner diameter of 2.5 mm, and a length of 6 mm, and then calcined at 490 ° C. for 6 hours under an air stream. Catalyst d was obtained. This catalyst contains 0.96 atoms of bismuth, 0.29 atoms of antimony, 2.4 atoms of iron, 7.2 atoms of cobalt, and 0.67 atoms of cesium with respect to 12 atoms of molybdenum.
実施例4 触媒D(還元処理実施品)の調製
上記触媒dをガラス管に充填し、ここに水素/窒素=5/95(容積比)の混合ガスを空間速度240h−1で供給し、350℃で8時間還元処理を行って、触媒Dを得た。この触媒は、上記触媒dと同様、モリブデン12原子に対しビスマス0.96原子、アンチモン0.29原子、鉄2.4原子、コバルト7.2原子、セシウム0.67原子を含んでおり、該還元処理前後での質量減少率は1.17質量%であった。
Example 4 Preparation of catalyst D (reduced product) The above catalyst d was filled in a glass tube, and a mixed gas of hydrogen / nitrogen = 5/95 (volume ratio) was supplied thereto at a space velocity of 240 h −1. The catalyst D was obtained by performing a reduction treatment at 8 ° C. for 8 hours. Like the catalyst d, this catalyst contains 0.96 atoms of bismuth, 0.29 atoms of antimony, 2.4 atoms of iron, 7.2 atoms of cobalt, and 0.67 atoms of cesium with respect to 12 atoms of molybdenum. The mass reduction rate before and after the reduction treatment was 1.17% by mass.
比較例1 触媒Aを用いた酸化反応(触媒A単層)
内径18mmのガラス製反応管に、触媒A14.30mlを30gのシリコンカーバイト(信濃電気精錬(株)製、シナノランダム GC F16)で希釈して充填した。ここに、イソブチレン/酸素/窒素/スチーム=1.0/2.2/6.2/2.0(モル比)の混合ガスを157.5ml/minの流量で供給し、反応温度330℃にて酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 1 Oxidation Reaction Using Catalyst A (Catalyst A Single Layer)
Into a glass reaction tube having an inner diameter of 18 mm, 14.30 ml of catalyst A was diluted with 30 g of silicon carbide (manufactured by Shinano Denki Co., Ltd., Shinano Random GC F16) and filled. Here, a mixed gas of isobutylene / oxygen / nitrogen / steam = 1.0 / 2.2 / 6.2 / 2.0 (molar ratio) was supplied at a flow rate of 157.5 ml / min, and the reaction temperature was raised to 330 ° C. The oxidation reaction was performed. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
比較例2 触媒Aを用いた酸化反応(触媒A単層)
反応温度を340℃とした以外は、比較例1と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 2 Oxidation Reaction Using Catalyst A (Catalyst A Single Layer)
The oxidation reaction was performed in the same manner as in Comparative Example 1 except that the reaction temperature was 340 ° C. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
比較例3 触媒Aを用いた酸化反応(触媒A単層)
反応温度を350℃とした以外は、比較例1と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 3 Oxidation Reaction Using Catalyst A (Catalyst A Single Layer)
The oxidation reaction was performed in the same manner as in Comparative Example 1 except that the reaction temperature was 350 ° C. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
比較例4 触媒Bを用いた酸化反応(触媒B単層)
触媒Aを触媒Bに変更した以外は、比較例1と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 4 Oxidation reaction using catalyst B (catalyst B single layer)
An oxidation reaction was performed in the same manner as in Comparative Example 1 except that the catalyst A was changed to the catalyst B. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
比較例5 触媒Cを用いた酸化反応(触媒C単層)
触媒Aを触媒Cに変更し、反応温度を340℃とした以外は、比較例1と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 5 Oxidation reaction using catalyst C (catalyst C monolayer)
The oxidation reaction was performed in the same manner as in Comparative Example 1 except that the catalyst A was changed to the catalyst C and the reaction temperature was 340 ° C. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
比較例6 触媒Dを用いた酸化反応(触媒D単層)
触媒Aを触媒Dに変更し、反応温度を350℃とした以外は、比較例1と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 6 Oxidation reaction using catalyst D (catalyst D monolayer)
The oxidation reaction was performed in the same manner as in Comparative Example 1 except that the catalyst A was changed to the catalyst D and the reaction temperature was 350 ° C. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
実施例5 触媒B及び触媒Aを用いた酸化反応(触媒B/触媒A二層)
内径18mmのガラス製反応管の原料ガス入口側に、触媒B7.15mlを15gのシリコンカーバイド(信濃電気精錬(株)製、シナノランダム GC F16)で希釈して充填し、原料ガス出口側に触媒A7.15mlを15gのシリコンカーバイド(信濃電気精錬(株)製、シナノランダム GC F16)で希釈して充填した。ここに、イソブチレン/酸素/窒素/スチーム=1.0/2.2/6.2/2.0(モル比)の混合ガスを157.5ml/minの流量で供給し、反応温度330℃にて酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Example 5 Oxidation reaction using catalyst B and catalyst A (catalyst B / catalyst A double layer)
7.15 ml of catalyst B is diluted and filled with 15 g of silicon carbide (Shinano Denki Co., Ltd., Shinano Random GC F16) on the raw material gas inlet side of a glass reaction tube having an inner diameter of 18 mm, and the catalyst is placed on the raw material gas outlet side. 7.15 ml of A was diluted and filled with 15 g of silicon carbide (manufactured by Shinano Denki Co., Ltd., Shinano Random GC F16). Here, a mixed gas of isobutylene / oxygen / nitrogen / steam = 1.0 / 2.2 / 6.2 / 2.0 (molar ratio) was supplied at a flow rate of 157.5 ml / min, and the reaction temperature was raised to 330 ° C. The oxidation reaction was performed. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
実施例6 触媒C及び触媒Aを用いた酸化反応(触媒C/触媒A二層)
触媒Bを触媒Cに変更し、反応温度を340℃とした以外は、実施例5と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Example 6 Oxidation reaction using catalyst C and catalyst A (catalyst C / catalyst A double layer)
The oxidation reaction was performed in the same manner as in Example 5 except that the catalyst B was changed to the catalyst C and the reaction temperature was 340 ° C. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
実施例7 触媒D及び触媒Aを用いた酸化反応(触媒D/触媒A二層)
触媒Bを触媒Dに変更し、反応温度を350℃とした以外は、実施例5と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Example 7 Oxidation reaction using catalyst D and catalyst A (catalyst D / catalyst A double layer)
The oxidation reaction was performed in the same manner as in Example 5 except that the catalyst B was changed to the catalyst D and the reaction temperature was 350 ° C. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
比較例7 触媒b及び触媒aを用いた酸化反応(触媒b/触媒a二層)
触媒Bを触媒bに、触媒Aを触媒aにそれぞれ変更した以外は、実施例5と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 7 Oxidation reaction using catalyst b and catalyst a (catalyst b / catalyst a double layer)
An oxidation reaction was performed in the same manner as in Example 5 except that the catalyst B was changed to the catalyst b and the catalyst A was changed to the catalyst a. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
比較例8 触媒c及び触媒aを用いた酸化反応(触媒c/触媒a二層)
触媒Bを触媒cに、触媒Aを触媒aにそれぞれ変更し、反応温度を340℃とした以外は、実施例5と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 8 Oxidation reaction using catalyst c and catalyst a (catalyst c / catalyst a double layer)
The oxidation reaction was performed in the same manner as in Example 5 except that the catalyst B was changed to the catalyst c and the catalyst A was changed to the catalyst a, and the reaction temperature was 340 ° C. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
比較例9 触媒d及び触媒aを用いた酸化反応(触媒d/触媒a二層)
触媒Bを触媒dに、触媒Aを触媒aにそれぞれ変更し、反応温度を350℃とした以外は、実施例5と同様に酸化反応を行った。イソブチレンの転化率とメタクロレイン及びメタクリル酸の合計収率を表1に示す。
Comparative Example 9 Oxidation reaction using catalyst d and catalyst a (catalyst d / catalyst a double layer)
The oxidation reaction was carried out in the same manner as in Example 5 except that the catalyst B was changed to the catalyst d and the catalyst A was changed to the catalyst a, respectively, and the reaction temperature was 350 ° C. Table 1 shows the conversion of isobutylene and the total yield of methacrolein and methacrylic acid.
Claims (8)
(1)前記反応管は、原料ガス入口部から出口部に向け触媒活性がより高くなるように、触媒活性の異なる複数種の触媒が充填されてなり、
(2)前記複数種の触媒は、それぞれ独立して以下の式(I)
MoaBibFecAdBeCfDgOx (I)
(式中、Mo、Bi及びFeはそれぞれモリブデン、ビスマス及び鉄を表し、Aはニッケル及び/又はコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズ及び鉛から選ばれる少なくとも1種の元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモン、ケイ素、アルミニウム、チタン、ジルコニウム及びセリウムから選ばれる少なくとも1種の元素を表し、Dはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素を表し、Oは酸素を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0<g≦2であり、xは各元素の酸化状態により定まる値である。)
で示される複合酸化物からなり、
(3)前記複数種の触媒は、それら触媒を構成する金属元素の種類及び/又は含有比率において、互いに相違し、さらに、
(4)前記複数種の触媒は、それぞれ独立して、触媒の成分を含有する水溶液又は水性スラリーを乾燥した後、分子状酸素含有ガスの雰囲気下に焼成し、次いで還元性物質の存在下に熱処理して得られるものであること、
を特徴とする不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法。 By supplying a raw material gas containing at least one compound selected from propylene, isobutylene and tertiary butyl alcohol and molecular oxygen to a reaction tube, gas phase catalytic oxidation is performed, and a corresponding unsaturated aldehyde and / or unsaturated aldehyde is obtained. A method for producing a saturated carboxylic acid, comprising:
(1) The reaction tube is filled with a plurality of types of catalysts having different catalytic activities so that the catalytic activity becomes higher from the raw material gas inlet to the outlet.
(2) The plurality of types of catalysts are each independently represented by the following formula (I):
Mo a Bi b Fe c A d Be C f D g O x (I)
(Wherein Mo, Bi and Fe represent molybdenum, bismuth and iron, A represents nickel and / or cobalt, and B represents at least one element selected from manganese, zinc, calcium, magnesium, tin and lead) C represents at least one element selected from phosphorus, boron, arsenic, tellurium, tungsten, antimony, silicon, aluminum, titanium, zirconium and cerium, and D represents at least selected from potassium, rubidium, cesium and thallium. Represents one element, O represents oxygen, and when a = 12, 0 <b ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, (0 <g ≦ 2 and x is a value determined by the oxidation state of each element.)
Consisting of a complex oxide
(3) The plurality of types of catalysts differ from each other in the types and / or content ratios of the metal elements constituting the catalysts,
(4) The plurality of types of catalysts are each independently dried after drying an aqueous solution or aqueous slurry containing catalyst components, and then calcined in an atmosphere of molecular oxygen-containing gas, and then in the presence of a reducing substance. Be obtained by heat treatment,
A process for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid characterized by
MoaBibFecCodSbfCsgOx (II)
(式中、Mo、Bi、Fe、Co、Sb及びCsはそれぞれモリブデン、ビスマス、鉄、コバルト、アンチモン及びセシウムを表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦f≦10、0<g≦2であり、xは各元素の酸化状態により定まる値である。)
で示される複合酸化物からなる請求項1に記載の方法。 The plurality of catalysts are each independently represented by the following formula (II):
Mo a Bi b Fe c Co d Sb f Cs g O x (II)
(Wherein Mo, Bi, Fe, Co, Sb and Cs represent molybdenum, bismuth, iron, cobalt, antimony and cesium, respectively, where a = 12, 0 <b ≦ 10, 0 <c ≦ 10, (1 ≦ d ≦ 10, 0 ≦ f ≦ 10, 0 <g ≦ 2, and x is a value determined by the oxidation state of each element.)
The method of Claim 1 which consists of complex oxide shown by these.
前記反応管の原料ガス出口部に、前記式(II)中のfの値が0である複合酸化物からなる触媒が充填され、かつ、
原料ガス入口部に充填された触媒におけるモリブデン、ビスマス、鉄及びコバルトの含有比率と、原料ガス出口部に充填された触媒におけるモリブデン、ビスマス、鉄及びコバルトの含有比率は同一である請求項3に記載の方法。 The raw material gas inlet of the reaction tube is filled with a catalyst made of a complex oxide in which the value of f in the formula (II) is not 0,
The raw material gas outlet of the reaction tube is filled with a catalyst made of a composite oxide having a value of f of 0 in the formula (II), and
The content ratio of molybdenum, bismuth, iron and cobalt in the catalyst filled in the raw material gas inlet is the same as the content ratio of molybdenum, bismuth, iron and cobalt in the catalyst filled in the raw material gas outlet. The method described.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007074381A JP5045175B2 (en) | 2007-03-22 | 2007-03-22 | Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid |
SG200802045-5A SG146559A1 (en) | 2007-03-22 | 2008-03-11 | Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid |
KR1020080025685A KR101513300B1 (en) | 2007-03-22 | 2008-03-20 | / method for producing unsaturated aldehyde and/or unsaturated carboxylic acid |
CN2008100830666A CN101269333B (en) | 2007-03-22 | 2008-03-21 | Method for preparing unsaturated aldehyde and/or unsaturated carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007074381A JP5045175B2 (en) | 2007-03-22 | 2007-03-22 | Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008231044A true JP2008231044A (en) | 2008-10-02 |
JP5045175B2 JP5045175B2 (en) | 2012-10-10 |
Family
ID=39904279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007074381A Expired - Fee Related JP5045175B2 (en) | 2007-03-22 | 2007-03-22 | Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5045175B2 (en) |
KR (1) | KR101513300B1 (en) |
CN (1) | CN101269333B (en) |
SG (1) | SG146559A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010032889A1 (en) | 2009-07-31 | 2011-03-10 | Sumitomo Chemical Company, Limited | Process for recovering molybdenum and cobalt |
DE102010047136A1 (en) | 2009-09-30 | 2011-04-28 | Sumitomo Chemical Company, Ltd. | Process for the preparation of a complex oxide catalyst |
DE102012001801A1 (en) | 2011-01-31 | 2012-08-02 | Sumitomo Chemical Company, Ltd. | Recovering molybdenum and cobalt for preparing composite oxide, by blending composite oxide comprising molybdenum and cobalt with ceramic compact and aqueous extraction solution, and extracting molybdenum and cobalt into aqueous phase |
WO2013147041A1 (en) | 2012-03-30 | 2013-10-03 | 株式会社日本触媒 | Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor |
EP2832718A4 (en) * | 2012-03-29 | 2015-12-02 | Nippon Catalytic Chem Ind | Process for producing acrylic acid using fixed-bed multitubular reactor |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102091634A (en) * | 2010-12-13 | 2011-06-15 | 上海华谊丙烯酸有限公司 | Preparation method of catalyst used in reaction of preparing methylacrolein by selective oxidation of isobutene/tertiary butanol |
CN103772140B (en) * | 2012-10-23 | 2015-09-23 | 中国石油天然气股份有限公司 | Selective oxidation method for low-carbon olefin |
CN103772139B (en) * | 2012-10-23 | 2015-10-28 | 中国石油天然气股份有限公司 | Method for producing acrolein by selective oxidation of propylene |
CN104437533B (en) * | 2013-09-24 | 2017-01-04 | 中国石油化工股份有限公司 | Catalyst of methylacrolein and methacrylic acid and preparation method thereof |
CN104549353B (en) * | 2013-10-28 | 2016-09-07 | 中国石油化工股份有限公司 | MAL and the catalyst of methacrylic acid and its preparation method |
CN104549349B (en) * | 2013-10-28 | 2016-09-07 | 中国石油化工股份有限公司 | MAL and the catalyst of methacrylic acid |
WO2021141133A1 (en) * | 2020-01-10 | 2021-07-15 | 日本化薬株式会社 | Catalyst, catalyst filling method, and method for producing compound using catalyst |
CN114591156B (en) * | 2020-12-07 | 2024-01-05 | 北京水木滨华科技有限公司 | Method for preparing methacrolein by oxidizing isobutene and co-producing methacrylonitrile |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000351744A (en) * | 1999-04-09 | 2000-12-19 | Sumitomo Chem Co Ltd | Method for producing methacrolein and methacrylic acid |
JP2003181294A (en) * | 2001-10-26 | 2003-07-02 | Rohm & Haas Co | Method of improving characteristic of catalyst |
JP4265621B2 (en) * | 2006-06-06 | 2009-05-20 | 住友化学株式会社 | Process for producing unsaturated aldehyde and unsaturated carboxylic acid |
JP4720431B2 (en) * | 2005-09-30 | 2011-07-13 | 住友化学株式会社 | Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0630879B2 (en) * | 1993-06-25 | 2001-04-11 | Sumitomo Chemical Company Limited | Process for production of unsaturated aldehyde and unsaturated carboxylic acid |
SG77282A1 (en) * | 1999-04-09 | 2000-12-19 | Sumitomo Chemical Co | A process for producing unsaturated aldehyde and carboxylic acid |
JP3943291B2 (en) * | 1999-08-04 | 2007-07-11 | 株式会社日本触媒 | Method for producing acrolein and acrylic acid |
BRPI0500615B1 (en) * | 2004-03-10 | 2015-07-14 | Rohm & Haas | Modified Catalyst and Modified Catalyst System |
-
2007
- 2007-03-22 JP JP2007074381A patent/JP5045175B2/en not_active Expired - Fee Related
-
2008
- 2008-03-11 SG SG200802045-5A patent/SG146559A1/en unknown
- 2008-03-20 KR KR1020080025685A patent/KR101513300B1/en not_active IP Right Cessation
- 2008-03-21 CN CN2008100830666A patent/CN101269333B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000351744A (en) * | 1999-04-09 | 2000-12-19 | Sumitomo Chem Co Ltd | Method for producing methacrolein and methacrylic acid |
JP2003181294A (en) * | 2001-10-26 | 2003-07-02 | Rohm & Haas Co | Method of improving characteristic of catalyst |
JP4720431B2 (en) * | 2005-09-30 | 2011-07-13 | 住友化学株式会社 | Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid |
JP4265621B2 (en) * | 2006-06-06 | 2009-05-20 | 住友化学株式会社 | Process for producing unsaturated aldehyde and unsaturated carboxylic acid |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010032889A1 (en) | 2009-07-31 | 2011-03-10 | Sumitomo Chemical Company, Limited | Process for recovering molybdenum and cobalt |
DE102010047136A1 (en) | 2009-09-30 | 2011-04-28 | Sumitomo Chemical Company, Ltd. | Process for the preparation of a complex oxide catalyst |
US8361923B2 (en) | 2009-09-30 | 2013-01-29 | Sumitomo Chemical Company, Limited | Process for producing complex oxide catalyst |
DE102012001801A1 (en) | 2011-01-31 | 2012-08-02 | Sumitomo Chemical Company, Ltd. | Recovering molybdenum and cobalt for preparing composite oxide, by blending composite oxide comprising molybdenum and cobalt with ceramic compact and aqueous extraction solution, and extracting molybdenum and cobalt into aqueous phase |
EP2832718A4 (en) * | 2012-03-29 | 2015-12-02 | Nippon Catalytic Chem Ind | Process for producing acrylic acid using fixed-bed multitubular reactor |
WO2013147041A1 (en) | 2012-03-30 | 2013-10-03 | 株式会社日本触媒 | Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor |
EP2832717A1 (en) * | 2012-03-30 | 2015-02-04 | Nippon Shokubai Co., Ltd. | Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor |
US9073845B2 (en) | 2012-03-30 | 2015-07-07 | Nippon Shokubai Co., Ltd. | Method for producing acrolein and acrylic acid with a fixed-bed multitubular reactor |
EP2832717A4 (en) * | 2012-03-30 | 2015-11-11 | Nippon Catalytic Chem Ind | Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor |
Also Published As
Publication number | Publication date |
---|---|
SG146559A1 (en) | 2008-10-30 |
JP5045175B2 (en) | 2012-10-10 |
CN101269333A (en) | 2008-09-24 |
KR20080086365A (en) | 2008-09-25 |
KR101513300B1 (en) | 2015-04-17 |
CN101269333B (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5045175B2 (en) | Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid | |
JP5163273B2 (en) | Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid | |
JP5387297B2 (en) | Method for producing composite oxide catalyst | |
JP4265621B2 (en) | Process for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP4318367B2 (en) | Method for producing acrolein and acrylic acid | |
JP4720431B2 (en) | Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP2008535784A (en) | Process for producing unsaturated aldehyde and / or unsaturated acid | |
WO2016136882A1 (en) | Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid | |
JP2008006359A (en) | Regeneration method of catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid | |
JPWO2017010159A1 (en) | Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid | |
JP2008080232A (en) | Method for re-generating catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid | |
JP3939187B2 (en) | Process for producing unsaturated aldehyde | |
JP2008284416A (en) | Method for manufacturing metal oxide catalyst | |
JP6504774B2 (en) | Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst | |
JP2010207696A (en) | Method of manufacturing catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid | |
JP2007090193A (en) | Production method of catalyst for methacrylic acid production and production method of methacrylic acid | |
JP2011088028A (en) | Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP6238354B2 (en) | Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid | |
JP2013188669A (en) | Method for producing catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid | |
JP2013086008A (en) | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
JP2005162744A (en) | Method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP2019210228A (en) | Process for producing methacrolein | |
JP2000351744A (en) | Method for producing methacrolein and methacrylic acid | |
JP2008284508A (en) | Production method of catalyst for methacrylic-acid production and production method of methacrylic acid | |
JP2005021727A (en) | Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120619 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120702 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |