JP2008228689A - Method for acclimating plant to low light - Google Patents

Method for acclimating plant to low light Download PDF

Info

Publication number
JP2008228689A
JP2008228689A JP2007075983A JP2007075983A JP2008228689A JP 2008228689 A JP2008228689 A JP 2008228689A JP 2007075983 A JP2007075983 A JP 2007075983A JP 2007075983 A JP2007075983 A JP 2007075983A JP 2008228689 A JP2008228689 A JP 2008228689A
Authority
JP
Japan
Prior art keywords
light
plant
turned
intensity
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007075983A
Other languages
Japanese (ja)
Other versions
JP4841479B2 (en
Inventor
Wakayoshi Uki
若慶 雨木
Kazuhiro Akima
和広 秋間
Kenji Yoneda
賢治 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCS Inc
Original Assignee
CCS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCS Inc filed Critical CCS Inc
Priority to JP2007075983A priority Critical patent/JP4841479B2/en
Publication of JP2008228689A publication Critical patent/JP2008228689A/en
Application granted granted Critical
Publication of JP4841479B2 publication Critical patent/JP4841479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for acclimating plants to low light enabling plants to be kept in good condition even under the low light. <P>SOLUTION: The method for acclimating plants to low light comprises illuminating the plants with light emitted from an artificial light source indoors to acclimate the plants to low light; wherein blue light having the light intensity of ≤300μmolm-2s-1PPFD is shone, or red light having the light intensity of ≤100μmolm-2s-1PPFD is shone. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、植物の弱光順化を良好に誘導し、弱光下でも植物の状態を良好に保つ栽培方法であって、屋内における園芸植物の栽培方法として好適に用いられるものに関する。   The present invention relates to a cultivation method that satisfactorily induces weak light acclimation of a plant and maintains the state of the plant well even under low light, which is preferably used as a cultivation method for indoor garden plants.

通常、人の生活環境は植物の生育に充分は光条件を満たしていないため、観葉植物等を屋内で栽培すると、その植物は置かれた環境に適応しようとして弱光下に順化する反応を生じる。このような弱光順化反応では、一般的に光補償点の低下とともに、葉肉細胞当たりの葉緑体が減る一方で、葉緑体当たりのクロロフィル含有量は増加することが観察される。例えば、ベンジャミンゴムにおいて光補償点の低下とともに弱光順化反応が進行した場合は、葉肉細胞当たりの葉緑体が半減する一方で、葉緑体当たりのクロロフィル含有量は約3.6倍まで増加する。これらの弱光順化反応は比較的早く進行し、弱光下に移動後4週間でほぼ完了する(非特許文献1)。   Usually, the living environment of a person does not satisfy the light conditions enough for the growth of the plant, so when cultivating houseplants etc. indoors, the plant adapts to the environment where it is placed and adapts to low light. Arise. In such a weak light acclimation reaction, it is generally observed that the chlorophyll content per chloroplast increases while the chloroplast content per mesophyll cell decreases as the light compensation point decreases. For example, when the light acclimation reaction proceeds with a decrease in the light compensation point in Benjamin gum, the chloroplast content per mesophyll cell is halved, while the chlorophyll content per chloroplast is up to about 3.6 times To increase. These weak light acclimation reactions proceed relatively quickly and are almost completed in 4 weeks after moving under low light (Non-patent Document 1).

しかしながら、例えば、蛍光灯のような一般に屋内照明として用いられる人工光源を用いて屋内で植物を栽培する場合、弱光に順化させるのは必ずしも容易ではなく、順化が遅れると徒長したり落葉したりする。
園芸学会誌67巻、別冊2号、380頁
However, for example, when a plant is cultivated indoors using an artificial light source that is generally used as indoor lighting, such as a fluorescent lamp, it is not always easy to acclimatize to weak light, and if the acclimatization is delayed, it may increase or fallen leaves To do.
Journal of Horticultural Society Vol. 67, separate volume 2, page 380

このような現象が生じると観葉植物の価値は低下してしまうので、屋内の弱光下でも観葉植物の状態を良好に保って栽培する方法が求められている。   When such a phenomenon occurs, the value of the foliage plant decreases, so a method for cultivating the foliage plant in a good condition even under low light indoors is demanded.

本発明はかかる問題点に鑑みなされたものであって、弱光下でも植物の状態を良好に保つ栽培方法を提供することをその主たる所期課題としたものである。   This invention is made | formed in view of this problem, Comprising: It provides the cultivation method which keeps the state of a plant favorable under low light as the main desired subject.

すなわち本発明に係る弱光順化方法は、屋内において人工光源から発した光を照射して植物を栽培する方法であって、青色光を、300μmolm−2s−1PPFD以下の強度で照射するか、又は、赤色光を、100μmolm−2s−1PPFD以下の強度で照射することを特徴とする。なお、本発明において、「青色光」とは約470nm±15nm程度の波長を有する光であり、「赤色光」とは約660nm±15nm程度の波長を有する光である。また、青色光及び赤色光はそれぞれ単独で照射するものである。   That is, the weak light acclimation method according to the present invention is a method of cultivating a plant by irradiating light emitted from an artificial light source indoors, and irradiating blue light with an intensity of 300 μmol-2s-1 PPFD or less, Or it irradiates with red light with the intensity | strength of 100 micromolm-2s-1PPFD or less, It is characterized by the above-mentioned. In the present invention, “blue light” is light having a wavelength of about 470 nm ± 15 nm, and “red light” is light having a wavelength of about 660 nm ± 15 nm. Moreover, blue light and red light are each irradiated alone.

本発明で用いる人工光源としては、青色又は赤色光を照射することができるものであれば特に限定されないが、なかでもLEDは、他の光源でみられる輝線スペクトルの混入や紫外及び赤外域の放射がなく、フィルタ等を用いずともスペクトル半値幅の小さい単色光を照射することが可能で、ほぼ自由に発光色を選択することができるうえ、比較的廉価であり、他の光源に比べ発光効率がよく、熱放射に係る問題点が少なく、寿命が長い等の効果を奏し得ることより、好適に用いられる。   The artificial light source used in the present invention is not particularly limited as long as it can irradiate blue or red light. Among them, the LED is mixed with bright line spectrum and other radiations in the ultraviolet and infrared regions seen in other light sources. It is possible to irradiate monochromatic light with a small spectrum half-width without using a filter, and it is possible to select a light emission color almost freely, and it is relatively inexpensive, and luminous efficiency compared to other light sources. It is suitable for use because it has good problems such as long life and few problems related to thermal radiation.

本発明において植物に照射する光の強度は、青色光の場合、300μmolm−2s−1PPFD以下に調整し、赤色光の場合、100μmolm−2s−1PPFD以下に調整する。一般に屋内の光の強度は園芸植物の生産用温室の光の強度(約1000μmolm−2s−1PPFD)の数分の1から数百分の1であるが、このような弱光として青色光又は赤色光を用いることにより、弱光への順化を良好に誘導することができ、細胞当たりの葉緑体数は減少するものの、それを補うために葉緑体当たりのクロロフィル含有量を増加させたり、新たに展開した葉の数やそのクロロフィル含有量を高水準に維持したりすることが可能となる。   In this invention, the intensity | strength of the light irradiated to a plant is adjusted to 300 micromol-2s-1PPFD or less in the case of blue light, and is adjusted to 100 micromol-2s-1PPFD or less in the case of red light. In general, the intensity of indoor light is one-hundred to one-hundredth of the intensity of light in a greenhouse for production of horticultural plants (approximately 1000 μmol-2s-1PPFD). By using light, acclimation to weak light can be well induced, and although the number of chloroplasts per cell decreases, the chlorophyll content per chloroplast can be increased to compensate for this. The number of newly developed leaves and their chlorophyll content can be maintained at a high level.

すなわち、既存葉の弱光順化を良好に誘導することを主たる目的とする場合は、青色光又は赤色光を100μmolm−2s−1PPFD以下の強度で照射することが好ましく、青色光又は赤色光を10μmolm−2s−1PPFD以下の強度で照射することがより好ましい。   That is, when the main purpose is to favorably induce weak light acclimation of existing leaves, it is preferable to irradiate blue light or red light with an intensity of 100 μmolm-2s-1 PPFD or less, and to emit blue light or red light. Irradiation with an intensity of 10 μmolm-2s-1 PPFD or less is more preferable.

また、新展開葉の着生とその弱光順化を良好に誘導することを主たる目的とする場合は、青色光を100〜300μmolm−2s−1PPFDの強度で照射することが好ましく、一方、既存葉とともに新展開葉の弱光順化の誘導も良好に行うことを主たる目的とする場合は、赤色光を100μmolm−2s−1PPFD以下の強度で照射することが好ましく、赤色光を10μmolm−2s−1PPFD以下の強度で照射することがより好ましい。   In addition, when the main purpose is to induce the establishment of newly developed leaves and their weak light acclimation, it is preferable to irradiate blue light with an intensity of 100 to 300 μmol-2s-1PPFD, When the main purpose is to induce the weak light acclimation of the newly developed leaves together with the leaves, it is preferable to irradiate the red light with an intensity of 100 μmolm-2s-1 PPFD or less, and the red light to 10 μmolm-2s- Irradiation with an intensity of 1 PPFD or less is more preferable.

本発明に係る方法を適用する植物としては特に限定されないが、本発明は一般的に屋内で生育される観葉植物等の園芸植物に好適に用いられる。このような園芸植物の中でも、アコウ、インドゴムノキ、カシワバゴムノキ、ガジュマル、コバンボダイジュ、ショウナンゴム、フィカス・アルティッシマ、フィカス・ウイルデマニアナ、フィカス・ウンベラータ、フィカス・サギッタタ、フィカス・トリアングラリス、フィカス・ベンジャミナ(ベンジャミンゴム)、フィカス・プミラ、フィカス・ペティオラリス、フランスゴムノキ、ベンガルボダイジュ等のフィクス属や、パンノキ等のパンノキ属が含まれるクワ科の観葉植物が好ましく、とりわけベンジャミンゴム等のフィクス属が好適である。   Although it does not specifically limit as a plant to which the method which concerns on this invention is applied, Generally this invention is used suitably for garden plants, such as a foliage plant grown indoors. Among these horticultural plants, Akko, Indian rubber tree, Oak rubber tree, Banyan tree, Kobanbodaiju, Shonan gum, Ficus Ultisima, Ficus Wildemaniana, Ficus Umberata, Ficus Sagitta, Ficus Triangularis, Ficus Benjamina (Benjamin) Rubber), Ficus pumila, Ficus petiolaris, French rubber tree, Bengalbodaiju, and other genus foliage plants including the genus Panacea such as breadfruit are preferable, and the genus Fixam such as Benjamin gum is particularly preferable. .

本発明を用いて屋内で植物を栽培するためには、例えば、光源としてLEDと、その光強度を調節する手段とを備えている光照射装置を用いる。しかして、本発明に係る弱光順化方法に用いるこのような光照射装置もまた、本発明の1つである。   In order to cultivate plants indoors using the present invention, for example, a light irradiation device including an LED as a light source and a means for adjusting the light intensity is used. Therefore, such a light irradiation apparatus used in the weak light acclimation method according to the present invention is also one aspect of the present invention.

本発明に係る光照射装置の一実施形態を図1に例示する。
図1に例示する光照射装置1は、光を射出する光射出部2と、その光射出部2に対し射出される光の強度を変更可能に電力を供給する電力供給部3とを備えたものである。更に植物の生育状況に応じて、よりきめ細かい制御を行うためには、判別部4及び光強度設定部5を備えていることが好ましい。
One embodiment of a light irradiation apparatus according to the present invention is illustrated in FIG.
The light irradiation device 1 illustrated in FIG. 1 includes a light emitting unit 2 that emits light, and a power supply unit 3 that supplies power so that the intensity of the light emitted to the light emitting unit 2 can be changed. Is. Furthermore, in order to perform finer control according to the growth state of the plant, it is preferable to include the determination unit 4 and the light intensity setting unit 5.

各部を詳述する。光射出部2は、図2に示すように、平板状の基板22の一方の面にLED21を多数敷設したもので、LED21から射出される光が植物の方を向くように設置してある。LED21は、青色LED又は赤色LEDであり、例えば砲弾型のものである。   Each part will be described in detail. As shown in FIG. 2, the light emitting unit 2 includes a large number of LEDs 21 laid on one surface of a flat substrate 22, and is installed so that light emitted from the LEDs 21 faces a plant. The LED 21 is a blue LED or a red LED, and is, for example, a bullet type.

電力供給部3は、各LED21毎に、独立して発光強度を変更可能に電力を供給するものである。具体的な電力供給態様として、本実施形態では、例えばPWM方式を採用しており、外部制御信号の受信又は入力を受け付けることによって、各LED21毎に、供給電力波形におけるデューティ比を設定できるようにしてある。そしてそのデューティ比の設定により、各LED21毎の発光強度を変更し、光射出部2全体から射出される光の強度を変更できるように構成してある。   The power supply unit 3 supplies power so that the emission intensity can be changed independently for each LED 21. As a specific power supply mode, in the present embodiment, for example, a PWM method is adopted, and by receiving reception or input of an external control signal, a duty ratio in a supply power waveform can be set for each LED 21. It is. And by setting the duty ratio, the light emission intensity for each LED 21 can be changed, and the intensity of the light emitted from the entire light emitting part 2 can be changed.

判別部4は、例えばオペレータによる入力により、栽培対象の植物6の生育状況を判別するものである。   The discriminating unit 4 discriminates the growth status of the plant 6 to be cultivated, for example, by an input by an operator.

光強度設定部5は、植物6の生育状況に応じて、前記光のオン・オフ及び強度を設定するための外部制御信号を生成し、その外部制御信号を前記電力供給部3に送信するものである。具体的には、例えば植物6の生育状況を示す識別子と外部制御信号の識別子とを対にして格納している制御信号特定データ格納部D1にアクセスし、植物6の生育状況に対応する外部制御信号を特定するとともに、その外部制御信号を前記電力供給部3に送信する。   The light intensity setting unit 5 generates an external control signal for setting on / off and intensity of the light according to the growth state of the plant 6, and transmits the external control signal to the power supply unit 3. It is. Specifically, for example, an external control corresponding to the growth status of the plant 6 is accessed by accessing the control signal specifying data storage unit D1 storing a pair of an identifier indicating the growth status of the plant 6 and the identifier of the external control signal. The signal is specified and the external control signal is transmitted to the power supply unit 3.

なお、前記判別部4、光強度設定部5、制御信号特定データ格納部D1等は、本実施形態では情報処理装置7を利用して構成している。この情報処理装置7は、図3に示すように、CPU101、内部メモリ102、HDD等の外部記憶装置103、モデム等の通信インタフェース104、ディスプレイ105、マウスやキーボードといった入力手段106等を有する。そして、前記内部メモリ102や外部記憶装置103等の所定領域に設定したプログラムにしたがってCPU101やその周辺機器を作動させることにより、前記判別部4、光強度設定部5、制御信号特定データ格納部D1として機能するように構成してある。かかる情報処理装置7は、汎用のコンピュータであってもよく、専用のものであってもよい。   In the present embodiment, the determination unit 4, the light intensity setting unit 5, the control signal specifying data storage unit D1, and the like are configured using the information processing apparatus 7. As shown in FIG. 3, the information processing apparatus 7 includes a CPU 101, an internal memory 102, an external storage device 103 such as an HDD, a communication interface 104 such as a modem, a display 105, an input means 106 such as a mouse and a keyboard, and the like. Then, by operating the CPU 101 and its peripheral devices according to a program set in a predetermined area such as the internal memory 102 or the external storage device 103, the determination unit 4, the light intensity setting unit 5, the control signal specifying data storage unit D1 Is configured to function as The information processing apparatus 7 may be a general-purpose computer or a dedicated computer.

なお、本発明に係る光照射装置は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能である   The light irradiation apparatus according to the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the light irradiation apparatus.

例えば、赤色光や青色光が照射されていると人がくつろぐための空間として不適当になる場合は、さらに光センサを設け、光を感知して屋内照明が点灯するとオフになり屋内照明が消灯するとオンになるように構成したり、赤外線センサ、超音波センサ、光電センサ等を利用した人感センサをさらに設け、人を感知して人が入室するとオフになり人が退室するとオンになるように構成しておくと好ましい。   For example, if it is not suitable as a space for people to relax when irradiated with red light or blue light, an additional light sensor is provided to turn off when the indoor lighting is turned on by sensing light and the indoor lighting is turned off It can be configured to be turned on, or a human sensor using an infrared sensor, an ultrasonic sensor, a photoelectric sensor, etc. is further provided so that it turns off when a person enters the room and turns on when the person leaves the room. It is preferable to configure this.

前記赤外線センサを利用した人感センサは、例えば人体のように周囲より高い温度から発せられる赤外線を受光し、さらにその物体が移動したときにそれを人と検知して作動するものである。また超音波センサ式の人感センサは、センサ近傍に物体(人)が存在すると、それを超音波の反射で検知して作動するものである。部屋の出入口などに設置される。また、植物の側から部屋の出入口に向けてこれら人感センサを配置することで、人の入退室や、植物への人の接近を確実に捉えることができる。   The human sensor using the infrared sensor receives an infrared ray emitted from a temperature higher than the surroundings, such as a human body, and further operates when the object is detected as a person. Further, the ultrasonic sensor type human sensor operates when an object (person) is present in the vicinity of the sensor, which is detected by reflection of ultrasonic waves. Installed at the entrance of the room. In addition, by arranging these human sensors from the plant side toward the entrance of the room, it is possible to reliably capture the entrance / exit of the person and the approach of the person to the plant.

前記光電センサ式の人感センサには、投光器と受光器のある透過形のものと、投受光器一体型の拡散反射形のものがあり、検出光には赤色と赤外がある。いずれも物体(人)が光を遮った時に作動するもので、やはり部屋の出入口などに設置される。また、植物の側から部屋の出入口に向けてこれら人感センサを配置することで、人の入退室や、植物への人の接近を確実に捉えることができる。   The photoelectric sensor type human sensor includes a transmission type having a projector and a light receiver, and a diffuse reflection type integrated with a light emitter / receiver, and detection light includes red and infrared. Both work when an object (a person) blocks light and are also installed at the entrance of a room. In addition, by arranging these human sensors from the plant side toward the entrance of the room, it is possible to reliably capture the entrance / exit of the person and the approach of the person to the plant.

前記人感センサとして赤外線センサを用いる場合、人が動いていないときにセンサがオフになり光源が点灯してしまう可能性もあるので、その場合はタイマを設け、センサが一度反応したら一定時間内は光照射装置がオフを継続するように構成してあることが好ましい。   When an infrared sensor is used as the human sensor, there is a possibility that the sensor is turned off and the light source is turned on when a person is not moving. In that case, a timer is provided, and within a certain time after the sensor reacts once Is preferably configured so that the light irradiation device continues to be turned off.

前記人感センサとして拡散反射形の光電センサを用いる場合は、センサを植物に付けておけば、植物に人が近づくと、投光器から出た光が人により反射され、その光が受光器に入るので、植物の側に人がいる限り光照射装置をオフにすることができる。   When a diffuse reflection type photoelectric sensor is used as the human sensor, if the sensor is attached to the plant, when a person approaches the plant, the light emitted from the projector is reflected by the human and the light enters the light receiver. Therefore, as long as there is a person on the plant side, the light irradiation device can be turned off.

このような構成の本発明によれば、園芸植物の弱光への順化を良好に誘導することができ、屋内で栽培する場合であっても園芸植物の状態を良好に保ち、その商品価値を高く維持することができる。   According to the present invention having such a configuration, the acclimation to the low light of the horticultural plant can be favorably induced, and even when cultivated indoors, the state of the horticultural plant is kept good, and its commercial value Can be kept high.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例によって何ら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

<試験材料>
慣行法により挿し木繁殖し、2号プラ鉢に定植したベンジャミンゴム(Ficus benjamina)を、通常の温室環境下で少なくとも2ヶ月栽培した後、試験開始直前に、植物体の高さを一定にそろえて側枝を除去し、完全展開葉が9〜10枚となるように下位葉を調整した。
<Test material>
Benjamin gum (Ficus benjamina) that has been planted and propagated by the conventional method and planted in No. 2 plastic pots is cultivated in a normal greenhouse environment for at least 2 months, and then the plant height is kept constant immediately before the start of the test. Side branches were removed and the lower leaves were adjusted so that there were 9-10 fully expanded leaves.

<試験方法>
人工光源として、光源4区(白色蛍光灯、青LED(ピーク波長470nm)、緑LED(500nm)、赤LED(660nm))と光強度2区(5又は200μmolm−2s−1PPFD)を組み合わせた8区と、温室でそのまま栽培を継続する温室区の計9区を設け、各区に5個体を供した。
<Test method>
As an artificial light source, a combination of 4 light sources (white fluorescent lamp, blue LED (peak wavelength 470 nm), green LED (500 nm), red LED (660 nm)) and light intensity 2 (5 or 200 μmolm-2s-1PPFD) A total of 9 wards and 9 greenhouses that continue cultivation in the greenhouse were provided, and 5 individuals were provided for each ward.

人工光源を用いる8区は、空調された実験室に棚を組み、そこに蛍光灯照射器具(ミツヤ製作所社製)又はLED照射パネル(ISL型、シーシーエス社製)を組み込み、各照射区内側は超微細発泡光反射板(MCPET、古河電工社製)で囲み、その外側は黒色遮光布で覆い、外部からの光の混入を防いだ。また、それぞれの光源の側方に送風ファンを設置し、光源から生じる熱の放散を促した。   Eight wards that use artificial light sources have shelves built in air-conditioned laboratories, and fluorescent light irradiators (made by MITSUYA MFG. Co., Ltd.) or LED irradiation panels (ISL type, made by CCS) are built in. It was surrounded by an ultrafine foamed light reflector (MCPET, manufactured by Furukawa Electric Co., Ltd.) and the outside was covered with a black shading cloth to prevent light from entering from the outside. Moreover, the ventilation fan was installed in the side of each light source, and the dissipation of the heat which arises from a light source was promoted.

それぞれの人工光下に移した後、4及び14日目に葉緑体数を測定した。葉緑体数の測定は、個々の株の最上位にある完全展開葉を採取し、常法(例えば、園芸学会誌67巻、別冊2号、380頁に記載の方法)に準じて行った。また、試験開始から50日目に、上位2枚の完全展開葉の中肋を避けた中央部の2ヶ所について、SPAD−502(ミノルタ社製)を用いてSPAD値を測定した。その後、中間的な1個体を同環境に残し、他の4個体はストレス後の生長を評価するため、温室環境に戻して栽培を続けた。試験開始から100日目に人工光下に残した1個体について、葉身長10mm以上の全ての葉を数え、再びSPAD値を測定した。   The number of chloroplasts was measured on the 4th and 14th days after each artificial light transfer. Measurement of the number of chloroplasts was carried out according to a conventional method (for example, the method described in Horticultural Society Vol. 67, volume 2, page 380) by collecting the fully expanded leaves at the top of each strain. . In addition, on the 50th day from the start of the test, SPAD values were measured using SPAD-502 (manufactured by Minolta Co., Ltd.) at two locations in the central portion, avoiding the middle of the top two fully developed leaves. Thereafter, one intermediate individual was left in the same environment, and the other four individuals were returned to the greenhouse environment to continue cultivation in order to evaluate the growth after stress. For one individual left under artificial light on the 100th day from the start of the test, all leaves with a leaf length of 10 mm or more were counted, and the SPAD value was measured again.

<試験結果>
得られた結果を表1、図4及び図5に示した。
<Test results>
The obtained results are shown in Table 1, FIG. 4 and FIG.

*1:上位2枚の完全展開葉を個体について測定。
*2:処理50日目に実験条件を継続した1個体についての測定値。
* 1: The top two fully developed leaves are measured for each individual.
* 2: Measured value for one individual who continued experimental conditions on the 50th day of treatment.

表1に記載のとおり、柵状組織細胞当たりの葉緑体数については、いずれの人工光下でも急速に減少し、温室区と比較して、試験開始後4日目で85.5〜93.1%、14日目で69.8〜83%となったが、光源種及び光強度の間で比較しても、各人工光源区の間に顕著な差はなかった。   As shown in Table 1, the number of chloroplasts per palisade tissue cell decreased rapidly under any artificial light, and 85.5 to 93 on the fourth day after the start of the test, compared to the greenhouse. 1% and 69.8 to 83% on the 14th day, but there was no significant difference between the artificial light source sections even when compared between the light source species and the light intensity.

一方、SPAD値には光源種及び光強度により差異が見られ、既存葉についての処理50日目のSPAD値と100日目のSPAD値とを比較すると、青LED5μmolm−2s−1PPFD区と赤5μmolm−2s−1PPFD区において、SPAD値が増加しており、このことより、青LED5μmolm−2s−1PPFD区と赤5μmolm−2s−1PPFD区において、既存葉の弱光順化が良好に誘導されたことが明らかとなった。   On the other hand, the SPAD value differs depending on the light source type and the light intensity. When the SPAD value on the 50th day and the SPAD value on the 100th day for the existing leaves are compared, the blue LED 5 μmolm-2s-1PPFD and red 5 μmolm are compared. In the -2s-1PPFD section, the SPAD value increased. From this, the weak light acclimation of the existing leaves was well induced in the blue LED 5 μmolm-2s-1PPFD section and the red 5 μmolm-2s-1PPFD section. Became clear.

また、新展開葉について検討すると、SPAD値は青LED200μmolm−2s−1PPFD区と赤5μmolm−2s−1PPFD区が高く、着生葉の枚数は青LED200μmolm−2s−1PPFD区が高かった。このことより、青LED200μmolm−2s−1PPFD区は新展開葉の着生とその弱光順化の誘導に適しており、赤5μmolm−2s−1PPFD区は既存葉とともに新展開葉の弱光順化の誘導にも適していることが判明した。これらの結果は図4及び図5に示した写真からも明らかである。   When the newly developed leaves were examined, the SPAD values were high in the blue LED 200 μmolm-2s-1PPFD section and the red 5 μmolm-2s-1PPFD section, and the number of epiphytic leaves was high in the blue LED 200 μmolm-2s-1PPFD section. From this, blue LED 200μmolm-2s-1PPFD section is suitable for the induction of newly developed leaves and induction of weak light acclimation, and red 5μmolm-2s-1PPFD section is acclimated to newly developed leaves with existing leaves. It was found to be suitable for induction of These results are clear from the photographs shown in FIGS.

このように本発明によれば、植物の弱光順化を良好に誘導することができ、弱光下でも植物の状態を良好に保つことができる。したがって屋内における園芸植物の栽培方法として極めて好適なものである。   As described above, according to the present invention, it is possible to satisfactorily induce acclimation of light in plants, and it is possible to maintain the state of plants well even under low light. Therefore, it is an extremely suitable method for cultivating indoor horticultural plants.

本発明の一実施形態における光照射装置を示す模式的構成図。The typical block diagram which shows the light irradiation apparatus in one Embodiment of this invention. 同実施形態における光照射部を示す平面図。The top view which shows the light irradiation part in the embodiment. 同実施形態における情報処理装置の機器構成図。The equipment block diagram of the information processing apparatus in the embodiment. 処理50日目(a)と処理100日目(b)の各光区の個体を比較して示す写真。The photograph which compares and shows the individual | organism | solid of each light section of the process 50th day (a) and the process 100th day (b). 処理100日目の赤LED200μmolm−2s−1PPFD区(a)と温室区(b)の個体を比較した写真(さらに比較のため温室区の50日目の写真も掲載している)。The photograph which compared the individual | organism | solid of red LED200micromol-2s-1PPFD section (a) of a treatment 100 day, and a greenhouse section (b) (The photograph of the 50th day of a greenhouse section is also published for the comparison).

符号の説明Explanation of symbols

1・・・光照射装置
2・・・光射出部
21・・・LED
3・・・電力供給部
4・・・判別部
5・・・光強度設定部
6・・・植物
DESCRIPTION OF SYMBOLS 1 ... Light irradiation apparatus 2 ... Light emission part 21 ... LED
DESCRIPTION OF SYMBOLS 3 ... Electric power supply part 4 ... Discrimination part 5 ... Light intensity setting part 6 ... Plant

Claims (10)

屋内において人工光源から発した光を照射して植物を弱光順化する方法であって、
青色光を、300μmolm−2s−1PPFD以下の強度で照射するか、又は、
赤色光を、100μmolm−2s−1PPFD以下の強度で照射することを特徴とする弱光順化方法。
It is a method of irradiating light emitted from an artificial light source indoors to acclimate a plant to light,
Irradiate blue light with an intensity of 300 μmolm-2s-1 PPFD or less, or
A weak light acclimation method characterized by irradiating red light with an intensity of 100 μmolm-2s-1 PPFD or less.
前記人工光源が、LEDである請求項1記載の弱光順化方法。   The weak light acclimation method according to claim 1, wherein the artificial light source is an LED. 前記植物が、園芸植物である請求項1又は2記載の弱光順化方法。   The weak light acclimation method according to claim 1, wherein the plant is a garden plant. 前記園芸植物が、クワ科の植物である請求項3記載の弱光順化方法。   The weak light acclimation method according to claim 3, wherein the horticultural plant is a mulberry plant. 前記クワ科の植物が、フィクス属の植物である請求項4記載の弱光順化方法。   The weak light acclimation method according to claim 4, wherein the mulberry plant is a plant belonging to the genus Fixus. 前記フィクス属の植物が、ベンジャミンゴム(Ficus benjamina)である請求項5記載の弱光順化方法。   6. The weak light acclimation method according to claim 5, wherein the plant belonging to the genus Fixix is benjamin gum (Ficus benjamina). 請求項1、2、3、4、5又は6記載の弱光順化方法に用いることを特徴とする光照射装置。   A light irradiation apparatus used for the weak light acclimation method according to claim 1, 2, 3, 4, 5 or 6. 光センサを備えており、屋内照明が点灯するとオフになり、屋内照明が消灯するとオンになるように構成してある請求項7記載の光照射装置。   The light irradiation apparatus according to claim 7, further comprising: a light sensor configured to be turned off when the indoor lighting is turned on and turned on when the indoor lighting is turned off. 人感センサを備えており、人が入室するとオフになり、人が退室するとオンになるように構成してある請求項7又は8記載の光照射装置。   The light irradiation apparatus according to claim 7 or 8, further comprising a human sensor, configured to be turned off when a person enters the room and turned on when the person leaves the room. 前記人感センサは、赤外線センサ、超音波センサ、又は、光電センサである請求項9記載の光照射装置。   The light irradiation apparatus according to claim 9, wherein the human sensor is an infrared sensor, an ultrasonic sensor, or a photoelectric sensor.
JP2007075983A 2007-03-23 2007-03-23 Method for acclimating faint light in plants Expired - Fee Related JP4841479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075983A JP4841479B2 (en) 2007-03-23 2007-03-23 Method for acclimating faint light in plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075983A JP4841479B2 (en) 2007-03-23 2007-03-23 Method for acclimating faint light in plants

Publications (2)

Publication Number Publication Date
JP2008228689A true JP2008228689A (en) 2008-10-02
JP4841479B2 JP4841479B2 (en) 2011-12-21

Family

ID=39902257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075983A Expired - Fee Related JP4841479B2 (en) 2007-03-23 2007-03-23 Method for acclimating faint light in plants

Country Status (1)

Country Link
JP (1) JP4841479B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279325A (en) * 2009-06-08 2010-12-16 Tsubakimoto Chain Co Lighting device for plant cultivation
KR101176724B1 (en) 2010-06-25 2012-08-23 (주)뉴그린코리아 Illumination apparatus for light culture
JP2018117624A (en) * 2018-03-01 2018-08-02 株式会社オアシス Plant cultivation device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102599026B (en) * 2012-03-30 2013-06-26 常熟市常福有机复合肥有限公司 Tilia miqueliana seedling raising method
CN104303869B (en) * 2014-11-05 2017-08-01 瑞丽滇蔗农业科技开发有限公司 The illuminant combined device and method of a kind of induction sugarcane florescence
CN105766284B (en) * 2016-03-07 2019-04-02 江苏大学 Phalaris grass light compensates the determination method utilized in a kind of reed Phalaris grass group
CN107907309A (en) * 2017-11-24 2018-04-13 山西高科华烨电子集团有限公司 A kind of method that lamp bead PPF is measured with 2m integrating spheres

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998A (en) * 1995-06-23 1997-01-07 Mitsubishi Chem Corp Culture of tissue culture seedling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998A (en) * 1995-06-23 1997-01-07 Mitsubishi Chem Corp Culture of tissue culture seedling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279325A (en) * 2009-06-08 2010-12-16 Tsubakimoto Chain Co Lighting device for plant cultivation
KR101176724B1 (en) 2010-06-25 2012-08-23 (주)뉴그린코리아 Illumination apparatus for light culture
JP2018117624A (en) * 2018-03-01 2018-08-02 株式会社オアシス Plant cultivation device

Also Published As

Publication number Publication date
JP4841479B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4841479B2 (en) Method for acclimating faint light in plants
US20220061228A1 (en) Radiation-Based Mildew Control
US11925152B2 (en) Plant growth system
JP6797280B2 (en) UV-based mold control
US20120198762A1 (en) Spectural specific horticulture apparatus
US20100277078A1 (en) Plant lighting system
Meinen et al. Finding the optimal growth-light spectrum for greenhouse crops
JP2020168010A (en) Attraction or colonization method of predacious insect
JP5335721B2 (en) Lighting equipment for plant growth
JP4988643B2 (en) Lighting device for plant disease control
JP2013039035A (en) Apparatus for accelerating growth of plant such as fruit and vegetable
CN1653329A (en) Apparatus and method for determining the viability of eggs using ir-measurements
JP2021521892A (en) Plant cultivation method using UV and plant cultivation system for this
JP5424993B2 (en) Lighting device for plant disease control
CN106918026A (en) A kind of ceramic gold-halogen lamp illumination system and method for indoor pig
CN112425403A (en) Plant growth illumination device for preventing and killing pests based on biological recognition and control method thereof
JP7134428B2 (en) plant cultivation equipment
KR102127773B1 (en) Apparatus of home hydroponic culture with remote control
WO2021023024A1 (en) Plant growth illumination device capable of preventing and controlling disease and insect pest, and control method therefor
CN104542100B (en) Intelligent raster pattern domestication of plants device, its preparation method and inoculation method
CN207653160U (en) A kind of Physical Agriculture LED light source promotion edible fungi growth system
CN205694449U (en) A kind of double light source mends temperature mushroom frame for cultivating
US12035437B2 (en) Adjust light sources from grow light settings to operator light settings based on a determined attention area
CN109874741B (en) Light control method and light device for indoor ecological fish culture
US20220353974A1 (en) Adjust light sources from grow light settings to operator light settings based on a determined attention area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4841479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees