JP2008227635A - Differential transmission circuit - Google Patents

Differential transmission circuit Download PDF

Info

Publication number
JP2008227635A
JP2008227635A JP2007059291A JP2007059291A JP2008227635A JP 2008227635 A JP2008227635 A JP 2008227635A JP 2007059291 A JP2007059291 A JP 2007059291A JP 2007059291 A JP2007059291 A JP 2007059291A JP 2008227635 A JP2008227635 A JP 2008227635A
Authority
JP
Japan
Prior art keywords
voltage
differential
resistive element
transmission circuit
signal input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059291A
Other languages
Japanese (ja)
Other versions
JP4957302B2 (en
Inventor
Junichi Tsuchida
純一 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007059291A priority Critical patent/JP4957302B2/en
Publication of JP2008227635A publication Critical patent/JP2008227635A/en
Application granted granted Critical
Publication of JP4957302B2 publication Critical patent/JP4957302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a differential transmission circuit which can be prevented from malfunctioning when instable signals occurs when a signal line is not connected. <P>SOLUTION: When the signal line is not connected in the differential reception circuit 14 of the differential transmission circuit 10, the true signal input of the differential reception circuit is pulled up to the voltage Vcc of a power source 20 and the output voltage of the differential reception circuit 14 is fixed at a high level HI. During the normal operation of the differential transmission circuit 10, when the terminating voltage VT of the differential transmission circuit 10 is set to 1/2Vcc, resistance values R1, R2 and R3 of resistors 22, 24 and 26 are set to R1+R2=R3, and the voltage of the true signal input in+ is made equal to the voltage of complementary signal input in-. Encoded data signals are made to pass through capacitors 28 and 30 as they are. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、差動伝送回路に関し、詳しくは信号線の未接続時の不定信号による差動受信回路の誤動作防止に有効な差動伝送回路に関する。   The present invention relates to a differential transmission circuit, and more particularly to a differential transmission circuit effective in preventing malfunction of a differential reception circuit due to an indefinite signal when a signal line is not connected.

1つの送信装置と1つの受信装置とを結ぶ高速インタフェースで一般的に用いられる差動伝送回路において、送信装置の電源Off、ケーブル未接続等により、レシーバ回路の信号が未入力になった場合、差動信号間(トルー信号/コンプリメント信号)の電位差がなくなり、レシーバ出力は不定となる。その結果、その不定信号が有効信号に化けて装置を誤動作させてしまう場合がある。   In a differential transmission circuit generally used in a high-speed interface connecting one transmission device and one reception device, if the signal of the receiver circuit is not input due to the power supply Off of the transmission device, the cable not being connected, etc. The potential difference between the differential signals (true signal / complement signal) disappears, and the receiver output becomes indefinite. As a result, the indefinite signal may turn into a valid signal and cause the device to malfunction.

このような不具合を回避する手段が従来においても採られている。例えば、レシーバ回路の入力にプルアップ/プルダウン抵抗を付加して予め電位差を付ける回路、内部ロジックに有効信号検査回路を設け、プルアップ/プルダウン抵抗を切り離す方式、或るいは内部ロジックに有効信号検査回路を設け、無効信号を無視する方式が用いられていた。   Means for avoiding such inconvenience have also been adopted in the past. For example, a circuit that adds a pull-up / pull-down resistor to the input of the receiver circuit to provide a potential difference in advance, an effective signal inspection circuit is provided in the internal logic, and the pull-up / pull-down resistor is separated, or an effective signal inspection in the internal logic A system in which a circuit is provided and an invalid signal is ignored has been used.

しかしながら、上述した従来採用されている手段において、レシーバ入力回路にスイッチ等の回路を付加すると、波形が歪み信号品質に影響を与える。また、レシーバ回路の入力に予め電位差を与えると、通常信号伝送時に、振幅が小さくなり、長距離の伝送が出来なくなるという課題が生ずる。
また、内部ロジックに有効信号検査回路を設けるには、クリック信号が必要になり、ハードウェア量も増大するため、単純なバッファやリピータなどの中継回路では有効信号検査回路を設けることが困難であった。
また、8B10Bに代表される符号化方式を採用した高速インタフェースでは、コンデンサによりAC結合しているが、この高速インタフェースにおいても、その受信回路において信号未入力状態になり、信号が不定になると、受信回路に誤動作が生じ、同様の技術的課題がある。
However, when a circuit such as a switch is added to the receiver input circuit in the above-described conventional means, the waveform affects the distortion signal quality. Further, if a potential difference is given to the input of the receiver circuit in advance, there is a problem that the amplitude becomes small during normal signal transmission and transmission over a long distance becomes impossible.
In addition, in order to provide an effective signal inspection circuit in the internal logic, a click signal is required and the amount of hardware increases. Therefore, it is difficult to provide an effective signal inspection circuit in a relay circuit such as a simple buffer or repeater. It was.
Also, in a high-speed interface that employs an encoding method typified by 8B10B, AC coupling is performed by a capacitor. However, even in this high-speed interface, if a signal is not input in the receiving circuit and the signal becomes indefinite, A malfunction occurs in the circuit, and there is a similar technical problem.

この発明は、上述の事情に鑑みてなされたもので、信号線の未接続時に不定信号が生じた場合の誤動作を防止し得る差動伝送回路を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a differential transmission circuit capable of preventing malfunction when an indefinite signal is generated when a signal line is not connected.

上記課題を解決するために、請求項1記載の発明は、差動送信回路のトルー信号出力を第1の信号線を介して差動受信回路のトルー信号入力に接続し、かつ、前記差動送信回路のコンプリメント信号出力を第2の信号線を介して差動受信回路のコンプリメント信号入力に接続する差動伝送回路に係り、信号線の未接続時の前記トルー信号入力の直流電圧を前記コンプリメント信号入力の直流電圧より高くする又は前記コンプリメント信号入力の直流電圧を前記トルー信号入力の直流電圧より低くする電圧付与手段を前記差動送信回路の出力と前記差動受信回路の入力との間に設け、かつ、前記電圧付与手段が設けられる前記信号出力と前記信号入力とは反対側の前記信号出力と前記信号入力との間に第1の容量性素子を接続したことを特徴としている。   In order to solve the above problem, the invention according to claim 1 is characterized in that a true signal output of a differential transmission circuit is connected to a true signal input of a differential reception circuit via a first signal line, and the differential signal is transmitted. The present invention relates to a differential transmission circuit for connecting a complement signal output of a transmission circuit to a complement signal input of a differential reception circuit via a second signal line, and a DC voltage of the true signal input when the signal line is not connected. Voltage application means for making the DC voltage of the complement signal input higher than the DC voltage of the complement signal input or lowering the DC voltage of the complement signal input than the DC voltage of the true signal input is provided as an output of the differential transmission circuit and an input of the differential reception circuit And a first capacitive element is connected between the signal output and the signal input opposite to the signal output and the signal input. When To have.

請求項2記載の発明は、請求項1記載の差動伝送回路に係り、前記電圧付与手段は、前記トルー信号出力と前記差動受信回路の終端電圧より低い電圧の第1の電圧源とを接続する第1の抵抗性素子と、前記第1の信号線と前記トルー信号入力との間に並列に接続された第2の抵抗性素子及び第2の容量性素子と、前記トルー信号入力と前記終端電圧より高い電圧の第2の電圧源との間に接続された第3の抵抗性素子とから構成され、前記第2の抵抗性素子と前記第3の抵抗素子との接続点の電圧が前記終端電圧となるように前記第1の抵抗性素子、前記第2の抵抗性素子及び第3の抵抗性素子の抵抗値を設定し、前記第1の容量性素子は、前記第2の信号線と前記コンプリメント信号入力との間に接続されることを特徴としている。   A second aspect of the present invention relates to the differential transmission circuit according to the first aspect, wherein the voltage applying means includes the true signal output and a first voltage source having a voltage lower than a termination voltage of the differential receiving circuit. A first resistive element to be connected; a second resistive element and a second capacitive element connected in parallel between the first signal line and the true signal input; and the true signal input; A third resistive element connected between a second voltage source having a voltage higher than the termination voltage, and a voltage at a connection point between the second resistive element and the third resistive element The resistance values of the first resistive element, the second resistive element, and the third resistive element are set so that becomes the termination voltage, and the first capacitive element It is characterized by being connected between a signal line and the complement signal input.

請求項3記載の発明は、請求項2記載の差動伝送回路に係り、前記第1の電圧源は、大地電位であり、前記第2の電圧源は、前記差動受信回路の駆動電圧源であることを特徴としている。   A third aspect of the present invention relates to the differential transmission circuit according to the second aspect, wherein the first voltage source is a ground potential, and the second voltage source is a driving voltage source of the differential receiving circuit. It is characterized by being.

請求項4記載の発明は、請求項2又は3記載のの差動伝送回路に係り、前記第3の抵抗性素子が接続される前記トルー信号入力と前記差動受信回路の終端電圧より低い第3の電圧源との間に第4の抵抗性素子を接続し、かつ、前記第2、第3及び第4の抵抗の接続点の電圧が前記終端電圧になるように第1、第2、第3及び第4の抵抗性素子の抵抗値を設定したことを特徴としている。   A fourth aspect of the present invention relates to the differential transmission circuit according to the second or third aspect, wherein the true signal input to which the third resistive element is connected is lower than the termination voltage of the differential reception circuit. A fourth resistive element is connected between the first voltage source and the third voltage source, and the voltage at the connection point of the second, third and fourth resistors is the terminal voltage. It is characterized in that the resistance values of the third and fourth resistive elements are set.

請求項5記載の発明は、請求項4記載の差動伝送回路に係り、前記第3の電圧源は、大地電位であることを特徴としている。   A fifth aspect of the invention relates to the differential transmission circuit according to the fourth aspect of the invention, wherein the third voltage source is a ground potential.

請求項6記載の発明は、請求項1記載の差動伝送回路に係り、前記電圧付与手段は、前記トルー信号出力と前記差動受信回路の終端電圧より低い電圧の第4の電圧源とを接続する第4の抵抗性素子と、前記トルー信号出力と前記第1の信号線との間に並列に接続された第5の抵抗性素子及び第3の容量性素子と、前記トルー信号入力と前記終端電圧より高い電圧の第5の電圧源との間に接続された第6の抵抗性素子とから構成され、前記第5の抵抗性素子と前記第6の抵抗素子との接続点の電圧が前記終端電圧となるように前記第4の抵抗性素子、前記第5の抵抗性素子及び第6の抵抗性素子の抵抗値を設定し、前記第1の容量性素子は、前記コンプリメント信号出力と前記第2の信号線との間に接続されることを特徴としている。   A sixth aspect of the present invention relates to the differential transmission circuit according to the first aspect, wherein the voltage applying means includes the true signal output and a fourth voltage source having a voltage lower than a termination voltage of the differential receiving circuit. A fourth resistive element to be connected; a fifth resistive element and a third capacitive element connected in parallel between the true signal output and the first signal line; and the true signal input; A sixth resistive element connected between a fifth voltage source having a voltage higher than the termination voltage, and a voltage at a connection point between the fifth resistive element and the sixth resistive element The resistance values of the fourth resistive element, the fifth resistive element, and the sixth resistive element are set so that the terminal voltage becomes the termination voltage, and the first capacitive element It is characterized by being connected between an output and the second signal line.

請求項7記載の発明は、請求項2記載の差動伝送回路に係り、前記第4の電圧源は、大地電位であり、前記第5の電圧源は、前記差動受信回路の駆動電圧源であることを特徴としている。   A seventh aspect of the present invention relates to the differential transmission circuit according to the second aspect, wherein the fourth voltage source is a ground potential, and the fifth voltage source is a driving voltage source of the differential receiving circuit. It is characterized by being.

請求項8記載の発明は、請求項6又は7記載のの差動伝送回路に係り、前記第6の抵抗性素子が接続される前記トルー信号入力と前記差動受信回路の終端電圧より低い第6の電圧源との間に第7の抵抗性素子を接続し、かつ、前記第5、第6及び第7の抵抗の接続点の電圧が前記終端電圧になるように第4、第5、第6及び第7の抵抗性素子の抵抗値を設定したことを特徴としている。   The invention according to claim 8 relates to the differential transmission circuit according to claim 6 or 7, wherein the true signal input to which the sixth resistive element is connected is lower than the termination voltage of the differential reception circuit. A seventh resistive element is connected between the voltage source and the fourth, fifth, and sixth voltage sources so that the voltage at the connection point of the fifth, sixth and seventh resistors becomes the termination voltage. A feature is that the resistance values of the sixth and seventh resistive elements are set.

請求項9記載の発明は、請求項8記載の差動伝送回路に係り、前記第6の電圧源は、大地電位であることを特徴としている。   A ninth aspect of the invention relates to the differential transmission circuit according to the eighth aspect of the invention, wherein the sixth voltage source is a ground potential.

請求項10記載の発明は、請求項1記載の差動伝送回路に係り、前記電圧付与手段は、前記コンプリメント信号出力と前記差動受信回路の終端電圧よりも高い電圧の第7の電圧源とを接続する第8の抵抗性素子と、前記第2の信号線と前記コンプリメント信号入力との間に並列に接続された第9の抵抗性素子及び第4の容量性素子と、前記コンプリメント信号入力と前記終端電圧より低い電圧の第8の電圧源との間に接続された第10の抵抗性素子とから構成され、前記第9の抵抗性素子と前記第10の抵抗素子との接続点の電圧が前記終端電圧となるように前記第8の抵抗性素子、前記第9の抵抗性素子及び第10の抵抗性素子の抵抗値を設定し、前記第1の容量性素子は、前記第1の信号線と前記トルー信号入力との間に接続されることを特徴としている。   A tenth aspect of the present invention relates to the differential transmission circuit according to the first aspect, wherein the voltage applying means is a seventh voltage source having a voltage higher than the complementary signal output and the termination voltage of the differential receiving circuit. An eighth resistive element, a ninth resistive element and a fourth capacitive element connected in parallel between the second signal line and the complement signal input, and the complementary A tenth resistive element connected between an input signal and an eighth voltage source having a voltage lower than the termination voltage, and the ninth resistive element and the tenth resistive element The resistance values of the eighth resistive element, the ninth resistive element, and the tenth resistive element are set so that the voltage at the connection point becomes the termination voltage, and the first capacitive element is Connected between the first signal line and the true signal input It is characterized.

請求項11記載の発明は、請求項10記載の差動伝送回路に係り、前記第7の電圧源は、前記差動送信回路の駆動電圧源であり、前記第8の電圧源は、大地電位であることを特徴としている。   An eleventh aspect of the present invention relates to the differential transmission circuit according to the tenth aspect, wherein the seventh voltage source is a driving voltage source of the differential transmission circuit, and the eighth voltage source is a ground potential. It is characterized by being.

請求項12記載の発明は、請求項10又は11記載のの差動伝送回路に係り、前記第9の抵抗性素子が接続される前記コンプリメント信号入力と前記差動受信回路の終端電圧より高い第9の電圧源との間に第11の抵抗性素子を接続し、かつ、前記第9、第10及び第11の抵抗の接続点の電圧が前記終端電圧になるように第8、第9、第10及び第11の抵抗性素子の抵抗値を設定したことを特徴としている。   A twelfth aspect of the present invention relates to the differential transmission circuit according to the tenth or eleventh aspect, wherein the complementary signal input to which the ninth resistive element is connected and a termination voltage of the differential reception circuit are higher. An eleventh resistive element is connected between the ninth voltage source and the eighth, ninth, and ninth voltages so that the voltage at the connection point of the ninth, tenth and eleventh resistors becomes the termination voltage. The resistance values of the tenth and eleventh resistive elements are set.

請求項13記載の発明は、請求項12記載の差動伝送回路に係り、前記第9の電圧源は、前記差動受信回路の駆動電源であることを特徴としている。   A thirteenth aspect of the invention relates to the differential transmission circuit according to the twelfth aspect of the invention, wherein the ninth voltage source is a driving power source for the differential receiving circuit.

請求項14記載の発明は、請求項1記載の差動伝送回路に係り、前記電圧付与手段は、前記コンプリメント信号出力と前記差動受信回路の終端電圧よりも高い電圧の第10の電圧源とを接続する第12の抵抗性素子と、前記コンプリメント信号出力と前記第2の信号線との間に並列に接続された第13の抵抗性素子及び第5の容量性素子と、前記コンプリメント信号入力と前記終端電圧より低い電圧の第11の電圧源との間に接続された第14の抵抗性素子とから構成され、前記第13の抵抗性素子と前記第14の抵抗素子との接続点の電圧が前記終端電圧となるように前記第12の抵抗性素子、前記第13の抵抗性素子及び第14の抵抗性素子の抵抗値を設定し、前記第1の容量性素子は、前記トルー信号出力と前記第1の信号線との間に接続されることを特徴としている。   A fourteenth aspect of the present invention relates to the differential transmission circuit according to the first aspect, wherein the voltage applying means is a tenth voltage source having a voltage higher than the complementary signal output and the termination voltage of the differential receiving circuit. , A thirteenth resistive element and a fifth capacitive element connected in parallel between the complement signal output and the second signal line, and the complement A fourteenth resistive element connected between an input signal and an eleventh voltage source having a voltage lower than the termination voltage, and the thirteenth resistive element and the fourteenth resistive element The resistance values of the twelfth resistive element, the thirteenth resistive element, and the fourteenth resistive element are set so that the voltage at the connection point becomes the termination voltage, and the first capacitive element is Between the true signal output and the first signal line It is characterized by being continued.

請求項15記載の発明は、請求項14記載の差動伝送回路に係り、前記第10の電圧源は、前記差動送信回路の駆動電圧源であり、前記第11の電圧源は、大地電位であることを特徴としている。   A fifteenth aspect of the present invention relates to the differential transmission circuit according to the fourteenth aspect, wherein the tenth voltage source is a driving voltage source of the differential transmission circuit, and the eleventh voltage source is a ground potential. It is characterized by being.

請求項16記載の発明は、請求項14又は15記載のの差動伝送回路に係り、前記第14の抵抗性素子が接続される前記コンプリメント信号入力と前記終端電圧より高い電圧の第12の電圧源との間に第15の抵抗性素子を接続し、かつ、前記第13、第14及び第15の抵抗の接続点の電圧が前記終端電圧になるように第12、第13、第14及び第15の抵抗性素子の抵抗値を設定したことを特徴としている。   A sixteenth aspect of the present invention relates to the differential transmission circuit according to the fourteenth or fifteenth aspect, wherein the complementary signal input to which the fourteenth resistive element is connected and a twelfth voltage higher than the termination voltage are connected. A fifteenth resistive element is connected to a voltage source, and the twelfth, thirteenth, fourteenth, and fourteenth voltages are set so that the voltage at the connection point of the thirteenth, fourteenth and fifteenth resistors becomes the termination voltage. And the resistance value of the fifteenth resistive element is set.

請求項17記載の発明は、請求項16記載の差動伝送回路に係り、前記第12の電圧源は、前記差動受信回路の駆動電源であることを特徴としている。   A seventeenth aspect of the present invention relates to the differential transmission circuit according to the sixteenth aspect, wherein the twelfth voltage source is a driving power source of the differential receiving circuit.

この発明によれば、信号線の未接続時の差動受信回路のトルー信号入力の直流電圧をコンプリメント信号入力の直流電圧よりも高める又はコンプリメント信号入力の直流電圧をトルー信号入力の直流電圧よりも低くめるようにしたので、差動受信回路の誤動作を防止することができる。また、通常動作時には、差動受信回路のトルー信号入力の直流電圧とコンプリメント信号入力の直流電圧とを終端電圧に設定し得るので、信号伝送も正常に行うことができる。   According to the present invention, the DC voltage of the true signal input of the differential receiving circuit when the signal line is not connected is made higher than the DC voltage of the complement signal input, or the DC voltage of the complement signal input is increased to the DC voltage of the true signal input. Therefore, malfunction of the differential receiving circuit can be prevented. Further, during normal operation, the DC voltage of the true signal input and the DC voltage of the complement signal input of the differential receiving circuit can be set as termination voltages, so that signal transmission can also be performed normally.

この発明は、差動受信回路を信号線の未接続時にそのトルー信号入力の直流電圧をコンプリメント信号入力の直流電圧よりも高める又はコンプリメント信号入力の直流電圧をトルー信号入力の直流電圧よりも低くめるいずれかの手段と共にと、通常の動作時に差動受信回路のトルー信号入力の直流電圧とコンプリメント信号入力の直流電圧とを終端電圧に設定させる手段を用いて構成される。   In the present invention, when the signal line is not connected to the differential receiving circuit, the DC voltage of the true signal input is made higher than the DC voltage of the complement signal input, or the DC voltage of the complement signal input is made higher than the DC voltage of the true signal input. Along with any of the means for lowering, and means for setting the DC voltage of the true signal input and the DC voltage of the complement signal input of the differential receiving circuit to the termination voltage during normal operation.

図1は、この発明の実施例1である差動伝送回路の電気的構成を示す図、図2は、同差動伝送回路における信号線の未接続時の動作を説明する図、また、図3は、同差動伝送回路における通常動作時の動作を説明する図である。
この実施例の差動伝送回路10は、信号線の未接続時に差動信号が不定になっても、差動受信回路の誤動作を防止する回路に係り、差動送信回路(差動ドライバ)12と、差動受信回路(差動レシーバ)14と、トルー信号伝送線16と、コンプリメント信号伝送線18と、電源(Vcc)20と、抵抗22と、抵抗24と、抵抗26と、AC結合用コンデンサ28と、AC結合用コンデンサ30とから構成される。
1 is a diagram illustrating an electrical configuration of a differential transmission circuit according to a first embodiment of the present invention. FIG. 2 is a diagram illustrating an operation of the differential transmission circuit when a signal line is not connected. FIG. 3 is a diagram for explaining an operation during a normal operation in the differential transmission circuit.
The differential transmission circuit 10 of this embodiment relates to a circuit that prevents malfunction of the differential reception circuit even if the differential signal becomes indefinite when the signal line is not connected. The differential transmission circuit (differential driver) 12 A differential receiver circuit (differential receiver) 14, a true signal transmission line 16, a complement signal transmission line 18, a power supply (Vcc) 20, a resistor 22, a resistor 24, a resistor 26, and an AC coupling. Capacitor 28 and AC coupling capacitor 30.

差動送信回路12は、差動受信回路14へ伝送したい2進値の情報1、0をトルー信号とコンプリメント信号とからなる差動信号にしてその差動信号をトルー信号出力12T及びコンプリメント信号出力12Cからトルー信号伝送線16及びコンプリメント信号伝送線18に送信する回路である。差動送信回路12のトルー信号出力は、抵抗値R1を有する抵抗24を介して接地されている。
トルー信号伝送線16は、差動送信回路12のトルー信号出力12Tから出力されるトルー信号を差動受信回路14へ伝送する線である。そのトルー信号伝送線16は、抵抗値R2を有する抵抗26とAC結合用コンデンサ28との並列回路を介して差動受信回路14のトルー信号入力に接続されている。これに加えて、差動受信回路14のトルー信号入力には、電圧Vccを出力する電源(Vcc)20の出力が、抵抗値R3を有する抵抗22を介して接続されている。
そして、抵抗24及び抵抗26の抵抗値R1、R2と抵抗22の抵抗値R3との間には、R1+R2=R3の関係が成立するように抵抗24、抵抗26及び抵抗22の抵抗値は設定される。
The differential transmission circuit 12 converts binary information 1 and 0 to be transmitted to the differential reception circuit 14 into a differential signal composed of a true signal and a complement signal, and the differential signal is used as a true signal output 12T and a complement. This is a circuit for transmitting the signal output 12C to the true signal transmission line 16 and the complement signal transmission line 18. The true signal output of the differential transmission circuit 12 is grounded via a resistor 24 having a resistance value R1.
The true signal transmission line 16 is a line for transmitting the true signal output from the true signal output 12 </ b> T of the differential transmission circuit 12 to the differential reception circuit 14. The true signal transmission line 16 is connected to the true signal input of the differential receiving circuit 14 through a parallel circuit of a resistor 26 having a resistance value R 2 and an AC coupling capacitor 28. In addition, the output of the power source (Vcc) 20 that outputs the voltage Vcc is connected to the true signal input of the differential receiving circuit 14 via the resistor 22 having a resistance value R3.
The resistance values of the resistors 24, 26, and 22 are set so that the relationship R1 + R2 = R3 is established between the resistance values R1, R2 of the resistors 24 and 26 and the resistance value R3 of the resistor 22. The

これに加えて、コンプリメント信号伝送線18は、差動送信回路12のコンプリメント信号出力12Cから出力されるコンプリメント信号を差動受信回路14へ伝送する線である。コンプリメント信号伝送線18は、AC結合用コンデンサ30を介して差動受信回路14のコンプリメント信号入力に接続されてこの発明実施例の全体が構成されている。
差動受信回路14は、トルー信号伝送線16及びコンプリメント信号伝送線18を介して伝送されて来た差動信号を受信して2進信号を出力する回路である。
なお、差動受信回路14は、従来と同様、その内部において、終端電圧VTにトルー信号伝送線16及びコンプリメント信号伝送線18のインピーダンス(一般的には50Ω)と等しい終端抵抗32、34で終端される。
In addition, the complement signal transmission line 18 is a line for transmitting the complement signal output from the complement signal output 12 </ b> C of the differential transmission circuit 12 to the differential reception circuit 14. The complement signal transmission line 18 is connected to the complement signal input of the differential receiving circuit 14 via the AC coupling capacitor 30 to constitute the entire embodiment of the present invention.
The differential receiving circuit 14 is a circuit that receives a differential signal transmitted through the true signal transmission line 16 and the complement signal transmission line 18 and outputs a binary signal.
The differential receiving circuit 14 includes termination resistors 32 and 34 having a termination voltage VT equal to the impedance (generally 50Ω) of the true signal transmission line 16 and the complement signal transmission line 18 to the termination voltage VT. Terminated.

次に、図1乃至図3を参照して、この実施例の動作を説明する。
この実施例の差動伝送回路10において、差動受信回路14の差動信号が信号線の未接続で入力されなくなるとときの差動受信回路14の動作状態は、等価的に、図2のようになり、そのトルー信号入力が電源20の電圧Vccへプルアップされるから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧より高くなる。
したがって、差動受信回路14の出力電圧は、高レベルHIに固定され、出力レベルは保証される。
Next, the operation of this embodiment will be described with reference to FIGS.
In the differential transmission circuit 10 of this embodiment, the operation state of the differential reception circuit 14 when the differential signal of the differential reception circuit 14 is not input without signal line connection is equivalent to that in FIG. Thus, since the true signal input is pulled up to the voltage Vcc of the power supply 20, the voltage of the true signal input in + of the differential receiving circuit 14 becomes higher than the voltage of the complement signal input in−.
Therefore, the output voltage of the differential receiving circuit 14 is fixed to the high level HI, and the output level is guaranteed.

差動伝送回路10の通常動作においては(図3)、差動伝送回路10の終端電圧VTが1/2Vccに設定される場合において、R1+R2=R3の関係が成立するように各抵抗22、24、26の抵抗値は設定されているから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧と等しくなり、差動受信回路14のトルー信号入力in+とコンプリメント信号入力in−との間に電位差は無くなる。
したがって、符号化されたデータ信号は、コンデンサ28、30をそのまま通過し、すなわち、電気的な影響を受けることなく、差動受信回路14の入力に入力される。
In normal operation of the differential transmission circuit 10 (FIG. 3), when the termination voltage VT of the differential transmission circuit 10 is set to 1/2 Vcc, the resistors 22 and 24 are set so that the relationship of R1 + R2 = R3 is established. 26, the voltage of the true signal input in + of the differential receiving circuit 14 is equal to the voltage of the complement signal input in-, and the voltage of the true signal input in + of the differential receiving circuit 14 is complementary. The potential difference is no longer between the input signal and the input signal.
Therefore, the encoded data signal passes through the capacitors 28 and 30 as they are, that is, is input to the input of the differential receiving circuit 14 without being electrically influenced.

このように、この実施例の構成によれば、差動送信回路のトルー信号出力と大地電位との間に1個の抵抗を、トルー信号線と差動受信回路のトルー信号入力との間に並列接続の1個の抵抗及び1個のコンデンサを、差動受信回路のトルー信号入力と電源との間に1個の抵抗を付加する一方、コンプリメント信号線と差動受信回路のコンプリメント信号入力との間に1個のコンデンサを付加することにより、通常動作の信号伝送に影響を生じさせることなく、信号線の未接続時に差動受信回路の入力信号が不定となって差動受信回路が誤動作してしまうのを回避することができる。   Thus, according to the configuration of this embodiment, one resistor is provided between the true signal output of the differential transmission circuit and the ground potential, and between the true signal line and the true signal input of the differential reception circuit. One resistor and one capacitor connected in parallel add one resistor between the true signal input of the differential receiver circuit and the power supply, while the complement signal line and the complement signal of the differential receiver circuit By adding one capacitor between the input and the input, the differential receiver circuit's input signal becomes indefinite when the signal line is not connected, without affecting the normal operation signal transmission. Can be prevented from malfunctioning.

図4は、この発明の実施例2である差動伝送回路の電気的構成を示す図である。
この実施例の構成が、実施例1のそれと大きく異なる点は、実施例1に示される発明概念をコンプリメント信号線に適用し得るように変更した点である。
すなわち、この実施例の差動伝送回路10Aは、図4に示すように、差動信号伝送回路12のコンプリメント信号出力を、抵抗値R4を有する抵抗44を介して電源(Vcc)50に接続する一方、コンプリメント信号伝送線16を、抵抗値R5を有する抵抗46とAC結合用コンデンサ30との並列回路を介して差動受信回路14のコンプリメント信号入力に接続し、かつ、そのコンプリメント信号入力を、抵抗値R6を有する抵抗42を介して大地電位に接続してこの実施例の主要部が構成されている。
そして、抵抗44及び抵抗46の抵抗値R4、R5と抵抗42の抵抗値R6との間には、R4+R5=R6の関係が成立するように抵抗44、抵抗46及び抵抗42の抵抗値は設定される。
この構成以外のこの実施例の構成は、実施例1と同じであるので、同一の構成部分には同一の参照符号を付して、その逐一の説明は省略する。
4 is a diagram showing an electrical configuration of a differential transmission circuit according to a second embodiment of the present invention.
The configuration of this embodiment differs greatly from that of the first embodiment in that the inventive concept shown in the first embodiment is changed so that it can be applied to a complement signal line.
That is, in the differential transmission circuit 10A of this embodiment, as shown in FIG. 4, the complement signal output of the differential signal transmission circuit 12 is connected to the power source (Vcc) 50 through the resistor 44 having the resistance value R4. On the other hand, the complement signal transmission line 16 is connected to the complement signal input of the differential receiver circuit 14 through a parallel circuit of the resistor 46 having the resistance value R5 and the AC coupling capacitor 30, and the complement is connected. The main part of this embodiment is configured by connecting the signal input to the ground potential via a resistor 42 having a resistance value R6.
The resistance values of the resistors 44, 46 and 42 are set so that the relationship R4 + R5 = R6 is established between the resistance values R4 and R5 of the resistors 44 and 46 and the resistance value R6 of the resistor 42. The
Since the configuration of this embodiment other than this configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

次に、図4を参照して、この実施例の動作について説明する。
この実施例の差動伝送回路10Aにおいて、差動受信回路14の差動信号が信号線の未接続で入力されなくなると、差動受信回路14のコンプリメント信号入力は大地電位へプルダウンされるから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧より高くなる。
したがって、差動受信回路14の出力電圧は、高レベルHIに固定され、出力レベルは保証される。
Next, the operation of this embodiment will be described with reference to FIG.
In the differential transmission circuit 10A of this embodiment, when the differential signal of the differential receiving circuit 14 is not input without being connected to the signal line, the complement signal input of the differential receiving circuit 14 is pulled down to the ground potential. The voltage of the true signal input in + of the differential receiving circuit 14 becomes higher than the voltage of the complement signal input in−.
Therefore, the output voltage of the differential receiving circuit 14 is fixed to the high level HI, and the output level is guaranteed.

差動伝送回路10Aの通常動作においては、差動伝送回路10Aの終端電圧VTが1/2Vccに設定される場合において、R4+R5=R6の関係が成立するように各抵抗44、46、42の抵抗値は設定されているから、差動受信回路14のコンプリメント信号入力in−の電圧は、トルー信号入力in+の電圧と等しくなり、差動受信回路14のトルー信号入力in+とコンプリメント信号入力in−との間に電位差は無くなる。
したがって、符号化されたデータ信号は、コンデンサ28、30をそのまま通過し、すなわち、電気的な影響を受けることなく、差動受信回路14の入力に入力される。
In normal operation of the differential transmission circuit 10A, when the termination voltage VT of the differential transmission circuit 10A is set to 1/2 Vcc, the resistances of the resistors 44, 46, and 42 are established so that the relationship of R4 + R5 = R6 is established. Since the value is set, the voltage of the complement signal input in− of the differential reception circuit 14 is equal to the voltage of the true signal input in +, and the true signal input in + of the differential reception circuit 14 and the complement signal input in + The potential difference disappears from-.
Therefore, the encoded data signal passes through the capacitors 28 and 30 as they are, that is, is input to the input of the differential receiving circuit 14 without being electrically influenced.

したがって、この実施例の構成においても、実施例1と同効が得られる。   Therefore, the same effect as that of the first embodiment can be obtained in the configuration of this embodiment.

図5は、この発明の実施例3である差動伝送回路の電気的構成を示す図である。
この実施例の構成が、実施例1のそれと大きく異なる点は、差動受信回路(差動レシーバ)側において、トルー信号線について電源とGND双方にテブナン接続で抵抗を接続するようにした点である。
すなわち、この実施例の差動伝送回路10Bは、図5に示すように、実施例1の構成において、差動受信回路14のトルー信号入力を抵抗値R7を有する抵抗36を介して接地するように構成される。
そして、信号線の未接続時において、抵抗22と抵抗36との接続点の電圧が、差動受信回路14のコンプリメント信号入力の電圧(終端電圧)よりも高くなるように抵抗22の抵抗値及び抵抗36の抵抗値は設定される。
また、抵抗24、抵抗26及び抵抗36の並列合成抵抗値と抵抗22の抵抗値R3との間には、(R1+R2)R7/R1+R2+R7=R3の関係が成立するように抵抗24、抵抗26、抵抗36及び抵抗22の抵抗値は設定される。
この構成以外のこの実施例の構成は、実施例1と同じであるので、同一の構成部分には同一の参照符号を付して、その逐一の説明は省略する。
FIG. 5 is a diagram showing an electrical configuration of the differential transmission circuit according to the third embodiment of the present invention.
The configuration of this embodiment is greatly different from that of the first embodiment in that a resistor is connected to both the power supply and the GND by a Thevenin connection for the true signal line on the differential receiver circuit (differential receiver) side. is there.
That is, in the differential transmission circuit 10B of this embodiment, as shown in FIG. 5, in the configuration of the first embodiment, the true signal input of the differential reception circuit 14 is grounded via the resistor 36 having the resistance value R7. Configured.
When the signal line is not connected, the resistance value of the resistor 22 is such that the voltage at the connection point between the resistor 22 and the resistor 36 is higher than the voltage (termination voltage) of the complement signal input of the differential receiver circuit 14. And the resistance value of the resistor 36 is set.
In addition, between the parallel combined resistance value of the resistor 24, the resistor 26, and the resistor 36 and the resistance value R3 of the resistor 22, the resistor 24, the resistor 26, and the resistor so that the relationship of (R1 + R2) R7 / R1 + R2 + R7 = R3 is established. The resistance values of 36 and the resistor 22 are set.
Since the configuration of this embodiment other than this configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

次に、図5を参照して、この実施例の動作について説明する。
この実施例の差動伝送回路10Bにおいて、差動受信回路14の差動信号が信号線の未接続で入力されなくなると、差動受信回路14のトルー信号入力は抵抗22と抵抗36とによって電源電圧Vccを分圧した終端電圧VTより高い電圧にプルアップから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧より高くなる。
したがって、差動受信回路14の出力電圧は、高レベルHIに固定され、出力レベルは保証される。
Next, the operation of this embodiment will be described with reference to FIG.
In the differential transmission circuit 10B of this embodiment, when the differential signal of the differential reception circuit 14 is not input without signal line connection, the true signal input of the differential reception circuit 14 is powered by the resistor 22 and the resistor 36. Since the voltage Vcc is pulled up to a voltage higher than the termination voltage VT, the voltage of the true signal input in + of the differential reception circuit 14 becomes higher than the voltage of the complement signal input in−.
Therefore, the output voltage of the differential receiving circuit 14 is fixed to the high level HI, and the output level is guaranteed.

差動伝送回路10Bの通常動作においては、差動受信回路14の終端電圧VTが1/2Vccに設定される場合において、(R1+R2)R7/R1+R2+R7=R3の関係が成立するように各抵抗24、26、36、22の抵抗値は設定されているから、差動受信回路14のコンプリメント信号入力in−の電圧は、トルー信号入力in+の電圧と等しくなり、差動受信回路14のトルー信号入力in+とコンプリメント信号入力in−との間に電位差は無くなる。
したがって、符号化されたデータ信号は、コンデンサ28、30をそのまま通過し、すなわち、電気的な影響を受けることなく、差動受信回路14の入力に入力される。
In the normal operation of the differential transmission circuit 10B, when the termination voltage VT of the differential reception circuit 14 is set to 1/2 Vcc, each resistor 24, so that the relationship of (R1 + R2) R7 / R1 + R2 + R7 = R3 is established. Since the resistance values 26, 36, and 22 are set, the voltage of the complement signal input in− of the differential reception circuit 14 becomes equal to the voltage of the true signal input in +, and the true signal input of the differential reception circuit 14 is set. There is no potential difference between in + and complement signal input in−.
Therefore, the encoded data signal passes through the capacitors 28 and 30 as they are, that is, is input to the input of the differential receiving circuit 14 without being electrically influenced.

したがって、この実施例の構成においても、実施例1と同効が得られる。   Therefore, the same effect as that of the first embodiment can be obtained in the configuration of this embodiment.

図6は、この発明の実施例4である差動伝送回路の電気的構成を示す図である。
この実施例の構成が、実施例2のそれと大きく異なる点は、差動受信回路(差動レシーバ)において、コンプリメント信号線について電源とGND双方にテブナン接続で抵抗を接続するようにした点である。
すなわち、この実施例の差動伝送回路10Cは、図6に示すように、実施例2の構成において、差動受信回路14のコンプリメント信号入力を抵抗値R8を有する抵抗48を介して電源Vccに接続するように構成される。
そして、信号線の未接続時において、抵抗42と抵抗48との接続点の電圧が、差動受信回路14のトルー信号入力の電圧(終端電圧)よりも低くなるように抵抗42の抵抗値及び抵抗48の抵抗値は設定される。
また、抵抗44、抵抗46及び抵抗48の並列合成抵抗値と抵抗42の抵抗値R6との間には、(R4+R5)R8/R4+R5+R8=R6の関係が成立するように抵抗44、抵抗46、抵抗48及び抵抗42の抵抗値は設定される。
この構成以外のこの実施例の構成は、実施例1と同じであるので、同一の構成部分には同一の参照符号を付して、その逐一の説明は省略する。
6 is a diagram showing an electrical configuration of a differential transmission circuit according to a fourth embodiment of the present invention.
The configuration of this embodiment is significantly different from that of the second embodiment in that, in the differential receiver circuit (differential receiver), a resistor is connected to both the power supply and the GND by a Thevenin connection for the complement signal line. is there.
That is, in the differential transmission circuit 10C of this embodiment, as shown in FIG. 6, in the configuration of the second embodiment, the complementary signal input of the differential reception circuit 14 is supplied to the power supply Vcc via the resistor 48 having the resistance value R8. Configured to connect to.
When the signal line is not connected, the resistance value of the resistor 42 and the voltage at the connection point between the resistor 42 and the resistor 48 are lower than the voltage (termination voltage) of the true signal input of the differential receiving circuit 14. The resistance value of the resistor 48 is set.
Further, the resistance 44, the resistance 46, and the resistance 46 are set so that the relationship (R4 + R5) R8 / R4 + R5 + R8 = R6 is established between the parallel combined resistance value of the resistance 44, the resistance 46, and the resistance 48 and the resistance value R6 of the resistance 42. The resistance values of 48 and the resistor 42 are set.
Since the configuration of this embodiment other than this configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

次に、図6を参照して、この実施例の動作について説明する。
この実施例の差動伝送回路10Cにおいて、差動受信回路14の差動信号が信号線の未接続で入力されなくなると、差動受信回路14のコンプリメント信号入力は抵抗48と抵抗42とによって電源電圧Vccを分圧した終端電圧VTより低い電圧にプルダウンされるから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧より高くなる。
したがって、差動受信回路14の出力電圧は、高レベルHIに固定され、出力レベルは保証される。
Next, the operation of this embodiment will be described with reference to FIG.
In the differential transmission circuit 10C of this embodiment, when the differential signal of the differential reception circuit 14 is not input without signal line connection, the complementary signal input of the differential reception circuit 14 is caused by the resistor 48 and the resistor 42. Since it is pulled down to a voltage lower than the termination voltage VT obtained by dividing the power supply voltage Vcc, the voltage of the true signal input in + of the differential receiving circuit 14 becomes higher than the voltage of the complement signal input in−.
Therefore, the output voltage of the differential receiving circuit 14 is fixed to the high level HI, and the output level is guaranteed.

差動伝送回路10Cの通常動作においては、差動受信回路14の終端電圧VTが1/2Vccに設定される場合において、(R4+R5)R8/R4+R5+R8=R6の関係が成立するように各抵抗44、46、48、42の抵抗値は設定されているから、差動受信回路14のコンプリメント信号入力in−の電圧は、トルー信号入力in+の電圧と等しくなり、差動受信回路14のルー信号入力in+とコンプリメント信号入力in−との間に電位差は無くなる。
したがって、符号化されたデータ信号は、コンデンサ28、30をそのまま通過し、すなわち、電気的な影響を受けることなく、差動受信回路14の入力に入力される。
In the normal operation of the differential transmission circuit 10C, when the termination voltage VT of the differential reception circuit 14 is set to 1/2 Vcc, each resistor 44, so that the relationship of (R4 + R5) R8 / R4 + R5 + R8 = R6 is established. Since the resistance values of 46, 48 and 42 are set, the voltage of the complement signal input in− of the differential reception circuit 14 becomes equal to the voltage of the true signal input in +, and the loop signal input of the differential reception circuit 14 There is no potential difference between in + and complement signal input in−.
Therefore, the encoded data signal passes through the capacitors 28 and 30 as they are, that is, is input to the input of the differential receiving circuit 14 without being electrically influenced.

したがって、この実施例の構成においても、実施例1と同効が得られる。   Therefore, the same effect as that of the first embodiment can be obtained in the configuration of this embodiment.

図7は、この発明の実施例5である差動伝送回路の電気的構成を示す図である。
この実施例の構成が、実施例1のそれと大きく異なる点は、差動受信回路(差動レシーバ)のトルー信号線とトルー信号入力との間に接続されている抵抗とコンデンサとの並列回路と、コンプリメント信号線とコンプリメント信号入力との間に接続されているコンデンサとを差動送信回路側に移した点である。
すなわち、この実施例の差動伝送回路10Dは、図7に示すように、実施例1の抵抗26とコンデンサ28に相当する抵抗26Sとコンデンサ28Sとを差動送信回路12のトルー信号出力とトルー信号伝送線16との間に設け、かつ、実施例1のコンデンサ30に相当するコンデンサ30Sを差動送信回路12のコンプリメント信号出力とコンプリメント信号伝送線18との間に設けて構成される。
そして、抵抗26Sの抵抗値と抵抗24の抵抗値との和は、抵抗22の抵抗値と等しいように設定される。
この構成以外のこの実施例の構成は、実施例1と同じであるので、同一の構成部分には同一の参照符号を付して、その逐一の説明は省略する。
FIG. 7 is a diagram showing an electrical configuration of a differential transmission circuit according to the fifth embodiment of the present invention.
The configuration of this embodiment is greatly different from that of the first embodiment in that a parallel circuit of a resistor and a capacitor connected between a true signal line and a true signal input of a differential receiver circuit (differential receiver). The capacitor connected between the complement signal line and the complement signal input is moved to the differential transmission circuit side.
That is, as shown in FIG. 7, the differential transmission circuit 10D according to this embodiment includes a resistor 26S corresponding to the resistor 26 and the capacitor 28S according to the first embodiment, and a true signal output and a true value of the differential transmission circuit 12. The capacitor 30S provided between the signal transmission line 16 and the capacitor 30S corresponding to the capacitor 30 of the first embodiment is provided between the complement signal output of the differential transmission circuit 12 and the complement signal transmission line 18. .
The sum of the resistance value of the resistor 26 </ b> S and the resistance value of the resistor 24 is set to be equal to the resistance value of the resistor 22.
Since the configuration of this embodiment other than this configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

次に、図7を参照して、この実施例の動作について説明する。
この実施例においても、差動受信回路14の差動信号が入力されなくなるときの差動受信回路14の動作状態は、等価的に、図2のようになり、そのトルー信号入力が電源20の電圧Vccへプルアップされるから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧より高くなる。
したがって、差動受信回路14の出力電圧は、高レベルHIに固定され、出力レベルは保証される。
Next, the operation of this embodiment will be described with reference to FIG.
Also in this embodiment, the operation state of the differential receiving circuit 14 when the differential signal of the differential receiving circuit 14 is not input is equivalent to that in FIG. Since it is pulled up to the voltage Vcc, the voltage of the true signal input in + of the differential receiving circuit 14 becomes higher than the voltage of the complement signal input in−.
Therefore, the output voltage of the differential receiving circuit 14 is fixed to the high level HI, and the output level is guaranteed.

差動伝送回路10Dの通常動作においても、差動伝送回路10の終端電圧VTが1/2Vccに設定される場合において、抵抗26Sの抵抗値と抵抗24の抵抗値との和が、抵抗22の抵抗値と等しくなるように設定されているから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧と等しくなり、差動受信回路14のトルー信号入力in+とコンプリメント信号入力in−との間に電位差は無くなる。
したがって、符号化されたデータ信号は、コンデンサ28、30をそのまま通過し、すなわち、電気的な影響を受けることなく、差動受信回路14の入力に入力される。
Even in the normal operation of the differential transmission circuit 10D, when the termination voltage VT of the differential transmission circuit 10 is set to 1/2 Vcc, the sum of the resistance value of the resistor 26S and the resistance value of the resistor 24 is Since it is set to be equal to the resistance value, the voltage of the true signal input in + of the differential receiving circuit 14 becomes equal to the voltage of the complement signal input in−, and the true signal input in + of the differential receiving circuit 14 There is no potential difference with the complement signal input in−.
Therefore, the encoded data signal passes through the capacitors 28 and 30 as they are, that is, is input to the input of the differential receiving circuit 14 without being electrically influenced.

したがって、この実施例の構成においても、実施例1と同効が得られる。   Therefore, the same effect as that of the first embodiment can be obtained in the configuration of this embodiment.

図8は、この発明の実施例6である差動伝送回路の電気的構成を示す図である。
この実施例の構成が、実施例2のそれと大きく異なる点は、トルー信号伝送線とトルー信号入力との間に接続されているコンデンサとコンプリメント信号伝送線と差動受信回路のコンプリメント信号入力との間に接続されている抵抗とコンデンサとの並列回路とを差動送信回路側に移した点である。
すなわち、この実施例の差動伝送回路10Eは、図8に示すように、実施例2の抵抗46とコンデンサ30に相当する抵抗46Sとコンデンサ30Sとを差動送信回路12のコンプリメント信号出力とコンプリメント信号伝送線18との間に設け、かつ、実施例2のコンデンサ28に相当するコンデンサ28Sを差動送信回路12のトルー信号出力とトルー信号伝送線16との間に設けて構成される。
そして、抵抗44の抵抗値R4と抵抗46Sの抵抗値R5との和は、抵抗42の抵抗値R6と等しいように設定される。
この構成以外のこの実施例の構成は、実施例1と同じであるので、同一の構成部分には同一の参照符号を付して、その逐一の説明は省略する。
FIG. 8 is a diagram showing an electrical configuration of a differential transmission circuit according to the sixth embodiment of the present invention.
The configuration of this embodiment differs greatly from that of the second embodiment in that the capacitor connected between the true signal transmission line and the true signal input, the complement signal transmission line, and the complement signal input of the differential receiving circuit are different. The parallel circuit of the resistor and the capacitor connected to each other is moved to the differential transmission circuit side.
That is, as shown in FIG. 8, the differential transmission circuit 10E of this embodiment includes the resistor 46S of the second embodiment, the resistor 46S corresponding to the capacitor 30, and the capacitor 30S as the complement signal output of the differential transmission circuit 12. Provided between the complementary signal transmission line 18 and a capacitor 28S corresponding to the capacitor 28 of the second embodiment is provided between the true signal output of the differential transmission circuit 12 and the true signal transmission line 16. .
The sum of the resistance value R4 of the resistor 44 and the resistance value R5 of the resistor 46S is set to be equal to the resistance value R6 of the resistor 42.
Since the configuration of this embodiment other than this configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

次に、図8を参照して、この実施例の動作について説明する。
この実施例においても、差動受信回路14の差動信号が入力されなくなるときの差動受信回路14の動作状態は、そのコンプリメント信号入力が大地電位へプルダウンされるから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧より高くなる。
したがって、差動受信回路14の出力電圧は、高レベルHIに固定され、出力レベルは保証される。
Next, the operation of this embodiment will be described with reference to FIG.
In this embodiment as well, the differential receiver circuit 14 operates when the differential signal of the differential receiver circuit 14 is no longer input because the complement signal input is pulled down to the ground potential. The voltage of the true signal input in + is higher than the voltage of the complement signal input in−.
Therefore, the output voltage of the differential receiving circuit 14 is fixed to the high level HI, and the output level is guaranteed.

差動伝送回路10Eの通常動作においても、差動受信回路14の終端電圧VTが1/2Vccに設定される場合において、抵抗46Sの抵抗値と抵抗44の抵抗値との和が、抵抗42の抵抗値と等しくなるように設定されているから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧と等しくなり、差動受信回路14のトルー信号入力in+とコンプリメント信号入力in−との間に電位差は無くなる。
したがって、符号化されたデータ信号は、コンデンサ28S、30Sをそのまま通過し、すなわち、電気的な影響を受けることなく、差動受信回路14の入力に入力される。
Even in the normal operation of the differential transmission circuit 10E, when the termination voltage VT of the differential reception circuit 14 is set to 1/2 Vcc, the sum of the resistance value of the resistor 46S and the resistance value of the resistor 44 is Since it is set to be equal to the resistance value, the voltage of the true signal input in + of the differential receiving circuit 14 becomes equal to the voltage of the complement signal input in−, and the true signal input in + of the differential receiving circuit 14 There is no potential difference with the complement signal input in−.
Therefore, the encoded data signal passes through the capacitors 28S and 30S as they are, that is, is input to the input of the differential receiving circuit 14 without being electrically influenced.

したがって、この実施例の構成においても、実施例1と同効が得られる。   Therefore, the same effect as that of the first embodiment can be obtained in the configuration of this embodiment.

図9は、この発明の実施例7である差動伝送回路の電気的構成を示す図である。
この実施例の構成が、実施例3のそれと大きく異なる点は、差動受信回路(差動レシーバ)のトルー信号線とトルー信号入力との間に接続されている抵抗とコンデンサとの並列回路と、コンプリメント信号線とコンプリメント信号入力との間に接続されているコンデンサとを差動送信回路側に移した点である。
すなわち、この実施例の差動伝送回路10Fは、図9に示すように、実施例3の抵抗26とコンデンサ28に相当する抵抗26Sとコンデンサ28Sとを差動送信回路12のトルー信号出力とトルー信号伝送線16との間に設け、かつ、実施例3のコンデンサ30に相当するコンデンサ30Sを差動送信回路12のコンプリメント信号出力とコンプリメント信号伝送線18との間に設けて構成される。
そして、抵抗22の抵抗値及び抵抗36の抵抗値の設定の仕方も、また、抵抗24、抵抗26S、抵抗36及び抵抗22の抵抗値の設定の仕方も、実施例3と同様である。
この構成以外のこの実施例の構成は、実施例1と同じであるので、同一の構成部分には同一の参照符号を付して、その逐一の説明は省略する。
9 is a diagram showing an electrical configuration of a differential transmission circuit according to a seventh embodiment of the present invention.
The configuration of this embodiment differs greatly from that of the third embodiment in that a parallel circuit of a resistor and a capacitor connected between a true signal line and a true signal input of a differential receiver circuit (differential receiver) The capacitor connected between the complement signal line and the complement signal input is moved to the differential transmission circuit side.
That is, as shown in FIG. 9, the differential transmission circuit 10F according to this embodiment includes a resistor 26S and a capacitor 28S corresponding to the resistor 26 and the capacitor 28 according to the third embodiment. The capacitor 30S provided between the signal transmission line 16 and the capacitor 30S corresponding to the capacitor 30 of the third embodiment is provided between the complement signal output of the differential transmission circuit 12 and the complement signal transmission line 18. .
The method of setting the resistance value of the resistor 22 and the resistance value of the resistor 36 and the method of setting the resistance value of the resistor 24, the resistor 26S, the resistor 36, and the resistor 22 are the same as in the third embodiment.
Since the configuration of this embodiment other than this configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

次に、図9を参照して、この実施例の動作について説明する。
この実施例においても、差動受信回路14の差動信号が信号線の未接続で入力されなくなるときの差動受信回路14の動作状態は、抵抗22と抵抗36とによって分圧される電圧がコンプリメント信号入力in−の電圧より高い電圧へプルアップされるから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧より高くなる。
したがって、差動受信回路14の出力電圧は、高レベルHIに固定され、出力レベルは保証される。
Next, the operation of this embodiment will be described with reference to FIG.
Also in this embodiment, the operation state of the differential receiver circuit 14 when the differential signal of the differential receiver circuit 14 is not input without the signal line being connected is the voltage divided by the resistor 22 and the resistor 36. Since the voltage is pulled up to a voltage higher than the voltage of the complement signal input in−, the voltage of the true signal input in + of the differential reception circuit 14 becomes higher than the voltage of the complement signal input in−.
Therefore, the output voltage of the differential receiving circuit 14 is fixed to the high level HI, and the output level is guaranteed.

差動伝送回路10Fの通常動作においても、差動伝送回路10の終端電圧VTが1/2Vccに設定される場合において、抵抗24及び抵抗26Sと抵抗36との並列合成抵抗値が抵抗22の抵抗値と等しくなるように設定されているから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧と等しくなり、差動受信回路14のトルー信号入力in+とコンプリメント信号入力in−との間に電位差は無くなる。
したがって、符号化されたデータ信号は、コンデンサ28S、30Sをそのまま通過し、すなわち、電気的な影響を受けることなく、差動受信回路14の入力に入力される。
Even in the normal operation of the differential transmission circuit 10F, when the termination voltage VT of the differential transmission circuit 10 is set to 1/2 Vcc, the parallel combined resistance value of the resistor 24, the resistor 26S, and the resistor 36 is the resistance of the resistor 22. Therefore, the voltage of the true signal input in + of the differential receiving circuit 14 is equal to the voltage of the complement signal input in−, and is complementary to the true signal input in + of the differential receiving circuit 14. The potential difference is no longer between the input signal and the input signal.
Therefore, the encoded data signal passes through the capacitors 28S and 30S as they are, that is, is input to the input of the differential receiving circuit 14 without being electrically influenced.

したがって、この実施例の構成においても、実施例1と同効が得られる。   Therefore, the same effect as that of the first embodiment can be obtained in the configuration of this embodiment.

図10は、この発明の実施例8である差動伝送回路の電気的構成を示す図である。
この実施例の構成が、実施例4のそれと大きく異なる点は、トルー信号伝送線とトルー信号入力との間に接続されているコンデンサとコンプリメント信号伝送線と差動受信回路のコンプリメント信号入力との間に接続されている抵抗とコンデンサとの並列回路とを差動送信回路側に移した点である。
すなわち、この実施例の差動伝送回路10Gは、図10に示すように、実施例4の抵抗46とコンデンサ30に相当する抵抗46Sとコンデンサ30Sとを差動送信回路12のコンプリメント信号出力とコンプリメント信号伝送線18との間に設け、かつ、実施例4のコンデンサ28に相当するコンデンサ28Sを差動送信回路12のトルー信号出力とトルー信号伝送線16との間に設けて構成される。
そして、抵抗42の抵抗値及び抵抗48の抵抗値の設定の仕方も、また抵抗44、抵抗46S、抵抗48及び抵抗42の抵抗値の設定の仕方も、実施例4と同様である。
この構成以外のこの実施例の構成は、実施例1と同じであるので、同一の構成部分には同一の参照符号を付して、その逐一の説明は省略する。
10 is a diagram showing an electrical configuration of a differential transmission circuit according to an eighth embodiment of the present invention.
The configuration of this embodiment differs greatly from that of the fourth embodiment in that the capacitor connected between the true signal transmission line and the true signal input, the complement signal transmission line, and the complement signal input of the differential receiver circuit are different. The parallel circuit of the resistor and the capacitor connected to each other is moved to the differential transmission circuit side.
That is, as shown in FIG. 10, the differential transmission circuit 10G according to this embodiment includes a resistor 46S according to the fourth embodiment, a resistor 46S corresponding to the capacitor 30, and a capacitor 30S as a complement signal output of the differential transmission circuit 12. Provided between the complementary signal transmission line 18 and a capacitor 28S corresponding to the capacitor 28 of the fourth embodiment is provided between the true signal output of the differential transmission circuit 12 and the true signal transmission line 16. .
The method of setting the resistance value of the resistor 42 and the resistance value of the resistor 48 and the method of setting the resistance values of the resistor 44, the resistor 46S, the resistor 48, and the resistor 42 are the same as in the fourth embodiment.
Since the configuration of this embodiment other than this configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

次に、図10を参照して、この実施例の動作について説明する。
この実施例においても、差動受信回路14の差動信号が信号線の未接続で入力されなくなるときの差動受信回路14の動作状態は、抵抗48と抵抗42とによって分圧される電圧がコンプリメント信号入力in−の電圧より低くなるから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧より高くなる。
したがって、差動受信回路14の出力電圧は、高レベルHIに固定され、出力レベルは保証される。
Next, the operation of this embodiment will be described with reference to FIG.
Also in this embodiment, the operation state of the differential receiver circuit 14 when the differential signal of the differential receiver circuit 14 is not input without the signal line being connected is the voltage divided by the resistor 48 and the resistor 42. Since the voltage is lower than the voltage of the complement signal input in−, the voltage of the true signal input in + of the differential reception circuit 14 is higher than the voltage of the complement signal input in−.
Therefore, the output voltage of the differential receiving circuit 14 is fixed to the high level HI, and the output level is guaranteed.

差動伝送回路10Gの通常動作においても、差動受信回路14の終端電圧VTが1/2Vccに設定される場合において、抵抗44及び抵抗46Sと抵抗48との並列合成抵抗値が、抵抗42の抵抗値と等しくなるように設定されているから、差動受信回路14のトルー信号入力in+の電圧は、コンプリメント信号入力in−の電圧と等しくなり、差動受信回路14のトルー信号入力in+とコンプリメント信号入力in−との間に電位差は無くなる。
したがって、符号化されたデータ信号は、コンデンサ28S、30Sをそのまま通過し、すなわち、電気的な影響を受けることなく、差動受信回路14の入力に入力される。
Even in the normal operation of the differential transmission circuit 10G, when the termination voltage VT of the differential reception circuit 14 is set to 1/2 Vcc, the parallel combined resistance value of the resistor 44, the resistor 46S, and the resistor 48 is Since it is set to be equal to the resistance value, the voltage of the true signal input in + of the differential receiving circuit 14 becomes equal to the voltage of the complement signal input in−, and the true signal input in + of the differential receiving circuit 14 There is no potential difference with the complement signal input in−.
Therefore, the encoded data signal passes through the capacitors 28S and 30S as they are, that is, is input to the input of the differential receiving circuit 14 without being electrically influenced.

したがって、この実施例の構成においても、実施例1と同効が得られる。   Therefore, the same effect as that of the first embodiment can be obtained in the configuration of this embodiment.

以上、この発明の実施例を、図面を参照して詳述してきたが、この発明の具体的な構成は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもそれらはこの発明に含まれる。
例えば、上記のいずれの実施例においても、コンデンサを用いる例について説明したが、その他の容量性素子で代替してなる差動伝送回路を構成してもよい。
また、上記のいずれの実施例においても、終端電圧VTを1/2Vccとする例について説明したが、この終端電圧以外の任意の終端電圧においても、例えば、実施例1の構成において、抵抗22に供給される電圧が3つの抵抗22、24及び26によって分圧され、抵抗26と抵抗22との接続点に現れる電圧がその任意の終端電圧と等しくなるように3つの抵抗22、24及び26の抵抗値を設定すれば、その任意の終端電圧に対応する差動伝送回路を構成することができる。
また、トルー信号線16又はコンプリメント信号線18に、例えば、抵抗26とコンデンサ28との並列回路を設けるようにしてもよい。
また、例えば、実施例1において、トルー信号伝送信号16及びコンプリメント信号伝送線18の未接続であるとき、線抵抗22を差動受信回路のトルー信号入力に接続するように構成してもよい。他の実施例においても、同等の回路構成をすることが可能である。
Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration of the present invention is not limited to these embodiments, and the design does not depart from the gist of the present invention. These changes are included in the present invention.
For example, in any of the above-described embodiments, the example using the capacitor has been described. However, a differential transmission circuit that is replaced by another capacitive element may be configured.
Also, in any of the above-described embodiments, the example in which the termination voltage VT is set to 1/2 Vcc has been described. However, in any termination voltage other than this termination voltage, for example, in the configuration of the first embodiment, the resistor 22 The three resistors 22, 24, and 26 are divided by the three resistors 22, 24, and 26 so that the voltage appearing at the connection point between the resistors 26 and 22 is equal to the arbitrary termination voltage. If the resistance value is set, a differential transmission circuit corresponding to the arbitrary termination voltage can be configured.
Further, for example, a parallel circuit of a resistor 26 and a capacitor 28 may be provided on the true signal line 16 or the complement signal line 18.
Further, for example, in the first embodiment, when the true signal transmission signal 16 and the complement signal transmission line 18 are not connected, the line resistance 22 may be connected to the true signal input of the differential receiving circuit. . In other embodiments, an equivalent circuit configuration can be provided.

ここに開示している差動伝送回路は、コンピュータと周辺装置との間で信号を高速伝送する伝送路に利用し得る。   The differential transmission circuit disclosed herein can be used for a transmission line that transmits signals at high speed between a computer and a peripheral device.

この発明の実施例1である差動伝送回路の電気的構成を示す図である。It is a figure which shows the electrical constitution of the differential transmission circuit which is Example 1 of this invention. 同差動伝送回路における信号線の未接続時の動作を説明する図である。It is a figure explaining the operation | movement at the time of the signal line unconnected in the differential transmission circuit. 同差動伝送回路における通常動作時の動作を説明する図である。It is a figure explaining the operation | movement at the time of normal operation | movement in the differential transmission circuit. この発明の実施例2である差動伝送回路の電気的構成を示す図である。It is a figure which shows the electrical constitution of the differential transmission circuit which is Example 2 of this invention. この発明の実施例3である差動伝送回路の電気的構成を示す図である。It is a figure which shows the electrical constitution of the differential transmission circuit which is Example 3 of this invention. この発明の実施例4である差動伝送回路の電気的構成を示す図である。It is a figure which shows the electrical constitution of the differential transmission circuit which is Example 4 of this invention. この発明の実施例5である差動伝送回路の電気的構成を示す図である。It is a figure which shows the electrical constitution of the differential transmission circuit which is Example 5 of this invention. この発明の実施例6である差動伝送回路の電気的構成を示す図である。It is a figure which shows the electrical constitution of the differential transmission circuit which is Example 6 of this invention. この発明の実施例7である差動伝送回路の電気的構成を示す図である。It is a figure which shows the electrical constitution of the differential transmission circuit which is Example 7 of this invention. この発明の実施例8である差動伝送回路の電気的構成を示す図である。It is a figure which shows the electrical constitution of the differential transmission circuit which is Example 8 of this invention.

符号の説明Explanation of symbols

10、10A等 差動伝送回路
12 差動送信回路
14 差動受信回路
16 トルー信号線
18 コンプリメント信号線
22 抵抗(電圧付与手段の一部)
24 抵抗(電圧付与手段の一部)
26 抵抗(電圧付与手段の一部)
28 コンデンサ(電圧付与手段の残部、第1の容量性素子)
30 コンデンサ(電圧付与手段の残部、第1の容量性素子)
10, 10 A, etc. Differential transmission circuit 12 Differential transmission circuit 14 Differential reception circuit 16 Tru signal line 18 Complement signal line 22 Resistance (part of voltage application means)
24 Resistance (part of voltage application means)
26 Resistance (part of voltage application means)
28 capacitor (the remainder of the voltage applying means, the first capacitive element)
30 capacitor (remaining voltage applying means, first capacitive element)

Claims (17)

差動送信回路のトルー信号出力を第1の信号線を介して差動受信回路のトルー信号入力に接続し、かつ、前記差動送信回路のコンプリメント信号出力を第2の信号線を介して差動受信回路のコンプリメント信号入力に接続する差動伝送回路であって、
信号線の未接続時の前記トルー信号入力の直流電圧を前記コンプリメント信号入力の直流電圧より高くする又は前記コンプリメント信号入力の直流電圧を前記トルー信号入力の直流電圧より低くする電圧付与手段を前記差動送信回路の出力と前記差動受信回路の入力との間に設け、かつ、前記電圧付与手段が設けられる前記信号出力と前記信号入力とは反対側の前記信号出力と前記信号入力との間に第1の容量性素子を接続したことを特徴とする差動伝送回路。
The true signal output of the differential transmitter circuit is connected to the true signal input of the differential receiver circuit via the first signal line, and the complement signal output of the differential transmitter circuit is connected via the second signal line. A differential transmission circuit connected to a complement signal input of a differential reception circuit,
Voltage applying means for making the DC voltage of the true signal input higher than the DC voltage of the complement signal input when the signal line is not connected or lowering the DC voltage of the complement signal input than the DC voltage of the true signal input. The signal output provided between the output of the differential transmission circuit and the input of the differential reception circuit, and provided with the voltage applying means, and the signal output and the signal input opposite to the signal input A differential transmission circuit, wherein a first capacitive element is connected between the two.
前記電圧付与手段は、前記トルー信号出力と前記差動受信回路の終端電圧より低い電圧の第1の電圧源とを接続する第1の抵抗性素子と、前記第1の信号線と前記トルー信号入力との間に並列に接続された第2の抵抗性素子及び第2の容量性素子と、前記トルー信号入力と前記終端電圧より高い電圧の第2の電圧源との間に接続された第3の抵抗性素子とから構成され、前記第2の抵抗性素子と前記第3の抵抗素子との接続点の電圧が前記終端電圧となるように前記第1の抵抗性素子、前記第2の抵抗性素子及び第3の抵抗性素子の抵抗値を設定し、前記第1の容量性素子は、前記第2の信号線と前記コンプリメント信号入力との間に接続されることを特徴とする請求項1記載の差動伝送回路。   The voltage applying means includes a first resistive element that connects the true signal output and a first voltage source having a voltage lower than a termination voltage of the differential receiving circuit, the first signal line, and the true signal. A second resistive element and a second capacitive element connected in parallel with the input; and a second voltage element connected between the true signal input and a second voltage source having a voltage higher than the termination voltage. 3, and the first resistive element, the second resistive element, and the second resistive element so that a voltage at a connection point between the second resistive element and the third resistive element becomes the termination voltage. Resistance values of a resistive element and a third resistive element are set, and the first capacitive element is connected between the second signal line and the complement signal input. The differential transmission circuit according to claim 1. 前記第1の電圧源は、大地電位であり、前記第2の電圧源は、前記差動受信回路の駆動電圧源であることを特徴とする請求項2記載の差動伝送回路。   The differential transmission circuit according to claim 2, wherein the first voltage source is a ground potential, and the second voltage source is a driving voltage source of the differential receiving circuit. 前記第3の抵抗性素子が接続される前記トルー信号入力と前記差動受信回路の終端電圧より低い第3の電圧源との間に第4の抵抗性素子を接続し、かつ、前記第2、第3及び第4の抵抗の接続点の電圧が前記終端電圧になるように第1、第2、第3及び第4の抵抗性素子の抵抗値を設定したことを特徴とする請求項2又は3記載のの差動伝送回路。   A fourth resistive element is connected between the true signal input to which the third resistive element is connected and a third voltage source lower than a termination voltage of the differential receiving circuit; and 3. The resistance values of the first, second, third and fourth resistive elements are set so that the voltage at the connection point of the third and fourth resistors becomes the termination voltage. Or the differential transmission circuit of 3. 前記第3の電圧源は、大地電位であることを特徴とする請求項4記載の差動伝送回路。   The differential transmission circuit according to claim 4, wherein the third voltage source is a ground potential. 前記電圧付与手段は、前記トルー信号出力と前記差動受信回路の終端電圧より低い電圧の第4の電圧源とを接続する第4の抵抗性素子と、前記トルー信号出力と前記第1の信号線との間に並列に接続された第5の抵抗性素子及び第3の容量性素子と、前記トルー信号入力と前記終端電圧より高い電圧の第5の電圧源との間に接続された第6の抵抗性素子とから構成され、前記第5の抵抗性素子と前記第6の抵抗素子との接続点の電圧が前記終端電圧となるように前記第4の抵抗性素子、前記第5の抵抗性素子及び第6の抵抗性素子の抵抗値を設定し、前記第1の容量性素子は、前記コンプリメント信号出力と前記第2の信号線との間に接続されることを特徴とする請求項1記載の差動伝送回路。   The voltage applying means includes a fourth resistive element that connects the true signal output and a fourth voltage source having a voltage lower than a termination voltage of the differential receiving circuit, the true signal output, and the first signal. A fifth resistive element and a third capacitive element connected in parallel with each other, and a fifth voltage source connected between the true signal input and a fifth voltage source having a voltage higher than the termination voltage. The fourth resistive element, the fifth resistive element, and the fifth resistive element so that the voltage at the connection point between the fifth resistive element and the sixth resistive element becomes the termination voltage. Resistance values of a resistive element and a sixth resistive element are set, and the first capacitive element is connected between the complement signal output and the second signal line. The differential transmission circuit according to claim 1. 前記第4の電圧源は、大地電位であり、前記第5の電圧源は、前記差動受信回路の駆動電圧源であることを特徴とする請求項2記載の差動伝送回路。   The differential transmission circuit according to claim 2, wherein the fourth voltage source is a ground potential, and the fifth voltage source is a driving voltage source of the differential receiving circuit. 前記第6の抵抗性素子が接続される前記トルー信号入力と前記差動受信回路の終端電圧より低い第6の電圧源との間に第7の抵抗性素子を接続し、かつ、前記第5、第6及び第7の抵抗の接続点の電圧が前記終端電圧になるように第4、第5、第6及び第7の抵抗性素子の抵抗値を設定したことを特徴とする請求項6又は7記載のの差動伝送回路。   A seventh resistive element is connected between the true signal input to which the sixth resistive element is connected and a sixth voltage source lower than a termination voltage of the differential receiving circuit; and The resistance values of the fourth, fifth, sixth and seventh resistive elements are set so that the voltage at the connection point of the sixth and seventh resistors becomes the termination voltage. Or the differential transmission circuit according to 7; 前記第6の電圧源は、大地電位であることを特徴とする請求項8記載の差動伝送回路。   The differential transmission circuit according to claim 8, wherein the sixth voltage source is a ground potential. 前記電圧付与手段は、前記コンプリメント信号出力と前記差動受信回路の終端電圧よりも高い電圧の第7の電圧源とを接続する第8の抵抗性素子と、前記第2の信号線と前記コンプリメント信号入力との間に並列に接続された第9の抵抗性素子及び第4の容量性素子と、前記コンプリメント信号入力と前記終端電圧より低い電圧の第8の電圧源との間に接続された第10の抵抗性素子とから構成され、前記第9の抵抗性素子と前記第10の抵抗素子との接続点の電圧が前記終端電圧となるように前記第8の抵抗性素子、前記第9の抵抗性素子及び第10の抵抗性素子の抵抗値を設定し、前記第1の容量性素子は、前記第1の信号線と前記トルー信号入力との間に接続されることを特徴とする請求項1記載の差動伝送回路。   The voltage applying means includes an eighth resistive element that connects the complement signal output and a seventh voltage source having a voltage higher than a termination voltage of the differential receiving circuit, the second signal line, and the second signal line. Between the ninth resistive element and the fourth capacitive element connected in parallel between the complement signal input and the complement signal input and the eighth voltage source having a voltage lower than the termination voltage. The tenth resistive element connected, and the eighth resistive element so that the voltage at the connection point between the ninth resistive element and the tenth resistive element becomes the termination voltage, The resistance values of the ninth resistive element and the tenth resistive element are set, and the first capacitive element is connected between the first signal line and the true signal input. The differential transmission circuit according to claim 1, wherein: 前記第7の電圧源は、前記差動送信回路の駆動電圧源であり、前記第8の電圧源は、大地電位であることを特徴とする請求項10記載の差動伝送回路。   The differential transmission circuit according to claim 10, wherein the seventh voltage source is a drive voltage source for the differential transmission circuit, and the eighth voltage source is a ground potential. 前記第9の抵抗性素子が接続される前記コンプリメント信号入力と前記差動受信回路の終端電圧より高い第9の電圧源との間に第11の抵抗性素子を接続し、かつ、前記第9、第10及び第11の抵抗の接続点の電圧が前記終端電圧になるように第8、第9、第10及び第11の抵抗性素子の抵抗値を設定したことを特徴とする請求項10又は11記載のの差動伝送回路。   An eleventh resistive element is connected between the complement signal input to which the ninth resistive element is connected and a ninth voltage source that is higher than the termination voltage of the differential receiving circuit; and 9. The resistance values of the eighth, ninth, tenth and eleventh resistive elements are set so that the voltage at the connection point of the ninth, tenth and eleventh resistors becomes the termination voltage. The differential transmission circuit according to 10 or 11. 前記第9の電圧源は、前記差動受信回路の駆動電源であることを特徴とする請求項12記載の差動伝送回路。   13. The differential transmission circuit according to claim 12, wherein the ninth voltage source is a driving power source for the differential receiving circuit. 前記電圧付与手段は、前記コンプリメント信号出力と前記差動受信回路の終端電圧よりも高い電圧の第10の電圧源とを接続する第12の抵抗性素子と、前記コンプリメント信号出力と前記第2の信号線との間に並列に接続された第13の抵抗性素子及び第5の容量性素子と、前記コンプリメント信号入力と前記終端電圧より低い電圧の第11の電圧源との間に接続された第14の抵抗性素子とから構成され、前記第13の抵抗性素子と前記第14の抵抗素子との接続点の電圧が前記終端電圧となるように前記第12の抵抗性素子、前記第13の抵抗性素子及び第14の抵抗性素子の抵抗値を設定し、前記第1の容量性素子は、前記トルー信号出力と前記第1の信号線との間に接続されることを特徴とする請求項1記載の差動伝送回路。   The voltage applying means includes: a twelfth resistive element that connects the complement signal output and a tenth voltage source having a voltage higher than a termination voltage of the differential receiving circuit; the complement signal output; A thirteenth resistive element and a fifth capacitive element connected in parallel between the two signal lines, and the complement signal input and an eleventh voltage source having a voltage lower than the termination voltage. A twelfth resistive element connected to the thirteenth resistive element so that a voltage at a connection point between the thirteenth resistive element and the fourteenth resistive element becomes the terminal voltage; The resistance values of the thirteenth resistive element and the fourteenth resistive element are set, and the first capacitive element is connected between the true signal output and the first signal line. The differential transmission circuit according to claim 1, wherein: 前記第10の電圧源は、前記差動送信回路の駆動電圧源であり、前記第11の電圧源は、大地電位であることを特徴とする請求項14記載の差動伝送回路。   15. The differential transmission circuit according to claim 14, wherein the tenth voltage source is a driving voltage source for the differential transmission circuit, and the eleventh voltage source is a ground potential. 前記第14の抵抗性素子が接続される前記コンプリメント信号入力と前記終端電圧より高い電圧の第12の電圧源との間に第15の抵抗性素子を接続し、かつ、前記第13、第14及び第15の抵抗の接続点の電圧が前記終端電圧になるように第12、第13、第14及び第15の抵抗性素子の抵抗値を設定したことを特徴とする請求項14又は15記載のの差動伝送回路。   A fifteenth resistive element is connected between the complement signal input to which the fourteenth resistive element is connected and a twelfth voltage source having a voltage higher than the termination voltage, and the thirteenth, 16. The resistance values of the twelfth, thirteenth, fourteenth and fifteenth resistive elements are set so that the voltage at the connection point of the fourteenth and fifteenth resistors becomes the termination voltage. The differential transmission circuit as described. 前記第12の電圧源は、前記差動受信回路の駆動電源であることを特徴とする請求項16記載の差動伝送回路。   The differential transmission circuit according to claim 16, wherein the twelfth voltage source is a driving power source of the differential receiving circuit.
JP2007059291A 2007-03-09 2007-03-09 Differential transmission circuit Expired - Fee Related JP4957302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059291A JP4957302B2 (en) 2007-03-09 2007-03-09 Differential transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059291A JP4957302B2 (en) 2007-03-09 2007-03-09 Differential transmission circuit

Publications (2)

Publication Number Publication Date
JP2008227635A true JP2008227635A (en) 2008-09-25
JP4957302B2 JP4957302B2 (en) 2012-06-20

Family

ID=39845757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059291A Expired - Fee Related JP4957302B2 (en) 2007-03-09 2007-03-09 Differential transmission circuit

Country Status (1)

Country Link
JP (1) JP4957302B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239500A (en) * 2009-03-31 2010-10-21 Toshiba Corp Clock supply apparatus and clock supply method
WO2019082245A1 (en) * 2017-10-23 2019-05-02 ウルトラメモリ株式会社 Signal transmission circuit and chip module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169314A (en) * 1999-12-03 2001-06-22 Oki Electric Ind Co Ltd Transmission interface device
WO2007091306A1 (en) * 2006-02-08 2007-08-16 Fujitsu Limited Differential signal transmitting apparatus and differential signal receiving apparatus
JP2007235622A (en) * 2006-03-01 2007-09-13 Nec Corp Differential transmission circuit and signal regeneration method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169314A (en) * 1999-12-03 2001-06-22 Oki Electric Ind Co Ltd Transmission interface device
WO2007091306A1 (en) * 2006-02-08 2007-08-16 Fujitsu Limited Differential signal transmitting apparatus and differential signal receiving apparatus
JP2007235622A (en) * 2006-03-01 2007-09-13 Nec Corp Differential transmission circuit and signal regeneration method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239500A (en) * 2009-03-31 2010-10-21 Toshiba Corp Clock supply apparatus and clock supply method
JP4581017B2 (en) * 2009-03-31 2010-11-17 株式会社東芝 Clock supply apparatus and clock supply method
US7868653B2 (en) 2009-03-31 2011-01-11 Kabushiki Kaisha Toshiba Clock supply apparatus and clock supply method
WO2019082245A1 (en) * 2017-10-23 2019-05-02 ウルトラメモリ株式会社 Signal transmission circuit and chip module
JPWO2019082245A1 (en) * 2017-10-23 2020-11-26 ウルトラメモリ株式会社 Signal transmission circuit and chip module
JP7002146B2 (en) 2017-10-23 2022-01-20 ウルトラメモリ株式会社 Signal transmission circuit and chip module

Also Published As

Publication number Publication date
JP4957302B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5897038B2 (en) Voltage mode driver with pre-emphasis
EP0942562B1 (en) Driver for a serial bus
KR101845095B1 (en) Efficient entry into and recovery from a power save mode for a differential transmitter and receiver
JP5451772B2 (en) Data transmission system
JP4206731B2 (en) Transceiver and high-speed operation interface system having the same
JP3610424B2 (en) Electronic equipment and interface circuit
EP2733620B1 (en) Peripheral device detection on an unpowered bus
WO2007120610A2 (en) System and method for combining signals on a differential i/o link
CN101233732A (en) High speed driver equalization
JPH07235952A (en) Signal transmission circuit and signal transmission equipment using the same
EP1986383B1 (en) System transmitting and receiving a differential signal
JP4957302B2 (en) Differential transmission circuit
US6744810B1 (en) Signal repeater for voltage intolerant components used in a serial data line
JP2006268306A (en) Semiconductor device and connection processing method therefor
US11272245B2 (en) Video output system, video output device, and cable
US6788099B2 (en) System and method for effectively implementing an active termination circuit in an electronic device
JPH06224976A (en) Interface conversion circuit for half duplex serial transmission
JP2020018018A (en) Video output device
JP2007306267A (en) Semiconductor transmitting and receiving device system, memory card, and memory card host equipment
JP3587814B2 (en) Data transmission systems and cables
JP4547722B2 (en) Connection cables between devices according to different interface standards
CN107766278B (en) High-speed serial interface receiver front-end circuit compatible with direct current/alternating current coupling
JP2012205041A (en) Interface circuit
JP2004128629A (en) Signaling circuit
JP4493578B2 (en) Signal transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees