JP2008227406A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008227406A
JP2008227406A JP2007067171A JP2007067171A JP2008227406A JP 2008227406 A JP2008227406 A JP 2008227406A JP 2007067171 A JP2007067171 A JP 2007067171A JP 2007067171 A JP2007067171 A JP 2007067171A JP 2008227406 A JP2008227406 A JP 2008227406A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor region
mos transistor
channel mos
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007067171A
Other languages
Japanese (ja)
Other versions
JP4504392B2 (en
Inventor
Masamichi Suzuki
正道 鈴木
Masato Koyama
正人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007067171A priority Critical patent/JP4504392B2/en
Priority to US11/858,408 priority patent/US7755089B2/en
Publication of JP2008227406A publication Critical patent/JP2008227406A/en
Application granted granted Critical
Publication of JP4504392B2 publication Critical patent/JP4504392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28097Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a metallic silicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • H01L29/4958Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo with a multiple layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7845Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being a conductive material, e.g. silicided S/D or Gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of applying a universal tensile distortion not depending on a size of a transistor, to a n-channel type MOS transistor. <P>SOLUTION: A high dielectric insulating film is used as a gate insulating film of an n-channel type MOS transistor, and by directly forming this high dielectric insulating film on a semiconductor substrate not through an interface layer, a tensile distortion is given to a channel region. By combining this n-channel type MOS transistor and a p-channel type MOS transistor having a compressive distortion in a channel region, a complementary high performance semiconductor device can be constituted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、歪みSiチャネルを有する相補型MOSトランジスタに関する。   The present invention relates to a complementary MOS transistor having a strained Si channel.

Si−LSIの素子の進歩は、その基本構成単位であるMOSトランジスタの高性能化をもってなされてきている。MOSトランジスタの性能とチャネルを走行するキャリア(電子、正孔)移動度とは密接な関係があるため、このキャリア移動度を向上させる技術が注目されている。移動度向上技術の一つに、歪みSi技術がある。例えばnチャネル型MOSトランジスタにおいては、チャネルのSiに引っ張り歪みを印加するために、歪み緩和させたSiGe層上にSi層を形成させたり、pチャネル型MOSトランジスタにおいては、ゲート電極上にSiN膜によるストレッサーを被せることで電子移動度を向上させている。   Advances in Si-LSI elements have been made with higher performance of MOS transistors, which are the basic structural units. Since the performance of the MOS transistor and the carrier (electron, hole) mobility traveling in the channel are closely related, a technique for improving the carrier mobility has attracted attention. One of the mobility enhancement techniques is a strained Si technique. For example, in an n-channel MOS transistor, in order to apply tensile strain to channel Si, a Si layer is formed on the strain-relieved SiGe layer. In a p-channel MOS transistor, a SiN film is formed on the gate electrode. Electron mobility is improved by applying a stressor.

また、特許文献1では、チャネル上に基板とは異なる格子間隔を有する結晶性金属酸化物絶縁膜をゲート絶縁膜として形成することにより、チャネル領域の格子間隔を変調させ、キャリアの移動度を向上させている。
特開2004−214386号公報
In Patent Document 1, a crystalline metal oxide insulating film having a lattice spacing different from that of the substrate is formed on the channel as a gate insulating film, thereby modulating the lattice spacing of the channel region and improving carrier mobility. I am letting.
JP 2004-214386 A

しかしながら、例えば歪み緩和させたSiGe層上にSi層を形成させる方法の場合、歪みSi層表面は転位密度が高く、リーク電流の増加等が問題となる。また、SiN膜によるストレッサーを被せる方法の場合は、FETの製造プロセスが煩雑になるのは勿論だが、FETのサイズが変化すると歪み量が変化するので、例えばSiNの膜厚を変えて歪み量を調整するために設計し直すことが必要になる他、SiNの膜厚が厚すぎると膜が剥がれるという問題も発生する。   However, in the case of a method of forming a Si layer on a strain-relieved SiGe layer, for example, the strained Si layer surface has a high dislocation density, which causes an increase in leakage current. In addition, in the case of the method of covering the stressor with the SiN film, the FET manufacturing process becomes complicated, but the strain amount changes as the FET size changes. For example, the strain amount is changed by changing the SiN film thickness. In addition to redesigning for adjustment, there is a problem that the film peels off if the SiN film is too thick.

ここで、ゲート絶縁膜が多結晶である場合には、リーク電流の増大が懸念される。加えて上記特許文献1では、ゲート絶縁膜がエピタキシャル膜であるが故に、Si基板は界面から50nmの領域にまで、略均一に0.7%程度もの歪み量が含有されるとしている。このような歪み量が50nm以上に亘って存在した場合、機械的衝撃に弱く、僅かな衝撃により、転位即ち結晶欠陥を発生して歪みが緩和され、デバイス特性が劣化してしまう懸念がある上、素子間のばらつきが大きくなってしまう。   Here, when the gate insulating film is polycrystalline, there is a concern about an increase in leakage current. In addition, in Patent Document 1, since the gate insulating film is an epitaxial film, the Si substrate contains a strain amount of approximately 0.7% almost uniformly from the interface to a region of 50 nm. If such a strain exists over 50 nm, it is vulnerable to mechanical shock, and a slight shock may cause dislocation, that is, crystal defect, to relax the strain and deteriorate device characteristics. As a result, the variation between elements increases.

また、nチャネル型MOSトランジスタおよびpチャネル型MOSトランジスタ作製には、チャネルに夫々引っ張り、圧縮歪を印加させるために、異種材料のゲート絶縁膜を用いる必要があり、相補型MOSトランジスタの作製工程は煩雑を極める。   In order to fabricate an n-channel MOS transistor and a p-channel MOS transistor, it is necessary to use a gate insulating film made of a different material in order to apply a tensile strain and compressive strain to the channel. Extremely complicated.

そこで本発明は、トランジスタのサイズによらない引っ張り歪みを、nチャネル型MOSトランジスタのチャネルに印加できる相補型MOSトランジスタを提供することを目的とする。   Therefore, an object of the present invention is to provide a complementary MOS transistor that can apply tensile strain independent of the size of the transistor to the channel of the n-channel MOS transistor.

上記課題を解決するために、本発明の半導体装置の第1は、半導体基板と、前記半導体基板上に形成されたp型の第1の半導体領域と、前記半導体基板上に、前記第1の半導体領域と絶縁されて形成されたn型の第2の半導体領域と、前記第1の半導体領域に形成されたnチャネル型MOSトランジスタと、前記第2の半導体領域に形成されたpチャネル型MOSトランジスタとを具備し、前記nチャネル型MOSトランジスタは、前記第1の半導体領域に、対向して形成された一対の第1のソース/ドレイン領域と、前記第1のソース/ドレイン領域に挟まれた前記第1の半導体領域の表面に、直接接触して形成され、少なくともLaを含む非晶質の絶縁膜で形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜上に形成された第1のゲート電極と、
を具備し、前記Pチャネル型MOSトランジスタは、前記第2の半導体領域に、対向して形成された一対の第2のソース/ドレイン領域と、前記第2のソース/ドレイン領域に挟まれた前記第2の半導体領域の表面に、シリコン酸化膜とその上に形成された前記非晶質の絶縁膜とを含む第2のゲート絶縁膜と、前記第2のゲート絶縁膜上に形成された第2のゲート電極とを具備することを特徴とする。
In order to solve the above problems, a first semiconductor device of the present invention includes a semiconductor substrate, a p-type first semiconductor region formed on the semiconductor substrate, and the first semiconductor region on the semiconductor substrate. An n-type second semiconductor region formed insulated from the semiconductor region, an n-channel MOS transistor formed in the first semiconductor region, and a p-channel MOS formed in the second semiconductor region The n-channel MOS transistor is sandwiched between a pair of first source / drain regions formed opposite to each other in the first semiconductor region and the first source / drain region. A first gate insulating film formed on the surface of the first semiconductor region in direct contact and formed of an amorphous insulating film containing at least La; and formed on the first gate insulating film. First made And over gate electrode,
The P-channel MOS transistor includes a pair of second source / drain regions formed opposite to each other in the second semiconductor region and the second source / drain region sandwiched between the second source / drain regions. A second gate insulating film including a silicon oxide film and the amorphous insulating film formed thereon on the surface of the second semiconductor region; and a second gate insulating film formed on the second gate insulating film. 2 gate electrodes.

本発明の半導体装置の第2は、半導体基板と、前記半導体基板上に形成されたp型の第1の半導体領域と、前記半導体基板上に、前記第1の半導体領域と絶縁されて形成されたn型の第2の半導体領域と、前記第1の半導体領域に形成されたnチャネル型MOSトランジスタと、前記第2の半導体領域に形成されたpチャネル型MOSトランジスタと、
を具備し、前記nチャネル型MOSトランジスタは、前記第1の半導体領域に、対向して形成された一対の第1のソース/ドレイン領域と、前記第1のソース/ドレイン領域に挟まれた前記第1の半導体領域の表面に、直接接触して形成され、少なくともLaを含む非晶質の絶縁膜で形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜上に形成された第1のゲート電極とを具備し、前記pチャネル型MOSトランジスタは、前記第2の半導体領域に、対向して形成された一対の第2のソース/ドレイン領域と、前記第2のソース/ドレイン領域に挟まれた前記第2の半導体領域の表面に、直接形成された前記非晶質の絶縁膜を含む第2のゲート絶縁膜と、前記第2のゲート絶縁膜上に形成された第2のゲート電極と、前記第2のゲート電極の上面及び側面上に形成され、前記第2のゲート絶縁膜下の前記第2の半導体基板の表面に圧縮応力を加えるストレッサ絶縁膜とを具備することを特徴とする。
A second semiconductor device of the present invention is formed by insulating a semiconductor substrate, a p-type first semiconductor region formed on the semiconductor substrate, and the first semiconductor region on the semiconductor substrate. An n-type second semiconductor region, an n-channel MOS transistor formed in the first semiconductor region, a p-channel MOS transistor formed in the second semiconductor region,
The n-channel MOS transistor includes a pair of first source / drain regions formed opposite to each other in the first semiconductor region, and the first source / drain region sandwiched between the first source / drain regions. A first gate insulating film formed on the surface of the first semiconductor region in direct contact and formed of an amorphous insulating film containing at least La; and formed on the first gate insulating film. The p-channel MOS transistor includes a pair of second source / drain regions formed opposite to the second semiconductor region, and the second source / drain. A second gate insulating film including the amorphous insulating film directly formed on the surface of the second semiconductor region sandwiched between the regions, and a second gate insulating film formed on the second gate insulating film. Gate electrode and the second gate Formed on the electrode of the upper and side surfaces, characterized by comprising a stressor insulating film applying compressive stress to the second surface of the second semiconductor substrate under the gate insulating film.

本発明の半導体装置の第3は、半導体基板と、前記半導体基板上に形成されたp型の第1のSi半導体領域と、前記半導体基板上に、前記第1の半導体領域と絶縁されて形成されたn型の第2のSi半導体領域と、前記第1のSi半導体領域に形成されたnチャネル型MOSトランジスタと、前記第2のSi半導体領域に形成されたpチャネル型MOSトランジスタとを具備し、前記nチャネル型MOSトランジスタは、前記第1のSi半導体領域に、対向して形成された一対の第1のソース/ドレイン領域と、前記第1のソース/ドレイン領域に挟まれた前記第1のSi半導体領域の表面に、直接接触して形成され、少なくともLaを含む非晶質の絶縁膜で形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜上に形成された第1のゲート電極とを具備し、前記pチャネル型MOSトランジスタは、前記第2のSi半導体領域に対向して形成され、Geを原子比で10%以上20%以下の濃度で含むSiGeからなる一対の第2のソース/ドレイン領域と、前記第2のソース/ドレイン領域に挟まれた前記第2のSi半導体領域の表面に、シリコン酸化膜とその上に形成された前記非晶質の絶縁膜とを含む第2のゲート絶縁膜と、前記第2のゲート絶縁膜上に形成された第2のゲート電極とを具備することを特徴とする。   A third aspect of the semiconductor device of the present invention is a semiconductor substrate, a p-type first Si semiconductor region formed on the semiconductor substrate, and formed on the semiconductor substrate so as to be insulated from the first semiconductor region. An n-type second Si semiconductor region formed; an n-channel MOS transistor formed in the first Si semiconductor region; and a p-channel MOS transistor formed in the second Si semiconductor region. The n-channel MOS transistor includes a pair of first source / drain regions formed opposite to each other in the first Si semiconductor region, and the first source / drain region sandwiched between the first source / drain regions. A first gate insulating film formed of an amorphous insulating film containing at least La and formed on the surface of one Si semiconductor region; and formed on the first gate insulating film. First game The p-channel MOS transistor is formed opposite to the second Si semiconductor region and includes a pair of SiGe layers containing Ge at a concentration of 10% to 20% by atomic ratio. A silicon oxide film and an amorphous insulating film formed thereon on the surface of the second Si semiconductor region sandwiched between the second source / drain region and the second source / drain region. A second gate insulating film, and a second gate electrode formed on the second gate insulating film.

本発明によれば、トランジスタのサイズによらない引っ張り歪みを、nチャネル型MOSトランジスタのチャネルに印加できる相補型MOSトランジスタを提供することができる。   According to the present invention, it is possible to provide a complementary MOS transistor that can apply tensile strain independent of the size of the transistor to the channel of the n-channel MOS transistor.

実施形態の説明に先立ち、本発明者等の知見に基づき、Si基板に直接接合させたLaAlO3膜がSi基板へ引っ張り歪みをもたらす事象について説明する。図1は、希HF処理により自然酸化膜を除去されたシリコン基板上に、LaAlO3単結晶基板をターゲットとしたレーザーアブレーション法により、LaAlO3膜を堆積させたときの断面TEM写真である。この図から、LaAlO3膜がアモルファスであることがわかる。SiO2のようなSi酸化物からなる界面層がLaAlO3膜とSi基板の間に存在する場合は、白いコントラストとしてそれが観測されるが、同図にはそれが無いことから、界面層の無い、直接接合が実現できていることがわかる。 Prior to the description of the embodiment, an explanation will be given of the phenomenon in which the LaAlO 3 film directly bonded to the Si substrate causes tensile strain on the Si substrate based on the knowledge of the present inventors. 1, on a silicon substrate that is removing the natural oxide film with dilute HF treatment, LaAlO 3 laser ablation method using a single crystal substrate target is a cross-sectional TEM photograph of depositing a LaAlO 3 film. From this figure, it can be seen that the LaAlO 3 film is amorphous. When an interface layer made of Si oxide such as SiO 2 exists between the LaAlO 3 film and the Si substrate, it is observed as white contrast, but since it is not shown in the figure, It can be seen that there is no direct bonding.

このように特にLaAlO3膜は、Si界面において安定な化合物であり界面層を生成させにくい性質があるばかりでなく、Siよりも高い誘電率を有する高誘電率絶縁膜であることから、Si酸化換算膜厚を極めて薄くすることができる材料である。これについては、本発明者等は論文として既に発表している(M. Suzuki et al. Ultra thin (EOT=3Å) and low leakage dielectrics of La-Aluminate directly on Si substrate fabricated by high temperature deposition. Tech. Dig. IEDM. 2005, p.445-448参照)。 In particular, the LaAlO 3 film is a stable compound at the Si interface and not only has the property of not generating an interface layer, but also is a high dielectric constant insulating film having a higher dielectric constant than Si. It is a material that can make the equivalent film thickness extremely thin. The present inventors have already published a paper on this (M. Suzuki et al. Ultra thin (EOT = 3Å) and low leakage dielectrics of La-Aluminate directly on Si substrate fabricated by high temperature deposition. Tech. Dig. IEDM. 2005, p.445-448).

図2には、RBS(ラザフォード後方散乱法)分析から得られた各元素の深さ方向プロファイルを示す。RBS分析は、エネルギー450keVのHe+ イオンをSi<111>軸方向に入射する、いわゆるチャネリング条件によって実施された。LaAlO3膜中の組成は化学量論比、すなわちLa:Al:O=1:1:3となっていることがわかる。さらに、Si基板との界面は急峻なプロファイルとなっており、直接接合であることを示している。 FIG. 2 shows the depth profile of each element obtained from RBS (Rutherford Backscattering) analysis. The RBS analysis was performed under so-called channeling conditions in which He + ions having an energy of 450 keV were incident in the Si <111> axis direction. It can be seen that the composition in the LaAlO 3 film is the stoichiometric ratio, that is, La: Al: O = 1: 1: 3. Furthermore, the interface with the Si substrate has a steep profile, indicating that it is a direct bond.

ここで、Si基板の歪みを分析するために、エネルギー450keVのHe+イオンを、Si<111>軸(試料面の法線に対し54.7°)から±2°の範囲で0.2°ステップの角度で試料に照射し、それぞれの照射角度条件において後方散乱されたHe+イオンを、散乱角50°の位置で偏向磁場型エネルギー分析器により検出した。He+イオン照射角度に対する、Siからの後方散乱収量のプロットを、それぞれ、界面、および界面から1nm、2nm、3nm、5nmの深さ位置に分けて図3に示す。 Here, in order to analyze the strain of the Si substrate, He + ions having an energy of 450 keV are 0.2 ° in a range of ± 2 ° from the Si <111> axis (54.7 ° with respect to the normal of the sample surface). The sample was irradiated at a step angle, and He + ions back-scattered under each irradiation angle condition were detected by a deflection magnetic field type energy analyzer at a scattering angle of 50 °. A plot of the backscattering yield from Si against the He + ion irradiation angle is shown in FIG. 3 separately for the interface and 1 nm, 2 nm, 3 nm, and 5 nm depth positions from the interface.

He+ イオンが照射されるとき、Siの結晶軸に沿った角度で照射されるとチャネリング効果により後方散乱収量が減少する。すなわち、今回の測定では、歪んでいないSi基板の場合にはSiからの後方散乱収量は<111>軸(即ち、横軸が0のとき)において最小値を与える。 When He + ions are irradiated, if they are irradiated at an angle along the Si crystal axis, the backscattering yield decreases due to the channeling effect. That is, in this measurement, in the case of an undistorted Si substrate, the backscattering yield from Si gives a minimum value on the <111> axis (that is, when the horizontal axis is 0).

ところで、Si基板が引っ張り歪みを持っている場合は、その最小値は<111>軸からプラスの角度の方向へずれ、圧縮歪みを持っているときは逆にマイナスの角度の方向へずれることが知られている。このことから、今回の直接接合の場合は、最小値がプラスの角度の方向へずれているので、基板に引っ張り歪みが印加されていることがわかる。さらに、界面に近づくほど歪が大きくなることがわかる。   By the way, when the Si substrate has tensile strain, the minimum value shifts from the <111> axis in a positive angle direction. When the Si substrate has compressive strain, the minimum value may shift in the negative angle direction. Are known. From this, it can be seen that in the case of direct bonding this time, the minimum value is shifted in the direction of a positive angle, so that tensile strain is applied to the substrate. Furthermore, it turns out that distortion becomes large as it approaches an interface.

図4は、図1に示した膜に対して、酸素雰囲気中、600℃、30分の酸素雰囲気中熱処理を施した後のRBSによる深さ方向プロファイルである。同図において、界面近傍にはSiと酸素のみしか存在しない領域が1nm程度ある(図4に界面層として表示)。これは酸素雰囲気で熱処理を施すことにより、Si基板が酸化されてSiO2 からなる界面層が成長したことを示している。 FIG. 4 is a profile in the depth direction by RBS after the film shown in FIG. 1 is heat-treated in an oxygen atmosphere at 600 ° C. for 30 minutes in an oxygen atmosphere. In the figure, there is a region in which only Si and oxygen exist only in the vicinity of the interface (shown as an interface layer in FIG. 4). This indicates that the Si substrate was oxidized by the heat treatment in the oxygen atmosphere, and the interface layer made of SiO 2 was grown.

図5には、図3と同様にして、前記酸素熱処理後の試料における、He+ イオン照射角度に対するSiからの後方散乱収量が、それぞれの深さ位置に分けてプロットされている。図3との比較から、界面層を有する場合は、カーブの最小値はほぼ<111>軸(照射角度0度)に相当していることから、ほとんど歪みが印加されていないことがわかる。 In the same manner as in FIG. 3, the backscattered yield from Si with respect to the He + ion irradiation angle in the sample after the oxygen heat treatment is plotted separately for each depth position in the same manner as in FIG. From the comparison with FIG. 3, in the case of having an interface layer, it can be seen that the minimum value of the curve corresponds substantially to the <111> axis (irradiation angle 0 degree), so that almost no strain is applied.

また、図3および図5に示したカーブの最小値の<111>軸からのずれの大きさから、下式により歪み量が算出される。   Further, the amount of distortion is calculated by the following equation from the magnitude of deviation from the <111> axis of the minimum value of the curve shown in FIGS.

ε=2△θ/sin2θ … (1)
ここで、εは歪み量、△θは<111>軸からずれた角度量を、θは<111>軸、すなわちここでは54.7°をそれぞれ表す。
ε = 2Δθ / sin2θ (1)
Here, ε represents a strain amount, Δθ represents an angle amount deviated from the <111> axis, and θ represents a <111> axis, that is, 54.7 ° here.

図6には、この式より得られた歪み量の深さ方向プロファイルを示す。この図に示されたように、界面から3nmまでの領域には、0.5%以上もの歪みが印加されていることがわかり、逆に界面層を有する場合は歪みがほとんど無いことがわかる。この結果は、歪が界面層であるSiO2層の厚さに依存しないことがわかっていることから、界面がSi−O−Siの結合によって形成されてさえいれば、Si歪みはほとんど印加されないと言える。 FIG. 6 shows a depth profile of the distortion amount obtained from this equation. As shown in this figure, it can be seen that a strain of 0.5% or more is applied in the region from the interface to 3 nm, and conversely, when the interface layer is provided, there is almost no strain. This result shows that the strain does not depend on the thickness of the SiO 2 layer that is the interface layer, so that the Si strain is hardly applied as long as the interface is formed by Si—O—Si bonds. It can be said.

さらに、SiO2層との界面から少なくとも1nm以内のSi基板内の領域に0.8%以上の引っ張り歪を含有し、SiO2層との界面から少なくとも3nmより深いSi基板内の領域に0.5%未満の引張り歪を含有していることもわかる。 Further, 0 from the interface between the SiO 2 layer contains tensile strain of 0.8% or more in the region of the Si substrate within at least 1 nm, at least in the region of 3nm deeper Si substrate from the interface between the SiO 2 layer. It can also be seen that it contains less than 5% tensile strain.

これらのことから、図6に示した直接接合の場合の大きな歪み量はLaAlO3が直接接合していることに起因していると言える。より具体的には、原子半径が大きく異なるSiとLaが接合界面においてLa−O−Siという結合を形成していることに起因していると考えられる。この歪み量は原子の結合によって決定されるものなので、LaAlO3膜の膜厚に因らないばかりか、トランジスタサイズにも因らない、具体的にはチャネルとなるSiの面積に因らない、普遍的なものである。このように、Si界面で安定、かつSiと原子半径が大きく異なるLaを含む絶縁膜をSi基板に直接接合させた結果、引っ張り歪みが必要となるnチャネル型MOSトランジスタにおいては移動度が向上される。 From these facts, it can be said that the large amount of strain in the direct bonding shown in FIG. 6 is caused by the direct bonding of LaAlO 3 . More specifically, it is considered that Si and La having greatly different atomic radii form a bond called La—O—Si at the bonding interface. Since this amount of strain is determined by the bonding of atoms, it does not depend on the film thickness of the LaAlO 3 film but also does not depend on the transistor size. Specifically, it does not depend on the area of Si serving as a channel. It is universal. As described above, as a result of directly bonding an insulating film containing La, which is stable at the Si interface and greatly different in atomic radius from Si, to the Si substrate, mobility is improved in an n-channel MOS transistor that requires tensile strain. The

また、圧縮歪みが必要となるpチャネル型MOSトランジスタの移動度向上には、直接接合は不利に働くが、界面に1原子層以上のSiO2層を設けることによりそれを解消でき、さらに公知の圧縮歪み印加技術を用いれば、nチャネル型MOSトランジスタ,pチャネル型MOSトランジスタ双方において移動度が向上できる構造が実現できる。 In addition, although direct bonding works disadvantageously for improving the mobility of p-channel MOS transistors that require compressive strain, it can be eliminated by providing a SiO 2 layer of one atomic layer or more at the interface. If a compressive strain application technique is used, a structure capable of improving mobility in both the n-channel MOS transistor and the p-channel MOS transistor can be realized.

以下、本発明の実施形態を図面を参照しつつ説明する。なお、本発明は以下の実施形態に限定されるものではなく、発明の主旨を逸脱しない範囲で、種々変形が可能である。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the invention.

(第1の実施形態)
図7は第1の実施形態に係る相補型MOSトランジスタ(CMOSトランジスタ)の構成を示す断面図である。Si基板1上にSiO2からなる素子分離層7を介してp型半導体層3およびn型半導体層5が形成されている。なお、基板としてSOI(Silicon On Insulator)構造の基板を用いてもよい。また、上記n型半導体層5は、SiGe層であってもよい。このときSiGe層は、高移動度を実現するための歪を含有するには、Geが原子比10%以上である必要があり、またトランジスタ特性に影響を及ぼさない欠陥量にするためには、Ge濃度は20%以下である必要がある。
(First embodiment)
FIG. 7 is a cross-sectional view showing a configuration of a complementary MOS transistor (CMOS transistor) according to the first embodiment. A p-type semiconductor layer 3 and an n-type semiconductor layer 5 are formed on an Si substrate 1 via an element isolation layer 7 made of SiO 2 . Note that a substrate having an SOI (Silicon On Insulator) structure may be used as the substrate. The n-type semiconductor layer 5 may be a SiGe layer. At this time, the SiGe layer needs to have an atomic ratio of 10% or more in order to contain strain for realizing high mobility, and in order to obtain a defect amount that does not affect the transistor characteristics, The Ge concentration needs to be 20% or less.

p型半導体層上にはnチャネル型MOSトランジスタ、n型半導体層上にはpチャネル型MOSトランジスタが形成されている。nチャネル型MOSトランジスタにおいては、p型半導体層の上のゲート絶縁膜として、Siより誘電率が高く、アモルファスのLaAlO3膜が界面層を有さずに直接接合されており、チャネルとなるSi基板は、少なくとも界面から3nmの領域にかけて、0.5〜1%の引っ張り歪みを有している。この時、LaAlO3膜は、デバイス用途に応じて、その膜厚を自由に変えることができる。 An n-channel MOS transistor is formed on the p-type semiconductor layer, and a p-channel MOS transistor is formed on the n-type semiconductor layer. In an n-channel MOS transistor, the gate insulating film on the p-type semiconductor layer has a dielectric constant higher than that of Si, and an amorphous LaAlO 3 film is directly bonded without having an interface layer, so that Si serving as a channel is formed. The substrate has a tensile strain of 0.5 to 1% at least from the interface to a region of 3 nm. At this time, the thickness of the LaAlO 3 film can be freely changed according to the device application.

LaAlO3膜上には偏析されたAlおよびNi2Siからなるゲート電極が形成されている。ゲート電極の構成はこれに限ったものではなく、デバイス用途に応じたしきい値電圧を与える組成、材料を自由に選択できる。 On the LaAlO 3 film, a gate electrode made of segregated Al and Ni 2 Si is formed. The configuration of the gate electrode is not limited to this, and a composition and material that provide a threshold voltage according to the device application can be freely selected.

nチャネル型MOSトランジスタゲート絶縁膜直下のチャネル領域を挟むようにして、ソース/ドレイン領域が形成されている。ここで、チャネル部にはLaAlO3膜による引っ張り歪みが印加されている。ゲート絶縁膜とゲート電極の周りにはSiNからなるゲート側壁が形成されている。 Source / drain regions are formed so as to sandwich a channel region directly under the n-channel MOS transistor gate insulating film. Here, tensile strain due to the LaAlO 3 film is applied to the channel portion. A gate sidewall made of SiN is formed around the gate insulating film and the gate electrode.

pチャネル型MOSトランジスタにおいては、n型半導体層の上には界面層としてSiO2層が一原子層形成されており、さらにその上にはLaAlO3膜が形成されている。この時、SiO2層とLaAlO3膜の膜厚は多様なデバイスに対応できるよう自由に変えることができる。 In the p-channel MOS transistor, a single atomic layer of SiO 2 is formed as an interface layer on an n-type semiconductor layer, and a LaAlO 3 film is further formed thereon. At this time, the film thicknesses of the SiO 2 layer and the LaAlO 3 film can be freely changed so as to be compatible with various devices.

LaAlO3膜上にはゲート電極としてNi2Siが形成されており、SiO2層とLaAlO3層からなるゲート絶縁膜とゲート電極の周りにはSiNからなるゲート側壁絶縁膜が形成されている。pチャネル型MOSトランジスタおいてもゲート電極の構成はこれに限るものではなく、デバイス用途に応じてその材料を自由に選択できる。 Ni 2 Si is formed as a gate electrode on the LaAlO 3 film, and a gate insulating film made of SiO 2 and LaAlO 3 layer and a gate side wall insulating film made of SiN are formed around the gate electrode. Even in the p-channel MOS transistor, the configuration of the gate electrode is not limited to this, and the material can be freely selected according to the device application.

さらにゲート側壁絶縁膜、ゲート電極上には、これらを覆うようにして、ストレッサーであるSiN膜が形成されている。SiO2界面層直下のチャネル領域を挟むようにしてソース/ドレイン領域が形成されている。ここでチャネル領域は、SiO2によるLaAlO3膜起因の引っ張り歪みが緩和されており、さらにはストレッサーであるSiN膜の堆積により圧縮歪みが印加されている。 Further, an SiN film serving as a stressor is formed on the gate sidewall insulating film and the gate electrode so as to cover them. Source / drain regions are formed so as to sandwich the channel region immediately below the SiO 2 interface layer. Here, the tensile strain caused by the LaAlO 3 film due to SiO 2 is relaxed in the channel region, and further, the compressive strain is applied by the deposition of the SiN film as a stressor.

また、ストレッサーの効果が大きく、LaAlO3膜を直接接合させた場合の引っ張り歪みを打ち消すことができる場合は界面のSiO2 層は無くても良い。第1の実施形態によれば、nチャネル型、pチャネル型双方のMOSトランジスタにおいて、それぞれ最適な歪みが印加されていることにより、歪みが無い場合に比べて移動度を大きく向上させることができる。 In addition, when the stressor effect is great and the tensile strain when the LaAlO 3 film is directly bonded can be canceled, the SiO 2 layer at the interface may be omitted. According to the first embodiment, the optimum strain is applied to both n-channel and p-channel MOS transistors, so that the mobility can be greatly improved as compared with the case where there is no strain. .

次に、第1の実施形態の半導体装置の製造工程について説明する。まず図8に示すように、イオン注入法などにより、半導体基板1上にp型半導体層3およびn型半導体層5を形成する。次に、p型半導体層3およびn型半導体層5の境界表面にシリコン酸化物層からなる素子分離層7を形成する。   Next, the manufacturing process of the semiconductor device of the first embodiment will be described. First, as shown in FIG. 8, the p-type semiconductor layer 3 and the n-type semiconductor layer 5 are formed on the semiconductor substrate 1 by ion implantation or the like. Next, an element isolation layer 7 made of a silicon oxide layer is formed on the boundary surface between the p-type semiconductor layer 3 and the n-type semiconductor layer 5.

続いて図9に示すように、p型半導体層3およびn型半導体層5上に、ダミーゲート絶縁膜9、およびダミーゲート電極11として、それぞれ例えばSiO2 、多結晶Siを堆積する。その後図10に示すように、RIEなどの公知のエッチング技術を用いてSiO2層9、多結晶Si層11を加工してダミーゲート電極を形成する。 Subsequently, as shown in FIG. 9, for example, SiO 2 and polycrystalline Si are deposited as the dummy gate insulating film 9 and the dummy gate electrode 11 on the p-type semiconductor layer 3 and the n-type semiconductor layer 5, respectively. Thereafter, as shown in FIG. 10, a dummy gate electrode is formed by processing the SiO 2 layer 9 and the polycrystalline Si layer 11 using a known etching technique such as RIE.

次に公知の方法で、ダミーゲート電極11をマスクとして、nMOSトランジスタ領域およびpMOSトランジスタ領域それぞれに、n型不純物、p型不純物をイオン注入し、ソース/ドレインとなる拡散層13,15を形成する。言うまでも無く、片方のFETにイオン注入する際は、逆側のFETはレジスト(不図示)によりマスクされている。   Next, n-type impurities and p-type impurities are ion-implanted into the nMOS transistor region and the pMOS transistor region, respectively, using the dummy gate electrode 11 as a mask by a known method, thereby forming diffusion layers 13 and 15 serving as source / drain. . Needless to say, when ions are implanted into one FET, the opposite FET is masked by a resist (not shown).

その後、公知の方法でSiN層を全面に堆積させ、RIEによりエッチングすることにより、図12に示すように、ゲート側壁絶縁膜17を形成する。その後、ダミーゲート電極11およびゲート側壁絶縁膜17をマスクとして、nチャネル型MOSトランジスタ領域およびpチャネル型MOSトランジスタ領域各々にn型不純物、p型不純物をイオン注入し、活性化のための熱処理を施して、図13に示すように、浅いエクステンションソース/ドレイン部13,15を含むソース/ドレイン領域19,21を形成する。   Thereafter, a SiN layer is deposited on the entire surface by a known method, and etched by RIE, thereby forming a gate sidewall insulating film 17 as shown in FIG. Thereafter, n-type impurities and p-type impurities are ion-implanted into each of the n-channel MOS transistor region and the p-channel MOS transistor region using the dummy gate electrode 11 and the gate sidewall insulating film 17 as a mask, and heat treatment for activation is performed. Then, as shown in FIG. 13, source / drain regions 19 and 21 including shallow extension source / drain portions 13 and 15 are formed.

エクステンション部13,15の形成には、選択エピタキシャル成長法を用い、デバイス特性としても短チャネル効果の抑制が可能であるエレベート型ソース・ドレイン構造を用いてもよい。また、エレベート型ソース・ドレイン構造の形成の際に、同時に不純物を導入してもよい。   The extension portions 13 and 15 may be formed by using an selective source epitaxial growth method and an elevated source / drain structure capable of suppressing the short channel effect in terms of device characteristics. Further, impurities may be introduced simultaneously with the formation of the elevated source / drain structure.

次にPEP(Photo Engraving Process)によりゲート電極1上をレジスト23によりマスクする。次に全面にたとえばスパッタ法など公知の方法でNi層25を10nm程度堆積する。その後400℃程度の熱処理を施すことによりNiとSiを反応させ、その後薬液などにより未反応のNi、ゲート電極11上のレジスト23を除去することで、図15に示すように、ソース/ドレイン領域19,21の表面にコンタクトとしてNiSi層27を形成する。ソース/ドレイン領域表面はCoSiなど、熱処理により自己整合的に形成される金属シリサイドであればよい。また、これらシリサイド化における熱処理条件は適宜変更できる。   Next, the gate electrode 1 is masked with a resist 23 by PEP (Photo Engraving Process). Next, a Ni layer 25 of about 10 nm is deposited on the entire surface by a known method such as sputtering. Thereafter, Ni and Si are reacted by performing a heat treatment at about 400 ° C., and then the unreacted Ni and the resist 23 on the gate electrode 11 are removed by a chemical solution or the like, so that the source / drain regions are formed as shown in FIG. A NiSi layer 27 is formed as a contact on the surfaces of 19 and 21. The source / drain region surface may be a metal silicide formed in a self-aligned manner by heat treatment, such as CoSi. The heat treatment conditions for silicidation can be changed as appropriate.

その後、SiO2からなる層間絶縁膜29を形成後、表面をCMP(Chemical Mechanical Polishing)法などによって平坦化し、図16に示すように、ダミーゲート電極11の表面を露出させる。その後CF4 のエッチングガスを用いたCDE(Chemical Dry Etching)などによってダミーゲート電極11を選択的に除去し、続いて、フッ化水素酸によりダミーゲート絶縁膜9を溶解、除去させて、図17に示すように、ゲート埋め込み用溝31を形成する。 Thereafter, after forming an interlayer insulating film 29 made of SiO 2 , the surface is planarized by a CMP (Chemical Mechanical Polishing) method or the like to expose the surface of the dummy gate electrode 11 as shown in FIG. After that, the dummy gate electrode 11 is selectively removed by CDE (Chemical Dry Etching) using an etching gas of CF 4 , and then the dummy gate insulating film 9 is dissolved and removed by hydrofluoric acid. As shown in FIG. 2, a gate burying groove 31 is formed.

次に、ゲート絶縁膜33として、ターゲットとしてLaAlO3 単結晶を用いたスパッタ法により、基板温度600℃、真空中(1×10-6Pa)の条件下にて、ゲート絶縁層として非晶質のLaAlO3 膜を、界面層を形成させずに約3nmの厚さで、図17に示すようにゲート埋め込み用溝31の底部に形成させる。 Next, the gate insulating film 33 is amorphous as a gate insulating layer by sputtering using LaAlO 3 single crystal as a target at a substrate temperature of 600 ° C. and in vacuum (1 × 10 −6 Pa). The LaAlO 3 film is formed at the bottom of the gate embedding trench 31 with a thickness of about 3 nm without forming an interface layer as shown in FIG.

なお、成膜方法はスパッタ法に限定されるものではなく、CVD(Chemical Vapor Deposition)法、MBE(molecular Beam Epitaxy)法、レーザーアブレーション法等を用いてもよい。また、ゲート絶縁膜33の組成としてLa、Alの比を適宜変えることができる。さらに、ゲート絶縁膜33としては、Laを含む絶縁膜であるLa23、LaSiO、LaHfOなどを用いてもよい。 The film forming method is not limited to the sputtering method, and a CVD (Chemical Vapor Deposition) method, an MBE (molecular beam epitaxy) method, a laser ablation method, or the like may be used. Further, the ratio of La and Al can be appropriately changed as the composition of the gate insulating film 33. Further, as the gate insulating film 33, La 2 O 3 , LaSiO, LaHfO, or the like which is an insulating film containing La may be used.

その後、例えば、CVD法により、全面に厚さ約50nmのSiを形成し、続けて、PEPにより、このSiをパターニングし、図19に示すようにnチャネル型MOSトランジスタ領域上にSiからなるマスク材35を形成する。ここで、600℃、大気圧酸素中の熱処理を施すことにより、図20に示すように、pチャネル型MOSトランジスタ領域にのみ、基板とLaAlO3 との間に界面層となるSiO2層37を厚さ0.2〜2nm(1〜10原子層程度)形成させる。ここでの熱処理条件、界面層の厚さはデバイス用途に応じて自由に設定できる。 Thereafter, Si having a thickness of about 50 nm is formed on the entire surface by, eg, CVD, followed by patterning this Si by PEP, and a mask made of Si on the n-channel MOS transistor region as shown in FIG. A material 35 is formed. Here, by performing heat treatment in oxygen at atmospheric pressure at 600 ° C., as shown in FIG. 20, only in the p-channel MOS transistor region, an SiO 2 layer 37 serving as an interface layer is formed between the substrate and LaAlO 3. A thickness of 0.2 to 2 nm (about 1 to 10 atomic layers) is formed. The heat treatment conditions here and the thickness of the interface layer can be freely set according to the device application.

次に、n型MOSトランジスタ領域上に形成されたマスク材35を除去する。ここでのマスク材35やこれを除去するマスク除去材は、同様の効果をもたらす組み合わせであれば、それら材料は限定されるものではない。その後、多結晶Si、およびNiを、ゲート埋め込み用溝のLaAlO3膜33上に堆積させ、図21に示すように、熱処理を施してNi2Si層39を形成させる。 Next, the mask material 35 formed on the n-type MOS transistor region is removed. As long as the mask material 35 and the mask removing material that removes the mask material 35 are a combination that brings about the same effect, the materials are not limited. Thereafter, polycrystalline Si and Ni are deposited on the LaAlO 3 film 33 in the trench for gate embedding, and heat treatment is performed to form a Ni 2 Si layer 39 as shown in FIG.

その後、pチャネル型MOSトランジスタ領域をレジスト41によりマスクし、図22に示すように、nチャネル型MOSトランジスタのゲート電極39上からAlをイオン注入、その後の熱処理によりAlをゲート電極39とゲート絶縁膜33の界面に偏析させ、偏析層43を形成する。このAl偏積層43はn型MOSトランジスタにおけるゲート電極の仕事関数を調整するために形成するものである。イオン注入条件と、その後の熱処理条件との組み合わせは、Alの偏析が可能なように任意に設定できるが、AlをLaAlO3 膜中を拡散させずに界面に偏析させるためには、少なくともLaAlO3 膜が非晶質である必要がある。また、イオン注入の替わりに、Al膜をNi2Si層39上に堆積させても良い。 Thereafter, the p-channel MOS transistor region is masked with a resist 41, and Al is ion-implanted from above the gate electrode 39 of the n-channel MOS transistor as shown in FIG. Segregation occurs at the interface of the film 33 to form a segregation layer 43. The Al uneven stack 43 is formed to adjust the work function of the gate electrode in the n-type MOS transistor. The combination of the ion implantation conditions and the subsequent heat treatment conditions can be arbitrarily set so that segregation of Al is possible. However, in order to segregate Al at the interface without diffusing in the LaAlO 3 film, at least LaAlO 3 The film needs to be amorphous. Further, an Al film may be deposited on the Ni 2 Si layer 39 instead of ion implantation.

次に公知のPEP技術を用いて、図23に示すように、pチャネル型MOSトランジスタ領域の層間絶縁膜29を除去し、nチャネル型MOSトランジスタ領域上にレジストマスク45を形成する。さらに、pチャネル型MOSトランジスタ領域の圧縮歪みのストレッサーとして、CVD法などにより100nmのSiN層47を全面に形成する。ストレッサーとしては、基板に圧縮歪みを加えるものであれば材料やその膜厚は制限されない。その後レジスト45をリフトオフしてnチャネル型MOSトランジスタ領域上のSiN層47を除去する。これにより、図24に示すような、CMOSトランジスタが形成される。   Next, using a known PEP technique, as shown in FIG. 23, the interlayer insulating film 29 in the p-channel MOS transistor region is removed, and a resist mask 45 is formed on the n-channel MOS transistor region. Further, as a stressor for compressive strain in the p-channel MOS transistor region, a 100 nm SiN layer 47 is formed on the entire surface by CVD or the like. As the stressor, the material and the film thickness thereof are not limited as long as they apply compressive strain to the substrate. Thereafter, the resist 45 is lifted off to remove the SiN layer 47 on the n-channel MOS transistor region. Thereby, a CMOS transistor as shown in FIG. 24 is formed.

以上述べた第1の実施形態によれば、nチャネル型MOSトランジスタでは高誘電率ゲート絶縁膜33をp型半導体層3上に界面層を形成させずに直接接合させることで、p型半導体層3のSiに引っ張り歪みを導入することができる。また、pチャネル型MOSトランジスタにおいては、既知の技術を用いて圧縮歪みを有するSiチャネルを容易に形成することができるので、移動度に優れた相補型MOSトランジスタを提供することができる。   According to the first embodiment described above, in the n-channel MOS transistor, the p-type semiconductor layer is formed by directly bonding the high dielectric constant gate insulating film 33 on the p-type semiconductor layer 3 without forming the interface layer. Tensile strain can be introduced into Si of 3. In addition, in a p-channel MOS transistor, a Si channel having a compressive strain can be easily formed using a known technique, so that a complementary MOS transistor having excellent mobility can be provided.

(第2の実施形態)
第2の実施形態においては、シリサイドからなるショットキーソースドレインを有するMOSトランジスタおよびその製造工程について説明する。理解を容易にするため、第1の実施形態と同一箇所には同一の参照符号を付与し、重複する説明を省略する。
(Second Embodiment)
In the second embodiment, a MOS transistor having a Schottky source / drain made of silicide and a manufacturing process thereof will be described. In order to facilitate understanding, the same portions as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図25は第2の実施形態に係る半導体装置(CMOSトランジスタ)の構成を示す断面図である。Si基板1上にSiO2からなる素子分離層7を介してp型半導体層3およびn型半導体層5が形成されている。なお、基板としてSOI(Silicon On Insulator)構造の基板を用いてもよい。p型半導体層上にはnチャネル型MOSトランジスタ、n型半導体層上にはpチャネル型MOSトランジスタが形成されている。 FIG. 25 is a cross-sectional view showing a configuration of a semiconductor device (CMOS transistor) according to the second embodiment. A p-type semiconductor layer 3 and an n-type semiconductor layer 5 are formed on an Si substrate 1 via an element isolation layer 7 made of SiO 2 . Note that a substrate having an SOI (Silicon On Insulator) structure may be used as the substrate. An n-channel MOS transistor is formed on the p-type semiconductor layer, and a p-channel MOS transistor is formed on the n-type semiconductor layer.

第2の実施形態が第1の実施形態と異なるところは、ソース/ドレイン層にCoSiからなるショットキーソースドレイン28,29を有することである。その他は第1の実施形態と同様なので、構造の説明を省略し、製造方法について説明する。   The second embodiment differs from the first embodiment in that the source / drain layers have Schottky source drains 28 and 29 made of CoSi. The other parts are the same as those in the first embodiment, so that the description of the structure is omitted and the manufacturing method will be described.

先ず、第1の実施形態の図8と同様、p型半導体層3およびn型半導体層5の境界にシリコン酸化物層からなる素子分離層7を形成した後、図26に示すように、CVD法やスパッタ法など公知の方法を用いてゲート絶縁層としてアモルファスのLaAlO3膜9を界面層を形成させずに約3nmの厚さで堆積する。その後、CVD法などにより多結晶Si層11をLaAlO3膜9上に形成する。 First, as in FIG. 8 of the first embodiment, after forming an element isolation layer 7 made of a silicon oxide layer at the boundary between the p-type semiconductor layer 3 and the n-type semiconductor layer 5, as shown in FIG. A known method such as sputtering or sputtering is used to deposit an amorphous LaAlO 3 film 9 as a gate insulating layer with a thickness of about 3 nm without forming an interface layer. Thereafter, a polycrystalline Si layer 11 is formed on the LaAlO 3 film 9 by a CVD method or the like.

その後、図27に示すように、RIEなどの公知のエッチング技術を用いてLaAlO3膜9、多結晶Si層11を加工してダミーゲート電極を形成する。続いて、CVD法等によりSiNからなるゲート側壁絶縁膜18を形成し、公知のRIE法等によってエッチングして側壁絶縁膜を薄くする。次にダミーゲート電極をレジスト(不図示)によりマスクし、全面に例えばスパッタ法など公知の方法で、Coを15nm程度堆積させる。 Thereafter, as shown in FIG. 27, the LaAlO 3 film 9 and the polycrystalline Si layer 11 are processed using a known etching technique such as RIE to form a dummy gate electrode. Subsequently, a gate sidewall insulating film 18 made of SiN is formed by a CVD method or the like, and etched by a known RIE method or the like to thin the sidewall insulating film. Next, the dummy gate electrode is masked with a resist (not shown), and Co is deposited to a thickness of about 15 nm on the entire surface by a known method such as sputtering.

その後、600℃の熱処理工程により、図28に示すように、ソース/ドレイン領域にCoSi層28を形成し、その後未反応のCo、レジストを薬液などにより除去することにより、ソース/ドレイン領域をシリサイド化する。このときCoの代わりにシリサイド化する金属、例えばNiなどを用いても良い。   Thereafter, a heat treatment process at 600 ° C. forms a CoSi layer 28 in the source / drain region as shown in FIG. Turn into. At this time, a metal that forms a silicide, such as Ni, may be used instead of Co.

次に公知の方法で層間絶縁膜29を形成後、図29に示すように、ダミーゲート電極である多結晶Si11を除去する。これ以降の工程は、第1の実施形態における図18以降と同様な工程になる。   Next, after forming an interlayer insulating film 29 by a known method, as shown in FIG. 29, the polycrystalline Si 11 which is a dummy gate electrode is removed. The subsequent steps are the same as those in FIG. 18 and thereafter in the first embodiment.

第2の実施形態によれば、第1の実施形態同様、nチャネル型MOSトランジスタでは高誘電率ゲート絶縁膜33をp型半導体層3上に界面層を形成させずに直接接合させることで、p型半導体層3のSiに引っ張り歪みを導入することができる。また、ショットキーソースドレイン構造であるため、寄生抵抗が抑制された性能の優れた相補型MOSトランジスタを提供することができる。   According to the second embodiment, as in the first embodiment, in the n-channel MOS transistor, the high dielectric constant gate insulating film 33 is directly bonded without forming an interface layer on the p-type semiconductor layer 3. Tensile strain can be introduced into Si of the p-type semiconductor layer 3. In addition, since it has a Schottky source / drain structure, a complementary MOS transistor with excellent performance in which parasitic resistance is suppressed can be provided.

なお、第2の実施形態においても、第1の実施形態同様、半導体領域3,5をSiGe(Ge組成10%以上、20%以下)とすることもできる。   Also in the second embodiment, the semiconductor regions 3 and 5 can be made of SiGe (Ge composition of 10% or more and 20% or less) as in the first embodiment.

(第3の実施形態)
第3の実施形態においては、ストレッサーとして、p型MOSトランジスタのソース/ドレイン領域にエピタキシャル成長させたSiGe層を有する形態の半導体装置、およびその製造工程ついて説明する。理解を容易にするため、第1の実施形態と同一箇所には同一の参照符号を付与し、重複する説明を省略する。
(Third embodiment)
In the third embodiment, a semiconductor device having a SiGe layer epitaxially grown in a source / drain region of a p-type MOS transistor as a stressor and a manufacturing process thereof will be described. In order to facilitate understanding, the same portions as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図30は第3の実施形態に係る半導体装置(CMOSトランジスタ)の構成を示す断面図である。Si基板1上にSiO2からなる素子分離層7を介してp型半導体層3およびn型半導体層5が形成されている。なお、基板としてSOI(Silicon On Insulator)構造の基板を用いてもよい。p型半導体層上にはnチャネル型MOSトランジスタ、n型半導体層上にはpチャネル型MOSトランジスタが形成されている。 FIG. 30 is a cross-sectional view showing a configuration of a semiconductor device (CMOS transistor) according to the third embodiment. A p-type semiconductor layer 3 and an n-type semiconductor layer 5 are formed on an Si substrate 1 via an element isolation layer 7 made of SiO 2 . Note that a substrate having an SOI (Silicon On Insulator) structure may be used as the substrate. An n-channel MOS transistor is formed on the p-type semiconductor layer, and a p-channel MOS transistor is formed on the n-type semiconductor layer.

第3の実施形態が第1の実施形態と異なるところは、pチャネル型MOSトランジスタのソース/ドレインに、ストレッサーとしてエピタキシャル成長させたSiGe層を有することである。その他は第1の実施形態と同様なので、構造の説明を省略し、製造方法について説明する。   The third embodiment is different from the first embodiment in that an SiGe layer epitaxially grown as a stressor is provided on the source / drain of a p-channel MOS transistor. The other parts are the same as those in the first embodiment, so that the description of the structure is omitted and the manufacturing method will be described.

先ず、第1の実施形態の図9、図10と同様にして、ダミーゲート電極11、ゲート絶縁膜9を加工後、図11と同様に、pチャネル型MOSトランジスタ領域をレジスト(不図示)にてマスクした後、ダミーゲート電極11をマスクに、nチャネル型MOSトランジスタ領域にn型不純物をイオン注入して、エクステンション領域であるソース・ドレイン拡散層13を形成する。   First, after processing the dummy gate electrode 11 and the gate insulating film 9 in the same manner as in FIGS. 9 and 10 of the first embodiment, the p-channel MOS transistor region is made into a resist (not shown) as in FIG. Then, n-type impurities are ion-implanted into the n-channel MOS transistor region using the dummy gate electrode 11 as a mask to form the source / drain diffusion layer 13 as an extension region.

次いで、pチャネル型MOSトランジスタ領域の上記レジストを除去した後、図31に示すように、nチャネル型MOSトランジスタをレジスト14によりマスクして、pチャネル型MOSトランジスタのソース/ドレイン領域をエッチングする。このときのエッチングする深さは、後のイオン注入による不純物の分布以上の深さであることが望ましい。   Next, after removing the resist in the p-channel MOS transistor region, as shown in FIG. 31, the n-channel MOS transistor is masked with a resist 14, and the source / drain regions of the p-channel MOS transistor are etched. It is desirable that the etching depth at this time be deeper than the impurity distribution by the subsequent ion implantation.

次に、図32に示すように、Geを10%の原子比で含むSiGeを前記エッチング領域にエピタキシャル成長させる。このとき、チャネルとなるSiに圧縮歪を印加するためにはGeが原子比で10%以上である必要があり、またトランジスタ特性に影響を及ぼさない欠陥量にするためにはGe量が20%以下である必要がある。   Next, as shown in FIG. 32, SiGe containing Ge at an atomic ratio of 10% is epitaxially grown in the etching region. At this time, Ge needs to be 10% or more in atomic ratio in order to apply compressive strain to Si serving as a channel, and in order to make a defect amount that does not affect the transistor characteristics, the Ge amount is 20%. Must be:

次にpチャネル型MOSトランジスタ領域へイオン注入することにより、図33に示すように、pチャネル型MOSトランジスタのエクステンション領域15を形成する。次にnMOSトランジスタ上のレジスト14を除去する。これ以降の工程は、第1の実施形態における図12以降の工程に順ずるが、第1の実施形態における圧縮歪のストレッサであるSiN膜を省略してもよい。併用すれば、より強い歪をpチャネル型MOSトランジスタのチャネル領域に与えることができる。   Next, ions are implanted into the p-channel MOS transistor region to form an extension region 15 of the p-channel MOS transistor as shown in FIG. Next, the resist 14 on the nMOS transistor is removed. The subsequent steps are the same as the steps after FIG. 12 in the first embodiment, but the SiN film that is a compressive strain stressor in the first embodiment may be omitted. If used together, stronger strain can be applied to the channel region of the p-channel MOS transistor.

第3の実施形態によれば、第1の実施形態同様、nチャネル型MOSトランジスタでは高誘電率ゲート絶縁膜33を、p型半導体層3上に界面層を形成させずに直接接合させることで、p型半導体層3のSiに引っ張り歪みを導入することができる。また、pチャネル型MOSトランジスタ領域では、ストレッサーとしてのSiGe層22を有するので、第1の実施形態同様、Siチャネルに圧縮歪を与えることができる。   According to the third embodiment, as in the first embodiment, in the n-channel MOS transistor, the high dielectric constant gate insulating film 33 is directly bonded without forming an interface layer on the p-type semiconductor layer 3. A tensile strain can be introduced into Si of the p-type semiconductor layer 3. Further, since the p-channel MOS transistor region has the SiGe layer 22 as a stressor, compressive strain can be applied to the Si channel as in the first embodiment.

以上のように実施形態を通じて本発明を説明してきたが、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々な発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合わせても良い。   As described above, the present invention has been described through the embodiments. However, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

LaAlO3膜とSi基板が直接接合していることを示す図。It shows that the LaAlO 3 film and the Si substrate are directly bonded. 図1の試料の表面からの深さと構成元素の原子濃度の関係を示す図で、LaAlO3膜とSi基板の間に界面層が生成していないことを示す図。FIG. 2 is a diagram showing the relationship between the depth from the surface of the sample of FIG. 1 and the atomic concentration of the constituent elements, and showing that no interface layer is generated between the LaAlO 3 film and the Si substrate. Heイオン照射角度とRBS収量との関係を示す図で、基板に引っ張り歪みが存在していることを示す図。The figure which shows the relationship between He ion irradiation angle and a RBS yield, and shows that the tension | tensile_strength exists in a board | substrate. 酸素中の熱処理を行った場合のに試料の表面からの深さと構成元素の原子濃度の関係を示す図で、LaAlO3膜とSi基板の間に界面層が生成することを示す図。A diagram showing a relationship between the atomic concentration depth and configuration element from the surface of the sample for the case of performing the heat treatment in oxygen, shows that the interface layer is formed during the LaAlO 3 film and the Si substrate. 界面層が生成した場合のHeイオン照射角度とRSB収量との関係を示す図で、歪がほとんど存在しないことを示す図。The figure which shows the relationship between He ion irradiation angle and RSB yield when an interface layer produces | generates, and a figure which shows that there is almost no distortion. 界面からの深さと引張り歪量の関係を示す図で、界面層の有無での引っ張り歪み量の違いを示す図。The figure which shows the relationship between the depth from an interface, and the amount of tensile strain, and is a figure which shows the difference in the amount of tensile strain with the presence or absence of an interface layer. 本発明の第1の実施形態に係る半導体装置の断面図。1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. 第1の実施形態の半導体装置の製造工程を説明するための断面図。Sectional drawing for demonstrating the manufacturing process of the semiconductor device of 1st Embodiment. 図8に続く工程の断面図。FIG. 9 is a cross-sectional view of the process following FIG. 8. 図9に続く工程の断面図。Sectional drawing of the process following FIG. 図10に続く工程の断面図。Sectional drawing of the process following FIG. 図11に続く工程の断面図。Sectional drawing of the process following FIG. 図12に続く工程の断面図。Sectional drawing of the process following FIG. 図13に続く工程の断面図。Sectional drawing of the process following FIG. 図14に続く工程の断面図。FIG. 15 is a sectional view of a step following FIG. 14. 図15に続く工程の断面図。FIG. 16 is a cross-sectional view of the process following FIG. 15. 図16に続く工程の断面図。FIG. 17 is a cross-sectional view of the process following FIG. 16. 図17に続く工程の断面図。FIG. 18 is a cross-sectional view of the process following FIG. 17. 図18に続く工程の断面図。FIG. 19 is a cross-sectional view of the process following FIG. 18. 図19に続く工程の断面図。FIG. 20 is a cross-sectional view of the process following FIG. 19. 図20に続く工程の断面図。FIG. 21 is a cross-sectional view of the process following FIG. 20. 図21に続く工程の断面図。FIG. 22 is a sectional view of a step following FIG. 21. 図22に続く工程の断面図。FIG. 23 is a sectional view of a step following FIG. 22; 図23に続く工程の断面図。FIG. 24 is a sectional view of a step following FIG. 23. 第2の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on 2nd Embodiment. 第2の実施形態に係る半導体装置の製造方法を説明する為の断面図。Sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on 2nd Embodiment. 図26に続く工程の断面図。FIG. 27 is a sectional view of a step following FIG. 26; 図27に続く工程の断面図。FIG. 28 is a sectional view of a step following FIG. 27. 図28に続く工程の断面図。FIG. 29 is a sectional view of a step following FIG. 28. 第3の実施形態に係る半導体装置の断面図。Sectional drawing of the semiconductor device which concerns on 3rd Embodiment. 第3の実施形態に係る半導体装置の製造方法を説明する為の断面図。Sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on 3rd Embodiment. 図31に続く工程の断面図。FIG. 32 is a cross-sectional view of the process following FIG. 31. 図32に続く工程の断面図。FIG. 33 is a sectional view of a step following FIG. 32.

符号の説明Explanation of symbols

1…半導体基板
3…p型半導体層
5…n型半導体層
7…素子分離層
9…ゲート絶縁膜
11…ゲート電極
13…nチャネル型MOSトランジスタのソース・ドレイン・エクステンション領域
15…pチャネル型MOSトランジスタのソース・ドレイン・エクステンション領域
17、18…側壁絶縁膜
19…nチャネル型MOSトランジスタのソース・ドレイン領域
21…pチャネル型MOSトランジスタのソース・ドレイン領域
22…pチャネル型MOSトランジスタのストレッサ領域
23…レジストマスク
25…Ni層
27…シリサイド層
28…シリサイド層(ソース・ドレイン層)
29…層間絶縁膜
31…溝
33…高誘電率ゲート絶縁膜
35…シリコンマスク
37…界面層(シリコン酸化膜)
39…Niシリサイド層
41、45…レジストマスク
43…偏析層(Al層)
47…SiN層
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 3 ... p-type semiconductor layer 5 ... n-type semiconductor layer 7 ... Element isolation layer 9 ... Gate insulating film 11 ... Gate electrode 13 ... Source-drain extension region 15 of n-channel MOS transistor ... p-channel MOS Transistor source / drain / extension regions 17, 18 ... sidewall insulating film 19 ... n-channel MOS transistor source / drain region 21 ... p-channel MOS transistor source / drain region 22 ... p-channel MOS transistor stressor region 23 ... resist mask 25 ... Ni layer 27 ... silicide layer 28 ... silicide layer (source / drain layer)
29 ... Interlayer insulating film 31 ... Groove 33 ... High dielectric constant gate insulating film 35 ... Silicon mask 37 ... Interface layer (silicon oxide film)
39 ... Ni silicide layers 41, 45 ... resist mask 43 ... segregation layer (Al layer)
47 ... SiN layer

Claims (10)

半導体基板と、
前記半導体基板上に形成されたp型の第1の半導体領域と、
前記半導体基板上に、前記第1の半導体領域と絶縁されて形成されたn型の第2の半導体領域と、
前記第1の半導体領域に形成されたnチャネル型MOSトランジスタと、
前記第2の半導体領域に形成されたpチャネル型MOSトランジスタと、
を具備し、前記nチャネル型MOSトランジスタは、
前記第1の半導体領域に、対向して形成された一対の第1のソース/ドレイン領域と、
前記第1のソース/ドレイン領域に挟まれた前記第1の半導体領域の表面に、直接接触して形成され、少なくともLaを含む非晶質の絶縁膜で形成された第1のゲート絶縁膜と、
前記第1のゲート絶縁膜上に形成された第1のゲート電極と、
を具備し、前記Pチャネル型MOSトランジスタは、
前記第2の半導体領域に、対向して形成された一対の第2のソース/ドレイン領域と、
前記第2のソース/ドレイン領域に挟まれた前記第2の半導体領域の表面に、シリコン酸化膜とその上に形成された前記非晶質の絶縁膜とを含む第2のゲート絶縁膜と、
前記第2のゲート絶縁膜上に形成された第2のゲート電極と、
を具備することを特徴とする半導体装置。
A semiconductor substrate;
A p-type first semiconductor region formed on the semiconductor substrate;
An n-type second semiconductor region formed on the semiconductor substrate so as to be insulated from the first semiconductor region;
An n-channel MOS transistor formed in the first semiconductor region;
A p-channel MOS transistor formed in the second semiconductor region;
The n-channel MOS transistor comprises:
A pair of first source / drain regions formed opposite to the first semiconductor region;
A first gate insulating film formed of an amorphous insulating film containing at least La and formed in direct contact with the surface of the first semiconductor region sandwiched between the first source / drain regions; ,
A first gate electrode formed on the first gate insulating film;
And the P-channel MOS transistor comprises:
A pair of second source / drain regions formed opposite to the second semiconductor region;
A second gate insulating film including a silicon oxide film and the amorphous insulating film formed thereon on the surface of the second semiconductor region sandwiched between the second source / drain regions;
A second gate electrode formed on the second gate insulating film;
A semiconductor device comprising:
半導体基板と、
前記半導体基板上に形成されたp型の第1の半導体領域と、
前記半導体基板上に、前記第1の半導体領域と絶縁されて形成されたn型の第2の半導体領域と、
前記第1の半導体領域に形成されたnチャネル型MOSトランジスタと、
前記第2の半導体領域に形成されたpチャネル型MOSトランジスタと、
を具備し、前記nチャネル型MOSトランジスタは、
前記第1の半導体領域に、対向して形成された一対の第1のソース/ドレイン領域と、
前記第1のソース/ドレイン領域に挟まれた前記第1の半導体領域の表面に、直接接触して形成され、少なくともLaを含む非晶質の絶縁膜で形成された第1のゲート絶縁膜と、
前記第1のゲート絶縁膜上に形成された第1のゲート電極と、
を具備し、前記pチャネル型MOSトランジスタは、
前記第2の半導体領域に、対向して形成された一対の第2のソース/ドレイン領域と、
前記第2のソース/ドレイン領域に挟まれた前記第2の半導体領域の表面に、直接形成された前記非晶質の絶縁膜を含む第2のゲート絶縁膜と、
前記第2のゲート絶縁膜上に形成された第2のゲート電極と、
前記第2のゲート電極の上面及び側面上に形成され、前記第2のゲート絶縁膜下の前記第2の半導体基板の表面に圧縮応力を加えるストレッサ絶縁膜と、
を具備することを特徴とする半導体装置。
A semiconductor substrate;
A p-type first semiconductor region formed on the semiconductor substrate;
An n-type second semiconductor region formed on the semiconductor substrate so as to be insulated from the first semiconductor region;
An n-channel MOS transistor formed in the first semiconductor region;
A p-channel MOS transistor formed in the second semiconductor region;
The n-channel MOS transistor comprises:
A pair of first source / drain regions formed opposite to the first semiconductor region;
A first gate insulating film formed of an amorphous insulating film containing at least La and formed in direct contact with the surface of the first semiconductor region sandwiched between the first source / drain regions; ,
A first gate electrode formed on the first gate insulating film;
The p-channel MOS transistor comprises:
A pair of second source / drain regions formed opposite to the second semiconductor region;
A second gate insulating film including the amorphous insulating film directly formed on the surface of the second semiconductor region sandwiched between the second source / drain regions;
A second gate electrode formed on the second gate insulating film;
A stressor insulating film formed on an upper surface and a side surface of the second gate electrode and applying compressive stress to a surface of the second semiconductor substrate under the second gate insulating film;
A semiconductor device comprising:
前記ストレッサ膜は、シリコン窒化膜を含むことを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the stressor film includes a silicon nitride film. 前記第1の半導体領域及び前記第2の半導体領域がSi、あるいはGe原子比が10%以上20%以下のSiGeのいずれかで形成されていることを特徴とする請求項1乃至3のいずれかに記載の半導体装置。   The first semiconductor region and the second semiconductor region are formed of either Si or SiGe having a Ge atomic ratio of 10% or more and 20% or less. A semiconductor device according to 1. 半導体基板と、
前記半導体基板上に形成されたp型の第1のSi半導体領域と、
前記半導体基板上に、前記第1の半導体領域と絶縁されて形成されたn型の第2のSi半導体領域と、
前記第1のSi半導体領域に形成されたnチャネル型MOSトランジスタと、
前記第2のSi半導体領域に形成されたpチャネル型MOSトランジスタと、
を具備し、前記nチャネル型MOSトランジスタは、
前記第1のSi半導体領域に、対向して形成された一対の第1のソース/ドレイン領域と、
前記第1のソース/ドレイン領域に挟まれた前記第1のSi半導体領域の表面に、直接接触して形成され、少なくともLaを含む非晶質の絶縁膜で形成された第1のゲート絶縁膜と、
前記第1のゲート絶縁膜上に形成された第1のゲート電極と、
を具備し、前記pチャネル型MOSトランジスタは、
前記第2のSi半導体領域に対向して形成され、Geを原子比で10%以上20%以下の濃度で含むSiGeからなる一対の第2のソース/ドレイン領域と、
前記第2のソース/ドレイン領域に挟まれた前記第2のSi半導体領域の表面に、シリコン酸化膜とその上に形成された前記非晶質の絶縁膜とを含む第2のゲート絶縁膜と、
前記第2のゲート絶縁膜上に形成された第2のゲート電極と、
を具備することを特徴とする半導体装置。
A semiconductor substrate;
A p-type first Si semiconductor region formed on the semiconductor substrate;
An n-type second Si semiconductor region formed on the semiconductor substrate so as to be insulated from the first semiconductor region;
An n-channel MOS transistor formed in the first Si semiconductor region;
A p-channel MOS transistor formed in the second Si semiconductor region;
The n-channel MOS transistor comprises:
A pair of first source / drain regions formed opposite to the first Si semiconductor region;
A first gate insulating film formed of an amorphous insulating film containing at least La and formed in direct contact with the surface of the first Si semiconductor region sandwiched between the first source / drain regions When,
A first gate electrode formed on the first gate insulating film;
The p-channel MOS transistor comprises:
A pair of second source / drain regions formed opposite to the second Si semiconductor region and made of SiGe containing Ge at a concentration of 10% to 20% by atomic ratio;
A second gate insulating film including a silicon oxide film and the amorphous insulating film formed thereon on the surface of the second Si semiconductor region sandwiched between the second source / drain regions; ,
A second gate electrode formed on the second gate insulating film;
A semiconductor device comprising:
前記非晶質の絶縁膜がLaAlO3 膜であることを特徴とする請求項1乃至5のいずれかに記載の半導体装置。 6. The semiconductor device according to claim 1, wherein the amorphous insulating film is a LaAlO 3 film. 前記第1の半導体領域はSiで形成され、前記第1のゲート絶縁膜との界面から少なくとも3nm以内の前記第1の半導体領域に、0.5%以上の引っ張り歪を含有していることを特徴とする請求項1乃至6のいずれかに記載の半導体装置。   The first semiconductor region is made of Si, and the first semiconductor region within at least 3 nm from the interface with the first gate insulating film contains a tensile strain of 0.5% or more. The semiconductor device according to claim 1, wherein: 前記第1の半導体領域はSiで形成され、前記第1のゲート絶縁膜との界面から少なくとも1nm以内の前記第1の半導体領域に0.8%以上の引っ張り歪を含有し、
前記第1のゲート絶縁膜との界面から少なくとも3nmより深い前記第1の半導体領域に0.5%未満の引張り歪を含有していることを特徴とする請求項1乃至6に記載の半導体装置。
The first semiconductor region is formed of Si, and the first semiconductor region within at least 1 nm from the interface with the first gate insulating film contains a tensile strain of 0.8% or more,
7. The semiconductor device according to claim 1, wherein the first semiconductor region deeper than at least 3 nm from the interface with the first gate insulating film contains a tensile strain of less than 0.5%. .
前記第1のゲート電極はNiシリサイドを含み、前記非晶質の絶縁膜はLaAlO3 膜を含み、前記第1のゲート電極と前記非晶質の絶縁膜との間にAlの偏積層をさらに有することを特徴とする請求項1乃至8のいずれかに記載の半導体装置。 The first gate electrode includes Ni silicide, the amorphous insulating film includes a LaAlO 3 film, and an Al uneven lamination is further provided between the first gate electrode and the amorphous insulating film. The semiconductor device according to claim 1, wherein the semiconductor device is provided. 前記pチャネル型MOSトランジスタは、前記第2のゲート電極の上面及び側面上に形成され、前記第2のゲート絶縁膜下の前記第2の半導体基板に圧縮応力を加えるストレッサ絶縁膜をさらに具備することを特徴とする請求項1、5乃至9のいずれかに記載の半導体装置。   The p-channel MOS transistor further includes a stressor insulating film that is formed on an upper surface and a side surface of the second gate electrode and applies compressive stress to the second semiconductor substrate below the second gate insulating film. The semiconductor device according to claim 1, wherein:
JP2007067171A 2007-03-15 2007-03-15 Semiconductor device Expired - Fee Related JP4504392B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007067171A JP4504392B2 (en) 2007-03-15 2007-03-15 Semiconductor device
US11/858,408 US7755089B2 (en) 2007-03-15 2007-09-20 Semiconductor device including complementary MOS transistor having a strained Si channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067171A JP4504392B2 (en) 2007-03-15 2007-03-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2008227406A true JP2008227406A (en) 2008-09-25
JP4504392B2 JP4504392B2 (en) 2010-07-14

Family

ID=39761780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067171A Expired - Fee Related JP4504392B2 (en) 2007-03-15 2007-03-15 Semiconductor device

Country Status (2)

Country Link
US (1) US7755089B2 (en)
JP (1) JP4504392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074073A (en) * 2011-09-27 2013-04-22 Toshiba Corp Thin film transistor, manufacturing method of the same and display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227057A1 (en) 2002-06-07 2003-12-11 Lochtefeld Anthony J. Strained-semiconductor-on-insulator device structures
US20100047985A1 (en) * 2008-08-19 2010-02-25 Advanced Micro Devices, Inc. Method for fabricating a semiconductor device with self-aligned stressor and extension regions
DE102008054075B4 (en) * 2008-10-31 2010-09-23 Advanced Micro Devices, Inc., Sunnyvale Semiconductor device having a lowered drain and source region in conjunction with a method of complex silicide fabrication in transistors
WO2015048563A2 (en) 2013-09-27 2015-04-02 The Regents Of The University Of California Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects
EP3974021B1 (en) 2017-06-30 2023-06-14 ONWARD Medical N.V. A system for neuromodulation
US11992684B2 (en) 2017-12-05 2024-05-28 Ecole Polytechnique Federale De Lausanne (Epfl) System for planning and/or providing neuromodulation
EP3695878B1 (en) 2019-02-12 2023-04-19 ONWARD Medical N.V. A system for neuromodulation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024188A (en) * 1999-07-07 2001-01-26 Nec Corp Semiconductor device and its manufacture
JP2003060076A (en) * 2001-08-21 2003-02-28 Nec Corp Semiconductor device and manufacturing method therefor
JP2003188275A (en) * 2001-09-28 2003-07-04 Texas Instr Inc <Ti> Gate structure and its manufacturing method
JP2005534163A (en) * 2002-03-15 2005-11-10 フリースケール セミコンダクター インコーポレイテッド High-K dielectric film and method for forming the same
JP2006173432A (en) * 2004-12-17 2006-06-29 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2006344713A (en) * 2005-06-08 2006-12-21 Renesas Technology Corp Semiconductor apparatus and its manufacturing method
JP2006351581A (en) * 2005-06-13 2006-12-28 Fujitsu Ltd Manufacturing method of semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380057B1 (en) * 2001-02-13 2002-04-30 Advanced Micro Devices, Inc. Enhancement of nickel silicide formation by use of nickel pre-amorphizing implant
US6445016B1 (en) * 2001-02-28 2002-09-03 Advanced Micro Devices, Inc. Silicon-on-insulator (SOI) transistor having partial hetero source/drain junctions fabricated with high energy germanium implantation
US6703271B2 (en) * 2001-11-30 2004-03-09 Taiwan Semiconductor Manufacturing Company Complementary metal oxide semiconductor transistor technology using selective epitaxy of a strained silicon germanium layer
JP3845616B2 (en) 2002-12-27 2006-11-15 株式会社東芝 Field effect transistor and manufacturing method thereof
JP4105044B2 (en) * 2003-06-13 2008-06-18 株式会社東芝 Field effect transistor
US7176076B2 (en) * 2005-04-29 2007-02-13 Texas Instruments Incorporated Semiconductor CMOS devices and methods with NMOS high-k dielectric present in core region that mitigate damage to dielectric materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024188A (en) * 1999-07-07 2001-01-26 Nec Corp Semiconductor device and its manufacture
JP2003060076A (en) * 2001-08-21 2003-02-28 Nec Corp Semiconductor device and manufacturing method therefor
JP2003188275A (en) * 2001-09-28 2003-07-04 Texas Instr Inc <Ti> Gate structure and its manufacturing method
JP2005534163A (en) * 2002-03-15 2005-11-10 フリースケール セミコンダクター インコーポレイテッド High-K dielectric film and method for forming the same
JP2006173432A (en) * 2004-12-17 2006-06-29 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2006344713A (en) * 2005-06-08 2006-12-21 Renesas Technology Corp Semiconductor apparatus and its manufacturing method
JP2006351581A (en) * 2005-06-13 2006-12-28 Fujitsu Ltd Manufacturing method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074073A (en) * 2011-09-27 2013-04-22 Toshiba Corp Thin film transistor, manufacturing method of the same and display device
US9159836B2 (en) 2011-09-27 2015-10-13 Kabushiki Kaisha Toshiba Thin film transistor, method for manufacturing same, and display device
US9324879B2 (en) 2011-09-27 2016-04-26 Kabushiki Kaisha Toshiba Thin film transistor, method for manufacturing same, and display device

Also Published As

Publication number Publication date
JP4504392B2 (en) 2010-07-14
US7755089B2 (en) 2010-07-13
US20080224226A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
US7528056B2 (en) Low-cost strained SOI substrate for high-performance CMOS technology
US7164163B2 (en) Strained transistor with hybrid-strain inducing layer
US8754482B2 (en) Semiconductor device and manufacturing method thereof
US8158474B2 (en) Semiconductor device with localized stressor
US8912567B2 (en) Strained channel transistor and method of fabrication thereof
TWI353671B (en) Structure and method of fabricating a hybrid subst
US6432754B1 (en) Double SOI device with recess etch and epitaxy
US8536650B2 (en) Strained ultra-thin SOI transistor formed by replacement gate
JP4504392B2 (en) Semiconductor device
US7605407B2 (en) Composite stressors with variable element atomic concentrations in MOS devices
JP5178152B2 (en) Complementary semiconductor device and manufacturing method thereof
US8299535B2 (en) Delta monolayer dopants epitaxy for embedded source/drain silicide
TWI261323B (en) MOSFET device with localized stressor
US20040212035A1 (en) Strained-channel transistor and methods of manufacture
US7253481B2 (en) High performance MOS device with graded silicide
US20080179636A1 (en) N-fets with tensilely strained semiconductor channels, and method for fabricating same using buried pseudomorphic layers
US7883953B2 (en) Method for transistor fabrication with optimized performance
US20130323899A1 (en) High Performance CMOS Device Design
JP2007042802A (en) Mosfet and its manufacturing method
JP2008053638A (en) Semiconductor element and its manufacturing method
US7157374B1 (en) Method for removing a cap from the gate of an embedded silicon germanium semiconductor device
US20060079031A1 (en) Semiconductor device and manufacturing method thereof
US7951662B2 (en) Method of fabricating strained silicon transistor
US6867104B2 (en) Method to form a structure to decrease area capacitance within a buried insulator device
JP2008108999A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees