JP2008227333A - Heat radiating wiring circuit board - Google Patents

Heat radiating wiring circuit board Download PDF

Info

Publication number
JP2008227333A
JP2008227333A JP2007066120A JP2007066120A JP2008227333A JP 2008227333 A JP2008227333 A JP 2008227333A JP 2007066120 A JP2007066120 A JP 2007066120A JP 2007066120 A JP2007066120 A JP 2007066120A JP 2008227333 A JP2008227333 A JP 2008227333A
Authority
JP
Japan
Prior art keywords
heat
wiring pattern
transfer body
heat transfer
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007066120A
Other languages
Japanese (ja)
Other versions
JP5061669B2 (en
Inventor
Tetsuya Tsumura
哲也 津村
Kimiharu Nishiyama
公治 西山
Etsuo Tsujimoto
悦夫 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007066120A priority Critical patent/JP5061669B2/en
Publication of JP2008227333A publication Critical patent/JP2008227333A/en
Application granted granted Critical
Publication of JP5061669B2 publication Critical patent/JP5061669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat radiation characteristic from the front surface of a wiring pattern. <P>SOLUTION: An insulating resin layer 8 and a plurality of wiring patterns 9 embedded in the manner that their upper surfaces are exposed at the upper part of the resin layer 8 are provided. At least one of these wiring patterns 9 includes a fine structure part 9A and a wide part 9B that is wider than the fine structure pattern 9A in the pattern width. At the lower surface of the fine structure part 9A, a heat conductive part 11 having heat conductivity larger than that of the insulating resin layer 8 is connected and this heat conductive part 11 is widened within the insulating resin layer 8 and is extended to the wide part 9B. Therefore, heat of an electronic component 12 mounted to the fine structure part 9A can be quickly transferred to the wide part 9B and heat can be radiated sufficiently at the wide part 9B having a wide surface area. As a result, heat radiating characteristic from the front surface of the wiring pattern 9 can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放熱性に優れた放熱配線基板に関する。   The present invention relates to a heat dissipation wiring board excellent in heat dissipation.

図4(a)(b)に示すように、従来の放熱配線基板1は、放熱板2と、この放熱板2の上面に形成された絶縁樹脂層3と、この絶縁樹脂層3に表面が露出するように埋め込まれた複数の配線パターン4とを備えている。このように形成された放熱配線基板1は、絶縁樹脂層3と配線パターン4の表面がほぼ面一となっているため、電子部品5を実装しやすいという特長がある。   As shown in FIGS. 4A and 4B, the conventional heat dissipation wiring board 1 has a heat dissipation plate 2, an insulating resin layer 3 formed on the upper surface of the heat dissipation plate 2, and a surface on the insulating resin layer 3. And a plurality of wiring patterns 4 embedded so as to be exposed. The heat radiation wiring board 1 formed in this way has a feature that the electronic component 5 can be easily mounted because the surfaces of the insulating resin layer 3 and the wiring pattern 4 are substantially flush.

そしてこの実装された電子部品5の熱は、絶縁樹脂層3を介して放熱板2で放出されるだけでなく、配線パターン4表面からも放熱される。本発明者らの実験によれば、この配線パターン4表面からの放熱が放熱配線基板1の放熱性に大きく寄与することが分かってきた。   The heat of the mounted electronic component 5 is not only released by the heat radiating plate 2 through the insulating resin layer 3 but also radiated from the surface of the wiring pattern 4. According to the experiments by the present inventors, it has been found that the heat radiation from the surface of the wiring pattern 4 greatly contributes to the heat radiation performance of the heat radiation wiring board 1.

なお、この出願の発明に関する先行技術文献情報としては以下の特許文献が挙げられる。
特開平10−173097号公報
In addition, the following patent documents are mentioned as prior art document information regarding the invention of this application.
Japanese Patent Laid-Open No. 10-173097

上記構成の放熱配線基板1では、配線パターン4の微細化に伴って、配線パターン4表面からの放熱性が低下するという問題があった。   The heat dissipation wiring board 1 having the above configuration has a problem that heat dissipation from the surface of the wiring pattern 4 is reduced as the wiring pattern 4 is miniaturized.

それは、微細な配線パターン4では表面積が小さく、この配線パターン4表面からは十分放熱できないためであった。   This is because the fine wiring pattern 4 has a small surface area and cannot sufficiently radiate heat from the surface of the wiring pattern 4.

そこで本発明は、配線パターン表面からの放熱性を向上させることを目的とする。   Therefore, an object of the present invention is to improve heat dissipation from the surface of a wiring pattern.

この目的を達成するため本発明は、複数の配線パターンの内少なくともいずれか一つは、微細部と、この微細部よりパターン幅の広い拡張部とを有し、微細部の下面には、絶縁樹脂層よりも熱伝導率の大きい伝熱体が接続され、この伝熱体は、絶縁樹脂層の内部で広がり、拡張部の下方へ延長されているものとした。   In order to achieve this object, according to the present invention, at least one of the plurality of wiring patterns includes a fine portion and an extended portion having a pattern width wider than the fine portion, and an insulating surface is provided on a lower surface of the fine portion. A heat transfer body having a higher thermal conductivity than that of the resin layer was connected, and this heat transfer body was extended inside the insulating resin layer and extended below the extended portion.

これにより本発明は、配線パターン表面からの放熱性を向上させることが出来る。   Thereby, this invention can improve the heat dissipation from the wiring pattern surface.

それは絶縁樹脂層よりも熱伝導率の大きい伝熱体が、配線パターンの微細部から拡張部に向けて、絶縁樹脂層の内部で広がるように形成されているためである。   This is because the heat transfer body having a higher thermal conductivity than the insulating resin layer is formed so as to spread inside the insulating resin layer from the fine portion of the wiring pattern toward the extended portion.

これにより本発明は、微細部上に実装された電子部品の熱を素早く拡張部へ伝えることができ、この表面積の大きい拡張部で十分放熱することができる。そしてその結果、配線パターン表面からの放熱性を向上させることができる。   Accordingly, the present invention can quickly transfer the heat of the electronic component mounted on the fine part to the extension part, and can sufficiently dissipate heat by the extension part having a large surface area. As a result, heat dissipation from the surface of the wiring pattern can be improved.

以下、本発明の実施の形態における放熱配線基板について説明する。   Hereinafter, the heat dissipation wiring board in the embodiment of the present invention will be described.

(実施の形態1)
図1(a)(b)に示す放熱配線基板6は、放熱板7と、この放熱板7の上方に形成された絶縁樹脂層8と、この絶縁樹脂層8の上方に、それぞれの上面が表出するように埋め込まれた複数の配線パターン9が配置されている。
(Embodiment 1)
1 (a) and 1 (b), a heat dissipation wiring substrate 6 has a heat dissipation plate 7, an insulating resin layer 8 formed above the heat dissipation plate 7, and upper surfaces of the insulating resin layer 8 above the insulating resin layer 8, respectively. A plurality of embedded wiring patterns 9 are arranged so as to be exposed.

そしてこれらの配線パターン9の一部は、パターン幅の狭い微細部9Aと、この微細部9Aよりもパターン幅の広い拡張部9Bとで構成されている。なお、この微細部9Aと隣接する配線パターン9とを近接させることで、近年のファインパターン化の要請に応えることができる。   A part of the wiring pattern 9 includes a fine portion 9A having a narrow pattern width and an extended portion 9B having a pattern width wider than that of the fine portion 9A. In addition, it can respond to the request | requirement of the fine pattern in recent years by making this fine part 9A and the adjacent wiring pattern 9 adjoin.

また、この微細部9Aの下面に高温半田層10を介して伝熱体11を配置しており、この伝熱体11は絶縁樹脂層8の内部で広がり、拡張部9Bの下方へと延長され、これにより拡張部9Bに熱的に結合されることとなっている。   Further, a heat transfer body 11 is arranged on the lower surface of the fine portion 9A via a high-temperature solder layer 10, and the heat transfer body 11 spreads inside the insulating resin layer 8 and is extended below the extended portion 9B. As a result, the expansion portion 9B is thermally coupled.

ここで本実施の形態では、伝熱体11は、微細部9Aの下方で断面がL字形になるように折り曲げられ、隣接する配線パターン9の下方にまで広がっている。すなわち本実施の形態では、隣接する配線パターン9と伝熱体11との間に絶縁樹脂層8が形成された構成となっている。   Here, in the present embodiment, the heat transfer body 11 is bent so as to have an L-shaped cross section below the fine portion 9 </ b> A and spreads below the adjacent wiring pattern 9. That is, in this embodiment, the insulating resin layer 8 is formed between the adjacent wiring pattern 9 and the heat transfer body 11.

また本実施の形態では、伝熱体11は、配線パターン9の微細部9Aの下面内側で、高温半田層10を介して配線パターン9と接続されており、この高温半田層10は伝熱体11の側面から配線パターン9の下面に向けてフレア状に広がるように形成されている。   Further, in the present embodiment, the heat transfer body 11 is connected to the wiring pattern 9 via the high temperature solder layer 10 inside the lower surface of the fine portion 9A of the wiring pattern 9, and the high temperature solder layer 10 is connected to the heat transfer body 10. 11 is formed so as to spread in a flare from the side surface of 11 toward the lower surface of the wiring pattern 9.

以下に本実施の形態で用いた部材の材料について説明する。   The material of the member used by this Embodiment is demonstrated below.

配線パターン9を形成するための金属板としては、厚みが0.5mmの銅合金からなる基板を用いた。この基板は、銅を主体に、Snを0.1wt%以上0.15wt%未満添加し、Cu+Sn>99.96wt%とした。また線膨張係数は8×10-6/℃〜20×10-6/℃のものを用いた。なお、この金属配線板の厚みは、配線パターン9からの放熱性を十分大きくするためには0.1mm以上が好ましく、加工しやすくするためには、打ち抜きプレスでパターニングする場合で2.0mm以下、レーザでパターニングする場合で、0.3mm以下が好ましい。 As a metal plate for forming the wiring pattern 9, a substrate made of a copper alloy having a thickness of 0.5 mm was used. This substrate was mainly composed of copper, and Sn was added in an amount of 0.1 wt% or more and less than 0.15 wt% so that Cu + Sn> 99.96 wt%. The linear expansion coefficient was 8 × 10 −6 / ° C. to 20 × 10 −6 / ° C. The thickness of the metal wiring board is preferably 0.1 mm or more in order to sufficiently increase the heat dissipation from the wiring pattern 9, and 2.0 mm or less in the case of patterning with a punching press for easy processing. In the case of patterning with a laser, 0.3 mm or less is preferable.

また主成分を銅とすることで、熱伝導性と導電性とが向上し、Snを添加することで軟化温度を約400℃まで上げることができる。軟化点が高いと、その後の電子部品12実装時(半田付け時)や、電子部品12を実装後の発熱/冷却の繰り返し等における信頼性を高く保つことが出来る。銅に添加する元素としては、Sn以外にも、Zr、Ni、Si、Zn、P、Fe、Cr、などが挙げられる。   Moreover, heat conductivity and electroconductivity improve by using copper as a main component, and softening temperature can be raised to about 400 degreeC by adding Sn. When the softening point is high, the reliability can be kept high when the electronic component 12 is subsequently mounted (soldering) or when heat generation / cooling is repeated after the electronic component 12 is mounted. In addition to Sn, elements added to copper include Zr, Ni, Si, Zn, P, Fe, Cr, and the like.

また本実施の形態では、伝熱体11として上記配線パターン9と同じ銅からなる金属板を用いた。   In the present embodiment, the same metal plate made of copper as the wiring pattern 9 is used as the heat transfer body 11.

そして高温半田層10としては、接続部分で熱伝導が阻害されるのを防ぐため、熱伝導率の高いAg/Sn半田かCu/Sn半田を用いた。これらの高温半田材料は導電性も高いため、放熱配線基板6の大電流対応性を損なうことがない。なお、伝熱体11と配線パターン9との接続は、高温半田以外にも導電性の接着剤などが挙げられるが、絶縁樹脂層8よりも熱伝導率の高いものが好ましい。   As the high-temperature solder layer 10, Ag / Sn solder or Cu / Sn solder having high thermal conductivity is used in order to prevent thermal conduction from being hindered at the connection portion. Since these high-temperature solder materials have high conductivity, they do not impair the large current compatibility of the heat dissipation wiring board 6. The connection between the heat transfer body 11 and the wiring pattern 9 includes a conductive adhesive in addition to the high temperature solder, but preferably has a higher thermal conductivity than the insulating resin layer 8.

また、絶縁樹脂層8としては、エポキシ樹脂にAl23からなるフィラを充填させたものを用いた。エポキシ樹脂を用いたのは、耐熱性や電気絶縁性に優れているためである。エポキシ樹脂以外では、フェノール樹脂やシアネート樹脂などの絶縁性を有する熱硬化性樹脂を用いてもよい。 Further, as the insulating resin layer 8, an epoxy resin filled with a filler made of Al 2 O 3 was used. The epoxy resin is used because it is excellent in heat resistance and electrical insulation. Other than the epoxy resin, a thermosetting resin having an insulating property such as a phenol resin or a cyanate resin may be used.

また本実施形態では、このフィラ入りエポキシ樹脂に予め熱可塑性樹脂粉末からなるプレゲル材を添加した。このプレゲル材は、未硬化の熱硬化性樹脂の液状成分を吸収して膨張し、素早くゲル化させるため、絶縁樹脂層8が半硬化状態で金型から取り出すことが出来る。   Moreover, in this embodiment, the pregel material which consists of thermoplastic resin powder was previously added to this epoxy resin with a filler. Since this pregel material absorbs the liquid component of the uncured thermosetting resin and expands and quickly gels, the insulating resin layer 8 can be taken out from the mold in a semi-cured state.

そしてフィラとしては、Al23の他に、MgO、SiO2、BN及びAlNの少なくとも何れか一つからなる無機粉末や、金属酸化物からなる粉末を充填させたものを用いてもよい。これらのフィラによって放熱性を高めることができる。また特にMgOを用いると線熱膨張係数を大きくすることができ、BNを用いると線熱膨張係数を小さくできる。このように、充填するフィラの種類で樹脂の熱膨張係数を調整することによって、配線パターン9や放熱板7に用いる金属と絶縁樹脂層8との熱膨張係数を近似させ、放熱配線基板6全体の熱信頼性を向上させることが出来る。 As the filler, in addition to Al 2 O 3 , an inorganic powder made of at least one of MgO, SiO 2 , BN, and AlN, or a powder made of a metal oxide may be used. These fillers can enhance heat dissipation. In particular, when MgO is used, the linear thermal expansion coefficient can be increased, and when BN is used, the linear thermal expansion coefficient can be decreased. In this way, by adjusting the thermal expansion coefficient of the resin according to the type of filler to be filled, the thermal expansion coefficient between the metal used for the wiring pattern 9 and the heat sink 7 and the insulating resin layer 8 is approximated, and the heat dissipation wiring board 6 as a whole. The thermal reliability of can be improved.

またSiO2を用いると誘電率を小さくでき、絶縁性を向上させることが出来る。なお、フィラとしてAl23などの白色無機粉末を用いると、実装する電子部品12が発光素子の場合、反射率が向上し輝度を上げることができる。 Further, when SiO 2 is used, the dielectric constant can be reduced and the insulation can be improved. When white inorganic powder such as Al 2 O 3 is used as the filler, when the electronic component 12 to be mounted is a light emitting element, the reflectance can be improved and the luminance can be increased.

また本実施の形態で用いたAl23からなるフィラは、平均粒径3ミクロンと平均粒径12ミクロンの2種類のAl23を混合したものである。この大小2種類の粒径のAl23を用いることによって、大きな粒径のAl23の隙間に小さな粒径のAl23を充填でき、Al23を90重量%近くまで高濃度に充填できる。この結果、絶縁樹脂層8の熱伝導率は5W/mK程度となる。 The filler made of Al 2 O 3 used in this embodiment is a mixture of two types of Al 2 O 3 having an average particle size of 3 microns and an average particle size of 12 microns. By using the Al 2 O 3 of the large and small two types of particle size, it can fill the Al 2 O 3 of small particle size in the gap Al 2 O 3 of large particle size, the Al 2 O 3 to 90 wt% near High concentration can be filled. As a result, the thermal conductivity of the insulating resin layer 8 is about 5 W / mK.

そして、このフィラは、直径が0.1〜100μmの範囲のできるだけ小さいものを用い、70〜95重量%程度に高濃度に充填すれば、熱伝導率を上げることができる。なお、フィラの充填率が95重量%を超えると成形し難くなり、絶縁樹脂層8と配線パターン9や放熱板7となる金属板との接着性も低下するため、95重量%以下に抑える方がよい。   And if this filler is as small as possible with a diameter in the range of 0.1 to 100 μm and is filled to a high concentration of about 70 to 95% by weight, the thermal conductivity can be increased. If the filler filling rate exceeds 95% by weight, it becomes difficult to mold, and the adhesiveness between the insulating resin layer 8 and the metal plate that becomes the wiring pattern 9 or the heat sink 7 is also reduced. Is good.

また本実施形態では、この絶縁樹脂層8の厚さは、絶縁耐圧と熱抵抗を考慮し、最大0.6mmとなるように形成した。そして放熱板7としては、アルミ板または銅板などを用いることができる。   In this embodiment, the insulating resin layer 8 is formed to have a maximum thickness of 0.6 mm in consideration of withstand voltage and thermal resistance. And as the heat sink 7, an aluminum plate or a copper plate can be used.

なお放熱板7の下面に、フィン(図示せず)を形成すれば、表面積が広がり、より放熱性を高めることができる。   If fins (not shown) are formed on the lower surface of the heat radiating plate 7, the surface area can be increased and the heat dissipation can be further improved.

次に本実施形態の放熱配線基板6の製造方法を説明する。   Next, a method for manufacturing the heat dissipation wiring board 6 of this embodiment will be described.

まず、金属板をプレスで打ち抜き、図1(a)(b)に示すような配線パターン9を形成する。なお、プレス打ち抜き以外にも、エッチング、レーザなどでパターニングしてもよい。   First, a metal plate is punched out with a press to form a wiring pattern 9 as shown in FIGS. In addition to press punching, patterning may be performed by etching, laser, or the like.

そして次に、L字形に折り曲げた伝熱体11を、配線パターン9の微細部9A下面の外周よりやや内側全体と拡張部9B下面の一端に高温半田で接続する。この時、高温半田が伝熱体11の上面から配線パターン9の下面に向けてフレア状に広がるように塗布する。   Then, the heat transfer body 11 bent into an L shape is connected to the whole inner side slightly from the outer periphery of the lower surface of the fine portion 9A of the wiring pattern 9 and one end of the lower surface of the extended portion 9B with high temperature solder. At this time, the high temperature solder is applied so as to spread in a flare from the upper surface of the heat transfer body 11 toward the lower surface of the wiring pattern 9.

その後、絶縁樹脂層8を形成するため、フィラ入り樹脂の塊を、中央が凸になるように丸型(あるいは蒲鉾型、台形、円柱、球状)にまとめ、配線パターン9の下面側に置く。そしてこのフィラ入り樹脂を加熱プレス、あるいは真空加熱プレス等によってシート状となるように延伸する。この時、配線パターン9の表面が絶縁樹脂層8から表出し、この配線パターン9と絶縁樹脂層8とが略面一となるまでプレス加工する。またこの時、L字形に折り曲げられた伝熱体11の外周にも十分フィラ入り樹脂を充填させる。   Thereafter, in order to form the insulating resin layer 8, the filler-containing resin lumps are rounded (or bowl-shaped, trapezoidal, cylindrical, spherical) so that the center is convex, and placed on the lower surface side of the wiring pattern 9. Then, this filler-containing resin is stretched to form a sheet by a heat press or a vacuum heat press. At this time, the surface of the wiring pattern 9 is exposed from the insulating resin layer 8 and is pressed until the wiring pattern 9 and the insulating resin layer 8 are substantially flush. At this time, the outer periphery of the heat transfer body 11 bent into an L shape is also sufficiently filled with a resin containing filler.

そして絶縁樹脂層8上に放熱板7を配置して、金型で押さえる。   And the heat sink 7 is arrange | positioned on the insulating resin layer 8, and it hold | suppresses with a metal mold | die.

次にこの放熱配線基板6を200℃で1〜2分間加熱し、絶縁樹脂層8を半硬化させ、金型から取り外す。そしてその後この放熱配線基板6を200℃の炉に8〜10分程度入れ、絶縁樹脂層8を本硬化させる。   Next, the heat dissipation wiring board 6 is heated at 200 ° C. for 1 to 2 minutes, the insulating resin layer 8 is semi-cured, and is removed from the mold. Then, the heat dissipation wiring board 6 is put in a furnace at 200 ° C. for about 8 to 10 minutes, and the insulating resin layer 8 is fully cured.

そしてその後配線パターン9の上面に、電気メッキで半田層(図示せず)を形成する。これにより半田付け性が向上し、電子部品12を実装しやすくなる。また配線の錆を抑制することができる。この半田層の代わりに、錫層を形成してもよい。ただし、配線パターン9の下面(絶縁樹脂層8に埋め込まれた面)には、半田層や錫層は形成しないほうがよい。半田付け時などにおける熱工程でこの半田層(あるいは錫層)が柔らかくなり、配線パターン9と絶縁樹脂層8との接着性が低下する場合があるためである。   Then, a solder layer (not shown) is formed on the upper surface of the wiring pattern 9 by electroplating. Thereby, solderability improves and it becomes easy to mount the electronic component 12. Moreover, the rust of wiring can be suppressed. Instead of this solder layer, a tin layer may be formed. However, it is better not to form a solder layer or a tin layer on the lower surface of the wiring pattern 9 (the surface embedded in the insulating resin layer 8). This is because the solder layer (or tin layer) becomes soft during a heat process such as during soldering, and the adhesiveness between the wiring pattern 9 and the insulating resin layer 8 may decrease.

次に、以下に本実施形態における効果を説明する。   Next, the effect in this embodiment is demonstrated below.

まず本実施の形態では、配線パターン9表面からの放熱性を向上させることが出来る。   First, in this embodiment, the heat dissipation from the surface of the wiring pattern 9 can be improved.

それは絶縁樹脂層8よりも熱伝導率の大きい伝熱体11が、絶縁樹脂層8の内部において、配線パターン9の微細部9Aから拡張部9Bに向けて広がるように形成されているためである。   This is because the heat transfer body 11 having a higher thermal conductivity than the insulating resin layer 8 is formed so as to spread from the fine portion 9A of the wiring pattern 9 toward the extended portion 9B inside the insulating resin layer 8. .

すなわち本実施の形態では、配線パターン9に微細部9Aを設け、この微細部9Aと隣接する配線パターン9とを近接させることでファインパターン化を実現している。一方、この微細部9Aに実装した電子部品12の熱は、伝熱体11を介して素早く拡張部9Bへ伝えることができ、この表面積の大きい拡張部9Bで十分放熱することができる。そしてその結果、微細な配線パターン9表面からの放熱性を向上させることができるのである。   That is, in the present embodiment, a fine pattern is realized by providing a fine portion 9A in the wiring pattern 9 and bringing the fine portion 9A and the adjacent wiring pattern 9 close to each other. On the other hand, the heat of the electronic component 12 mounted on the fine portion 9A can be quickly transferred to the extension portion 9B via the heat transfer body 11, and can be sufficiently dissipated by the extension portion 9B having a large surface area. As a result, the heat dissipation from the surface of the fine wiring pattern 9 can be improved.

また従来、微細な配線パターン9では、この配線パターン9内部でも熱の伝導が滞り、絶縁樹脂層8にも十分伝導しないという問題もあった。しかし本実施の形態では、熱が拡張部9Bにまで素早く伝わるため、この拡張部9B下面から絶縁樹脂層8に熱が伝わって、放熱板7から速やかに放出させることができる。   Further, conventionally, the fine wiring pattern 9 has a problem that heat conduction is stagnant within the wiring pattern 9 and does not sufficiently conduct to the insulating resin layer 8. However, in this embodiment, since heat is quickly transmitted to the extended portion 9B, heat is transferred from the lower surface of the extended portion 9B to the insulating resin layer 8 and can be quickly released from the heat radiating plate 7.

また本実施の形態では、伝熱体11がL字形に折り曲げられているため、隣接する配線パターン9の下方にまで広げても、この隣接する配線パターン9と伝熱体11との間には一定の間隔が開き、この間に絶縁樹脂層8を介在させることが出来る。   In the present embodiment, since the heat transfer body 11 is bent in an L shape, even if the heat transfer body 11 is spread below the adjacent wiring pattern 9, the heat transfer body 11 is not between the adjacent wiring pattern 9 and the heat transfer body 11. A certain interval is opened, and the insulating resin layer 8 can be interposed therebetween.

したがって、隣接する配線パターン9間が近接していても上記伝熱体11を形成することができ、放熱性を向上させることが出来る。なお配線パターン9が近接するほど電子部品12も高密度に実装されることになり、熱がこもりやすくなるため、放熱性を向上させることは非常に有用である。   Therefore, even if the adjacent wiring patterns 9 are close to each other, the heat transfer body 11 can be formed, and the heat dissipation can be improved. Note that the closer the wiring pattern 9 is, the higher the density of the electronic components 12 is mounted, and the more easily heat is accumulated. Therefore, it is very useful to improve the heat dissipation.

さらに本実施の形態では、伝熱体11は、配線パターン9下面の内側で、高温半田層10を介して配線パターン9と接続されている。これにより高温半田層10が隣接する配線パターン9に付着するのを抑制することができ、電気絶縁性を向上させることが出来る。またこの高温半田層10は、伝熱体11上方の側面から配線パターン9の下面に向けてフレア状に広がるように形成されている。このような構成とすることによって、配線パターン9からの熱を滑らかに伝熱体11に伝搬させることができ、熱伝導性に寄与する。   Further, in the present embodiment, the heat transfer body 11 is connected to the wiring pattern 9 via the high-temperature solder layer 10 inside the lower surface of the wiring pattern 9. Thereby, it can suppress that the high temperature solder layer 10 adheres to the adjacent wiring pattern 9, and can improve electrical insulation. The high-temperature solder layer 10 is formed so as to spread in a flare from the side surface above the heat transfer body 11 toward the lower surface of the wiring pattern 9. By setting it as such a structure, the heat from the wiring pattern 9 can be smoothly propagated to the heat-transfer body 11, and it contributes to thermal conductivity.

なお、上記実施の形態では、一つの配線パターン9に対して一つの伝熱体11を接続させたが、図2に示すように、複数の配線パターン9に一つの伝熱体11を接続させてもよい。このように形成することで、伝熱体11を配線パターン9間のジャンパー線として用いることができる。   In the above embodiment, one heat transfer body 11 is connected to one wiring pattern 9, but as shown in FIG. 2, one heat transfer body 11 is connected to a plurality of wiring patterns 9. May be. By forming in this way, the heat transfer body 11 can be used as a jumper wire between the wiring patterns 9.

(実施の形態2)
本実施の形態と実施の形態1との違いは、図3に示すように、伝熱体11と、隣接する配線パターン9下面とを絶縁樹脂層8よりも熱伝導率の小さい接着層13で接合した点である。この接着層13としては、例えば伝熱体11の下面に形成された絶縁樹脂層8よりもフィラの含有率の小さいエポキシ樹脂などが挙げられる。
(Embodiment 2)
As shown in FIG. 3, the difference between the present embodiment and the first embodiment is that the heat transfer body 11 and the lower surface of the adjacent wiring pattern 9 are bonded with an adhesive layer 13 having a lower thermal conductivity than the insulating resin layer 8. It is a joined point. Examples of the adhesive layer 13 include an epoxy resin having a filler content smaller than that of the insulating resin layer 8 formed on the lower surface of the heat transfer body 11.

本実施形態では、絶縁樹脂層8を形成する前に、予め接着層13で配線パターン9と伝熱体11とを接合させ、その後前述のフィラ入り樹脂を充填し、絶縁樹脂層8を形成したものである。   In this embodiment, before forming the insulating resin layer 8, the wiring pattern 9 and the heat transfer body 11 are bonded together in advance with the adhesive layer 13, and then the above filler-filled resin is filled to form the insulating resin layer 8. Is.

これにより本実施形態では、電子部品12からの熱が熱伝導率のより高い伝熱体11へと優先的に伝達され、迅速に拡張部9Bへと伝えることができる。そしてその結果、配線パターン9からの放熱性を向上させることができる。   Thereby, in this embodiment, the heat from the electronic component 12 is preferentially transmitted to the heat transfer body 11 having a higher thermal conductivity, and can be quickly transmitted to the expansion portion 9B. As a result, the heat dissipation from the wiring pattern 9 can be improved.

また本実施形態では、接着層13としてフィラの含有率の低い樹脂を用いたため、樹脂の流動性が向上し、配線パターン9と伝熱体11の間や微細部9Aと隣接する配線パターン9との間にも隙間なく樹脂を充填することができ、電気的絶縁性に対する信頼性を高めることができる。   Moreover, in this embodiment, since resin with a low filler content is used as the adhesive layer 13, the fluidity of the resin is improved, and the wiring pattern 9 between the wiring pattern 9 and the heat transfer body 11 and adjacent to the fine portion 9A The resin can be filled with no gap between them, and the reliability with respect to electrical insulation can be improved.

なお、本実施形態では、予め接着層13を形成した後絶縁樹脂層8を形成したが、実施の形態1のように、絶縁樹脂層8に複数種類の粒径のフィラを含有させた場合、粒径の大きなフィラは、伝熱体11と配線パターン9との小さなすき間には入り難くなるため、この伝熱体11と配線パターン9との間の絶縁樹脂層8の熱伝導率を低くすることができる。この場合は接着層13を予め形成する必要もないため、生産性が向上する。   In this embodiment, the insulating resin layer 8 is formed after the adhesive layer 13 is formed in advance. However, when the insulating resin layer 8 contains fillers having a plurality of particle sizes as in the first embodiment, The filler having a large particle size is difficult to enter in the small gap between the heat transfer body 11 and the wiring pattern 9, so that the thermal conductivity of the insulating resin layer 8 between the heat transfer body 11 and the wiring pattern 9 is lowered. be able to. In this case, since it is not necessary to form the adhesive layer 13 in advance, productivity is improved.

本発明は微細な配線パターン表面からの放熱性を向上させた放熱配線基板であり、LEDモジュールなど、発熱性でありつつ高密度実装が要求される電子部品の実装用に有用である。   The present invention is a heat dissipation wiring board with improved heat dissipation from the surface of a fine wiring pattern, and is useful for mounting electronic components such as LED modules that are heat-generating and require high-density mounting.

(a)本実施の形態における放熱配線基板の上面図、(b)本実施の形態における放熱配線基板の断面図(図1(a)のXX断面)(A) Top view of heat dissipation wiring board in the present embodiment, (b) Cross sectional view of the heat dissipation wiring board in the present embodiment (XX section of FIG. 1A) 本実施の形態における放熱配線基板の断面図Sectional view of heat dissipation wiring board in the present embodiment 本実施の形態における放熱配線基板の断面図Sectional view of heat dissipation wiring board in the present embodiment (a)従来の放熱配線基板の上面図、(b)従来の放熱配線基板の断面図(図4(a)のXX断面)(A) Top view of a conventional heat dissipation wiring board, (b) Cross-sectional view of a conventional heat dissipation wiring board (XX cross section of FIG. 4 (a))

符号の説明Explanation of symbols

6 放熱配線基板
7 放熱板
8 絶縁樹脂層
9 配線パターン
9A 微細部
9B 拡張部
10 高温半田層
11 伝熱体
12 電子部品
13 接着層
6 Heat Dissipation Wiring Board 7 Heat Dissipation Plate 8 Insulating Resin Layer 9 Wiring Pattern 9A Fine Part 9B Extended Part 10 High Temperature Solder Layer 11 Heat Transfer Body 12 Electronic Component 13 Adhesive Layer

Claims (7)

絶縁樹脂層と、
この絶縁樹脂層の上方に、それぞれの上面が表出するように埋め込まれた複数の配線パターンとを備え、
これらの配線パターンの内少なくともいずれか一つは、
微細部と、この微細部よりパターン幅の広い拡張部とを有し、
前記微細部の下面には、
前記絶縁樹脂層よりも熱伝導率の大きい伝熱体が接続され、
この伝熱体は、前記絶縁樹脂層の内部で広がり、前記拡張部の下方に延長されている放熱配線基板。
An insulating resin layer;
A plurality of wiring patterns embedded above the insulating resin layer so that each upper surface is exposed,
At least one of these wiring patterns is
It has a fine part and an extended part with a wider pattern width than this fine part,
On the lower surface of the fine part,
A heat transfer body having a higher thermal conductivity than the insulating resin layer is connected,
The heat transfer body extends inside the insulating resin layer and extends below the extended portion.
前記配線パターンと前記伝熱体とは銅で形成され、
この伝熱体と前記配線パターンとの間は、高温半田層を介して接続されている請求項1に記載の放熱配線基板。
The wiring pattern and the heat transfer body are formed of copper,
The heat dissipation wiring board according to claim 1, wherein the heat transfer body and the wiring pattern are connected via a high-temperature solder layer.
前記伝熱体は、
前記配線パターンの下面内側で、高温半田層を介して前記配線パターンと接続され、
前記高温半田層は前記伝熱体の側面から前記配線パターンの下面に向けて広がるように形成されている請求項1に記載の放熱配線基板。
The heat transfer body is
Connected to the wiring pattern via a high-temperature solder layer on the lower surface inside the wiring pattern,
The heat dissipation wiring board according to claim 1, wherein the high-temperature solder layer is formed so as to spread from a side surface of the heat transfer body toward a lower surface of the wiring pattern.
前記伝熱体は、
隣接する配線パターンの下方まで広がるとともに、
この隣接する配線パターンと前記伝熱体との間には、前記絶縁樹脂層が形成されている請求項1に記載の放熱配線基板。
The heat transfer body is
While extending to the lower part of the adjacent wiring pattern,
The heat-radiating wiring board according to claim 1, wherein the insulating resin layer is formed between the adjacent wiring pattern and the heat transfer body.
前記伝熱体は、
隣接する配線パターンの下方まで広がるとともに、
この隣接する配線パターンと前記伝熱体との間には、前記絶縁樹脂層よりも熱伝導率の低い接着層が形成されている請求項1に記載の放熱配線基板。
The heat transfer body is
While extending to the lower part of the adjacent wiring pattern,
The heat-radiating wiring board according to claim 1, wherein an adhesive layer having a thermal conductivity lower than that of the insulating resin layer is formed between the adjacent wiring pattern and the heat transfer body.
前記伝熱体は、
L字形の断面を有する請求項1に記載の放熱配線基板。
The heat transfer body is
The heat dissipation wiring board according to claim 1, which has an L-shaped cross section.
一の伝熱体を複数の配線パターンと接続させた請求項1に記載の放熱配線基板。 The heat radiation wiring board according to claim 1, wherein one heat transfer body is connected to a plurality of wiring patterns.
JP2007066120A 2007-03-15 2007-03-15 Heat dissipation wiring board Expired - Fee Related JP5061669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066120A JP5061669B2 (en) 2007-03-15 2007-03-15 Heat dissipation wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066120A JP5061669B2 (en) 2007-03-15 2007-03-15 Heat dissipation wiring board

Publications (2)

Publication Number Publication Date
JP2008227333A true JP2008227333A (en) 2008-09-25
JP5061669B2 JP5061669B2 (en) 2012-10-31

Family

ID=39845565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066120A Expired - Fee Related JP5061669B2 (en) 2007-03-15 2007-03-15 Heat dissipation wiring board

Country Status (1)

Country Link
JP (1) JP5061669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205992A (en) * 2009-03-04 2010-09-16 Hitachi Kokusai Electric Inc Printed board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335761A (en) * 1997-05-29 1998-12-18 Matsushita Electric Ind Co Ltd Wiring board
JP2001144403A (en) * 1999-11-11 2001-05-25 Yazaki Corp Heat radiation mounting structure and assembling method for electric part
JP2004006993A (en) * 2003-08-28 2004-01-08 Denso Corp Multilayer substrate
JP2004349400A (en) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd Thermally conductive circuit board and power module using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335761A (en) * 1997-05-29 1998-12-18 Matsushita Electric Ind Co Ltd Wiring board
JP2001144403A (en) * 1999-11-11 2001-05-25 Yazaki Corp Heat radiation mounting structure and assembling method for electric part
JP2004349400A (en) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd Thermally conductive circuit board and power module using the same
JP2004006993A (en) * 2003-08-28 2004-01-08 Denso Corp Multilayer substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205992A (en) * 2009-03-04 2010-09-16 Hitachi Kokusai Electric Inc Printed board

Also Published As

Publication number Publication date
JP5061669B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4725581B2 (en) Radiation wiring board and electrical equipment using it
JP4821854B2 (en) Heat dissipation wiring board
JP5788854B2 (en) Circuit board
JP5012066B2 (en) Power module
JP2008140954A (en) Heat dissipating wiring board, manufacturing method thereof, and light emitting module using it
JP2007214246A (en) Heat dissipation wiring board and method of manufacturing same
JP2007318113A (en) Heat radiation substrate and manufacturing method of the same
TWI499100B (en) Light emitting diode carrier assemblies and method of fabricating the same
JP2010186907A (en) Radiator plate, module, and method of manufacturing module
JP4946488B2 (en) Circuit module
JP2008042120A (en) Heat conducting substrate, manufacturing method thereof, and electronic apparatus employing the same
JP2008192787A (en) Heat conduction board, circuit module using the same and its manufacturing method
WO2017188237A1 (en) Led light source device
JP2008098493A (en) Heat-conducting substrate and manufacturing method thereof, and circuit module
JP2008205344A (en) Conductive heat transfer board, manufacturing method therefor, and circuit module using the board
JP2008124243A (en) Heat transfer substrate, its production process and circuit module
JP2008227334A (en) Heat radiating wiring circuit board
JP5061669B2 (en) Heat dissipation wiring board
JP4635977B2 (en) Heat dissipation wiring board
JP2007227489A (en) Heat dissipation substrate, its production method and light emitting module employing it
JP2009218254A (en) Circuit module, and method of manufacturing the same
JP2008098488A (en) Heat-conducting substrate, and manufacturing method thereof
JP2008235321A (en) Heat conductive substrate and manufacturing method, and circuit module using the same
JP2008066360A (en) Heat dissipating wiring board and its manufacturing method
JP2009043881A (en) Heat dissipation wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees