JP2008226772A - Foam-insulated wire - Google Patents
Foam-insulated wire Download PDFInfo
- Publication number
- JP2008226772A JP2008226772A JP2007066921A JP2007066921A JP2008226772A JP 2008226772 A JP2008226772 A JP 2008226772A JP 2007066921 A JP2007066921 A JP 2007066921A JP 2007066921 A JP2007066921 A JP 2007066921A JP 2008226772 A JP2008226772 A JP 2008226772A
- Authority
- JP
- Japan
- Prior art keywords
- foamed
- layer
- foaming
- foam
- polyethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、高周波伝送時の損失を低減できる発泡電線に関するものである。 The present invention relates to a foamed electric wire that can reduce loss during high-frequency transmission.
GHz帯の通信周波数の電力を伝送する高周波伝送用ケーブルにおいて、中心導体を覆う絶縁体の電気特性として、誘電率ε及び誘電正接tanδが小さいことが求められ、なかでも誘電正接tanδが小さいことが求められる。 In a high-frequency transmission cable that transmits power at a communication frequency in the GHz band, it is required that the dielectric constant ε and the dielectric loss tangent tanδ are small as the electrical characteristics of the insulator covering the central conductor, and in particular, the dielectric loss tangent tanδ is small. Desired.
伝送損失は以下の式で示される。伝送損失は、周波数fwやtanδに比例し、εの平方根に比例する。よって相対的にtanδが重要になる。 The transmission loss is expressed by the following equation. The transmission loss is proportional to the frequency fw and tan δ, and is proportional to the square root of ε. Therefore, tanδ is relatively important.
(伝送損失) ∝ √ε × fw × tanδ
εやtanδの低減には、絶縁体としてポリエチレン(PE)を用い、そのPEを発泡させて発泡電線を構成することが有効である。PEを発泡させ、絶縁体内部に気泡を形成することで、PE単体(気泡のない中実なPE)用いた場合よりも絶縁体のε及びtanδを小さくできることから、伝達信号の高周波数化に伴い発泡電線の重要性が増している。
(Transmission loss) ∝ √ε × fw × tanδ
To reduce ε and tan δ, it is effective to use polyethylene (PE) as an insulator and foam the PE to form a foamed electric wire. By foaming PE and forming bubbles inside the insulator, ε and tanδ of the insulator can be made smaller than when using PE alone (solid PE with no bubbles), thus increasing the transmission signal frequency. Along with this, the importance of foamed electric wires is increasing.
例えば、特許文献1には、ポリオレフィン樹脂を高発泡に押出成形して得られる細径発泡電線が開示されている。 For example, Patent Document 1 discloses a small-diameter foamed electric wire obtained by extruding a polyolefin resin to high foam.
特許文献2には、フッ素樹脂との親和性が低い充填剤を発泡核剤として用い、微細な気泡を均一に分散させてなる樹脂組成物を絶縁層として形成したものが開示されている。 Patent Document 2 discloses that an insulating layer is formed by using a filler having a low affinity with a fluororesin as a foam nucleating agent and uniformly dispersing fine bubbles.
特許文献3には、樹脂に粒径1〜2μmの発泡核剤を添加することにより、気泡の分布が均一なものが開示されている。 Patent Document 3 discloses that a bubble distribution is uniform by adding a foam nucleating agent having a particle size of 1 to 2 μm to a resin.
また、特許文献4には、導体の外周に発泡絶縁層を被覆形成してなる高周波同軸ケーブルが開示されている。発泡絶縁層に使用される樹脂の密度、長鎖分岐数の比率、溶融張力とMFR(Melt Flow Rate)の関係、DSC測定における吸熱ピークが一つであることに特徴を有している。 Patent Document 4 discloses a high-frequency coaxial cable in which a foamed insulating layer is formed on the outer periphery of a conductor. It is characterized in that the density of the resin used for the foamed insulating layer, the ratio of the number of long chain branches, the relationship between melt tension and MFR (Melt Flow Rate), and the endothermic peak in DSC measurement are one.
特許文献5には、芯線上に内部発泡ポリエチレン層を有し、その内部発泡ポリエチレン層の外側に外部高発泡ポリエチレン層を有する高発泡絶縁電線が開示されている。この高発泡絶縁電線は、化学発泡剤をポリエチレン層に添加し、化学発泡させることにより得られる。 Patent Document 5 discloses a high foam insulated electric wire having an internal foamed polyethylene layer on a core wire and an external high foamed polyethylene layer outside the internal foamed polyethylene layer. This highly foamed insulated electric wire is obtained by adding a chemical foaming agent to the polyethylene layer and chemically foaming it.
しかしながら、伝送損失の小さい高発泡の発泡電線は、製造が困難で生産性が低いという問題がある。具体的には、発泡層内部で複数の気泡が破泡・合一したいわゆる「巣」や、気泡の異常成長によって巨大気泡が発生し、伝送損失などの電気特性の低下や外径変動、機械的強度の低下などを引き起こしてしまう。 However, a highly foamed foamed wire with low transmission loss has a problem that it is difficult to manufacture and productivity is low. Specifically, a so-called “nest” in which a plurality of bubbles break and coalesce inside the foam layer, or giant bubbles are generated due to abnormal growth of the bubbles, resulting in deterioration of electrical characteristics such as transmission loss, outer diameter fluctuations, machine It causes a decrease in the strength of the target.
この問題は、電線製造時(溶融PEの押出時)に発泡用ガスを注入させたPEを中心導体上に被覆し、気泡を成長させつつ冷却・固化させる際に、発泡層内部では外部層よりも冷却効果が現れるまで時間を要するために発生する。すなわち、内部では冷却が遅くPEが長時間に渡り溶融状態を維持するため、気泡が過大に成長し、巣を発生しやすくなる。 This problem is caused when coating the PE with the foaming gas injected during the manufacture of the electric wire (at the time of extrusion of the molten PE) on the central conductor, and cooling and solidifying while growing the bubbles. Also occurs because it takes time until the cooling effect appears. That is, the cooling is slow inside and PE maintains a molten state for a long time, so that bubbles grow excessively and a nest is easily generated.
このことから通常の発泡電線は、中心導体付近の気泡が大きく発泡度も高くなり、外層部の気泡径は小さく発泡度も低くなる傾向にある。そのため、高周波領域での伝送損失の小さい高性能な発泡電線を製造するには、高い発泡度と発泡層内部で巣を発生させないことを両立させる必要があるが、その製造条件を安定させて維持することが困難であるため、生産性が低くなってしまう。 For this reason, a normal foamed electric wire has a large bubble near the center conductor and a high foaming degree, and the bubble diameter in the outer layer portion tends to be small and the foaming degree tends to be low. Therefore, in order to produce a high-performance foamed wire with low transmission loss in the high-frequency region, it is necessary to achieve both a high degree of foaming and no generation of nests inside the foamed layer, but the production conditions are stably maintained. Since it is difficult to do so, productivity is lowered.
そこで、本発明の目的は、上記課題を解決し、発泡絶縁層全体の発泡度を維持しつつ、内部での巣の発生を抑制し、かつ高生産性で製造することができる発泡電線を提供することにある。 Accordingly, an object of the present invention is to provide a foamed electric wire that solves the above-mentioned problems, suppresses the formation of nests inside, and can be manufactured with high productivity while maintaining the foaming degree of the entire foamed insulating layer. There is to do.
上記目的を達成するために、本発明の発泡電線は、中心導体の外周上に設けられるベース樹脂に発泡核剤を添加し、ガスを注入してベース樹脂を発泡させて形成される発泡電線において、上記ベース樹脂は、発泡前の溶融張力が160℃で10mNのポリエチレン或いはポリオレフィン系樹脂であり、ベース樹脂の一部或いは全部を発泡させ、発泡後のポリエチレン或いはポリオレフィン系樹脂からなる発泡絶縁層を、上記中心導体の外周に同心円状に複数層形成したものである。 In order to achieve the above object, the foamed electric wire of the present invention is a foamed electric wire formed by adding a foam nucleating agent to a base resin provided on the outer periphery of a central conductor and injecting a gas to foam the base resin. The base resin is a polyethylene or polyolefin resin having a melt tension of 10 mN at 160 ° C. before foaming. A part or all of the base resin is foamed, and a foam insulating layer made of polyethylene or polyolefin resin after foaming is formed. A plurality of concentric layers are formed on the outer periphery of the central conductor.
上記ポリエチレンは、単独のポリエチレン或いは2種類以上のポリエチレンをブレンドしたものであってもよい。 The polyethylene may be a single polyethylene or a blend of two or more types of polyethylene.
各発泡絶縁層の最小の厚さが発泡絶縁層全体の厚さの10%以上であるのが好ましい。 It is preferable that the minimum thickness of each foam insulating layer is 10% or more of the total thickness of the foam insulating layer.
また、上記中心導体直上に形成され中実のポリエチレン層からなる内部スキン層、最外層の発泡絶縁層の外周上に形成され中実のポリエチレン層からなる外部スキン層、複数層の発泡絶縁層間に形成され中実のポリエチレン層からなる中間スキン層のうち少なくとも一つ有してもよい。 Also, an inner skin layer made of a solid polyethylene layer formed immediately above the central conductor, an outer skin layer made of a solid polyethylene layer formed on the outer periphery of the outermost foam insulation layer, and a plurality of foam insulation layers You may have at least one of the intermediate | middle skin layers which consist of a solid polyethylene layer formed.
本発明によれば、高発泡度を有し、伝送損失の小さい発泡電線を高い生産性で製造することができるという優れた効果を発揮する。 According to the present invention, an excellent effect that a foamed electric wire having a high foaming degree and a small transmission loss can be produced with high productivity is exhibited.
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
図1は本発明に係る発泡電線の好適な実施の形態を示した断面図である。 FIG. 1 is a sectional view showing a preferred embodiment of a foamed electric wire according to the present invention.
本実施の形態に係る発泡電線10は、中心導体11上に、多数の気泡を有する発泡絶縁層12を有する。発泡絶縁層12は、中心導体11の外周に同心円状に形成され、中心導体11の外周に形成される内部発泡層13と、その内部発泡層13の外周に形成される外部発泡層14とからなる。
A foamed
本実施の形態では、中心導体11の直上(中心導体11と内部発泡層13との間)に、中実のポリエチレン層からなる内部スキン層15が形成され、内部発泡層13と外部発泡層14との間に中実のポリエチレン層からなる中間スキン層16が形成される。さらに、発泡絶縁層12上には外部導体17が形成され、その外部導体17上に最外被覆層(シース層)18が被覆され、発泡電線10(同軸ケーブル)が構成される。
In the present embodiment, an
ここで、発泡絶縁層12について説明する。
Here, the foamed insulating
発泡絶縁層12は、中心導体11上にベース樹脂を押出被覆する際、ベース樹脂に発泡核剤を添加し、発泡用ガスを注入して形成される。
The foamed insulating
発泡絶縁層12の各層(例えば、内部発泡層13と外部発泡層14)の厚さの比は特に限定されない。ただし、一方の層が極端に薄い場合には発泡絶縁層12を複数層で構成する効果が薄れることから、各層の最小の厚さは、発泡層絶縁12の厚さの10%以上であることが望ましい。
The ratio of the thickness of each layer (for example, the internal foam layer 13 and the external foam layer 14) of the
発泡絶縁層12を構成するベース樹脂として、ポリエチレン或いはポリオレフィン系樹脂が用いられる。これらポリエチレン或いはポリオレフィン系樹脂は、発泡前の溶融張力が160℃において10mN以上の材料から選択される。
As the base resin constituting the foamed insulating
この材料としては、溶融張力を持つポリエチレンであれば特に規定するものではなく、LDPE(低密度ポリエチレン)、HDPE(高密度ポリエチレン)、LLDPE(直鎖状低密度ポリエチレン)、MDPD(中密度ポリエチレン)、UHMWPE(超高分子量ポリエチレン)等の各種ポリエチレンを単独または複数種類ブレンドしたものが挙げられる。また、ポリオレフィン系樹脂としては、ポリプロピレン、ポリエステル、ポリメチルペンテン−1等が挙げられる。これらの材料は、各々絶縁層(発泡絶縁層12)を形成する際、所望の溶融張力に調整できる。 This material is not particularly defined as long as it has polyethylene having a melt tension. LDPE (low density polyethylene), HDPE (high density polyethylene), LLDPE (linear low density polyethylene), MDPD (medium density polyethylene) , UHMWPE (ultra high molecular weight polyethylene) and the like, and those obtained by individually or blending a plurality of types of polyethylene. Examples of the polyolefin resin include polypropylene, polyester, polymethylpentene-1, and the like. These materials can each be adjusted to a desired melt tension when forming the insulating layer (foamed insulating layer 12).
発泡絶縁層12の材料は、実用的な特性としてある程度の溶融張力を有したほうが、気泡の発生及び成長を制御しやすいという点から、10mN(@160℃)以上が一つの目安になると考えられる。これ以下の溶融張力でも、注入するガスの圧力を下げる等の条件を変更することで発泡絶縁層12の成形は可能となるが、製造条件に裕度がないため、実用的とはいえない。目安となる10mN以上の溶融張力を得ることは、単一グレードで条件を満たすPEを選択する他、上記各種PEを適宜ブレンド(混合)することも可能である。
The material of the
上記の発泡絶縁層12を形成する材料の溶融張力は、キャピラリーレオメータを使用し、以下の表1に示される条件で測定したものとしている。
The melt tension of the material forming the foamed insulating
次に、本実施の形態の発泡電線の製造方法について説明する。
(1)中心導体11上に、内部スキン層15及び内部発泡層13を被覆する。内部スキン層15は、中心導体11上に内部発泡層13と同時に形成してもよく、内部発泡層13を形成する前に、予め中心導体11上に被覆してもよい。
(2)内部発泡層13上に中間スキン層16を被覆する。
(3)中間スキン層16上に外部発泡層14を被覆する。
上記(1)〜(3)の工程は、工程(1)から(3)に順次行ってもよく、工程(1)〜(3)を一括して同時に行ってもよい。
(4)外部発泡層14の外周に、外部導体17、外部被覆層(シース層)18を形成して、本実施の形態の発泡電線10が得られる。
Next, the manufacturing method of the foamed electric wire of this Embodiment is demonstrated.
(1) The
(2) The
(3) The
The steps (1) to (3) may be sequentially performed from the steps (1) to (3), or the steps (1) to (3) may be performed simultaneously.
(4) The
ベース樹脂を発泡させる際に使用する発泡核剤は、BN(窒化ホウ素)、タルク、シリカ系微粒子に代表される無機微粒子、フッ素樹脂系微粒子のほか、ADCA(アゾジカルボンアミド)、OBSH(p,p'-オキシビスベンゼンスルホニルヒドラジン)のような有機系微粒子を使用してもよく、特に限定するものではない。 Foaming nucleating agents used for foaming the base resin include BN (boron nitride), talc, inorganic fine particles typified by silica fine particles, fluororesin fine particles, ADCA (azodicarbonamide), OBSH (p, Organic fine particles such as p′-oxybisbenzenesulfonylhydrazine) may be used and are not particularly limited.
発泡剤として用いるガス(発泡用ガス)は、N2、Arなどいわゆる不活性ガスが適しているが、CO2、イソブタンガス、圧縮空気など所望する気体を使用してもよい。 As the gas used as the foaming agent (foaming gas), a so-called inert gas such as N 2 or Ar is suitable, but a desired gas such as CO 2 , isobutane gas, or compressed air may be used.
また、発泡用ガスの注入圧力は、所望する発泡度、使用する材料の溶融張力、発泡核剤の種類や量に応じて設定できる。 The injection pressure of the foaming gas can be set according to the desired degree of foaming, the melt tension of the material used, and the type and amount of the foam nucleating agent.
最適な発泡用ガスの注入圧力の具体的な範囲としては、押出機のサイズ(ケーブル径)、樹脂の種類やグレード、目標とする発泡度、製造速度などの要因で大きく変化するため、「多層構造をとる場合の最適ガス圧範囲」は3MPa〜150MPaとする。ガス注入圧力を3MPa未満にすると、発泡電線の効果を得るための十分な気泡が形成されず、他方、150MPaを超えると、気泡が多量かつ大きくなり過ぎ、発泡絶縁層12を維持できなくためである。 The specific range of the optimal foaming gas injection pressure varies greatly depending on factors such as the size of the extruder (cable diameter), the type and grade of resin, the target degree of foaming, and the production speed. The “optimal gas pressure range for the structure” is 3 MPa to 150 MPa. If the gas injection pressure is less than 3 MPa, sufficient bubbles for obtaining the effect of the foamed electric wire are not formed. On the other hand, if the gas injection pressure exceeds 150 MPa, the bubbles are excessively large and cannot be maintained. is there.
また、内部発泡層13を形成する際のガス注入圧力を、外部発泡層14に対する冷却の遅れを見越してガス圧を低く設定してもよい。また、外部発泡層14を形成する際のガス抜けを防止するべく、外部発泡層14のガス注入圧力を内部発泡層13のガス注入圧力に対して低く設定してもよい。
Further, the gas injection pressure at the time of forming the inner foam layer 13 may be set to a low gas pressure in anticipation of the cooling delay with respect to the
本実施の形態の作用を説明する。 The operation of the present embodiment will be described.
本実施の形態では、発泡用ガスの注入と発泡核剤の添加で発泡体を得る「物理発泡法」を用いて発泡絶縁層12を形成している。例えば、化学発泡法では、化学発泡剤を使用する(ベース樹脂内で化学反応させることにより発泡させる)ために発泡残渣が生じ、発泡電線の電気特性(誘電率ε、誘電正接tanδ)を低下させることがある。これに対して物理発泡法では、発泡核剤の使用量が、化学発泡剤を用いた場合に比べ1/10〜1/100程度と微量であることから、電気的特性の低下を最低限に抑制することができる。
In the present embodiment, the
また、発泡絶縁層12を形成する際の温度は、ベース樹脂の粘度を抑制するためだけの項目(パラメータ)である。すなわち、本実施の形態の発泡電線10は、ベース樹脂の押出時の温度制御に関する制限を緩やかにできる副次的な効果を有する。
The temperature at which the foamed insulating
従来の発泡電線は、一般に、溶融張力を高めた材料が、気泡の成長に対して樹脂が引き伸ばされるときの粘性抵抗が大きいことから、気泡の異常成長防止に効果があることを利用して、高い溶融張力でのみ気泡の成長を制御することを目標としているものであった。しかし、太ケーブル(発泡絶縁層が厚い場合)では
(1)押出直後から発泡が始まる
(2)直に冷却水中に入るため発泡層外層部が硬化する一方、内部の温度はなかなか下がらない(発泡層は良好な断熱材となる)
(3)発泡層内周部ではいつまでも樹脂が溶融状態を維持し、気泡の成長が続きやすい
(4)外層が硬化している為行き場のないガスは、気泡の異常成長など「巣」の原因となる
可能性があった。
Conventional foamed electric wires are generally effective in preventing abnormal growth of bubbles because the material with increased melt tension has a large viscous resistance when the resin is stretched against the growth of bubbles. The goal was to control bubble growth only at high melt tension. However, in a thick cable (when the foam insulation layer is thick), (1) foaming starts immediately after extrusion (2) because it enters the cooling water immediately, the outer layer portion of the foam layer hardens while the internal temperature does not drop easily (foaming) The layer will be a good insulation)
(3) In the inner periphery of the foam layer, the resin will remain in a molten state for a long time, and the growth of bubbles is likely to continue. (4) Gas that has nowhere to go because the outer layer is cured is a cause of “nest” such as abnormal growth of bubbles. There was a possibility.
これに対して、本実施の形態の発泡電線10は、ケーブル(特に発泡絶縁層)を太くしても、発泡絶縁層12を中心導体の同心円状に複数層形成される。そのため、特に内部発泡層は冷却の遅れを見越してガス圧を低く設定することもできる(従来の発泡電線において、ガス圧を低く設定して発泡絶縁層を形成すると、発泡絶縁層全体が発泡度不足になる)。
On the other hand, in the foamed
したがって、ガス圧を低くしても十分な発泡度を得ることができるので、発泡用ガスに対抗して樹脂の粘性抵抗を増す必要がなくなるため、材料選択の範囲が広がる。それ故に適正なガス圧(及びその他の製造条件)を選択できれば、溶融張力10mN(160℃)以上という広い範囲での材料選択が可能となる。 Therefore, a sufficient degree of foaming can be obtained even if the gas pressure is lowered, so that it is not necessary to increase the viscous resistance of the resin against the foaming gas, and the range of material selection is expanded. Therefore, if an appropriate gas pressure (and other production conditions) can be selected, materials can be selected in a wide range of a melt tension of 10 mN (160 ° C.) or more.
以上、本実施の形態の発泡電線10によれば、発泡前の溶融張力が160℃で10mNのポリエチレン或いはポリオレフィン系樹脂を用い、中心導体の外周に同心円状に複数層の発泡絶縁層を形成することにより、発泡絶縁層全体の発泡度を維持しつつ、内部での巣の発生を抑制し、かつ高生産性で製造することができる。
As described above, according to the foamed
本実施の形態では、発泡絶縁層12を内部発泡層13と外部発泡層14の2層構造を有するが、発泡絶縁層12が厚い場合は、発泡絶縁層12を3層以上に分割することも可能である。押出機の構成(樹脂注入圧力、ガス注入圧力、発泡核剤、発泡剤(発泡用ガスの種類)等)さえ調整できれば、複数層の発泡絶縁層の発泡度を各発泡絶縁層毎にきめ細かく調節できる。
In the present embodiment, the foamed insulating
また、発泡絶縁層12の各発泡絶縁層(内部発泡層13、外部発泡層14)の内周或いは外周に、中実のポリエチレンからなるスキン層を少なくとも一層形成してもよい。
Further, at least one skin layer made of solid polyethylene may be formed on the inner circumference or the outer circumference of each foam insulation layer (inner foam layer 13, outer foam layer 14) of the
例えば、中心導体11と発泡絶縁層12の密着性を向上させるため、中心導体11と発泡絶縁層12との間に内部スキン層15を設けてもよい。発泡絶縁層12の外周には、外径変動防止や発泡ガスを保持して発泡効率向上のための外部スキンを設けてもよい。内部発泡層13と外部発泡層14の中間にスキン層16を設けてもよい。中間スキン層16を設けることで、超高発泡度の発泡層を形成するに際して、内部発泡層13のガス抜けを効果的に防止することができる。
For example, an
各発泡絶縁層は、互いに同一の材料で形成してもよく、互いに異なる材料で形成してもよい。 Each foamed insulating layer may be formed of the same material or different materials.
実施例1〜9及び比較例1〜7では、20D(中心導体径9.0mm、絶縁層厚7.0mm、外部導体径25.0mm、シース径28.0mm)の高周波用同軸ケーブルを試作し評価を行った。試作した高周波用同軸ケーブルの各パラメータを表2に示す。 In Examples 1 to 9 and Comparative Examples 1 to 7, a high-frequency coaxial cable of 20D (center conductor diameter 9.0 mm, insulating layer thickness 7.0 mm, outer conductor diameter 25.0 mm, sheath diameter 28.0 mm) was prototyped. Evaluation was performed. Table 2 shows the parameters of the prototype high-frequency coaxial cable.
発泡絶縁層、内部スキン層及び外部スキン層を形成する際に使用する核剤、発泡剤を示す。 The nucleating agent and foaming agent used when forming the foamed insulating layer, the inner skin layer and the outer skin layer are shown.
パラメータとして、内部スキン層及び外部スキン層の有無、窒素ガスの注入圧力を変動させて実施例及び比較例を試作した。 Examples and comparative examples were prototyped by varying the presence or absence of the internal skin layer and the external skin layer and the nitrogen gas injection pressure as parameters.
発泡絶縁層の材料は、表4の材料をブレンドし、所望の溶融張力の材料を得た。 As the material of the foam insulating layer, the materials shown in Table 4 were blended to obtain a material having a desired melt tension.
実施例1〜8においては、発明の効果を明瞭に示すため内側の発泡絶縁層と外側の発泡絶縁層とを同一材料で構成した。実施例9においては、内側、中間及び外側の発泡絶縁層を同一材料で構成した。 In Examples 1 to 8, in order to clearly show the effects of the invention, the inner foamed insulating layer and the outer foamed insulating layer were made of the same material. In Example 9, the inner, intermediate and outer foamed insulating layers were made of the same material.
実施例の試作装置及び試作手順の概要を図2に示す。 FIG. 2 shows an outline of the prototype device and the trial procedure of the example.
図2に示すように、まず、送出し機21から中心導体を供給し、必要な場合には(実施例3〜9及び比較例2,4〜7)内部スキン押出機22にて内部スキン層を被覆する。その際、被覆厚は約50μmとする。
As shown in FIG. 2, first, the central conductor is supplied from the
続いて主押出機23にて発泡絶縁層を被覆する。主押出機23は3層同時押出が可能であり、内部発泡層、外部発泡層、必要に応じ外部スキン層の被覆も同時に行う。
Subsequently, the foaming insulating layer is covered by the
各層の被覆が終了したのち、冷却槽24にて冷却し、電線巻取り機25にて巻き取る。その後、外部導体とシース層を設け、得られた発泡電線(同軸ケーブル)の各種特性の評価を行う。
After the coating of each layer is completed, it is cooled in the cooling
評価項目は以下の通りである。
(1)発泡度(%)
1万m製造し、1000m毎に合計10箇所(アルコール比重法で)発泡度を測定し、その平均値と、それに対する最大値及び最小値の差を変動量として示す。
The evaluation items are as follows.
(1) Foaming degree (%)
Ten thousand meters are manufactured, and the foaming degree is measured at a total of 10 places (by alcohol specific gravity method) every 1000 m, and the difference between the average value and the maximum value and the minimum value is shown as the fluctuation amount.
スキン層を有する場合には、それも含めた発泡度を示す。 When it has a skin layer, the degree of foaming including that is shown.
アルコール比重法(空気中と液中での重量差から固体比重を求める方法。比重計は、東洋精機製のD−H型を用いる)にて評価した。 Evaluation was made by an alcohol specific gravity method (a method for obtaining a solid specific gravity from a difference in weight between air and liquid. A specific gravity meter uses a DH type manufactured by Toyo Seiki).
発泡度が少なくとも65%以上のものを合格とする。
(2)巨大気泡の有無
発泡絶縁層(特に中心導体近傍)において、気泡の異常成長や破泡の有無を顕微鏡や電子顕微鏡を用いて確認する。
A foam having a foaming degree of at least 65% is accepted.
(2) Presence / absence of giant bubbles In the foamed insulating layer (particularly in the vicinity of the central conductor), the presence or absence of abnormal bubble growth or bubble breakage is confirmed using a microscope or an electron microscope.
巨大気泡は、実際には発生経緯により以下の2種類に分類できる。
1.過成長型:一つの気泡が大きく成長し、他の気泡の数倍の大きさになるもの。一つの気泡であるため、外周は比較的綺麗な楕円を描く。
2.合一型(「巣」):隣接した複数の気泡が合体して成長するもの。外周がそれぞれの気泡形状を残して凹凸になりやすい。
Giant bubbles can actually be classified into the following two types according to the background.
1. Overgrowth type: One bubble grows large and is several times larger than other bubbles. Because it is a single bubble, the outer circumference draws a relatively beautiful ellipse.
2. Combined type (“nest”): A combination of adjacent bubbles that grow. The outer periphery tends to be uneven, leaving the shape of each bubble.
本実施例では、径が概ね1.5mmを超える気泡を一括して巨大気泡として扱う。 In the present embodiment, bubbles having a diameter exceeding approximately 1.5 mm are collectively treated as giant bubbles.
巨大気泡の大きさは気泡の数とサイズの双方を要因として持つ。そのため、気泡有無の判定については、発泡絶縁体の断面積における巨大気泡の占める面積で表現している。 The size of a giant bubble is a factor of both the number and size of the bubble. Therefore, the determination of the presence or absence of bubbles is expressed by the area occupied by the giant bubbles in the cross-sectional area of the foamed insulator.
巨大気泡は少ない程好ましく、最低でも(少)以下を合格とする。
(3)気泡径(μm)
内部発泡層の中心導体近傍及び外部発泡層の外周部でのそれぞれの気泡径を測定する。気泡径は小さい程よく、800〜1000μmを超えないことが望ましい。
(4)伝送損失(dB/100m@2.2μm)
2.2GHzの信号波を同軸ケーブルで伝送したときの損失である。伝送損失は、6.5(dB/100m@2.2GHz)以下であることが望ましい。
(5)総合判定
製造安定性(歩留り)と特性を総合的に評価した。
The smaller the number of giant bubbles, the better. The minimum (small) or less is acceptable.
(3) Bubble diameter (μm)
The respective bubble diameters in the vicinity of the center conductor of the inner foam layer and the outer periphery of the outer foam layer are measured. The bubble diameter should be as small as possible, and it is desirable not to exceed 800-1000 μm.
(4) Transmission loss (dB/100m@2.2μm)
This is a loss when a 2.2 GHz signal wave is transmitted through a coaxial cable. The transmission loss is desirably 6.5 (dB / 100 m@2.2 GHz) or less.
(5) Comprehensive judgment Production stability (yield) and characteristics were comprehensively evaluated.
製造された発泡電線が高性能でも、製造安定性が低いものは評価を低くした。 Even if the manufactured foamed electric wire had high performance, the evaluation was low for those with low manufacturing stability.
(×〜◎の4段階評価。○以上を適用可能とする)
製造安定性について
製造安定性は、製造時の発泡度、外径等の変動量の大小で評価する。本実施例においては、特に発泡度に着目しているため、発泡度とそれに対する変動量を重視し、高発泡度品でも変動量が大きいものは総合的に低い評価となる。
(Four-grade evaluation from x to ◎. Applicable to ○ or more)
Manufacturing stability Manufacturing stability is evaluated based on the amount of change in foaming, outer diameter, etc. during manufacturing. In this embodiment, since the degree of foaming is particularly focused, the emphasis is placed on the degree of foaming and the amount of variation with respect to the degree of foaming.
実施例1〜9、比較例1〜7の各材料、条件、評価結果を表6に示す。 Table 6 shows the materials, conditions, and evaluation results of Examples 1 to 9 and Comparative Examples 1 to 7.
実施例と比較例との比較
実施例1〜4では、気泡が成長しやすい内部発泡層を低ガス圧で、外部発泡層を高ガス圧で押し出す成形する為、内外周部の気泡径のばらつきや異常成長が抑制できる。このため、製品の特性が安定し、生産性が大きく向上することが確認できた。
Comparison between Examples and Comparative Examples In Examples 1 to 4, in order to mold the internal foamed layer in which bubbles tend to grow at a low gas pressure and the external foamed layer at a high gas pressure, variations in the bubble diameters at the inner and outer peripheral parts are performed. And abnormal growth can be suppressed. For this reason, it was confirmed that the characteristics of the product were stabilized and the productivity was greatly improved.
一方、発泡絶縁層が1層である比較例1〜7は、従来技術の問題点でも指摘したように、伝送損失を小さくするために発泡度を高くすると内層部での成長が進み、巨大な気泡となりやすい。 On the other hand, in Comparative Examples 1 to 7 in which the foamed insulating layer is one layer, as pointed out in the problems of the prior art, if the foaming degree is increased in order to reduce the transmission loss, the growth in the inner layer proceeds and the huge It tends to become bubbles.
実施例5〜8と比較例5〜7は、発泡層に使用するポリエチレンの溶融張力を変化させて発泡の状態を比較したものである。 Examples 5-8 and Comparative Examples 5-7 compare the foamed states by changing the melt tension of polyethylene used in the foamed layer.
実施例5,6と、比較例5,6は低溶融張力材料を用いた例であり、気泡の成長が急速に進むため、いずれも内層部での巨大気泡の発生は避けられないが、実施例5,6ではその程度は小さく許容できる範囲となっている。また、発泡度も外部発泡層のガス圧を低めにすることでガス抜けを防止でき、実用に耐えうる発泡度を維持できる。 Examples 5 and 6 and Comparative Examples 5 and 6 are examples using a low melt tension material, and since the growth of bubbles proceeds rapidly, the occurrence of giant bubbles in the inner layer is unavoidable. In Examples 5 and 6, the degree is small and acceptable. Further, by reducing the gas pressure of the outer foam layer, the degree of foaming can be prevented from degassing, and the degree of foaming that can withstand practical use can be maintained.
実施例7と比較例7では、同じ高溶融張力材料を使用して比較した。実施例7では、内部発泡層では低めのガス圧を維持することで気泡合一を防止できることを確認した。これに対し、比較例7では、溶融張力が高く、外周部では気泡が殆ど成長しないままになっている。 In Example 7 and Comparative Example 7, the same high melt tension material was used for comparison. In Example 7, it was confirmed that coalescence of the internal foamed layer could be prevented by maintaining a lower gas pressure. In contrast, in Comparative Example 7, the melt tension is high, and bubbles hardly grow on the outer peripheral portion.
さらに、実施例7では発泡度がやや低くなることから、実施例8において外周部のガス圧を高め、特性と生産性のバランスを保てることも確認した。また、実施例9では発泡絶縁層を3層形成し、より細かなガス圧調整を行うことで、より均一な気泡の形成に成功した。 Furthermore, in Example 7, since the degree of foaming was slightly reduced, it was confirmed that the gas pressure in the outer peripheral portion was increased in Example 8 to maintain a balance between characteristics and productivity. In Example 9, three foamed insulating layers were formed, and finer gas pressure adjustment was performed, thereby succeeding in forming more uniform bubbles.
以上説明したように、本発明によれば、従来の発泡層を1層のみとする技術では生産性と伝送性能の両立が困難であった問題点を解決し、伝送損失の小さい発泡電線を安定して生産できるようにするという効果を有する。 As described above, according to the present invention, the conventional technology with only one foam layer solves the problem that it was difficult to achieve both productivity and transmission performance, and stabilizes a foamed wire with low transmission loss. And has the effect of enabling production.
10 発泡電線
11 中心導体
12 発泡絶縁層
13 内部発泡層
14 外部発泡層
15 内部スキン層
16 中間スキン層
17 外部導体
18 シース層(外部被覆層)
DESCRIPTION OF
Claims (4)
上記ベース樹脂は、発泡前の溶融張力が160℃で10mNのポリエチレン或いはポリオレフィン系樹脂であり、ベース樹脂の一部或いは全部を発泡させ、発泡後のポリエチレン或いはポリオレフィン系樹脂からなる発泡絶縁層を、上記中心導体の外周に同心円状に複数層形成したことを特徴とする発泡電線。 In the foamed electric wire formed by adding a foam nucleating agent to the base resin provided on the outer periphery of the center conductor, injecting a foaming gas and foaming the base resin,
The base resin is a polyethylene or polyolefin resin having a melt tension of 10 mN at 160 ° C. before foaming, foaming a part or all of the base resin, and forming a foam insulating layer made of polyethylene or polyolefin resin after foaming, A foamed electric wire comprising a plurality of concentric layers formed on the outer periphery of the central conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007066921A JP2008226772A (en) | 2007-03-15 | 2007-03-15 | Foam-insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007066921A JP2008226772A (en) | 2007-03-15 | 2007-03-15 | Foam-insulated wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008226772A true JP2008226772A (en) | 2008-09-25 |
Family
ID=39845123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007066921A Pending JP2008226772A (en) | 2007-03-15 | 2007-03-15 | Foam-insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008226772A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011238584A (en) * | 2010-04-12 | 2011-11-24 | Yazaki Corp | Insulated wire |
WO2014123123A1 (en) * | 2013-02-07 | 2014-08-14 | 古河電気工業株式会社 | Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same |
-
2007
- 2007-03-15 JP JP2007066921A patent/JP2008226772A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011238584A (en) * | 2010-04-12 | 2011-11-24 | Yazaki Corp | Insulated wire |
WO2014123123A1 (en) * | 2013-02-07 | 2014-08-14 | 古河電気工業株式会社 | Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same |
CN104321833A (en) * | 2013-02-07 | 2015-01-28 | 古河电气工业株式会社 | Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same |
US20150325333A1 (en) * | 2013-02-07 | 2015-11-12 | Furukawa Magnet Wire Co., Ltd. | Enamel resin-insulating laminate, insulated wire using the same and electric/electronic equipment |
EP2955724A4 (en) * | 2013-02-07 | 2016-10-19 | Furukawa Electric Co Ltd | Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same |
JP6030132B2 (en) * | 2013-02-07 | 2016-11-24 | 古河電気工業株式会社 | Enamel resin insulation laminate and insulated wire and electrical / electronic equipment using the same |
JP2017059540A (en) * | 2013-02-07 | 2017-03-23 | 古河電気工業株式会社 | Enamel resin insulation laminate and insulation wire using the same and electric/electronic apparatus |
US10418151B2 (en) | 2013-02-07 | 2019-09-17 | Furukawa Electric Co., Ltd. | Enamel resin-insulating laminate, inverter surge-resistant insulated wire using the same and electric/electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8715798B2 (en) | Resin composition and foam insulated wire | |
KR101270732B1 (en) | Profiled insulation lan cables | |
JP2008027899A (en) | High-frequency coaxial cable | |
EP0909449A1 (en) | Coaxial high-frequency cable and dielectric material thereof | |
JP2006339099A (en) | Foaming wire | |
JP5516474B2 (en) | Foamed coaxial cable and manufacturing method thereof | |
JP2008021585A (en) | Foamed coaxial cable | |
JP2012046574A (en) | Resin composition and high-frequency coaxial cable | |
CN101809682A (en) | Coaxial cable | |
JP2008226772A (en) | Foam-insulated wire | |
US20140367143A1 (en) | Coaxial cable | |
JP5545179B2 (en) | Foam insulated wire and manufacturing method thereof | |
JP5645129B2 (en) | High frequency coaxial cable and manufacturing method thereof | |
US8822825B2 (en) | Foamed electric wire and transmission cable having same | |
JP5420662B2 (en) | Foamed electric wire and transmission cable having the same | |
JP3962421B1 (en) | Foam molding method, foamed coaxial cable, and foamed coaxial cable manufacturing method | |
US8766096B2 (en) | Production method of foamed electric wire | |
JP5426948B2 (en) | Foamed electric wire and transmission cable having the same | |
JP2011228064A (en) | Method of manufacturing high-frequency coaxial cable, high-frequency coaxial cable and extruding device | |
KR100761600B1 (en) | Coaxial cable | |
JP2012121990A (en) | Resin composition and foam insulated wire | |
KR101141064B1 (en) | Low loss coaxial cable and manufacturing method thereof | |
JP2012243500A (en) | Foamed cable | |
JP2007242589A (en) | Foamed coaxial cable | |
JP5545178B2 (en) | Foamed cable and manufacturing method thereof |