JP2008224572A - Device and method for measuring deflection angle of optical deflection device - Google Patents

Device and method for measuring deflection angle of optical deflection device Download PDF

Info

Publication number
JP2008224572A
JP2008224572A JP2007066209A JP2007066209A JP2008224572A JP 2008224572 A JP2008224572 A JP 2008224572A JP 2007066209 A JP2007066209 A JP 2007066209A JP 2007066209 A JP2007066209 A JP 2007066209A JP 2008224572 A JP2008224572 A JP 2008224572A
Authority
JP
Japan
Prior art keywords
optical
optical sensor
deflection angle
deflection
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007066209A
Other languages
Japanese (ja)
Other versions
JP4293251B2 (en
Inventor
Shinya Yamauchi
慎也 山内
Yuji Sugimoto
裕司 杉本
Masatoshi Kamiyama
政敏 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2007066209A priority Critical patent/JP4293251B2/en
Priority to PCT/JP2008/053144 priority patent/WO2008111385A1/en
Publication of JP2008224572A publication Critical patent/JP2008224572A/en
Application granted granted Critical
Publication of JP4293251B2 publication Critical patent/JP4293251B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for measuring the deflection angle of an optical deflection device, capable of measuring the deflection angle and frequency characteristics of the optical deflection device with a measurement accuracy of 0.5% or lower than that for the maximum swing angle, irrespective of the size of the maximum swing angle. <P>SOLUTION: The device for measuring the deflection angle of the optical device includes a laser light source 2 for emitting a laser optical beam to a mirror part of the optical deflection device 1; a drive signal generation part for driving the optical deflection device 1 by a sine wave; an optical sensor 7 for receiving the laser optical beam reflected by the mirror part of the optical deflection device 1; an optical sensor position control part for moving the optical sensor 7 in an amplitude direction of reflection light; a laser reciprocation time measurement part 13 of the optical sensor; and an arithmetic control part 14. The optical sensor position control part includes an automatic origin return function and a function for automatically moving the optical sensor 7 at a position of 70% or higher of the maximum swing angle. Thus, the device can attain measurement precision of 0.5% or lower of the maximum swing angle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光走査型の画像表示装置の光走査部品として使用される光偏向デバイスの性能を、高精度で測定するために用いられる光偏向デバイスの偏向角度測定装置及び偏向角度測定方法に関するものである。   The present invention relates to a deflection angle measuring apparatus and a deflection angle measuring method for an optical deflection device used for measuring the performance of an optical deflection device used as an optical scanning component of an optical scanning type image display apparatus with high accuracy. It is.

光走査型の画像表示装置は、レーザ光線等を水平方向に偏向する光偏向デバイスと、垂直方向に偏向する光偏向デバイスとを備え、それぞれの光偏向デバイスの駆動周波数を制御することによって光線を走査し、画像を形成する装置である。画像のちらつき(乱れ)をなくすために、これらの光偏向デバイスには駆動信号に対する振れ角が正確であることが求められ、振れ角にばらつきがあると画像がちらつくこととなる。   The optical scanning type image display apparatus includes an optical deflection device that deflects a laser beam or the like in the horizontal direction and an optical deflection device that deflects the beam in the vertical direction, and controls the driving frequency of each optical deflection device to emit the light beam. An apparatus that scans and forms an image. In order to eliminate the flicker (disturbance) of the image, these optical deflection devices are required to have an accurate shake angle with respect to the drive signal. If the shake angle varies, the image will flicker.

画像のちらつきは解像度と画角の関係により決まる。例えば解像度が800ドット×600ドット、画角を20°×15°とし、光偏向デバイスを水平方向(800ドット、20°)で使用する場合を想定すると、一般に画像のちらつきは1/4ドットの角度ばらつきで生ずるとされているので、画像のちらつきは20°/(800ドット×4)=0・00625°で生ずることとなる。このため、光偏向デバイスの偏向角度測定装置には、少なくとも0.01°の分解能が必要である。しかしこのような高分解能の偏向角度測定装置の開発は現状では困難であるため、本発明ではまず、最大振れ角0.5%の測定精度で測定できる技術の開発を目的とした。   Image flicker is determined by the relationship between resolution and angle of view. For example, assuming that the resolution is 800 dots × 600 dots, the angle of view is 20 ° × 15 °, and the light deflection device is used in the horizontal direction (800 dots, 20 °), the image flicker is generally 1/4 dot. Since it is supposed to be caused by angular variation, the image flickering occurs at 20 ° / (800 dots × 4) = 0.006255 °. For this reason, the deflection angle measuring apparatus of the optical deflection device needs to have a resolution of at least 0.01 °. However, since it is difficult to develop such a high-resolution deflection angle measuring apparatus at present, the present invention aims to develop a technique capable of measuring with a measurement accuracy of a maximum deflection angle of 0.5%.

このような光偏向デバイスの測定装置として、特許文献1には光偏向ミラーの光軸方向に光受光器を近接・離隔可能に設け、光偏向ミラーの偏向角に応じて光偏向ミラーと光受光器との距離を自動的に最適に制御しつつ、周波数応答特性を測定するものが開示されている。   As a measuring device for such an optical deflection device, Patent Document 1 provides an optical receiver in the optical axis direction of the optical deflection mirror so as to be able to approach and separate, and the optical deflection mirror and the optical receiver according to the deflection angle of the optical deflection mirror. A device that measures frequency response characteristics while automatically and optimally controlling the distance to the instrument is disclosed.

この特許文献1の発明の目的は、広いダイナミックレンジにわたって測定可能な装置を提供することであり、光偏向ミラーの偏向角が広い場合には光受光器を光偏向ミラーに接近させ、狭い場合には離隔させて振幅の測定を行う。しかし光受光器上のPSD素子(光位置検出素子)やCCD素子(電荷結合素子)の画素数は一定であるため、この装置では測定精度を0.5%にまで高めることは困難であると考えられる。   An object of the invention of this Patent Document 1 is to provide an apparatus capable of measuring over a wide dynamic range. When the deflection angle of the light deflection mirror is wide, the optical receiver is brought close to the light deflection mirror, and when it is narrow. Measure the amplitude at a distance. However, since the number of pixels of the PSD element (optical position detection element) and CCD element (charge coupled device) on the optical receiver is constant, it is difficult to increase the measurement accuracy to 0.5% with this apparatus. Conceivable.

また特許文献2には、光偏向ミラーの光軸上に受光器を固定し、反射光がこの受光器で受光されることによって発生するパルス信号を分析して最大振れ角を算出し、偏向角度測定を行う装置が開示されている。   In Patent Document 2, a light receiver is fixed on the optical axis of a light deflection mirror, and a maximum deflection angle is calculated by analyzing a pulse signal generated when reflected light is received by the light receiver. An apparatus for making measurements is disclosed.

しかしこの特許文献2の装置は受光器が光軸上に固定されているため、振動する光偏向ミラーからの反射光が最大スピードで受光器を横切る瞬間を測定することとなる。従って受光器の応答時間遅れ特性によって測定精度が大きく左右され、最大振れ角が大きくなるほど測定精度が低下すると考えられる。
特開2005−321484号公報 特表2005−517212号公報
However, since the light receiver is fixed on the optical axis in the apparatus of Patent Document 2, the moment when the reflected light from the vibrating light deflection mirror crosses the light receiver at the maximum speed is measured. Therefore, it is considered that the measurement accuracy greatly depends on the response time delay characteristic of the light receiver, and the measurement accuracy decreases as the maximum deflection angle increases.
JP 2005-321484 A JP 2005-517212 Gazette

従って本発明の目的は、最大振れ角の大小にかかわらず、最大振れ角の0.5%以下の測定精度で、光偏向デバイスの偏向角度や周波数特性を測定することができる光偏向デバイスの偏向角度測定装置及び偏向角度測定方法を提供することである。   Accordingly, an object of the present invention is to deflect the optical deflection device capable of measuring the deflection angle and frequency characteristics of the optical deflection device with a measurement accuracy of 0.5% or less of the maximum deflection angle regardless of the maximum deflection angle. An angle measuring device and a deflection angle measuring method are provided.

上記の課題を解決するためになされた請求項1の発明は、光偏向デバイスの偏向角度を光センサにより測定する偏向角度測定装置であって、光偏向デバイスのミラー部にレーザ光線を発射するレーザ光源と、光偏向デバイスを駆動する駆動信号発生部と、光偏向デバイスのミラー部により反射されたレーザ光線を受光する光センサと、この光センサを反射光の振幅方向に移動できる光センサ位置制御部と、光センサのレーザ往復時間計測部と、演算制御部とからなり、光センサ位置制御部が最大振れ角の70%以上の位置に光センサを自動的に移動させる機能を備えたものであることを特徴とするものである。   In order to solve the above-mentioned problems, the invention of claim 1 is a deflection angle measuring apparatus for measuring a deflection angle of an optical deflection device with an optical sensor, and a laser for emitting a laser beam to a mirror portion of the optical deflection device. Light source, drive signal generator for driving the optical deflection device, optical sensor for receiving the laser beam reflected by the mirror of the optical deflection device, and optical sensor position control capable of moving the optical sensor in the amplitude direction of the reflected light Part, a laser round-trip time measuring part of the optical sensor, and an arithmetic control part, and the optical sensor position control part has a function of automatically moving the optical sensor to a position of 70% or more of the maximum deflection angle. It is characterized by being.

また請求項2の発明は、請求項1の発明において、演算制御部が、光センサのレーザ往復時間計測部からの信号を利用して光センサ位置を原点に復帰させる機能を備えたものであることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the invention, the arithmetic control unit has a function of returning the optical sensor position to the origin by using a signal from the laser round-trip time measuring unit of the optical sensor. It is characterized by this.

また請求項3の発明は、請求項1の発明において、光センサ位置制御部が、反射光の振幅方向に延びるレールと、このレール上で光センサを移動させるステッピングモータと、光センサの位置を出力するリニアエンコーダとを備えたものであることを特徴とするものである。   According to a third aspect of the present invention, in the first aspect of the present invention, the optical sensor position controller includes a rail that extends in the amplitude direction of the reflected light, a stepping motor that moves the optical sensor on the rail, and the position of the optical sensor. And a linear encoder for output.

請求項4の発明は、請求項1記載の偏向角度測定装置を用いた光偏向デバイスの偏向角度測定方法であって、光偏向デバイスを駆動しながら光センサ位置を変更し、往復する反射光が光センサにより検出される時間間隔が周期の1/2となる原点位置を探し出す第1ステップと、駆動信号の電圧を高めて振れ角を大きくするとともに、最大振れ角の70%以上の位置まで光センサを移動させる第2ステップと、振れ角が最大となるように周波数を制御する第3ステップと、得られた最大振れ角の70%以上の位置まで光センサ位置を移動させる第4ステップと、その位置で再度振れ角の測定を行う第5ステップとからなることを特徴とするものである。   A fourth aspect of the invention is a method of measuring a deflection angle of an optical deflection device using the deflection angle measuring apparatus according to the first aspect, wherein the reflected light traveling back and forth is changed by changing the position of the optical sensor while driving the optical deflection device. First step to find the origin position where the time interval detected by the optical sensor is ½ of the period, and increase the drive signal voltage to increase the deflection angle and light up to the position of 70% or more of the maximum deflection angle A second step of moving the sensor, a third step of controlling the frequency so as to maximize the deflection angle, a fourth step of moving the optical sensor position to a position of 70% or more of the obtained maximum deflection angle, The fifth step is to measure the deflection angle again at that position.

また請求項5の発明は、請求項4の発明の第2ステップ及び第4ステップにおいて、光センサを最大振れ角の70%〜90%の位置に移動させることを特徴とするものである。   The invention of claim 5 is characterized in that, in the second step and the fourth step of the invention of claim 4, the optical sensor is moved to a position of 70% to 90% of the maximum deflection angle.

また請求項6の発明は、請求項4の発明において、駆動信号発生部に加える電圧を変更し、第3ステップ〜第5ステップを繰り返すことを特徴とするものである。   The invention of claim 6 is characterized in that, in the invention of claim 4, the voltage applied to the drive signal generator is changed and the third to fifth steps are repeated.

さらに請求項7の発明は、請求項4の発明において、最大振れ角をレーザ往復時間計測部からの時間信号を用いて演算することを特徴とするものである。   Further, the invention of claim 7 is characterized in that, in the invention of claim 4, the maximum deflection angle is calculated using a time signal from the laser round-trip time measuring unit.

請求項1の発明によれば、光偏向デバイスを駆動させながら光偏向デバイスにレーザ光線を発射し、光センサ位置制御部が最大振れ角の70%以上の位置に光センサを自動的に移動させてレーザ往復時間計測を行う。このため光偏向デバイスの最大振れ角の大小にかかわらず、測定可能である。また最大振れ角の70%以上の位置では正弦波駆動される反射光の移動速度が低下するので、最大振れ角の0.5%以下の測定精度を確保することができる。   According to the first aspect of the present invention, a laser beam is emitted to the optical deflection device while driving the optical deflection device, and the optical sensor position control unit automatically moves the optical sensor to a position of 70% or more of the maximum deflection angle. To measure the laser round-trip time. Therefore, measurement is possible regardless of the maximum deflection angle of the optical deflection device. In addition, since the moving speed of reflected light driven by a sine wave decreases at a position of 70% or more of the maximum deflection angle, it is possible to ensure measurement accuracy of 0.5% or less of the maximum deflection angle.

請求項2の発明によれば、演算制御部が光センサのレーザ往復時間計測部からの信号を利用して光センサ位置を自動的に原点に復帰させる。このため従来の目視による場合よりもはるかに高い精度で原点出しを行うことができ、0.5%以下の測定精度を確保する上で効果的である。   According to the invention of claim 2, the arithmetic control unit automatically returns the position of the optical sensor to the origin by using a signal from the laser round trip time measuring unit of the optical sensor. For this reason, the origin can be obtained with a much higher accuracy than in the case of the conventional visual observation, which is effective in ensuring a measurement accuracy of 0.5% or less.

請求項3の発明によれば、光センサ位置制御部が、反射光の振幅方向に延びるレール上で光センサをステッピングモータにより移動させ、リニアエンコーダでその位置を検出する。このため高い精度で光センサの位置を制御でき、0.5%以下の測定精度を確保する上で効果的である。   According to the invention of claim 3, the optical sensor position control unit moves the optical sensor on the rail extending in the amplitude direction of the reflected light by the stepping motor, and detects the position by the linear encoder. For this reason, the position of the photosensor can be controlled with high accuracy, which is effective in ensuring measurement accuracy of 0.5% or less.

請求項4の発明によれば、原点位置を正確に探し出し、駆動信号発生部に所望の電圧を加え、振れ角が最大となるように周波数を制御したうえで最大振れ角の70%以上の位置まで光センサ位置を移動させ、その位置で振れ角の測定を行う。このようなステップを踏むことによって、最大振れ角の大小にかかわらず、最大振れ角の0.5%以下の測定精度で、光偏向デバイスの偏向角度や周波数特性を測定することができる。   According to the invention of claim 4, the origin position is accurately found, a desired voltage is applied to the drive signal generator, the frequency is controlled so as to maximize the deflection angle, and the position of 70% or more of the maximum deflection angle. The position of the optical sensor is moved to the position, and the deflection angle is measured at that position. By taking such steps, the deflection angle and frequency characteristics of the optical deflection device can be measured with a measurement accuracy of 0.5% or less of the maximum deflection angle regardless of the maximum deflection angle.

請求項5の発明によれば、光センサを最大振れ角の70%〜90%の位置に移動させて測定を行う。この領域では正弦波駆動される光偏向デバイスからの反射光の移動速度が比較的遅く、レーザ往復時間計測に最適となる。このため0.5%以下の測定精度を確保する上で効果的である。   According to invention of Claim 5, it measures by moving a photosensor to the position of 70%-90% of the maximum deflection angle. In this region, the moving speed of the reflected light from the optical deflection device driven by a sine wave is relatively slow, which is optimal for measuring the laser round trip time. For this reason, it is effective in ensuring measurement accuracy of 0.5% or less.

請求項6の発明によれば、駆動信号発生部に加える電圧を変更して計測を繰り返す。これにより様々な電圧における光偏向デバイスの特性計測が可能となる。   According to the invention of claim 6, the measurement is repeated by changing the voltage applied to the drive signal generator. This makes it possible to measure the characteristics of the optical deflection device at various voltages.

請求項7の発明によれば、最大振れ角をレーザ往復時間計測部からの時間信号を用いて演算する。このため、光偏向デバイスを最大振幅位置まで移動させることなく、最大振れ角の測定を行うことができる。   According to the invention of claim 7, the maximum deflection angle is calculated using the time signal from the laser round trip time measuring unit. For this reason, the maximum deflection angle can be measured without moving the optical deflection device to the maximum amplitude position.

以下に本発明の実施形態を、図面を参照しつつ詳細に説明する。
図1は本発明の光偏向デバイスの偏向角度測定装置の実施形態を示す斜視図であり、図2はその構成を示すブロック図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of a deflection angle measuring apparatus for an optical deflection device of the present invention, and FIG. 2 is a block diagram showing the configuration thereof.

(装置構成)
図1において、1は測定対象となる光偏向デバイス、2はその側方に設置され光偏向デバイス1のミラー部に線状のレーザ光線を発射するレーザ光源である。レーザ光源2は第1ベース板3上に設置されており、測定対象となる光偏向デバイス1は第1ベース板3上にセットされる。図2に示されるように、光偏向デバイス1は電力増幅器4とファンクションジェネレータ5とからなる駆動信号発生部に接続されており、ファンクションジェネレータ5により生成される信号によって、光偏向デバイス1のミラー部が水平面内で駆動されるようになっている。
(Device configuration)
In FIG. 1, reference numeral 1 denotes an optical deflection device to be measured, and reference numeral 2 denotes a laser light source that is disposed on the side of the optical deflection device and emits a linear laser beam to a mirror portion of the optical deflection device 1. The laser light source 2 is installed on the first base plate 3, and the optical deflection device 1 to be measured is set on the first base plate 3. As shown in FIG. 2, the optical deflection device 1 is connected to a drive signal generation unit including a power amplifier 4 and a function generator 5, and a mirror unit of the optical deflection device 1 is generated by a signal generated by the function generator 5. Is driven in a horizontal plane.

光偏向デバイス1は駆動信号がゼロであるとき、即ちミラー部が原点にあるとき、レーザ光源2から発射されるレーザ光線に対してミラー部が45°の角度を取るように設置され、レーザ光線を直角方向に反射する。そしてミラー部が駆動されることによって、左右方向、即ち振幅方向にレーザ光線を反射する。   When the drive signal is zero, that is, when the mirror portion is at the origin, the optical deflection device 1 is installed such that the mirror portion takes an angle of 45 ° with respect to the laser beam emitted from the laser light source 2. Is reflected at right angles. When the mirror unit is driven, the laser beam is reflected in the left-right direction, that is, in the amplitude direction.

ベース板3に隣接して第2ベース板6が設けられており、その端部には光センサ7を搭載した光センサ位置制御部が設けられている。この光センサ位置制御部はレール8と、そのレール8上で光センサ7を移動させるステッピングモータ9と、光センサ7の位置を出力するリニアエンコーダ10とを備えたものである。レール8は光偏向デバイス1に向けて発射されるレーザ光源2に対して平行に、即ち反射光の振幅方向に設置されている。ステッピングモータ9はこのレール8の側方に設けられた送りねじ11を駆動し、光センサ7を搭載した台車12を移動させる。その移動手順の詳細については後述する。なお第2ベース板6は、光偏向デバイス1のミラー部の高さに対応させて、ベース板3よりもやや上方位置に設けられている。   A second base plate 6 is provided adjacent to the base plate 3, and an optical sensor position control unit on which an optical sensor 7 is mounted is provided at an end thereof. The optical sensor position control unit includes a rail 8, a stepping motor 9 that moves the optical sensor 7 on the rail 8, and a linear encoder 10 that outputs the position of the optical sensor 7. The rail 8 is disposed in parallel to the laser light source 2 emitted toward the light deflection device 1, that is, in the amplitude direction of the reflected light. The stepping motor 9 drives a feed screw 11 provided on the side of the rail 8 to move the carriage 12 on which the optical sensor 7 is mounted. Details of the movement procedure will be described later. The second base plate 6 is provided at a position slightly above the base plate 3 so as to correspond to the height of the mirror portion of the light deflection device 1.

光センサ7は光偏向デバイス1により反射されたレーザ光線を受光し、反射光が光センサ7を横切る時間をレーザ往復時間計測部(タイムインターバルアナライザ)13により測定する。上記したファンクションジェネレータ5、ステッピングモータ9、リニアエンコーダ10、レーザ往復時間計測部13は全て演算制御部(パソコン)14に接続され、演算制御部14の制御下において以下に説明する手順で光偏向デバイス1の偏向角度測定を行う。   The optical sensor 7 receives the laser beam reflected by the optical deflection device 1, and measures the time that the reflected light crosses the optical sensor 7 by a laser reciprocating time measuring unit (time interval analyzer) 13. The function generator 5, stepping motor 9, linear encoder 10, and laser reciprocation time measurement unit 13 described above are all connected to a calculation control unit (personal computer) 14, and the optical deflection device is subjected to the procedure described below under the control of the calculation control unit 14. 1 deflection angle measurement is performed.

(測定原理)
先ず本発明における測定原理を図3を用いて説明する。
本発明では、光偏向デバイス1をファンクションジェネレータ5によって正弦波駆動させながら、そのミラー部によってレーザ光線を反射させ、反射光が光センサ7を横切る時間をレーザ往復時間計測部13により測定する。図3中の正弦波のグラフは反射光の動きを示し、横軸が時間、縦軸がミラー部の振れ角である。ここでは仮に光センサ7が図示の線で示される位置にあるとする。
(Measurement principle)
First, the measurement principle in the present invention will be described with reference to FIG.
In the present invention, while the optical deflection device 1 is driven with a sine wave by the function generator 5, the laser beam is reflected by the mirror unit, and the time that the reflected light crosses the optical sensor 7 is measured by the laser reciprocation time measuring unit 13. The sine wave graph in FIG. 3 shows the movement of the reflected light, with the horizontal axis representing time and the vertical axis representing the deflection angle of the mirror section. Here, it is assumed that the optical sensor 7 is at the position indicated by the line shown in the figure.

光センサ7は、時間原点からtを経過した瞬間に反射光の通過を検出し、その後Tを経過した瞬間及びTを経過した瞬間にもそれぞれ反射光の通過を検出する。その反射光の移動周期はT+Tであるから、光偏向デバイス1の駆動周波数(共振周波数)fは、f=1/(T+T)となる。また光偏向デバイス1の最大振れ角をA(deg)、光センサ7の配置位置をB(deg)とすると、B=Asin(2πft)であるから、A=B/sin(2πft)となり、t=(1/4f)−(T/2)という関係が成立する。本発明ではこれらの関係を利用し、光センサ7の位置Bを変化させながら反射光が通過する時間を測定し、共振周波数fや最大振れ角Aの値を精度良く測定する。 The optical sensor 7 detects the passage of the reflected light at the moment when t 1 has elapsed from the time origin, and then detects the passage of the reflected light at the moment when T 1 has elapsed and the moment after T 2 has elapsed. Since the movement period of the reflected light is T 1 + T 2 , the drive frequency (resonance frequency) f of the optical deflection device 1 is f = 1 / (T 1 + T 2 ). If the maximum deflection angle of the optical deflection device 1 is A (deg) and the arrangement position of the optical sensor 7 is B (deg), B = Asin (2πft 1 ), and therefore A = B / sin (2πft 1 ). , t 1 = (1 / 4f ) - relation holds that (T 1/2). In the present invention, using these relationships, the time for which the reflected light passes is measured while changing the position B of the optical sensor 7, and the values of the resonance frequency f and the maximum deflection angle A are accurately measured.

(具体的手順)
本発明の具体的手順は次の通りである。
最初に図1に示すように測定対象となる光偏向デバイス1をセッティングし、レーザ光源2からレーザ光線をミラー部に発射する。前記したように、ミラー部は駆動信号が入力されない初期状態ではレーザ光線に対して45°の角度でセットされるので、反射光は直角方向に向かう。しかしこの状態では、光センサ7の位置を正確にセットする必要はない。この状態では反射光は静止しているので、波形図は図4の通りである。
(Specific procedure)
The specific procedure of the present invention is as follows.
First, as shown in FIG. 1, the optical deflection device 1 to be measured is set, and a laser beam is emitted from the laser light source 2 to the mirror unit. As described above, since the mirror unit is set at an angle of 45 ° with respect to the laser beam in the initial state where no drive signal is input, the reflected light is directed in a perpendicular direction. However, in this state, it is not necessary to set the position of the optical sensor 7 accurately. Since the reflected light is stationary in this state, the waveform diagram is as shown in FIG.

(第1ステップ)
次に図5に示すように、駆動信号発生部から光偏向デバイス1に駆動信号を入力し,ミラー部を正弦波駆動させる。このとき適宜の振れ角が得られる周波数に駆動信号を調整する。この状態で往復する反射光の検出時間間隔であるTとTを測定し、ステッピングモータ9により光センサ7の位置を僅かずつ動かし、図6に示すようにT=Tとなる位置、すなわち往復する反射光の検出時間間隔TとTが周期fの1/2となる位置を探し出し、その位置を光センサ7の原点とする。なおここでは光センサ7の原点復帰を目的としているため、光偏向デバイス1の振れ角は小さくても差し支えない。
(First step)
Next, as shown in FIG. 5, a drive signal is input from the drive signal generator to the optical deflection device 1 to drive the mirror part in a sine wave. At this time, the drive signal is adjusted to a frequency at which an appropriate deflection angle is obtained. In this state, T 1 and T 2 , which are detection time intervals of reflected light reciprocating in the state, are measured, and the position of the optical sensor 7 is moved little by little by the stepping motor 9, so that T 1 = T 2 as shown in FIG. That is, a position where the detection time interval T 1 and T 2 of the reflected light reciprocating is ½ of the period f is found, and that position is set as the origin of the optical sensor 7. Here, since the purpose is to return the origin of the optical sensor 7, the deflection angle of the optical deflection device 1 may be small.

従来の目視による原点位置の決定方法では、数100μm〜1mm程度の誤差が生ずる可能性があった。図7は原点位置ずれと測定誤差との関係を示すグラフであり、本発明における要求測定精度0.5%を達成するためには、原点位置ずれによる測定誤差を0.1%以内に抑えることが必要である。しかし目視によっては、原点位置ずれによる測定誤差が0.1%を越える可能性がある。これに対して上記した第1ステップの自動原点復帰法を取れば、原点位置ずれを数μm以下に抑えることができ、原点位置ずれによる測定誤差を0.1%以内に抑えることが可能となる。   In the conventional method for determining the origin position by visual observation, there is a possibility that an error of about several hundreds μm to 1 mm occurs. FIG. 7 is a graph showing the relationship between the origin position deviation and the measurement error. In order to achieve the required measurement accuracy of 0.5% in the present invention, the measurement error due to the origin position deviation is suppressed to within 0.1%. is required. However, depending on the visual observation, there is a possibility that the measurement error due to the origin position deviation exceeds 0.1%. On the other hand, if the automatic origin return method of the first step described above is used, the origin position deviation can be suppressed to several μm or less, and the measurement error due to the origin position deviation can be suppressed to within 0.1%. .

(第2ステップ)
次に、図8に示すように光偏向デバイス1の駆動信号の電圧を高めて振れ角を大きくするとともに、光センサ7をステッピングモータ9により原点から動かす。駆動信号の電圧を高めるのは、光偏向デバイス1が実際に使用される状態での特性を測定するためであり、原点復帰用の低電圧よりも高い電圧が印加される。これによりミラー部の振れ角が拡大するので、光センサ7をステッピングモータ9により原点から適当な位置まで仮に移動させて、t、T、Tを測定し、前記したA=B/sin(2πft)、t=(1/4f)−(T/2)の関係式からその電圧における最大振れ角Aを算出する。
(Second step)
Next, as shown in FIG. 8, the voltage of the drive signal of the optical deflection device 1 is increased to increase the deflection angle, and the optical sensor 7 is moved from the origin by the stepping motor 9. The voltage of the drive signal is increased in order to measure characteristics in a state where the optical deflection device 1 is actually used, and a voltage higher than a low voltage for returning to the origin is applied. As a result, the deflection angle of the mirror portion increases, so that the optical sensor 7 is temporarily moved from the origin to an appropriate position by the stepping motor 9 to measure t 1 , T 1 , T 2 , and the above-described A = B / sin (2πft 1), t 1 = (1 / 4f) - to calculate the maximum deflection angle a at the voltage from the relationship of (T 1/2).

このようにしてその駆動信号条件下における最大振れ角Aを算出したのち、図9に示すようにその70%以上の角度位置までステッピングモータ9により光センサ7を自動的に移動させる。前記した自動原点復帰とともに、この点が本発明の重要ポイントであるので、その理由を説明する。   In this way, after calculating the maximum deflection angle A under the driving signal condition, the optical sensor 7 is automatically moved by the stepping motor 9 to an angular position of 70% or more as shown in FIG. Along with the automatic origin return described above, this point is an important point of the present invention, and the reason will be described.

本発明においては光センサ7を用いて反射光を検出するが、光センサ7の仕様として±50nsecの測定時間誤差が不可避的に生じる。このため反射光の移動速度が速い位置に光センサ7を設置して測定を行うと測定時間誤差に対応する反射光の移動距離が長くなり、測定誤差が大きくなるが、反射光の移動速度が遅い位置に光センサ7を設置して測定を行うと測定時間誤差に対応する反射光の移動距離は短くなり、測定誤差は減少する。   In the present invention, the reflected light is detected by using the optical sensor 7, but a measurement time error of ± 50 nsec is inevitably generated as a specification of the optical sensor 7. For this reason, when the optical sensor 7 is installed at a position where the reflected light moving speed is fast, the reflected light moving distance corresponding to the measurement time error becomes long and the measurement error becomes large, but the reflected light moving speed is high. When the optical sensor 7 is installed at a slow position and the measurement is performed, the moving distance of the reflected light corresponding to the measurement time error is shortened and the measurement error is reduced.

図10は光センサ7の測定誤差(ナノ秒)と、光センサ7の設置位置(最大振幅の何%の位置にあるかで表示)と、測定誤差との関係を示すグラフである。この図10から、測定誤差を0.5%以内に抑えるには光センサ7の設置位置を最大振幅の70%以上の位置にしなければならないことが分る。また図11は光センサ7の測定時間誤差を±50nsecとした場合の光センサ7の配置位置と測定誤差との関係を示すグラフであり、測定誤差を0.5%以内に抑えるには光センサ7の設置位置を最大振幅の70%以上の位置にしなければならないことが示されている。   FIG. 10 is a graph showing the relationship between the measurement error (nanosecond) of the optical sensor 7, the installation position of the optical sensor 7 (displayed according to what percentage of the maximum amplitude), and the measurement error. From FIG. 10, it can be seen that the installation position of the optical sensor 7 must be 70% or more of the maximum amplitude in order to suppress the measurement error to within 0.5%. FIG. 11 is a graph showing the relationship between the arrangement position of the optical sensor 7 and the measurement error when the measurement time error of the optical sensor 7 is ± 50 nsec. In order to suppress the measurement error to within 0.5%, the optical sensor It is shown that the installation position of 7 should be 70% or more of the maximum amplitude.

なお、光センサ7の設置位置を最大振幅の100%の位置とすると反射光の移動速度はゼロとなるため、光センサ7の測定時間誤差の影響はなくなる。しかし今度はレーザ往復時間計測部(タイムインターバルアナライザ)13の最小読み取り精度の影響を受ける。この実施形態ではレーザ往復時間計測部13の最小読み取り精度が100psec、光センサ7の読み取り誤差は50nsecである。光センサ7の設置位置はこれらの点を考慮し、最大振れ角に対して70%以上、好ましくは70%〜90%の位置とすることが好ましい。   Note that if the installation position of the optical sensor 7 is set to a position of 100% of the maximum amplitude, the moving speed of the reflected light becomes zero, and the influence of the measurement time error of the optical sensor 7 is eliminated. However, this time, it is affected by the minimum reading accuracy of the laser round-trip time measuring unit (time interval analyzer) 13. In this embodiment, the minimum reading accuracy of the laser round-trip time measuring unit 13 is 100 psec, and the reading error of the optical sensor 7 is 50 nsec. Considering these points, the installation position of the optical sensor 7 is preferably 70% or more, preferably 70% to 90% with respect to the maximum deflection angle.

なお、光センサ7の設置位置を最大振れ角に対して例えば70%に設定するには、前記したT、Tが下記の式を満足する位置まで、ステッピングモータ9により光センサ7を自動的に移動させればよい。このとき、光センサ7の正確な位置はリニアエンコーダ10により検出され、フィードバック制御が行われることはいうまでもない。
=〔2Arcsin(0.7)−π〕/2πf
=〔3π−2Arcsin(0.7)〕/2πf
In order to set the installation position of the optical sensor 7 to, for example, 70% with respect to the maximum deflection angle, the optical sensor 7 is automatically moved by the stepping motor 9 until T 1 and T 2 satisfy the following formulas. Just move it. At this time, needless to say, the accurate position of the optical sensor 7 is detected by the linear encoder 10 and feedback control is performed.
T 1 = [2 Arcsin (0.7) −π] / 2πf
T 2 = [3π-2Arcsin (0.7)] / 2πf

(第3ステップ)
上記の第2ステップにより光センサ7の設置位置を決定したのち、振れ角が最大となるように駆動周波数を制御する。光偏向デバイス1のミラー部の振れ角と駆動周波数fとの間には図12に示す関係があり、共振点付近では駆動周波数fを僅かに変えるだけで振れ角が大きく変化する。本発明では駆動周波数fを変更しながらT、Tを測定し、振れ角が最大となる駆動周波数fを見極め、最大振れ角を測定する。振れ角が最大となるポイントは、TとTの差が最大となる点である。このように、なお最大振れ角もレーザ往復時間計測部13からの時間信号を用いて演算する。
(Third step)
After determining the installation position of the optical sensor 7 in the second step, the drive frequency is controlled so that the deflection angle is maximized. There is a relationship shown in FIG. 12 between the swing angle of the mirror portion of the optical deflection device 1 and the drive frequency f, and the swing angle changes greatly only by slightly changing the drive frequency f in the vicinity of the resonance point. In the present invention, T 1 and T 2 are measured while changing the driving frequency f, the driving frequency f at which the deflection angle is maximized is determined, and the maximum deflection angle is measured. The point where the deflection angle is maximized is the point where the difference between T 1 and T 2 is maximized. As described above, the maximum deflection angle is also calculated using the time signal from the laser round trip time measuring unit 13.

(第4ステップ)
上記のようにして振れ角が最大となる駆動周波数fを決定したが、この段階では光センサ7は第2ステップにより定められた位置にある。そこで、その最大振れ角の70%以上となる位置まで再び光センサ7を移動させる。このように本発明では、最大振れ角の変化に応じて光センサ7を最適位置まで動かしながら測定を行う。
(4th step)
As described above, the drive frequency f at which the deflection angle is maximized is determined. At this stage, the optical sensor 7 is at the position determined by the second step. Therefore, the optical sensor 7 is moved again to a position where the maximum deflection angle is 70% or more. As described above, in the present invention, the measurement is performed while moving the optical sensor 7 to the optimum position in accordance with the change in the maximum deflection angle.

(第5ステップ)
以上の各ステップを実行することによって、光偏向デバイス1の最大振れ角とそのときの駆動周波数fが決定され、しかも光センサ7は最大振れ角の70%以上の位置にセットされた。そこで再度振れ角の測定を行えば、最大振れ角と、駆動周波数に対する振れ角(すなわち周波数応答特性)を0.5%以下の測定誤差で測定することが可能となる。この第5ステップの測定によって、光偏向デバイス1の性能を正確に評価することが可能となる。
(5th step)
By executing the above steps, the maximum deflection angle of the optical deflection device 1 and the driving frequency f at that time were determined, and the optical sensor 7 was set at a position of 70% or more of the maximum deflection angle. If the deflection angle is measured again, the maximum deflection angle and the deflection angle with respect to the drive frequency (that is, frequency response characteristics) can be measured with a measurement error of 0.5% or less. By the measurement in the fifth step, the performance of the optical deflection device 1 can be accurately evaluated.

なお、以上の説明では第2ステップ以降は設定電圧を一定としたまま測定を行ったが、電圧が変更された条件下における光偏向デバイス1の特性を測定する必要がある場合がある。その場合には第5ステップの終了後に駆動信号発生部に加える電圧を変更し、第3ステップ〜第5ステップを繰り返せばよい。   In the above description, the measurement is performed with the set voltage constant after the second step. However, there are cases where it is necessary to measure the characteristics of the optical deflection device 1 under the condition where the voltage is changed. In that case, the voltage applied to the drive signal generator after the fifth step is changed, and the third to fifth steps may be repeated.

以上に説明したように、本発明では光センサ位置制御部が自動的な原点復帰動作を行い、また最大振れ角の70%以上の位置に光センサ7を自動的に移動させながら測定を行うので、従来は達成できなかった最大振れ角0.5%という高い測定精度で、光偏向デバイス1の性能評価を行うことができる。また本発明は受光器の応答時間遅れ特性及び最大振れ角を考慮して光センサ7を最適位置に移動させるので、最大振れ角が大きくなっても測定精度が低下することはない。   As described above, in the present invention, the optical sensor position control unit automatically performs an origin return operation, and performs measurement while automatically moving the optical sensor 7 to a position of 70% or more of the maximum deflection angle. The performance evaluation of the optical deflection device 1 can be performed with a high measurement accuracy of 0.5%, which is a maximum deflection angle that has not been achieved in the past. In the present invention, the optical sensor 7 is moved to the optimum position in consideration of the response time delay characteristic of the light receiver and the maximum deflection angle. Therefore, even if the maximum deflection angle increases, the measurement accuracy does not decrease.

従って本発明によれば、最大振れ角の大小にかかわらず、最大振れ角の0.5%以下の測定精度で、光偏向デバイスの偏向角度や周波数特性を測定することができる。具体的には、光偏向デバイスの共振周波数を0.1Hzオーダーで測定可能であり、振れ角も0.1degオーダーで測定可能である。   Therefore, according to the present invention, the deflection angle and frequency characteristics of the optical deflection device can be measured with a measurement accuracy of 0.5% or less of the maximum deflection angle regardless of the maximum deflection angle. Specifically, the resonance frequency of the optical deflection device can be measured on the order of 0.1 Hz, and the deflection angle can also be measured on the order of 0.1 deg.

本発明の光偏向デバイスの偏向角度測定装置の実施形態を示す斜視図である。It is a perspective view which shows embodiment of the deflection angle measuring apparatus of the optical deflection | deviation device of this invention. 本発明の光偏向デバイスの構成を示すブロック図である。It is a block diagram which shows the structure of the optical deflection | deviation device of this invention. 本発明の測定原理の説明図である。It is explanatory drawing of the measurement principle of this invention. 初期状態における反射光の波形図である。It is a wave form diagram of reflected light in an initial state. 第1ステップを示す斜視図である。It is a perspective view which shows a 1st step. 第1ステップにおける反射光の波形図である。It is a wave form diagram of reflected light in the 1st step. 原点位置ずれと測定誤差との関係を示すグラフである。It is a graph which shows the relationship between an origin position shift and a measurement error. 第2ステップにおける反射光の波形図である。It is a wave form diagram of reflected light in the 2nd step. 第2ステップを示す斜視図である。It is a perspective view which shows a 2nd step. 光センサの測定誤差と、光センサの設置位置と、測定誤差との関係を示すグラフである。It is a graph which shows the relationship between the measurement error of an optical sensor, the installation position of an optical sensor, and a measurement error. 光センサの測定時間誤差を50nsecとした場合の光センサの配置位置と測定誤差との関係を示すグラフである。It is a graph which shows the relationship between the arrangement position of an optical sensor, and a measurement error when the measurement time error of an optical sensor is 50 nsec. 振れ角と駆動周波数fとの関係を示すグラフである。It is a graph which shows the relationship between a deflection angle and the drive frequency f.

符号の説明Explanation of symbols

1 光偏向デバイス
2 レーザ光源
3 第1ベース板
4 電力増幅器
5 ファンクションジェネレータ
6 第2ベース板
7 光センサ
8 レール
9 ステッピングモータ
10 リニアエンコーダ
11 送りねじ
12 台車
13 レーザ往復時間計測部
14 演算制御部
DESCRIPTION OF SYMBOLS 1 Optical deflection device 2 Laser light source 3 1st base board 4 Power amplifier 5 Function generator 6 2nd base board 7 Optical sensor 8 Rail 9 Stepping motor 10 Linear encoder 11 Feed screw 12 Cart 13 Laser reciprocation time measurement part 14 Calculation control part

Claims (7)

光偏向デバイスの偏向角度を光センサにより測定する偏向角度測定装置であって、光偏向デバイスのミラー部にレーザ光線を発射するレーザ光源と、光偏向デバイスを駆動する駆動信号発生部と、光偏向デバイスのミラー部により反射されたレーザ光線を受光する光センサと、この光センサを反射光の振幅方向に移動できる光センサ位置制御部と、光センサのレーザ往復時間計測部と、演算制御部とからなり、光センサ位置制御部が最大振れ角の70%以上の位置に光センサを自動的に移動させる機能を備えたものであることを特徴とする光偏向デバイスの偏向角度測定装置。   A deflection angle measuring apparatus for measuring a deflection angle of an optical deflection device with an optical sensor, a laser light source for emitting a laser beam to a mirror part of the optical deflection device, a drive signal generator for driving the optical deflection device, and an optical deflection An optical sensor that receives the laser beam reflected by the mirror of the device, an optical sensor position control unit that can move the optical sensor in the amplitude direction of the reflected light, a laser round-trip time measuring unit of the optical sensor, an arithmetic control unit, A deflection angle measuring apparatus for an optical deflection device, characterized in that the optical sensor position control unit has a function of automatically moving the optical sensor to a position of 70% or more of the maximum deflection angle. 演算制御部が、光センサのレーザ往復時間計測部からの信号を利用して光センサ位置を原点に復帰させる機能を備えたものであることを特徴とする請求項1記載の光偏向デバイスの偏向角度測定装置。   2. The deflection of an optical deflection device according to claim 1, wherein the arithmetic control unit has a function of returning the optical sensor position to the origin by using a signal from the laser round-trip time measuring unit of the optical sensor. Angle measuring device. 光センサ位置制御部が、反射光の振幅方向に延びるレールと、このレール上で光センサを移動させるステッピングモータと、光センサの位置を出力するリニアエンコーダとを備えたものであることを特徴とする請求項1記載の光偏向デバイスの偏向角度測定装置。   The optical sensor position control unit includes a rail extending in the amplitude direction of the reflected light, a stepping motor that moves the optical sensor on the rail, and a linear encoder that outputs the position of the optical sensor. An apparatus for measuring a deflection angle of an optical deflection device according to claim 1. 請求項1記載の偏向角度測定装置を用いた光偏向デバイスの偏向角度測定方法であって、光偏向デバイスを駆動しながら光センサ位置を変更し、往復する反射光が光センサにより検出される時間間隔が周期の1/2となる原点位置を探し出す第1ステップと、駆動信号の電圧を高めて振れ角を大きくするとともに、最大振れ角の70%以上の位置まで光センサを移動させる第2ステップと、振れ角が最大となるように周波数を制御する第3ステップと、得られた最大振れ角の70%以上の位置まで光センサ位置を移動させる第4ステップと、その位置で再度振れ角の測定を行う第5ステップとからなることを特徴とする光偏向デバイスの偏向角度測定方法。   2. A method of measuring a deflection angle of an optical deflection device using the deflection angle measuring apparatus according to claim 1, wherein the optical sensor position is changed while driving the optical deflection device, and the reflected light traveling back and forth is detected by the optical sensor. A first step for finding an origin position where the interval is 1/2 of the period, and a second step for increasing the voltage of the drive signal to increase the deflection angle and moving the photosensor to a position that is 70% or more of the maximum deflection angle. And a third step of controlling the frequency so that the deflection angle is maximized, a fourth step of moving the optical sensor position to a position of 70% or more of the obtained maximum deflection angle, and the deflection angle again at that position. A method for measuring a deflection angle of an optical deflection device, comprising: a fifth step of performing measurement. 第2ステップ及び第4ステップにおいて、光センサを最大振れ角の70%〜90%の位置に移動させることを特徴とする請求項4記載の光偏向デバイスの偏向角度測定方法。   5. The method of measuring a deflection angle of an optical deflection device according to claim 4, wherein in the second step and the fourth step, the optical sensor is moved to a position of 70% to 90% of the maximum deflection angle. 駆動信号発生部に加える電圧を変更し、第3ステップ〜第5ステップを繰り返すことを特徴とする請求項4記載の光偏向デバイスの偏向角度測定方法。   5. The method of measuring a deflection angle of an optical deflection device according to claim 4, wherein the voltage applied to the drive signal generator is changed and the third to fifth steps are repeated. 最大振れ角を、レーザ往復時間計測部からの時間信号を用いて演算することを特徴とする請求項4記載の光偏向デバイスの偏向角度測定方法。   5. The deflection angle measuring method for an optical deflection device according to claim 4, wherein the maximum deflection angle is calculated using a time signal from a laser round trip time measuring unit.
JP2007066209A 2007-03-15 2007-03-15 Deflection angle measuring apparatus and deflection angle measuring method for optical deflection device Expired - Fee Related JP4293251B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007066209A JP4293251B2 (en) 2007-03-15 2007-03-15 Deflection angle measuring apparatus and deflection angle measuring method for optical deflection device
PCT/JP2008/053144 WO2008111385A1 (en) 2007-03-15 2008-02-25 Deflection angle measuring device and deflection angle measuring method of optical deflection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066209A JP4293251B2 (en) 2007-03-15 2007-03-15 Deflection angle measuring apparatus and deflection angle measuring method for optical deflection device

Publications (2)

Publication Number Publication Date
JP2008224572A true JP2008224572A (en) 2008-09-25
JP4293251B2 JP4293251B2 (en) 2009-07-08

Family

ID=39759327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066209A Expired - Fee Related JP4293251B2 (en) 2007-03-15 2007-03-15 Deflection angle measuring apparatus and deflection angle measuring method for optical deflection device

Country Status (2)

Country Link
JP (1) JP4293251B2 (en)
WO (1) WO2008111385A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220795A (en) * 2011-04-11 2012-11-12 Seiko Epson Corp Optical scanner and image-forming device
JP2012237795A (en) * 2011-05-10 2012-12-06 Seiko Epson Corp Optical scanner and image forming apparatus
KR101383209B1 (en) 2013-01-11 2014-04-09 주식회사 레드로버 Appratus for estimating half mirror quality of stereo camera rig using r lm guide and rack gear
JP2016173553A (en) * 2015-03-16 2016-09-29 株式会社リコー Inspection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258548A (en) * 2003-02-27 2004-09-16 Nippon Signal Co Ltd:The Electromagnetic drive type optical scanner
JP2005517212A (en) * 2002-02-08 2005-06-09 イエノプティック エルデーテー ゲーエムベーハー Apparatus and method for measuring and controlling resonant oscillators
JP2005242037A (en) * 2004-02-27 2005-09-08 Canon Inc Light deflector, detection unit and method for detecting deflection timing of deflecting means in the same
JP2005241482A (en) * 2004-02-27 2005-09-08 Canon Inc Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector
JP2005321484A (en) * 2004-05-06 2005-11-17 Victor Co Of Japan Ltd Frequency response characteristic measuring device of optical deflection mirror system
JP2008026076A (en) * 2006-07-19 2008-02-07 Fuji Xerox Co Ltd Laser optical system inspection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517212A (en) * 2002-02-08 2005-06-09 イエノプティック エルデーテー ゲーエムベーハー Apparatus and method for measuring and controlling resonant oscillators
JP2004258548A (en) * 2003-02-27 2004-09-16 Nippon Signal Co Ltd:The Electromagnetic drive type optical scanner
JP2005242037A (en) * 2004-02-27 2005-09-08 Canon Inc Light deflector, detection unit and method for detecting deflection timing of deflecting means in the same
JP2005241482A (en) * 2004-02-27 2005-09-08 Canon Inc Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector
JP2005321484A (en) * 2004-05-06 2005-11-17 Victor Co Of Japan Ltd Frequency response characteristic measuring device of optical deflection mirror system
JP2008026076A (en) * 2006-07-19 2008-02-07 Fuji Xerox Co Ltd Laser optical system inspection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220795A (en) * 2011-04-11 2012-11-12 Seiko Epson Corp Optical scanner and image-forming device
JP2012237795A (en) * 2011-05-10 2012-12-06 Seiko Epson Corp Optical scanner and image forming apparatus
KR101383209B1 (en) 2013-01-11 2014-04-09 주식회사 레드로버 Appratus for estimating half mirror quality of stereo camera rig using r lm guide and rack gear
JP2016173553A (en) * 2015-03-16 2016-09-29 株式会社リコー Inspection system

Also Published As

Publication number Publication date
JP4293251B2 (en) 2009-07-08
WO2008111385A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
US7388655B2 (en) High-precision laser rangefinder using burst emission
JP6045963B2 (en) Optical distance measuring device
EP1806571B1 (en) Apparatus and method for evaluating driving characteristics of scanner
US9766451B2 (en) Method for calculating scanning pattern of light, and optical scanning apparatus
US20120062867A1 (en) Laser distance measurement apparatus
KR20040083012A (en) Displacement system and method for measuring displacement
JP3113731B2 (en) Component mounting inspection method, inspection device thereof, and substrate inspected by the inspection device
JP4293251B2 (en) Deflection angle measuring apparatus and deflection angle measuring method for optical deflection device
JP2014020963A (en) Distance measurement apparatus, emission timing controller and program
KR101303371B1 (en) Method of measuring relative movement of an object and an optical input device over a range of speeds
JP5081559B2 (en) measuring device
JP2013210316A (en) Optical distance measuring device
US7570061B2 (en) Cantilever control device
JP2012058124A (en) Laser range finding apparatus
JP5027617B2 (en) Measuring method of resonance frequency and maximum optical swing angle
FI66495B (en) FOERFARANDE FOER ANALYSIS AV EN AV OCH AN GAOENDE ROERELSE
KR100675327B1 (en) Magnet measurement system
CN104272066B (en) For the method measuring the liquid level of liquid
US7854015B2 (en) Method for measuring the force of interaction in a scanning probe microscope
JP2018136224A (en) Scanning probe microscope
JP6172465B2 (en) Stage position control apparatus and method
JP5133744B2 (en) Shape measuring device
EP3995853B1 (en) Method for measuring tilt angle of vibrating mirror for scanning and lidar using method
JP2008014815A (en) Terahertz-pulse light measuring apparatus
JP6696570B2 (en) Scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees