JP2008224326A - Distributor - Google Patents

Distributor Download PDF

Info

Publication number
JP2008224326A
JP2008224326A JP2007060711A JP2007060711A JP2008224326A JP 2008224326 A JP2008224326 A JP 2008224326A JP 2007060711 A JP2007060711 A JP 2007060711A JP 2007060711 A JP2007060711 A JP 2007060711A JP 2008224326 A JP2008224326 A JP 2008224326A
Authority
JP
Japan
Prior art keywords
distributor
supply port
core
annular space
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007060711A
Other languages
Japanese (ja)
Other versions
JP4160098B2 (en
Inventor
Yoshiaki Yamada
嘉昭 山田
Norihisa Senoo
典久 妹尾
Yoshiteru Nakasaki
義晃 中崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama Prefecture Ind Promotion Foundation
Original Assignee
Okayama Prefecture Ind Promotion Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama Prefecture Ind Promotion Foundation filed Critical Okayama Prefecture Ind Promotion Foundation
Priority to JP2007060711A priority Critical patent/JP4160098B2/en
Publication of JP2008224326A publication Critical patent/JP2008224326A/en
Application granted granted Critical
Publication of JP4160098B2 publication Critical patent/JP4160098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributor capable of achieving quantitative distribution of a target liquid substance at each of distribution ports and of realizing numbering-up of microdevices. <P>SOLUTION: In the distributor equipped with a single supply port N for supplying a fluid material and a plurality of branched distribution ports 2, having the flow channels, connected to the single supply port N and branching the fluid material passed through the flow channels to respectively distribute the fluid material individually, a conical annular space M is installed which starts from the single supply port N and made to expand in its peripheral length L toward the bottom part to which the respective branched distribution ports 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ化学プロセスやマイクロ分析に使用されるマイクロリアクターやマイクロTAS(Micro Total Analysis Systems)(以下、マイクロリアクターやマイクロTASを総称してマイクロディバイスという)の技術分野で実用的かつ効率的なプロセスを構成するのに不可欠な分配器に関するものであり、複数のマイクロディバイスに対象流体物を同時に、均一に分配、供給しようとするものである。   The present invention is practical and efficient in the technical field of microreactors and micro TAS (Micro Total Analysis Systems) used for microchemical processes and microanalysis (hereinafter, microreactors and microTAS are collectively referred to as microdevices). The present invention relates to a distributor which is indispensable for constituting a simple process, and intends to distribute and supply a target fluid material to a plurality of micro devices simultaneously and uniformly.

マイクロ化学プロセスやマイク化学分析で使用されるマイクロディバイスは、『実用化、量産化の際、必要な機能が確認されたプロトタイプリアクターをそのまま並列に必要数並べてナンバリング・アップしオンデマインドな生産量に対応することが可能である』というところに大きな特徴を有しており、最近では実用プロセスにおけるナンバリング・アップシステムの開発の必要性が高まりつつある(例えば、非特許文献1参照。)。
京都大学教授 吉田 潤一 著「マイクロリアクターテクノロジ」(有)ブッカーズ社、2005年7月13日発行、p.34〜37
Microdevices used in microchemical processes and microchemical analysis have been described as follows: `` Prototype reactors for which necessary functions have been confirmed are put in parallel and numbered as they are in practical use and mass production. In recent years, the necessity of developing a numbering up system in a practical process is increasing (see, for example, Non-Patent Document 1).
Junichi Yoshida, Professor, Kyoto University "Micro Reactor Technology" (book) Bookers, July 13, 2005, p.34-37

とくに、この種の分野で取り扱われる対象流体物は極微小流量であり、該対象流体物を均等に複数のマイクロディバイスへ分配、供給することが求められ、従来の分配、供給技術としては、供給源から各供給先(マイクロリアクター等)に至るまでの流通路の長さを全て均一に設計したトーナメント方式(図11参照)や連絡通路を形成した仕切板を複数枚重ね合わせた積層方式(図12参照)、単一の流通路に供給先を直接連結した直結方式(図13(a)(b)参照)あるいは単一の供給口から漸次流通路を拡長させたスカート方式(図14参照)等の採用が試みられていた。   In particular, the target fluid handled in this type of field has an extremely small flow rate, and it is required to distribute and supply the target fluid evenly to a plurality of microdevices. A tournament method (see Fig. 11) in which the length of the flow path from the source to each supply destination (microreactor, etc.) is designed to be uniform (see Fig. 11), and a stacking method in which a plurality of partition plates with communication channels are stacked (Fig. 12), a direct connection method (see Fig. 13 (a) and (b)) where the supply destination is directly connected to a single flow passage, or a skirt method (see Fig. 14) where the flow passage is gradually extended from a single supply port. ) Etc. have been tried.

ところで、上記のトーナメント方式は、流通路の分岐部で流れの慣性の影響を受けるため、分岐後の流量にばらつきが生じる不具合があること、また、分岐後の直線部を長くすることにより整流効果を得ることができるものの、その構造を確保するために流通路を長くすると圧力損失の発生が避けられないばかりか、分配器を設置する過大なスペースが必要となり実用的でない。   By the way, the above tournament system is affected by the inertia of the flow at the branching portion of the flow passage, so there is a problem that the flow rate after branching varies, and the straightening part after branching is lengthened so that the rectifying effect However, if the flow path is lengthened in order to secure the structure, the occurrence of pressure loss is unavoidable, and an excessive space for installing the distributor is required, which is not practical.

また、積層方式については、マイクロディバイスに直接分岐流通路を設けることができ、しかも部品数も少なくてすむことから経済的な設計が可能であり現在比較的多用されているが、この積層方式は、流通路の奥に行くにしたがい流通路の抵抗による圧力損失が生じ、その結果として各マイクロディバイスへの供給量の変化が避けられない。   As for the lamination method, it is possible to provide a branch flow path directly in the micro device and to reduce the number of parts, so that it is possible to design economically. As the depth of the flow path increases, a pressure loss due to the resistance of the flow path occurs, and as a result, a change in the supply amount to each microdevice is inevitable.

さらに、直結方式では、上記の積層方式と同様、流通路の長さの違いによる影響を受けて均一な分配、供給が困難であり、スカート方式にあっては、供給口から分配先までの長さが相違することから均一な分配、供給が困難であって、何れの方式においても未だ有効な手段にはなり得ないのが現状であった。   Furthermore, in the direct connection method, it is difficult to uniformly distribute and supply under the influence of the difference in the length of the flow path, as in the above-described lamination method. In the skirt method, the length from the supply port to the distribution destination is difficult. Therefore, uniform distribution and supply are difficult, and none of the methods has been effective yet.

本発明の課題は、上記のような従来の不具合を解消し対象流体物を各ディバイスに均一に分配、供給できる新規な新規な分配器を提案するところにある。   An object of the present invention is to propose a new novel distributor capable of solving the above-described conventional problems and uniformly distributing and supplying a target fluid to each device.

本発明は、流体物を供給する単一の供給口と、この単一の供給口につながる流通路を有し該流通路を経た流体物を分岐させて個別にそれぞれ配給する複数の分岐配給口とを備えた分配器において、
前記流通路は、供給口を起点にしてそこから各分岐配給口が配設された底部へ向けて周長を拡張させた円錐型環状空間からなる、ことを特徴とする分配器である。
The present invention has a single supply port for supplying a fluid and a flow passage connected to the single supply port, and a plurality of branch distribution ports for branching the fluid through the flow passage and distributing them individually. In a distributor with
The flow passage is a distributor characterized by comprising a conical annular space whose peripheral length is extended from a supply port as a starting point toward a bottom portion where each branch distribution port is disposed.

上記の分配器を構成するに当たっては、頂点と底部とをつなぐ円錐型の輪郭形状を形成する外部壁を備えたコアと、このコアの頂点に対面させて供給口を形成する貫通孔を有し、該コアの外部壁に沿う内部壁を有するコアケースとの組合せにて円錐型環状空間を区画形成するのがよい。   In configuring the above distributor, the distributor has a core having an outer wall that forms a conical contour shape connecting the apex and the bottom, and a through hole that forms a supply port facing the apex of the core. The conical annular space may be partitioned by a combination with a core case having an inner wall along the outer wall of the core.

また、円錐型環状空間は、コアの外部壁における拡張角度をθとし、コアケースの内部壁における拡張角度をθとした場合に、θ<θの条件を満足するのが好ましい。 The conical annular space preferably satisfies the condition of θ 21 when the expansion angle at the outer wall of the core is θ 1 and the expansion angle at the inner wall of the core case is θ 2 .

さらに、円錐型環状空間は、供給口から分岐配給口に至るまでの間で同一の断面積を有するものとすることができるが、供給口から分岐配給口へ向けて漸次減少する断面積を有するものを適用することもできる。   Further, the conical annular space may have the same cross-sectional area from the supply port to the branch distribution port, but has a cross-sectional area that gradually decreases from the supply port to the branch distribution port. Things can also be applied.

分配器がもつ流通路は、円錐型形状をなす三次元的な環状空間であって、流体の流れ特性に影響する要素(供給口から配給口に至るまでの距離、流通路の断面形状、流れの慣性(方向)等)が該環状空間の周り、長さ方向の何れにおいてもほぼ同一になるので、各分岐配給口における対象流体物の流量は均一化(定量分配)される。   The flow path of the distributor is a three-dimensional annular space in the shape of a cone. The elements that affect the flow characteristics of the fluid (distance from the supply port to the distribution port, cross-sectional shape of the flow path, flow ) (Inertia (direction), etc.) is substantially the same in both the length direction and the circumference of the annular space, so that the flow rate of the target fluid in each branch distribution port is made uniform (quantitative distribution).

圧力損失が少なく、構造の簡素化が可能であり、メンテナンスを含め取り扱いが容易となる。   There is little pressure loss, the structure can be simplified, and handling including maintenance becomes easy.

以下、図面を用いて本発明をより具体的に説明する。
図1は本発明にしたがう分配器の実施の形態を断面について示した図であり、図2は分配器の分解状態を示した外観斜視図である。
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 is a sectional view showing an embodiment of a distributor according to the present invention, and FIG. 2 is an external perspective view showing an exploded state of the distributor.

図1、2における番号1はコアである。このコア1は頂点Pと底部h(図1参照)とをつなぎ円錐型の輪郭形状を形成する外部壁1aが備えられており、底部hの縁部には該コア1を取り囲む環状の溝部1bが設けられている。   Number 1 in FIGS. 1 and 2 is a core. The core 1 is provided with an outer wall 1a that connects the apex P and the bottom h (see FIG. 1) to form a conical contour, and an annular groove 1b that surrounds the core 1 is provided at the edge of the bottom h. Is provided.

2は溝部1bの底壁に設けられた分岐配給口である。この分岐配給口2はコア1の周りに沿って複数個設けられおり、その下端はマイクロディバイスにつながっている。   Reference numeral 2 denotes a branch distribution port provided on the bottom wall of the groove 1b. A plurality of branch distribution ports 2 are provided along the periphery of the core 1, and the lower ends thereof are connected to the micro device.

また、3はコア1に組み合わさるコアケースである。コアケース3にはコア1に組み合わさった状態でコア1の頂点Pに対面して供給口Nを形成する貫通孔3aと、コア1の外部壁1aに近接配置される内部壁3bが設けられており、図3に示すように内部壁3bとコア1の外部壁1aにより、供給口Nを起点に溝部1b(底部縁部)に向けて周長Lが拡張する円錐型環状空間Mを区画形成する。この円錐型環状空間Mは分配器の流通路を構成するものであって供給口Nから各分岐配給口2へと向けて対象流体物を流す。   Reference numeral 3 denotes a core case to be combined with the core 1. The core case 3 is provided with a through hole 3a that forms a supply port N facing the apex P of the core 1 in a state of being combined with the core 1, and an inner wall 3b that is disposed close to the outer wall 1a of the core 1. As shown in FIG. 3, the inner wall 3b and the outer wall 1a of the core 1 define a conical annular space M whose circumferential length L extends from the supply port N toward the groove 1b (bottom edge). Form. The conical annular space M constitutes a flow passage of the distributor, and allows the target fluid to flow from the supply port N toward each branch distribution port 2.

さらに、4はコア1を保持するホルダー、5はコアケース3を保持するホルダー、6は液状物を分配器に供給する供給ジョイント、7は分配器の各分岐配給口2につながり、分配された液状物をマイクロディバイスに配給する分岐ジョイントである。ホルダー4とホルダー5とは図示はしないが、ボルトの如き締結手段にて相互に連結される。   Furthermore, 4 is a holder that holds the core 1, 5 is a holder that holds the core case 3, 6 is a supply joint that supplies liquid material to the distributor, and 7 is connected to each branch / distribution port 2 of the distributor. It is a branch joint that distributes liquid materials to micro devices. Although not shown, the holder 4 and the holder 5 are connected to each other by fastening means such as bolts.

上記の構成になる分配器は、供給口Nから分岐配給口2に至るまでの長さW(図3参照)についても、その周りにおいて全て同じであって(三次元的な流通路となる)、対象流体物は図4に示すような流れを呈することとなり各分岐配給口2において定量分配が可能となる。   The distributor having the above configuration is the same in all the length W from the supply port N to the branch distribution port 2 (see FIG. 3) (becomes a three-dimensional flow path). The target fluid exhibits a flow as shown in FIG. 4 and can be quantitatively distributed at each branch distribution port 2.

分配器の流通路を形成する円錐型環状空間Mは、開孔あるいは細溝によって貫通路を形成しこれを円錐型状に複数本配列することによって構成することも可能で、この場合、流通路はその周りにおいては断続的な壁が形成されるが、対象流体物の定量分配が可能となる。また、円錐型環状空間Mの周長Lはマイクロディバイスの形式や設置状況等に応じて長さWの範囲で適宜短縮することもできる。   The conical annular space M that forms the flow passage of the distributor can also be configured by forming a through passage by an opening or a narrow groove and arranging a plurality of conical shapes in this case. An intermittent wall is formed in the surroundings, but a quantitative distribution of the target fluid is possible. Further, the circumferential length L of the conical annular space M can be appropriately shortened in the range of the length W according to the type of the micro device, the installation situation, and the like.

コア1の外部壁1aにおける拡張角度(円錐角度)をθとし、コアケース3の内部壁3bにおける拡張角度をθとした場合(図1参照)に、θ<θとする。その理由は、このような条件に設定すると、供給口Nから分岐配給口2へ至る流路断面積を均等又は漸減させることができ、対象流体物(供給流体)に流路断面積変化による圧力上昇(圧力低下を防止する)を起こさせ少なくとも溝部1bで均一な圧力とすることができるからである。 Extended angle of the external wall 1a of the core 1 (cone angle) and theta 1, when the expansion angle inside wall 3b of the core case 3 was theta 2 (see FIG. 1), and θ 2 <θ 1. The reason for this is that when the above conditions are set, the cross-sectional area of the flow path from the supply port N to the branch distribution port 2 can be uniformly or gradually decreased, and the pressure due to the change of the cross-sectional area of the flow path is applied to the target fluid (supply fluid). This is because it is possible to raise the pressure (prevent pressure drop) and make the pressure uniform at least in the groove 1b.

円錐型環状空間Mは、コア1の外部壁1aにおける拡張角度θ及びコアケース3の内部壁3bにおける拡張角度θの組み合わせにより供給口Nから分岐配給口2に至るまで同一の断面積となるように設定してもよいが、溝部1bで均一な流量と圧力を与えるためは、該円錐型環状空間Mの断面積は、供給口Nから分岐配給口2へ向けて漸次に減少させるのが有効であり、この点に関しては対象流体物の特性や流れ条件(圧力、流量等)により任意に変更できる。 The conical annular space M has the same cross-sectional area from the supply port N to the branch distribution port 2 by the combination of the expansion angle θ 1 in the outer wall 1 a of the core 1 and the expansion angle θ 2 in the inner wall 3 b of the core case 3. However, in order to provide a uniform flow rate and pressure in the groove 1b, the cross-sectional area of the conical annular space M is gradually decreased from the supply port N toward the branch distribution port 2. Is effective, and can be arbitrarily changed in accordance with the characteristics of the target fluid and the flow conditions (pressure, flow rate, etc.).

円錐型環状空間Mの最終部あるいは溝部1bからマイクロディバイスに至るまでの通路には図5に示すように、断面積を部分的に急速に小さくした領域(チョーク孔)を設けて絞り効果を与えることも可能であり、これにより円錐型環状空間Mの各部、溝部1bにおける圧力の均一化が可能となる。   As shown in FIG. 5, a region (choke hole) in which the cross-sectional area is partially reduced rapidly is provided in the passage from the final part of the conical annular space M or the groove part 1b to the micro device to provide a throttling effect. This also makes it possible to equalize the pressure in each part of the conical annular space M and in the groove 1b.

また、絞り効果をより一層向上させるために、円錐型環状空間Mの最終部あるいは溝部1bからマイクロディバイスに至るまでの通路に、図6に示すように、セラミック、ガラス、ステンレス鋼等の球体や粉体を充填してもよい。   Further, in order to further improve the throttling effect, as shown in FIG. 6, a spherical body such as ceramic, glass, stainless steel, or the like, in the passage from the final part of the conical annular space M or the groove part 1b to the micro device, Powder may be filled.

分配器の配置姿勢は、予圧状態で対象流体物を送給することができるように供給口Nを下にし、分岐配給口2を上にした配置姿勢とするのが望ましい。   It is desirable that the distribution posture of the distributor is such that the supply port N faces down and the branch distribution port 2 faces up so that the target fluid can be fed in a preload state.

図7にマイクロディバイスのナンバリング・アップの構成例を示す。   Fig. 7 shows a configuration example of numbering up of micro devices.

上掲図1に示した構造になる分配器(θ:105°、θ:96°、溝部寸法:幅3mm、深さ2mm、チョーク孔:直径1.5mm、分岐配給口:10個とした分水嶺型分配器)の下流にナノ粒子調整用のマイクロリアターを設置して、1ライン当たりの設定流量:0.7ml/min、ライン圧力:0.7MPa(7kgf/cm)、ライン温度:室温の条件で対象流体物(超純水)を供給しその際の流出量について調査(2ライン接続(対角に接続)、5ライン接続(1ラインおきに接続)、10ライン接続)した。その結果を表1〜3に示す。なお、この調査では、図8〜10に示す形式の分配器についての調査(条件同一)も併せて行った。 Distributor having the structure shown in Fig. 1 (θ 1 : 105 °, θ 2 : 96 °, groove size: width 3mm, depth 2mm, choke hole: diameter 1.5mm, branch distribution port: 10 A microreactor for adjusting nanoparticles is installed downstream of the water separator (distributor), set flow rate per line: 0.7 ml / min, line pressure: 0.7 MPa (7 kgf / cm 2 ), line temperature: room temperature The target fluid (ultra-pure water) was supplied under the conditions described above, and the outflow at that time was investigated (2-line connection (connecting diagonally), 5-line connection (connecting every other line), and 10 line connection). The results are shown in Tables 1-3. In this survey, a survey (same conditions) was conducted on the distributors of the types shown in FIGS.

Figure 2008224326
Figure 2008224326

Figure 2008224326
Figure 2008224326

Figure 2008224326
Figure 2008224326

図8に示した分配器は、圧力に関するパスカルの法則に従えば流入した反応流体は各分岐配給口で等圧となるが、実際には分岐路内の流路抵抗により供給口に近い分岐配給口ほど流量が多く、供給口から離れるほど流量が少なくなった。また、図9に示した分配器については、供給口に近い分岐配給口では流量が多く、両端に近づくほど流量が少なくなり、図8に示した分配器と同様の傾向が見られた。   In the distributor shown in FIG. 8, according to Pascal's law regarding pressure, the reaction fluid that flows in becomes equal pressure at each branch distribution port, but in reality, the branch distribution near the supply port due to the channel resistance in the branch path The flow rate was higher at the mouth, and the flow rate was lower the further from the supply port. For the distributor shown in FIG. 9, the flow rate was large at the branch distribution port close to the supply port, and the flow rate decreased as it approached both ends, and the same tendency as the distributor shown in FIG. 8 was observed.

図10に示した分配器は充填材を配置した構造のものであって、この場合、流量のばらつきは幾分緩和されたものの、流量に対する依存性が大きく、分岐配給口の下流に圧力損失(流路抵抗)の大きなマイクロリアクターを設置した場合には改善効果は現れなかった(マイクロディバイスでの圧力損失が大きいほど分岐配給口での流量差は小さくなるが、分記配給口の多くなる場合に圧力損失が格段に大きくなるため実用には供し得ない。)。   The distributor shown in FIG. 10 has a structure in which fillers are arranged. In this case, although the variation in the flow rate is somewhat relaxed, the dependence on the flow rate is large, and the pressure loss ( When a microreactor with a large flow path resistance was installed, the improvement effect did not appear (the larger the pressure loss in the microdevice, the smaller the flow difference at the branch distribution port, but the more the distribution distribution port) In addition, since the pressure loss is greatly increased, it cannot be put to practical use.)

これに対して、本発明にしたがう分配器は、2ライン接続の場合では流量の標準偏差(SD)が0.069、5ライン接続の場合では0.18、10ライン接続の場合にでは0.19であり、流量のばらつきが極めて小さく、定量分配が可能であることが確認できた。   On the other hand, the distributor according to the present invention has a flow rate standard deviation (SD) of 0.069 in the case of 2-line connection, 0.18 in the case of 5-line connection, and 0.1 in the case of 10-line connection. It was 19 and it was confirmed that the variation in flow rate was extremely small and quantitative distribution was possible.

マイクロディバイスのナンバリング・アップを実現し得る定量分配の可能な分配器が提供できる。   It is possible to provide a distributor capable of quantitative distribution that can realize numbering up of micro devices.

本発明にしたがう分配器の実施の形態を示した図であり、(a)は断面図であり(b)は底面図である。It is the figure which showed embodiment of the divider | distributor according to this invention, (a) is sectional drawing, (b) is a bottom view. 図1に示した分配器の分解斜視図である。FIG. 2 is an exploded perspective view of the distributor shown in FIG. 図1に示した分配器の流通路を模式的に示した図である。FIG. 2 is a diagram schematically showing a flow path of the distributor shown in FIG. 図1に示した分配器の対象流体物の流れ方を示した図である。FIG. 2 is a diagram showing a flow of a target fluid in the distributor shown in FIG. 本発明にしたがう他の分配器の要部(円錐型環状空間の最終部、溝部からマイクロディバイスに至るまでの通路)を拡大して示した図であるIt is the figure which expanded and showed the principal part (The channel | path from the last part of a cone-shaped annular space, a groove part to a micro device) of the other distributor according to this invention. 本発明にしたがう他の分配器の要部(円錐型環状空間の最終部、溝部からマイクロディバイスに至るまでの通路)を拡大して示した図であるIt is the figure which expanded and showed the principal part (The channel | path from the last part of a cone-shaped annular space, a groove part to a micro device) of the other distributor according to this invention. マイクロディバイスのナンバリング・アップの構成例を示した図である。It is the figure which showed the structural example of the numbering-up of a micro device. 従来型の分配器の構成を模式的に示した図である。It is the figure which showed typically the structure of the conventional divider | distributor. 従来型の分配器の構成を模式的に示した図である。It is the figure which showed typically the structure of the conventional divider | distributor. 従来型の分配器の構成を模式的に示した図である。It is the figure which showed typically the structure of the conventional divider | distributor. トーナメント方式の分配器を示した図である。It is the figure which showed the tournament-type distributor. 積層方式の分配器を示した図である。It is the figure which showed the lamination type distributor. (a)(b)は直結方式の分配器を示した図である。(a) and (b) are diagrams showing a direct connection type distributor. スカート方式の分配器を示した図である。It is the figure which showed the divider | distributor of the skirt system.

符号の説明Explanation of symbols

1 コア
1a 外部壁
1b 溝部
2 分岐配給口
3 コアケース
3a 貫通孔
4 ホルダー
5 ホルダー
6 供給ジョイント
7 分岐ジョイント
P 頂点
M 円錐型環状空間
N 供給口
1 core
1a External wall
1b Groove
2 Branch distribution port
3 Core case
3a Through hole
4 Holder
5 Holder
6 Supply joint
7 Branch joint
P vertex
M conical annular space
N supply port

Claims (5)

流体物を供給する単一の供給口と、この単一の供給口につながる流通路を有し該流通路を経た流体物を分岐させて個別にそれぞれ配給する複数の分岐配給口とを備えた分配器において、
前記流通路は、前記供給口を起点にしてそこから各分岐配給口が配設された底部に向けて周長を拡張させた円錐型環状空間からなる、ことを特徴とする分配器。
A single supply port for supplying a fluid material, and a plurality of branch distribution ports that have a flow path connected to the single supply port and branch the fluid material that has passed through the flow path and distribute the fluid individually. In the distributor,
The distributor is characterized by comprising a conical annular space having a circumferential length extending from the supply port as a starting point toward a bottom portion where each branch distribution port is disposed.
前記円錐型環状空間は、頂点から底部にわたって円錐型の輪郭形状を形成する外部壁を備えたコアと、このコアの頂点に対面させて供給口を形成する貫通孔を有し、該コアの外部壁に沿う内部壁をもったコアケースとの組合せにて区画形成されたものである請求項1記載の分配器。   The conical annular space has a core having an outer wall that forms a conical contour shape from the apex to the bottom, and a through hole that faces the apex of the core and forms a supply port. 2. The distributor according to claim 1, wherein the distributor is formed by a combination with a core case having an inner wall along the wall. コアの外部壁における拡張角度をθとし、コアケースの内部壁における拡張角度をθとした場合に、θ<θの条件を満足する請求項2記載の分配器。 3. The distributor according to claim 2 , wherein when the expansion angle at the outer wall of the core is θ 1 and the expansion angle at the inner wall of the core case is θ 2 , the condition of θ 21 is satisfied. 前記円錐型環状空間は、供給口から分岐配給口に至るまで同一の断面積になる請求項1〜3の何れかに記載の分配器。   4. The distributor according to claim 1, wherein the conical annular space has the same cross-sectional area from a supply port to a branch distribution port. 前記円錐型環状空間は、供給口から分岐配給口へ向けて漸次に減少する断面積を有する請求項1〜3の何れかに記載の分配器。   The distributor according to any one of claims 1 to 3, wherein the conical annular space has a cross-sectional area that gradually decreases from a supply port toward a branch distribution port.
JP2007060711A 2007-03-09 2007-03-09 Distributor Expired - Fee Related JP4160098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007060711A JP4160098B2 (en) 2007-03-09 2007-03-09 Distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007060711A JP4160098B2 (en) 2007-03-09 2007-03-09 Distributor

Publications (2)

Publication Number Publication Date
JP2008224326A true JP2008224326A (en) 2008-09-25
JP4160098B2 JP4160098B2 (en) 2008-10-01

Family

ID=39843140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060711A Expired - Fee Related JP4160098B2 (en) 2007-03-09 2007-03-09 Distributor

Country Status (1)

Country Link
JP (1) JP4160098B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040228B1 (en) * 2009-05-20 2011-06-09 신요섭 Fluid spread distributor
JP2012050415A (en) * 2010-09-03 2012-03-15 Agritecno Yazaki Co Ltd Soil disinfecting machine
KR101207026B1 (en) * 2012-06-20 2012-11-30 주식회사한국파마 Dosing apparatus
JP2013158725A (en) * 2012-02-07 2013-08-19 Nippo Corp Liquid supply apparatus
JP2013242026A (en) * 2012-05-23 2013-12-05 Aoba:Kk Distributor of viscous fluid
KR101622367B1 (en) * 2014-11-17 2016-05-18 전종옥 Injection module for uniform distribution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040228B1 (en) * 2009-05-20 2011-06-09 신요섭 Fluid spread distributor
JP2012050415A (en) * 2010-09-03 2012-03-15 Agritecno Yazaki Co Ltd Soil disinfecting machine
JP2013158725A (en) * 2012-02-07 2013-08-19 Nippo Corp Liquid supply apparatus
JP2013242026A (en) * 2012-05-23 2013-12-05 Aoba:Kk Distributor of viscous fluid
KR101207026B1 (en) * 2012-06-20 2012-11-30 주식회사한국파마 Dosing apparatus
KR101622367B1 (en) * 2014-11-17 2016-05-18 전종옥 Injection module for uniform distribution

Also Published As

Publication number Publication date
JP4160098B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4160098B2 (en) Distributor
CN104641457B (en) Gas distributes sub-assembly
CN104798446B (en) The multizone gas fill assembly controlled with azimuth and radial distribution
JP2015517902A5 (en)
KR101704897B1 (en) Gas supply pipe, and gas treatment equipment
JP2014240077A5 (en)
BR112014024794B1 (en) flow distribution system for a multiphase flow stream and distribution method for a multiphase fluid flow
TW201713413A (en) Anti-transient showerhead
WO2016132095A9 (en) Magnetic filter for a central heating system
US9845815B2 (en) Apparatus for creating a swirling flow of fluid
JP2017522447A5 (en)
RU2016117166A (en) DEVICE FOR CHANGING THE FORM OF A JET OF FLUID PRODUCTS
MX337339B (en) Droplet precipitator.
JP2013148345A5 (en)
JP2015529155A5 (en)
RU2019140807A (en) METHOD FOR MANUFACTURING DEVICE FOR REDUCING PRESSURE OF FLUID MEDIUM
JP2016507369A5 (en)
US20140224175A1 (en) Gas distribution manifold system for chemical vapor deposition reactors and method of use
GB2482848A (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
CN109922890A (en) Spray head
US9573101B2 (en) Micro-bubble generator for showerhead
JP6406615B2 (en) Shower equipment
MX2017012496A (en) Fluid regulators.
US20170157584A1 (en) Inlet distributor for spherical reactor
JP6508784B2 (en) Filter device with enlarged cleaning duct with internal partition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees