JP2008223189A - Conductive nonwoven fabric excellent in heat resistance - Google Patents

Conductive nonwoven fabric excellent in heat resistance Download PDF

Info

Publication number
JP2008223189A
JP2008223189A JP2007066088A JP2007066088A JP2008223189A JP 2008223189 A JP2008223189 A JP 2008223189A JP 2007066088 A JP2007066088 A JP 2007066088A JP 2007066088 A JP2007066088 A JP 2007066088A JP 2008223189 A JP2008223189 A JP 2008223189A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
conductive
heat resistance
liquid crystal
conductive nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007066088A
Other languages
Japanese (ja)
Inventor
Tetsuya Hara
哲也 原
Yasuhiro Shirotani
泰弘 城谷
Kiyobumi Enomoto
清文 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007066088A priority Critical patent/JP2008223189A/en
Publication of JP2008223189A publication Critical patent/JP2008223189A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive nonwoven fabric extremely excellent in heat resistance and capable of being used as a conductive material such as an electromagnetic wave-shielding material. <P>SOLUTION: The conductive nonwoven fabric is formed with a metal-coating film on the nonwoven fabric consisting mainly of a wholly aromatic polyester forming a molten liquid crystal, which has a melt viscosity of ≤20 Pa s at 310°C and consisting substantially of continuous filaments having a mean fiber diameter of 1-20 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐熱性に優れた導電性不織布に関するものであり、より詳しくは、耐熱性に優れた液晶形成性全芳香族ポリエステル極細繊維不織布に金属被膜を形成した導電性不織布に関するものである。   The present invention relates to a conductive nonwoven fabric excellent in heat resistance, and more particularly to a conductive nonwoven fabric in which a metal film is formed on a liquid crystal-forming wholly aromatic polyester ultrafine fiber nonwoven fabric excellent in heat resistance.

近年、電子機器からの電磁波の漏洩や電磁波により通信される情報の漏洩を防止する目的で、電磁波遮蔽材が用いられている。このうち、ポリエステルやナイロン、アクリルなどの合成繊維の織物や不織布上に金属被膜を形成させた材料は、繊維材料のもつ柔軟性、可撓性と被覆された金属が有する電磁波遮蔽性を兼ね備えることから、電磁波シールディングシート、ガスケット、テープ、バッグ等として広く利用されており、例えば、綿目付け量が35〜600g/mの不織布に、無電解メッキにより金属成分を付着させたポリエステルないしアクリル繊維をベースとする電磁波遮蔽材が開示されている(例えば、特許文献1参照。)。また、一方では、ポリアクリロニトリルやアクリロニトリル/塩化ビニル共重合体の繊維に金属を付着させた金属メッキ繊維と熱接着繊維からなる難燃性不織布を電磁波遮蔽材として用いることが提案されている(例えば、特許文献2参照。)。 In recent years, electromagnetic shielding materials have been used for the purpose of preventing leakage of electromagnetic waves from electronic devices and leakage of information communicated by electromagnetic waves. Of these, materials in which a metal film is formed on a woven or non-woven fabric of synthetic fibers such as polyester, nylon, and acrylic have both the flexibility and flexibility of the fiber material and the electromagnetic shielding properties of the coated metal. In addition, it is widely used as electromagnetic shielding sheets, gaskets, tapes, bags, etc. For example, polyester or acrylic fibers in which a metal component is adhered to a nonwoven fabric with a basis weight of 35 to 600 g / m 2 by electroless plating (See, for example, Patent Document 1). On the other hand, it has been proposed to use a flame-retardant nonwoven fabric made of a metal-plated fiber and a heat-bonded fiber in which a metal is attached to a fiber of polyacrylonitrile or acrylonitrile / vinyl chloride copolymer as an electromagnetic shielding material (for example, , See Patent Document 2).

しかしながら、これら特許文献1〜2の電磁波遮蔽材は、基材であるポリエステルやナイロン、アクリルなどの合成繊維自体の耐熱性に乏しく、高い耐熱性を要求される用途、例えば、電子回路基板における電子部品の実装工法であるフロー工程やリフロー工程に対応することができず、電子部品実装工程に先立って、これらの電磁波遮蔽材を回路基板上に搭載しておくことは困難であった。また、これらの電磁波遮蔽材はハンダ耐熱性を有しておらず、それ自体は高い電気導通性を有しているものの、他の金属材料と電気的な接続をしたい場合でも、これをハンダ付けで実施することは困難であった。   However, these electromagnetic wave shielding materials of Patent Documents 1 and 2 are poor in heat resistance of synthetic fibers themselves such as polyester, nylon, acrylic, and the like, and are required to have high heat resistance, for example, an electronic circuit board. It was impossible to cope with the flow process and reflow process, which are component mounting methods, and it was difficult to mount these electromagnetic wave shielding materials on the circuit board prior to the electronic component mounting process. In addition, these electromagnetic wave shielding materials do not have soldering heat resistance and themselves have high electrical conductivity, but even if they are to be electrically connected to other metal materials, they must be soldered. It was difficult to implement in.

特開昭62−238698号公報JP-A-62-238698 特開昭63−262900号公報JP-A 63-262900

本発明の目的は上記の課題を解消し、耐熱性に極めて優れた導電性不織布を提供することにある。   An object of the present invention is to solve the above-described problems and provide a conductive nonwoven fabric having extremely excellent heat resistance.

本発明者等は、かかる課題を解決するために鋭意検討した結果、一定の溶融粘度を有する溶融液晶形成性全芳香族ポリエステルを繊維化することによって得られる極細繊維からなる不織布に、金属被膜を形成することにより、極めて高い耐熱性を備える導電性不織布が得られることを見出し、本発明を完成した。   As a result of diligent studies to solve such problems, the present inventors have applied a metal coating to a nonwoven fabric composed of ultrafine fibers obtained by fiberizing a molten liquid crystal-forming wholly aromatic polyester having a certain melt viscosity. As a result, it was found that a conductive nonwoven fabric having extremely high heat resistance can be obtained, thereby completing the present invention.

すなわち本発明は、310℃における溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜20μmである実質的に連続したフィラメントからなる不織布表面に金属被膜が形成された導電性不織布であり、好ましくは不織布がメルトブローン法により製造された不織布である上記の導電性不織布であり、より好ましくは金属被膜が銅、ニッケル、金、銀、コバルト、錫、亜鉛のいずれかからなるか、あるいは金属被膜が銅、ニッケル、金、銀、コバルト、錫、亜鉛のうち、少なくとも2種以上からなる合金あるいは積層被膜からなる上記の導電性不織布である。   That is, the present invention provides a nonwoven fabric surface comprising substantially continuous filaments having a melt liquid crystal-forming wholly aromatic polyester having a melt viscosity at 310 ° C. of 20 Pa · s or less and an average fiber diameter of 1 to 20 μm. A conductive nonwoven fabric in which a metal coating is formed, preferably the above-described conductive nonwoven fabric, wherein the nonwoven fabric is a nonwoven fabric produced by a melt blown method, and more preferably the metal coating is copper, nickel, gold, silver, cobalt, tin The conductive nonwoven fabric is made of any one of zinc and zinc, or the metal coating is made of an alloy or laminated coating made of at least two of copper, nickel, gold, silver, cobalt, tin, and zinc.

一定の溶融粘度を有する溶融液晶形成性全芳香族ポリエステルを繊維化することによって得られる極細繊維からなる不織布に、金属被膜を形成することにより、極めて高い耐熱性を備える導電性不織布が得ることができる。   It is possible to obtain a conductive nonwoven fabric having extremely high heat resistance by forming a metal film on a nonwoven fabric composed of ultrafine fibers obtained by fiberizing a melt liquid crystal-forming wholly aromatic polyester having a certain melt viscosity. it can.

溶融液晶形成性全芳香族ポリエステルは、その分子骨格から融点が高く、耐熱性に優れているばかりでなく、耐薬品性や耐熱水性にも優れており、エンジニアリングプラスチックスとして利用されているが、溶融液晶を形成するために繊維化、特に細繊度の繊維とすることは一般的には困難である。
本発明において不織布に用いる溶融液晶形成性全芳香族ポリエステルは、耐熱性、耐薬品性に優れた樹脂である。本発明にいう溶融液晶形成性全芳香族ポリエステルとは、溶融相において光学的異方性(液晶性)を示す芳香族ポリエステルであり、例えば試料をホットステージに載せ窒素雰囲気下で加熱し、試料の透過光を観察することで認定できる。
Molten liquid crystal-forming wholly aromatic polyester has a high melting point due to its molecular skeleton and is not only excellent in heat resistance but also in chemical resistance and hot water resistance, and is used as engineering plastics. In order to form a molten liquid crystal, it is generally difficult to obtain a fiber, particularly a fine fiber.
The molten liquid crystal-forming wholly aromatic polyester used for the nonwoven fabric in the present invention is a resin excellent in heat resistance and chemical resistance. The molten liquid crystal-forming wholly aromatic polyester referred to in the present invention is an aromatic polyester that exhibits optical anisotropy (liquid crystallinity) in the molten phase. For example, a sample is placed on a hot stage and heated in a nitrogen atmosphere. It can be recognized by observing the transmitted light.

溶融異方性ポリエステルは芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸の反復構成単位を主成分とするものが好ましい。
これらの中でも、本発明の導電性不織布で使用される溶融液晶形成性全芳香族ポリエステルは、310℃における溶融粘度が20Pa・s以下であれば特に制限はないが、例えば、p-ヒドロキシ安息香酸と1,6−ヒドロキシナフトエ酸の縮合体やその共重合体等、また、次項に示すジカルボン酸、ジオール、ヒドロキシ酸、アミノアルコール、アミノカルボン酸により導入しうる構成単位を有するポリエステルが挙げられ、例えば、テレフタル酸、イソフタル酸、1,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、4,4’−オキシジ安息香酸、4,4’−メチレンジ安息香酸、4,4’−スルホニルジ安息香酸などのジカルボン酸、ハイドロキノン、4,4’−ビフェノール、ビスフェノールA、ビスフェノールSなどのジオール、6−ヒドロキシ−2−ナフトエ酸、p−ヒドロキシ安息香酸などのヒドロキシ酸、p−アミノフェノールなどのアミノアルコール、p−アミノ安息香酸などのアミノカルボン酸などにより導入しうる構造単位を例示することができる。
なお、上記溶融液晶形成性全芳香族ポリエステルには、必要に応じて着色剤、無機フィラー、酸化防止剤、紫外線吸収剤等の通常使用されている添加剤および熱可塑性エラストマーを本発明の機能を阻害しない範囲で添加してもよい。
The melt-anisotropic polyester preferably has a repeating structural unit of aromatic diol, aromatic dicarboxylic acid, or aromatic hydroxycarboxylic acid as a main component.
Among these, the melted liquid crystal-forming wholly aromatic polyester used in the conductive nonwoven fabric of the present invention is not particularly limited as long as the melt viscosity at 310 ° C. is 20 Pa · s or less. For example, p-hydroxybenzoic acid And a 1,6-hydroxynaphthoic acid condensate or a copolymer thereof, and dicarboxylic acids, diols, hydroxy acids, amino alcohols, and polyesters having structural units that can be introduced by aminocarboxylic acids shown in the next section, For example, terephthalic acid, isophthalic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4 , 4'-oxydibenzoic acid, 4,4'-methylenedibenzoic acid, 4,4'-sulfonyldibenzoic acid, etc. Dicarboxylic acids, hydroquinones, diols such as 4,4′-biphenol, bisphenol A and bisphenol S, hydroxy acids such as 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid, amino alcohols such as p-aminophenol, p -The structural unit which can be introduce | transduced by aminocarboxylic acid, such as aminobenzoic acid, etc. can be illustrated.
The melted liquid crystal-forming wholly aromatic polyester has the functions of the present invention as required by adding additives such as colorants, inorganic fillers, antioxidants, ultraviolet absorbers, and thermoplastic elastomers as necessary. You may add in the range which does not inhibit.

次に本発明の導電性不織布を構成する溶融液晶形成性全芳香族ポリエステル不織布の製造方法はフラッシュ紡糸法、メルトブロー法等を例示することができるが、極細繊維からなる不織布の製造が比較的容易であり、紡糸時に溶剤を必要とせず環境への影響を最小限とすることができる点からメルトブロー法で製造された不織布であることが好ましい。
メルトブロー法は公知の方法を採用することができ、例えば、溶融した溶融液晶形成性ポリエステルを、一列に配列した複数のノズル孔から溶融ポリマーとして吐出し、オリフィスダイに隣接して設備した噴射ガス口から高温高速空気を噴射せしめて、吐出された溶融ポリマーを細繊維化し、次いで細繊維化物をコレクタであるコンベヤネット上等に捕集して不織布を製造する方法が挙げられる。
Next, examples of the method for producing a melted liquid crystal-forming wholly aromatic polyester nonwoven fabric constituting the conductive nonwoven fabric of the present invention include flash spinning and melt-blowing methods, but it is relatively easy to produce a nonwoven fabric composed of ultrafine fibers. In view of the fact that a solvent is not required during spinning and the influence on the environment can be minimized, a nonwoven fabric produced by a melt blow method is preferred.
A known method can be adopted as the melt blow method, for example, a molten gas-forming liquid-forming polyester is discharged as a molten polymer from a plurality of nozzle holes arranged in a row, and a jet gas port provided adjacent to the orifice die And a method of producing a nonwoven fabric by spraying high-temperature and high-speed air from the fiber to make the discharged molten polymer fine, and then collecting the fine fiber on a conveyor net or the like as a collector.

メルトブロー法にて製造する場合、紡糸装置は従来公知のメルトブロー装置を用いることができる。紡糸条件としては、紡糸温度310〜360℃、熱風温度(一次エアー温度)310〜380℃、ノズル長1m当りのエアー量10〜50Nmとすることが好ましい。またこのようにして製造される本発明の不織布を構成する繊維の平均繊維径は1〜20μmであることが好ましい。平均繊維径が1μm未満では風綿が発生し繊維塊となりやすく、一方20μmを越えるとウェブの形成が困難となり好ましくない。
なお、本発明において平均繊維径は、不織布を走査型電子顕微鏡で拡大撮影し、任意の100本の繊維径を測定した値の平均値を示す。
In the case of producing by the melt blowing method, a conventionally known melt blowing apparatus can be used as the spinning apparatus. The spinning conditions are preferably a spinning temperature of 310 to 360 ° C., a hot air temperature (primary air temperature) of 310 to 380 ° C., and an air amount of 10 to 50 Nm 3 per 1 m of the nozzle length. Moreover, it is preferable that the average fiber diameter of the fiber which comprises the nonwoven fabric of this invention manufactured in this way is 1-20 micrometers. If the average fiber diameter is less than 1 μm, fluff is likely to be formed into a fiber lump.
In addition, in this invention, an average fiber diameter shows the average value of the value which carried out magnified photography of the nonwoven fabric with the scanning electron microscope, and measured arbitrary 100 fiber diameters.

上記したような方法にて不織布を製造するにあたり、本発明で使用される溶融液晶形成性全芳香族ポリエステルは、310℃での溶融粘度が20Pa・s以下であることが必要である。310℃での溶融粘度が20Pa・sを越えると極細繊維化が困難であったり、重合時のオリゴマー発生、重合時や造粒時のトラブル発生等の理由から好ましくない。一方、溶融粘度が低すぎる場合も繊維化が困難であるため、310℃における溶融粘度が5Pa・s以上であることが好ましい。
かかる溶融粘度を有する溶融液晶形成性全芳香族ポリエステルは、従来公知の全芳香族ポリエステルの重合技術によりって製造することができ、例えばポリプラスチックス社から「ベクトラ」(登録商標)A、Lタイプ等で提供されている。
In producing the nonwoven fabric by the method as described above, the melted liquid crystal forming wholly aromatic polyester used in the present invention needs to have a melt viscosity at 310 ° C. of 20 Pa · s or less. If the melt viscosity at 310 ° C. exceeds 20 Pa · s, it is not preferable because it is difficult to make ultrafine fibers, or the occurrence of oligomers during polymerization and the occurrence of problems during polymerization and granulation. On the other hand, since fiberization is difficult even when the melt viscosity is too low, the melt viscosity at 310 ° C. is preferably 5 Pa · s or more.
A melt liquid crystal-forming wholly aromatic polyester having such a melt viscosity can be produced by a conventionally known polymerization technique of wholly aromatic polyester, for example, “Vectra” (registered trademark) A, L from Polyplastics. Provided by type etc.

本発明においては、所定の粘度を有する溶融液晶形成性全芳香族ポリエステルを用いることによって、極細繊維からなる繊維不織布が得られるものの、用途によっては、ポリマーの重合度が不足するために不織布の強度が不足することがある。この課題は、得られた不織布を熱処理して固相で重合を進めることにより、解決することができる。
固相重合に当たっては、使用する溶融液晶形成性ポリエステルの特性により、窒素のごとき不活性気体を用いたり、空気中での処理を行ったり、また最初は不活性気体中で固相重合を行い、更に空気中で固相重合を完結させるなど、適宜選択することが可能である。
In the present invention, a nonwoven fabric made of ultrafine fibers can be obtained by using a molten liquid crystal-forming wholly aromatic polyester having a predetermined viscosity. However, depending on the application, the degree of polymerization of the polymer is insufficient, so that the strength of the nonwoven fabric is reduced. May be insufficient. This problem can be solved by heat-treating the obtained non-woven fabric and proceeding polymerization in a solid phase.
In the solid phase polymerization, depending on the characteristics of the molten liquid crystal forming polyester to be used, an inert gas such as nitrogen is used, a treatment in air is performed, or a solid phase polymerization is initially performed in an inert gas. Furthermore, it is possible to select appropriately such as completing solid phase polymerization in air.

固相重合の温度は、使用する溶融液晶形成性ポリエステルによって変わりうるが、一般的には溶融液晶形成性ポリエステルの融点以下の温度、好ましくは融点−50℃の温度から融点までの範囲の温度で実施するとよい。固相重合の温度が、溶融液晶形成性ポリエステルの融点を超えると、繊維間の融着などの問題が起こり、好ましくない。本発明で用いる繊維不織布では、比表面積が著しく増大しており、重合反応に伴って生成する副生物が容易に離脱するため、重合反応は極めて効率的に進行する。   The temperature of the solid phase polymerization may vary depending on the molten liquid crystal forming polyester used, but is generally a temperature not higher than the melting point of the molten liquid crystal forming polyester, preferably a temperature in the range from the melting point to −50 ° C. It is good to carry out. If the temperature of the solid phase polymerization exceeds the melting point of the molten liquid crystal forming polyester, problems such as fusion between fibers occur, which is not preferable. In the fiber nonwoven fabric used in the present invention, the specific surface area is remarkably increased, and the by-product generated along with the polymerization reaction is easily separated, so that the polymerization reaction proceeds very efficiently.

本発明の導電性不織布は、前記した不織布に金属被膜を形成することが必要である。
金属被覆を形成する方法としては、電気メッキ、無電解メッキ、スパッタリング、真空蒸着など、従来公知の方法を用いることができるが、高い導電性が得やすいとの観点から無電解メッキによる方法が好ましい。無電解メッキの方法としては従来公知の方法を用いることができ、特に制限はないが、基材となる不織布の繊維表面に触媒を付与した後、金属塩、還元剤、緩衝剤を溶解した化学メッキ浴に浸漬することによって金属被膜を形成する方法が一般的である。
In the conductive nonwoven fabric of the present invention, it is necessary to form a metal film on the above-described nonwoven fabric.
As a method for forming the metal coating, a conventionally known method such as electroplating, electroless plating, sputtering, vacuum deposition or the like can be used, but a method using electroless plating is preferable from the viewpoint that high conductivity is easily obtained. . As a method of electroless plating, a conventionally known method can be used, and there is no particular limitation. However, after applying a catalyst to the fiber surface of the nonwoven fabric used as a base material, a chemical in which a metal salt, a reducing agent, and a buffering agent are dissolved. A method of forming a metal film by immersing in a plating bath is common.

金属被膜としては、銅、ニッケル、銀、金、コバルト、錫、亜鉛のいずれかからなる積層被膜、あるいはこれらの少なくとも2種以上からなる合金や積層被膜などを挙げることができ、特に限定はないが、導電性の高さ、金属被覆の形成容易性などの点から、銅、ニッケル、金あるいはこれらの少なくとも2種以上からなる積層被膜が特に好ましい。
これらの中でも、導電性が高く電磁波遮蔽性を付与しやすい点において、銅は最も好ましい金属被膜であるが、表面酸化を抑制する目的で更にニッケルを積層したものが特に好ましい。
Examples of the metal coating include a multilayer coating composed of any of copper, nickel, silver, gold, cobalt, tin, and zinc, or an alloy or multilayer coating composed of at least two of these, and is not particularly limited. However, from the viewpoint of high conductivity, ease of forming a metal coating, and the like, a laminated film composed of copper, nickel, gold, or at least two of these is particularly preferable.
Among these, copper is the most preferable metal film in that it has high conductivity and easily imparts electromagnetic wave shielding properties, but it is particularly preferable to further laminate nickel for the purpose of suppressing surface oxidation.

本発明の導電性不織布で形成する金属被膜の厚みは、0.05〜10μmの範囲にあることが好ましい。金属被膜の厚みが0.05μmより小さいと十分な導電性が得られず、一方、10μmより大きいと不織布の柔軟性や可撓性が損なわれるので好ましくない。   The thickness of the metal coating formed with the conductive nonwoven fabric of the present invention is preferably in the range of 0.05 to 10 μm. If the thickness of the metal coating is less than 0.05 μm, sufficient conductivity cannot be obtained. On the other hand, if the thickness is greater than 10 μm, the flexibility and flexibility of the nonwoven fabric are impaired.

本発明の導電性不織布は、繊維表面に上記した構成の金属被膜を形成することによって、導電性を有する。その表面抵抗値は、金属被膜の種類や厚みによって変わりうるが、十分な電磁波遮蔽性を確保する観点から、表面抵抗値は10−3〜1Ω/□、好ましくは10−3〜10−1Ω/□の範囲が好ましい。 The electrically conductive nonwoven fabric of this invention has electroconductivity by forming the metal film of the above-mentioned structure on the fiber surface. Its surface resistance value varies as the metal film type and thickness, from the viewpoint of securing sufficient electromagnetic wave shielding properties, surface resistance 10 -3 ~1Ω / □, preferably 10 -3 to 10 -1 Omega A range of / □ is preferred.

以下、実施例により本発明を具体的に説明するが、本発明は何らこれらに限定されるものではない。なお、本実施例および比較例における各種物性の測定は、以下に記載する方法により測定されたものを意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these at all. In addition, the measurement of the various physical properties in a present Example and a comparative example means what was measured by the method described below.

[溶融液晶形成性全芳香族ポリエステルの溶融粘度 Pa・s]
本実施例で用いた溶融液晶形成性全芳香族ポリエステルの溶融粘度は、測定に先立って120℃/10時間だけ真空乾燥し、東洋精機社製「キャピログラフ1B型」を用い、温度310℃、剪断速度1000(1/s)の条件下で測定した。
[Melting viscosity of melted liquid crystal forming fully aromatic polyester Pa · s]
The melt viscosity of the melted liquid crystal-forming wholly aromatic polyester used in this example was vacuum-dried at 120 ° C./10 hours prior to measurement, using a “Capillograph 1B type” manufactured by Toyo Seiki Co., Ltd., at a temperature of 310 ° C. and shearing The measurement was performed under the condition of a speed of 1000 (1 / s).

[導電性不織布の耐熱性 ℃]
導電性不織布の耐熱性は、不織布の軟化温度を測定することにより評価した。理学電器社製の熱機器分析計(TMAと称す)を使用して、幅5mm×長さ20mmの不織布に1gの荷重をかけ、10℃/minの速度で昇温して、温度(℃)〜寸法変化率(%)曲線を作図し、この曲線において、昇温に伴って寸法変化率が負(収縮)の領域から正(膨張)の領域に転ずる直前の温度領域に認められる接線の勾配が0%/℃となる温度を軟化温度として求めた。
[Heat resistance of conductive non-woven fabric ℃]
The heat resistance of the conductive nonwoven fabric was evaluated by measuring the softening temperature of the nonwoven fabric. Using a thermal instrument analyzer (TMA) manufactured by Rigaku Denki Co., Ltd., a 1 g load is applied to a nonwoven fabric having a width of 5 mm and a length of 20 mm, and the temperature is raised at a rate of 10 ° C./min. ~ Draw a dimensional change rate (%) curve, and in this curve, the gradient of tangential line observed in the temperature region immediately before the dimensional change rate changes from a negative (shrinkage) region to a positive (expansion) region as the temperature rises. Was determined as the softening temperature.

[導電性不織布の電磁波遮蔽性]
関西電子工業振興センター考案による測定セル(マイクロウェーブファクトリー社製「MWF−06−P031−1」)を用い、ベクトル型ネットワークアナライザ(アジレントテクノロジー社製「PNA−E8363B」)により発生させた100MHz〜1GHzの電磁波を上記の測定セルで発信し、不織布を介して受信した。その際の透過率を電磁波遮蔽性として測定し、周波数100MHzと1GHzにおける透過率を電磁波遮蔽性として求めた。(単位:dB)また、透過率が1%以下に相当する40dB以上の遮蔽性を示したものを○、そうでないものを×として遮蔽性評価を示した。
[Electromagnetic shielding properties of conductive nonwoven fabric]
100 MHz to 1 GHz generated by a vector network analyzer ("PNA-E8363B" manufactured by Agilent Technologies) using a measurement cell ("MWF-06-P031-1" manufactured by Microwave Factory) devised by the Kansai Electronics Industry Promotion Center The electromagnetic wave was transmitted through the measurement cell and received through the nonwoven fabric. The transmittance at that time was measured as electromagnetic shielding properties, and the transmittance at frequencies of 100 MHz and 1 GHz was obtained as electromagnetic shielding properties. (Unit: dB) Further, the evaluation of the shielding property was shown by indicating that the shielding property of 40 dB or more corresponding to the transmittance of 1% or less was ◯, and that not being ×.

[導電性不織布の表面抵抗値 Ω/□]
導電性不織布の表面抵抗値は、抵抗値測定器(ヒューレット・パッカード社製「MULTIMETER3478A」)を使用し、JIS−K−7194に準拠して四端子四探針法により測定した。
[Surface resistance value of conductive nonwoven fabric Ω / □]
The surface resistance value of the conductive non-woven fabric was measured by a four-terminal four-probe method according to JIS-K-7194 using a resistance value measuring device (“MULTITIMER3478A” manufactured by Hewlett-Packard Company).

[実施例1]
(1)溶融液晶形成性全芳香族ポリエステル(ポリプラスチックス社製「ベクトラA」;310℃での溶融粘度20Pa・s)を、低露点エアー式乾燥機にて十分に乾燥し、二軸押出機押出機により押し出して幅1m、ホール数1000のノズルを有するメルトブローン不織布製造装置に供給した。メルトブローン装置にて、単孔吐出量0.3g/分、樹脂温度310℃、熱風温度310℃にてブローンし、平均目付が30g/m、平均繊維径9.0μmのメルトブローン不織布を得た。この不織布を、耐熱性を高める目的で、窒素気流中で260℃にて15時間、さらに260℃の空気中で5時間、発生する副生ガスをモレキュラーシーブで吸着しつつ熱処理を行った。
(2)上記(1)で得られた不織布の繊維表面にパラジウム触媒を付与し、硫酸銅と酒石酸カリウム・ナトリウム(ロッシェル塩)を含む無電解銅メッキ液に浸漬、水洗し、不織布表面に銅被膜を形成させた。続いて、電気ニッケルメッキ液に浸漬し、電解メッキにてニッケルを被膜させた後に水洗、乾燥すると、銅被膜上に更にニッケル被膜が積層形成された導電性不織布が得られた。得られた導電性不織布の耐熱性を測定したところ、軟化温度は305℃と高く、極めて高い耐熱性が得られた。また、電磁波遮蔽性を測定したところ、周波数100MHzでは75(dB)、周波数1GHzでは71(dB)の良好な遮蔽性を示した。また、この導電性不織布の表面抵抗値は、0.047(Ω/□)であった。これらの結果を表1に示す。
[Example 1]
(1) Melt liquid crystal-forming wholly aromatic polyester (“Vectra A” manufactured by Polyplastics Co., Ltd .; melt viscosity at 310 ° C. 20 Pa · s) is sufficiently dried in a low dew point air dryer and biaxial extrusion It was extruded by a machine extruder and supplied to a melt blown nonwoven fabric manufacturing apparatus having a nozzle having a width of 1 m and a hole number of 1000. A melt blown apparatus was used to blow at a single hole discharge rate of 0.3 g / min, a resin temperature of 310 ° C., and a hot air temperature of 310 ° C. to obtain a melt blown nonwoven fabric having an average basis weight of 30 g / m 2 and an average fiber diameter of 9.0 μm. The nonwoven fabric was heat-treated for 15 hours at 260 ° C. in a nitrogen stream and further for 5 hours in air at 260 ° C. while adsorbing the generated by-product gas with a molecular sieve for the purpose of improving heat resistance.
(2) A palladium catalyst is applied to the fiber surface of the nonwoven fabric obtained in (1) above, immersed in an electroless copper plating solution containing copper sulfate and potassium sodium tartrate / sodium (Rochelle salt), washed with water, and copper on the nonwoven fabric surface. A film was formed. Subsequently, it was immersed in an electric nickel plating solution, coated with nickel by electrolytic plating, then washed with water and dried to obtain a conductive nonwoven fabric in which a nickel coating was further laminated on the copper coating. When the heat resistance of the obtained conductive nonwoven fabric was measured, the softening temperature was as high as 305 ° C., and extremely high heat resistance was obtained. Moreover, when the electromagnetic wave shielding property was measured, it showed a good shielding property of 75 (dB) at a frequency of 100 MHz and 71 (dB) at a frequency of 1 GHz. Moreover, the surface resistance value of this conductive nonwoven fabric was 0.047 (Ω / □). These results are shown in Table 1.

[実施例2]
溶融液晶形成性全芳香族ポリエステルとしてポリプラスチックス社製「ベクトラL」(310℃での溶融粘度15Pa・s)を用い、ブローン温度、熱風温度を315℃にすること以外は実施例1と同様にして、平均目付22g/m、平均繊維径9.5μmのメルトブローン不織布を得た。また、実施例1と同様にして熱処理と繊維表面への銅/ニッケルの金属積層被膜の形成を行い、導電性不織布を得た。これらの耐熱性、電磁波遮蔽性、表面抵抗値の測定結果を表1に示す。
[Example 2]
The same as in Example 1 except that “Vectra L” (melt viscosity at 310 ° C. of 15 Pa · s) manufactured by Polyplastics Co., Ltd. is used as the molten liquid crystal forming wholly aromatic polyester, and the blown temperature and hot air temperature are set to 315 ° C. Thus, a melt blown nonwoven fabric having an average basis weight of 22 g / m 2 and an average fiber diameter of 9.5 μm was obtained. Moreover, it carried out similarly to Example 1, and formed the metal laminated film of copper / nickel on the fiber surface, and obtained the electroconductive nonwoven fabric. Table 1 shows the measurement results of heat resistance, electromagnetic wave shielding properties, and surface resistance.

[実施例3]
溶融液晶形成性全芳香族ポリエステルとして実施例2と同じポリプラスチックス社製「ベクトラL」(310℃での溶融粘度15Pa・s)、ブローン温度、熱風温度を315℃にすること以外は実施例1と同様にして、平均目付40g/m、平均繊維径7.0μmのメルトブローン不織布を得た。また、実施例1と同様にして熱処理と繊維表面への銅/ニッケルの金属積層被膜の形成を行い、導電性不織布を得た。これらの耐熱性、電磁波遮蔽性、表面抵抗値の測定結果を表1に示す。
[Example 3]
Except for making the liquid crystal-forming wholly aromatic polyester "Vectra L" (melt viscosity at 310 ° C of 15 Pa · s), the blown temperature and hot air temperature of 315 ° C, the same as Polyplastics Co., Ltd. as in Example 2. In the same manner as in Example 1, a melt blown nonwoven fabric having an average basis weight of 40 g / m 2 and an average fiber diameter of 7.0 μm was obtained. Moreover, it carried out similarly to Example 1, and formed the metal laminated film of copper / nickel on the fiber surface, and obtained the electroconductive nonwoven fabric. Table 1 shows the measurement results of heat resistance, electromagnetic wave shielding properties, and surface resistance.

[実施例4]
溶融液晶形成性全芳香族ポリエステルとして実施例2と同じポリプラスチックス社製「ベクトラL」(310℃での溶融粘度15Pa・s)を用い、ブローン温度、熱風温度を315℃にすること以外は実施例1と同様にして、平均目付100g/m、平均繊維径15.9μmのメルトブローン不織布を得た。また、実施例1と同様にして熱処理と繊維表面への銅/ニッケルの金属被膜の形成を行い、導電性不織布を得た。これらの耐熱性、電磁波遮蔽性、表面抵抗値の測定結果を表1に示す。
[Example 4]
Except for using “Vectra L” manufactured by Polyplastics Co., Ltd. as in Example 2 (melt viscosity of 15 Pa · s at 310 ° C.) as the molten liquid crystal-forming wholly aromatic polyester, and setting the blown temperature and hot air temperature to 315 ° C. In the same manner as in Example 1, a melt blown nonwoven fabric having an average basis weight of 100 g / m 2 and an average fiber diameter of 15.9 μm was obtained. Further, in the same manner as in Example 1, heat treatment and formation of a copper / nickel metal coating on the fiber surface were performed to obtain a conductive nonwoven fabric. Table 1 shows the measurement results of heat resistance, electromagnetic wave shielding properties, and surface resistance.

[比較例1]
310℃での溶融粘度が30Pa・sである溶融液晶形成性ポリエステルを用いた以外は実施例1と同様にしてメルトブローン不織布を得ようとしたが、ショット(繊維を形成できなかった樹脂粒)がウェブ上に多発し、良好な不織布を得ることはできず、以降の金属被膜の形成や物性評価は実施できなかった。
[Comparative Example 1]
An attempt was made to obtain a melt blown nonwoven fabric in the same manner as in Example 1 except that a melt liquid crystal forming polyester having a melt viscosity at 310 ° C. of 30 Pa · s was used. It frequently occurred on the web and a good nonwoven fabric could not be obtained, and the subsequent formation of metal coating and evaluation of physical properties could not be performed.

[比較例2]
溶融液晶形成性全芳香族ポリエステルに代えてポリエチレンテレフタレート(固有粘度0.59)を用い、樹脂温度を295℃、一次エアー温度を295℃とした以外は実施例1と同様にしてメルトブローンし、平均目付60g/m、平均繊維径3.8μmの不織布を得た。該不織布に対して熱処理は実施せずに、実施例1と同様にして金属被膜を形成して導電性不織布を得た。得られた導電性不織布は、良好な電磁波遮蔽性を示し、表面抵抗値も低かったが、軟化温度は193℃と低く、耐熱性はなかった。
[Comparative Example 2]
Melt blown in the same manner as in Example 1 except that polyethylene terephthalate (intrinsic viscosity 0.59) was used instead of the melt-forming liquid-forming wholly aromatic polyester, the resin temperature was 295 ° C, and the primary air temperature was 295 ° C. A nonwoven fabric having a basis weight of 60 g / m 2 and an average fiber diameter of 3.8 μm was obtained. A heat treatment was not performed on the nonwoven fabric, and a metal film was formed in the same manner as in Example 1 to obtain a conductive nonwoven fabric. The obtained conductive nonwoven fabric exhibited good electromagnetic wave shielding properties and low surface resistance, but its softening temperature was as low as 193 ° C. and was not heat resistant.

[比較例3]
実施例1と同様にしてメルトブローンし、平均目付30g/m、平均繊維径9.0μmの不織布を得た。この不織布に実施例1と同様な熱処理を行い、金属被膜を形成させることなく、耐熱性、電磁波遮蔽性、表面抵抗値を測定した。これらの結果を表1に示す。表面抵抗値は、測定限界以上の>1×10(Ω/□)であった。
[Comparative Example 3]
Melt blown in the same manner as in Example 1 to obtain a nonwoven fabric having an average basis weight of 30 g / m 2 and an average fiber diameter of 9.0 μm. The nonwoven fabric was subjected to the same heat treatment as in Example 1, and the heat resistance, electromagnetic wave shielding properties, and surface resistance values were measured without forming a metal film. These results are shown in Table 1. The surface resistance value was> 1 × 10 6 (Ω / □) above the measurement limit.

Figure 2008223189
Figure 2008223189

本発明の導電性不織布は、広い周波数帯にわたって電磁波遮蔽性を有し、電磁波シールディングシート、ガスケット、テープ、バッグ等の用途に広く使用することができる。   The conductive nonwoven fabric of the present invention has electromagnetic shielding properties over a wide frequency band, and can be widely used for applications such as electromagnetic shielding sheets, gaskets, tapes and bags.

Claims (4)

310℃における溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜20μmである実質的に連続したフィラメントからなる不織布表面に金属被膜が形成された導電性不織布。   A metal film is formed on the surface of the nonwoven fabric composed of substantially continuous filaments having a melt liquid crystal-forming wholly aromatic polyester having a melt viscosity at 310 ° C. of 20 Pa · s or less and an average fiber diameter of 1 to 20 μm. Conductive nonwoven fabric. 不織布がメルトブローン法により製造された不織布である請求項1記載の導電性不織布。   The conductive nonwoven fabric according to claim 1, wherein the nonwoven fabric is a nonwoven fabric produced by a melt blown method. 金属被膜が銅、ニッケル、金、銀、コバルト、錫、亜鉛のいずれかからなる請求項1または2記載の導電性不織布。   The conductive nonwoven fabric according to claim 1 or 2, wherein the metal coating is made of any one of copper, nickel, gold, silver, cobalt, tin, and zinc. 金属被膜が銅、ニッケル、金、銀、コバルト、錫、亜鉛のうち、少なくとも2種以上からなる合金あるいは積層被膜からなる請求項1または2記載の導電性不織布。   3. The conductive nonwoven fabric according to claim 1, wherein the metal coating is composed of an alloy or a laminated coating composed of at least two of copper, nickel, gold, silver, cobalt, tin, and zinc.
JP2007066088A 2007-03-15 2007-03-15 Conductive nonwoven fabric excellent in heat resistance Pending JP2008223189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066088A JP2008223189A (en) 2007-03-15 2007-03-15 Conductive nonwoven fabric excellent in heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066088A JP2008223189A (en) 2007-03-15 2007-03-15 Conductive nonwoven fabric excellent in heat resistance

Publications (1)

Publication Number Publication Date
JP2008223189A true JP2008223189A (en) 2008-09-25

Family

ID=39842131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066088A Pending JP2008223189A (en) 2007-03-15 2007-03-15 Conductive nonwoven fabric excellent in heat resistance

Country Status (1)

Country Link
JP (1) JP2008223189A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026888A1 (en) * 2008-09-08 2010-03-11 エプティ イエンイ Conductor-covered fiber assembly and process for producing the conductor-covered fiber assembly
JP2013072142A (en) * 2011-09-27 2013-04-22 Kuraray Co Ltd High-strength nonwoven fabric
TWI407901B (en) * 2009-07-24 2013-09-01 Asahi Kasei Fibers Corp Electromagnetic wave shielding sheet
JP2014201862A (en) * 2013-04-09 2014-10-27 株式会社クラレ Conductive nonwoven fabric
JP2016044368A (en) * 2014-08-21 2016-04-04 株式会社クラレ Conductive nonwoven fabric and method for producing melt blown nonwoven fabric used therefor
CN106574432A (en) * 2014-08-22 2017-04-19 株式会社可乐丽 Conductive nonwoven fabric and manufacturing method for melt-blown nonwoven fabric used in conductive nonwoven fabric
WO2020111210A1 (en) * 2018-11-30 2020-06-04 積水化学工業株式会社 Conductive nonwoven fabric
WO2022046749A1 (en) * 2020-08-24 2022-03-03 Noble Biomaterials, Inc. Methods for controlling color during a metallization process and resulting products
US11905648B2 (en) 2020-01-28 2024-02-20 Noble Biomaterials, Inc. Metalized fabric that dissipates and scatters infrared light and methods or making and using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026888A1 (en) * 2008-09-08 2010-03-11 エプティ イエンイ Conductor-covered fiber assembly and process for producing the conductor-covered fiber assembly
JP2010065327A (en) * 2008-09-08 2010-03-25 Shinshu Univ Conductor-coated fiber assembly and method for producing the same
TWI407901B (en) * 2009-07-24 2013-09-01 Asahi Kasei Fibers Corp Electromagnetic wave shielding sheet
US9233517B2 (en) 2009-07-24 2016-01-12 Asahi Kasei Fibers Corporation Electromagnetic shielding sheet
JP2013072142A (en) * 2011-09-27 2013-04-22 Kuraray Co Ltd High-strength nonwoven fabric
JP2014201862A (en) * 2013-04-09 2014-10-27 株式会社クラレ Conductive nonwoven fabric
JP2016044368A (en) * 2014-08-21 2016-04-04 株式会社クラレ Conductive nonwoven fabric and method for producing melt blown nonwoven fabric used therefor
KR20170043616A (en) 2014-08-22 2017-04-21 주식회사 쿠라레 Conductive nonwoven fabric and manufacturing method for melt-blown nonwoven fabric used in conductive nonwoven fabric
CN106574432A (en) * 2014-08-22 2017-04-19 株式会社可乐丽 Conductive nonwoven fabric and manufacturing method for melt-blown nonwoven fabric used in conductive nonwoven fabric
US10829879B2 (en) 2014-08-22 2020-11-10 Kuraray Co., Ltd. Conductive nonwoven fabric and method of producing meltblown nonwoven fabric used in conductive nonwoven fabric
KR102180649B1 (en) * 2014-08-22 2020-11-19 주식회사 쿠라레 Conductive nonwoven fabric and manufacturing method for melt-blown nonwoven fabric used in conductive nonwoven fabric
CN113089183A (en) * 2014-08-22 2021-07-09 株式会社可乐丽 Conductive nonwoven fabric and method for producing melt-blown nonwoven fabric used therein
CN113089183B (en) * 2014-08-22 2023-10-24 株式会社可乐丽 Conductive nonwoven fabric and method for producing melt-blown nonwoven fabric used therein
WO2020111210A1 (en) * 2018-11-30 2020-06-04 積水化学工業株式会社 Conductive nonwoven fabric
JPWO2020111210A1 (en) * 2018-11-30 2021-02-15 積水化学工業株式会社 Conductive non-woven fabric
US11905648B2 (en) 2020-01-28 2024-02-20 Noble Biomaterials, Inc. Metalized fabric that dissipates and scatters infrared light and methods or making and using the same
WO2022046749A1 (en) * 2020-08-24 2022-03-03 Noble Biomaterials, Inc. Methods for controlling color during a metallization process and resulting products

Similar Documents

Publication Publication Date Title
JP2008223189A (en) Conductive nonwoven fabric excellent in heat resistance
JP6038714B2 (en) Conductive nonwoven fabric
CN102834561B (en) Process for production of glass fiber fabric having silica microparticles adhered thereon, glass fiber fabric having silica microparticles adhered thereon, and fiber-reinforced molded resin article
US9554463B2 (en) Circuit materials, circuit laminates, and articles formed therefrom
JP6310364B2 (en) Conductive nonwoven fabric and method for producing melt blown nonwoven fabric used therefor
WO2016027361A1 (en) Conductive nonwoven fabric and manufacturing method for melt-blown nonwoven fabric used in conductive nonwoven fabric
CN107354752B (en) Surface-coated silver F-12 conductive fiber and preparation method thereof
WO2008059741A1 (en) Composite woven fabric and printed wiring board
JP4963628B2 (en) Polymer film laminate, method for producing the same, and flexible wiring board using polymer film laminate.
KR20110104445A (en) Method for producing liquid crystalline polyester impregnated fiber sheet
KR20150048935A (en) Polyimide nanofiber with metal nanoparticle layer and fabrication method thereof
JP4912603B2 (en) Method for producing resin-impregnated base material for circuit board
KR101712887B1 (en) Polyimide nanofiber with metal nanoparticle layer and fabrication method thereof
JP3693609B2 (en) Method for producing metal-clad laminate
JP3917853B2 (en) Circuit board base material and circuit board using the same
JP6156079B2 (en) Metal-clad laminate and method for producing the same, printed wiring board using the same, and method for producing the same
JP4972487B2 (en) Method for producing polymer film laminate
JP2021140950A (en) Conductive pressure sensitive adhesive sheet
JPS63282365A (en) Conductive polyester fiber
CN114507936B (en) Anisotropic heat-transfer electromagnetic interference shielding composite material and preparation method thereof
JP2003342382A (en) Resin impregnated fiber sheet and circuit substrate
JP2009079347A (en) Polyester composite monofilament
JP6094160B2 (en) Metal-clad laminate, method for producing the same, and printed wiring board
CN114729198A (en) Powder composition, film, and method for producing film
TW202321033A (en) Multilayer body and electronic device that is provided with multilayer body