JP2008222637A - Method for producing optical active pipecolic acid or derivative thereof - Google Patents
Method for producing optical active pipecolic acid or derivative thereof Download PDFInfo
- Publication number
- JP2008222637A JP2008222637A JP2007063543A JP2007063543A JP2008222637A JP 2008222637 A JP2008222637 A JP 2008222637A JP 2007063543 A JP2007063543 A JP 2007063543A JP 2007063543 A JP2007063543 A JP 2007063543A JP 2008222637 A JP2008222637 A JP 2008222637A
- Authority
- JP
- Japan
- Prior art keywords
- pipecolic acid
- optically active
- substituted
- derivative
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *N1C(CC(O)=O)CCCC1 Chemical compound *N1C(CC(O)=O)CCCC1 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Hydrogenated Pyridines (AREA)
Abstract
Description
本発明は,医薬品の合成原料や中間体として有用な光学活性ピペコリン酸またはその誘導体の効率的な製造方法,すなわち,式(1)に示すピペコリン酸から、化学的純度および光学的純度ともに優れた光学活性ピペコリン酸若しくはそのエステル,または光学活性N−置換ピペコリン酸若しくはそのエステルを高い収率で製造する方法に関する。光学活性ピペコリン酸またはその誘導体は光学分割剤やキラルビルディングブロック等としても役立つ。
光学活性ピペコリン酸類の製造法としては,微生物変換による方法(例えば,特許文献1,2参照),化学的合成法(例えば,特許文献3参照),ジアステレオマー法(例えば,特許文献4,5参照)等があるものの,微生物変換による方法や化学合成法は生成物の蓄積濃度や収率が低いため,生成物の単離に多大なコストを要する。また,ジアステレオマー法は光学分割剤が高価な上,その回収を含め煩雑な単位操作が必要という問題点を抱えている。
本発明の目的は,従来技術における上記したような課題を解決し,工業的に有利な光学活性ピペコリン酸またはその誘導体の製造方法を提供することにある。 An object of the present invention is to solve the above-described problems in the prior art and to provide an industrially advantageous method for producing optically active pipecolic acid or a derivative thereof.
本発明者らは懸かる課題を解決するため鋭意検討を重ね,その結果,式(1)に示すピペコリン酸を,その窒素部位に置換基を導入した式(2)に示すN−置換ピペコリン酸に変換した後、該化合物を基質に用い,アルコールを含む有機溶媒中,立体選択性を有する生体触媒を用いて反応させることにより,ピペコリン酸をそのまま基質として用いた場合よりも極めて高い収率で立体選択的にエステル化できること,また,得られた光学活性N−置換ピペコリン酸エステルと,もう一方のエナンチオマーの関係にあった光学活性N−置換ピペコリン酸の塩との有機溶媒/水系における分配特性が,光学活性ピペコリン酸エステルと光学活性ピペコリン酸塩の場合に比較して著しく分かれやすくなるため,両光学活性体を容易に分離できるようになること,および前記のようにして得られた光学活性N−置換ピペコリン酸エステルと光学活性N−置換ピペコリン酸(塩)を,加水分解や脱保護処理することによって,光学純度を低下させることなく高収率で光学活性N−置換ピペコリン酸エステル若しくは光学活性N−置換ピペコリン酸,または光学活性ピペコリン酸エステル若しくは光学活性ピペコリン酸になすことができることを見出し,本発明を完成するに至った。 In order to solve the problems, the present inventors have made extensive studies, and as a result, pipecolic acid represented by the formula (1) is converted into an N-substituted pipecolic acid represented by the formula (2) in which a substituent is introduced at the nitrogen site. After the conversion, the compound is used as a substrate and reacted in an organic solvent containing alcohol using a stereoselective biocatalyst, so that the steric compound can be obtained in a much higher yield than when pipecolic acid is used as a substrate as it is. It can be selectively esterified, and the partition property in the organic solvent / water system of the obtained optically active N-substituted pipecolic acid ester and the salt of the optically active N-substituted pipecolic acid in the relationship of the other enantiomer is , Because optically active pipecolic acid ester and optically active pipecolic acid salt are much easier to separate, so that both optically active substances can be easily separated. And the optically active N-substituted pipecolic acid ester and the optically active N-substituted pipecolic acid (salt) obtained as described above are subjected to hydrolysis or deprotection treatment without reducing the optical purity. The present inventors have found that optically active N-substituted pipecolic acid ester or optically active N-substituted pipecolic acid, or optically active pipecolic acid ester or optically active pipecolic acid can be obtained in high yield, and have completed the present invention.
即ち,本発明は,下記の(1)から(9)に示す,ピペコリン酸からの光学活性ピペコリン酸またはその誘導体の製造方法に関する。
(1)式(1)に示すピペコリン酸から光学活性ピペコリン酸またはその誘導体を製造する方法において,該製造方法が,(A):式(1)に示すピペコリン酸を式(2)に示すN−置換ピペコリン酸に変換した後,該化合物を,アルコールを含む有機溶媒中で,立体選択性を有する生体触媒を用いてエステル化することによって,光学活性N−置換ピペコリン酸エステルと,エステル化されなかったもう一方のエナンチオマーの関係にあった光学活性N−置換ピペコリン酸を含む有機溶媒溶液となす工程,および(B):工程(A)で得られた有機溶媒溶液に塩基性物質と水を添加し混合した後,光学活性N−置換ピペコリン酸エステルを含む有機溶媒層と,光学活性N−置換ピペコリン酸塩を含む水層を分取する工程の2工程を必須とし,(C):工程(B)で分取した有機溶媒層より得られる光学活性N−置換ピペコリン酸エステルを加水分解して光学活性N−置換ピペコリン酸にする工程,(D):工程(C)を行った後に,得られた光学活性N−置換ピペコリン酸を脱保護して光学活性ピペコリン酸にする工程、(E):工程(B)で分取した水層より得られる光学活性N−置換ピペコリン酸を脱保護して光学活性ピペコリン酸にする工程のうちの何れか一つ以上を含むことがあることを特徴とする,式(1)に示すピペコリン酸からの光学活性ピペコリン酸またはその誘導体の製造方法。
(2)光学活性ピペコリン酸の誘導体が,光学活性N−置換ピペコリン酸エステル,光学活性N−置換ピペコリン酸,光学活性ピペコリン酸エステルのうちの何れか一つ以上である、請求項1に記載の光学活性ピペコリン酸またはその誘導体の製造方法。
(3)立体選択性を有する生体触媒がエステル加水分解酵素である,(1)に記載の光学活性ピペコリン酸またはその誘導体の製造方法。
(4)エステル加水分解酵素がリパーゼである,(3)に記載の光学活性ピペコリン酸またはその誘導体の製造方法。
(5)リパーゼがキャンディダ属に属する酵母由来のものである,(4)に記載の光学活性ピペコリン酸またはその誘導体の製造方法。
(6)リパーゼがL体立体選択性を有するものである,(4)に記載の光学活性ピペコリン酸またはその誘導体の製造方法。
(7)アルコールが1級または2級のアルコールである,(1)に記載の光学活性ピペコリン酸またはその誘導体の製造方法。
(8)1級または2級のアルコールが,メタノール,エタノール,1−プロパノール,2−プロパノール,1−ブタノール,2−ブタノール,2−メチルプロパノール,1−ペンタノール,2−ペンタノール,3−ペンタノールのうちの何れか一つ以上である,(7)に記載の光学活性ピペコリン酸またはその誘導体の製造方法。
(9)有機溶媒がジイソプロピルエーテルまたはtert−ブチルメチルエーテルである,(1)に記載の光学活性ピペコリン酸またはその誘導体の製造方法。
That is, the present invention relates to a method for producing optically active pipecolic acid or its derivative from pipecolic acid as shown in the following (1) to (9).
(1) In the method for producing optically active pipecolic acid or a derivative thereof from pipecolic acid represented by formula (1), the production method comprises: (A): pipecolic acid represented by formula (1) is represented by N represented by formula (2) -After conversion to a substituted pipecolic acid, the compound is esterified with an optically active N-substituted pipecolic acid ester by esterifying it in an organic solvent containing alcohol using a stereoselective biocatalyst. A step of forming an organic solvent solution containing an optically active N-substituted pipecolic acid that was in the relationship of the other enantiomer that was not present, and (B): adding a basic substance and water to the organic solvent solution obtained in step (A). After adding and mixing, two steps of separating the organic solvent layer containing the optically active N-substituted pipecolic acid ester and the aqueous layer containing the optically active N-substituted pipecolic acid salt are essential, ( ): A step of hydrolyzing the optically active N-substituted pipecolic acid ester obtained from the organic solvent layer fractionated in the step (B) into an optically active N-substituted pipecolic acid, (D): performing the step (C) A step of deprotecting the obtained optically active N-substituted pipecolic acid to obtain an optically active pipecolic acid; (E): an optically active N-substituted pipecolic acid obtained from the aqueous layer separated in step (B) Production of optically active pipecolic acid or its derivative from pipecolic acid represented by formula (1), which may include any one or more of deprotecting to optically active pipecolic acid Method.
(2) The optically active pipecolic acid derivative is any one or more of optically active N-substituted pipecolic acid ester, optically active N-substituted pipecolic acid, and optically active pipecolic acid ester according to claim 1. A method for producing optically active pipecolic acid or a derivative thereof.
(3) The method for producing an optically active pipecolic acid or a derivative thereof according to (1), wherein the biocatalyst having stereoselectivity is an ester hydrolase.
(4) The method for producing an optically active pipecolic acid or a derivative thereof according to (3), wherein the ester hydrolase is lipase.
(5) The method for producing optically active pipecolic acid or a derivative thereof according to (4), wherein the lipase is derived from a yeast belonging to the genus Candida.
(6) The method for producing an optically active pipecolic acid or a derivative thereof according to (4), wherein the lipase has L-form stereoselectivity.
(7) The process for producing optically active pipecolic acid or a derivative thereof according to (1), wherein the alcohol is a primary or secondary alcohol.
(8) Primary or secondary alcohol is methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methylpropanol, 1-pentanol, 2-pentanol, 3-pen The method for producing an optically active pipecolic acid or a derivative thereof according to (7), wherein the optically active pipecolic acid or a derivative thereof is any one or more of tanol.
(9) The method for producing optically active pipecolic acid or a derivative thereof according to (1), wherein the organic solvent is diisopropyl ether or tert-butyl methyl ether.
本発明によれば,医薬品の合成原料や中間体として有用な,化学的純度および光学的純度ともに優れた光学活性ピペコリン酸または光学活性ピペコリン酸誘導体、すなわち光学活性N−置換ピペコリン酸エステル,光学活性N−置換ピペコリン酸,光学活性ピペコリン酸エステルを効率的に製造することが可能となる。 According to the present invention, an optically active pipecolic acid or an optically active pipecolic acid derivative that is useful as a raw material or intermediate for pharmaceuticals and excellent in chemical purity and optical purity, that is, an optically active N-substituted pipecolic acid ester, an optical activity N-substituted pipecolic acid and optically active pipecolic acid ester can be efficiently produced.
以下,本発明を詳細に説明する。
本発明においては原料として式(1)で示されるピペコリン酸を使用し,このピペコリン酸の窒素部位に置換基Rを導入して式(2)で示すN−置換ピペコリン酸に変換する。このように,原料の反応基質をピペコリン酸からN−置換ピペコリン酸にすることによって,生体触媒を用いたエステル化反応が立体選択的に極めて高い収率で進行し,しかも光学活性N−置換ピペコリン酸から生成した光学活性N−置換ピペコリン酸エステルと,エナンチオマーの関係にあった残された光学活性N−置換ピペコリン酸との分離回収が極めて容易になる。
このピペコリン酸の窒素部位に導入する置換基Rとしては,ホルミル基,アセチル基,ベンジルオキシカルボニル基,またはtert−ブトキシカルボニル基が好ましく,特に生体触媒反応に対する基質特異性および有機溶媒/水層間での二層分離性の点から,tert−ブトキシカルボニル基が最も好ましい。置換基Rの窒素部位への導入方法としては,塩基性条件下,無水酢酸,塩化ベンジルオキシカルボニル,ジ−tert−ブチルジカーボネート等を用いる方法が一般的に良く知られている。なお、医薬品合成においては、一般的に反応性に富んだ窒素部位を保護した上で使用することが多いので、光学活性N−置換ピペコリン酸エステルや光学活性N−置換ピペコリン酸の供給手段となる点でも目的に適うものである。
The present invention will be described in detail below.
In the present invention, pipecolic acid represented by the formula (1) is used as a raw material, and a substituent R is introduced into the nitrogen site of the pipecolic acid to convert it into an N-substituted pipecolic acid represented by the formula (2). In this way, by changing the starting reaction substrate from pipecolic acid to N-substituted pipecolic acid, the esterification reaction using a biocatalyst proceeds in a stereoselective manner with an extremely high yield, and optically active N-substituted pipecoline. Separation and recovery of the optically active N-substituted pipecolic acid ester produced from the acid and the remaining optically active N-substituted pipecolic acid in the enantiomeric relationship are extremely easy.
As the substituent R introduced into the nitrogen site of this pipecolic acid, a formyl group, an acetyl group, a benzyloxycarbonyl group, or a tert-butoxycarbonyl group is preferable, and in particular, the substrate specificity for biocatalytic reaction and the organic solvent / water layer From the viewpoint of the two-layer separability, a tert-butoxycarbonyl group is most preferred. As a method for introducing the substituent R into the nitrogen moiety, a method using acetic anhydride, benzyloxycarbonyl chloride, di-tert-butyl dicarbonate or the like under basic conditions is generally well known. In pharmaceutical synthesis, a nitrogen moiety having a high reactivity is generally used after being protected, and therefore it is a means for supplying optically active N-substituted pipecolic acid ester and optically active N-substituted pipecolic acid. It is also suitable in terms of purpose.
本発明に使用される生体触媒はアルコール存在下、有機溶媒中でN−置換ピペコリン酸を立体選択的にエステル化する能力を有するものであれば特に由来は限定されない。このような能力を有する生体触媒としては微生物の産生するエステル加水分解酵素があり,例えば、キャンディダ属に属する酵母,アスペルギルス属に属する糸状菌,アルカリゲネス属,シュードモナス属等に属する細菌由来のものが挙げられ,中でもキャンディダ属に属する酵母由来のリパーゼ好ましく,特にキャンディダ アンタルクティカ(Candida antarctica)が産生するリパーゼが好適である。なお,生体触媒の形態に制限はなく,前記加水分解酵素を担体に固定化したものも好適に用いることができる。 The origin of the biocatalyst used in the present invention is not particularly limited as long as it has the ability to stereoselectively esterify N-substituted pipecolic acid in an organic solvent in the presence of alcohol. Examples of biocatalysts having such ability include ester hydrolases produced by microorganisms, such as yeasts belonging to the genus Candida, filamentous fungi belonging to the genus Aspergillus, genus bacteria belonging to the genus Algigenes, Pseudomonas, etc. Among them, lipases derived from yeast belonging to the genus Candida are preferable, and lipases produced by Candida antarctica are particularly preferable. In addition, there is no restriction | limiting in the form of a biocatalyst, What fixed the said hydrolase to the support | carrier can be used suitably.
本発明で用いられるアルコールとしては1級または2級のアルコールが挙げられ,具体的にはメタノール,エタノール,1−プロパノール,2−プロパノール,1−ブタノール,2−ブタノール,2−メチルプロパノール,1−ペンタノール,2−ペンタノール,3−ペンタノールが用いられる。中でも好ましいのはメタノール,エタノールであり,より好ましくはメタノールである。 Examples of the alcohol used in the present invention include primary or secondary alcohols, specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methylpropanol, 1- Pentanol, 2-pentanol, and 3-pentanol are used. Of these, methanol and ethanol are preferable, and methanol is more preferable.
本発明で用いられる有機溶媒としては,生体触媒を用いた本反応を阻害せず,基質であるN−置換ピペコリン酸および生成物である光学活性N−置換ピペコリン酸エステルをよく溶解し,水と層分離し,かつ適度な沸点を有する溶媒が選ばれる。このような条件を満たす有機溶媒としては,n−ヘキサン,n−ヘプタンなどの脂肪族炭化水素類,ベンゼン,トルエンなどの芳香族炭化水素類,ジエチルエーテル,ジイソプロピルエーテル,tert−ブチルメチルエーテルなどのエーテル類等が挙げられる。これら有機溶媒は単独または二種類以上を混合して用いることができる。なお,転化率よくエステル化反応を行う上で有機溶媒中に含まれる水分は少ないことが望ましく,好ましくは1.0重量%以下,より好ましくは0.5重量%以下であることが望ましい。 As the organic solvent used in the present invention, N-substituted pipecolic acid as a substrate and optically active N-substituted pipecolic acid ester as a product are well dissolved without inhibiting the present reaction using a biocatalyst. A solvent that separates the layers and has an appropriate boiling point is selected. Examples of the organic solvent satisfying such conditions include aliphatic hydrocarbons such as n-hexane and n-heptane, aromatic hydrocarbons such as benzene and toluene, diethyl ether, diisopropyl ether, and tert-butyl methyl ether. And ethers. These organic solvents can be used alone or in admixture of two or more. In order to perform the esterification reaction with a high conversion rate, it is desirable that the amount of water contained in the organic solvent is small, preferably 1.0% by weight or less, more preferably 0.5% by weight or less.
本発明の生体触媒を用いた立体選択的なエステル化反応の基質であるN−置換ピペコリン酸の有機溶媒に対する濃度は1〜30重量%が好ましく,5〜15重量%がより好ましい。また,エステル化剤であるアルコールの濃度は有機溶媒に対して1〜30重量%が好ましく,1〜10重量%がより好ましい。一方,N−置換ピペコリン酸とアルコールのモル比は1:1〜1:10が好ましく,1:1〜1:5がより好ましい。 The concentration of N-substituted pipecolic acid, which is a substrate for the stereoselective esterification reaction using the biocatalyst of the present invention, with respect to the organic solvent is preferably 1 to 30% by weight, more preferably 5 to 15% by weight. Further, the concentration of the alcohol as the esterifying agent is preferably 1 to 30% by weight, more preferably 1 to 10% by weight with respect to the organic solvent. On the other hand, the molar ratio of N-substituted pipecolic acid to alcohol is preferably 1: 1 to 1:10, more preferably 1: 1 to 1: 5.
使用される生体触媒の量は,経済性や反応後の生成物の精製等を考慮すると少ない方が好ましいが,極端に少ないと反応速度の点で不利である。これらのことを考慮すると使用される生体触媒の量は基質であるN−置換ピペコリン酸に対して1〜30重量%が好ましく,5〜15重量%がより好ましい。 The amount of biocatalyst used is preferably small in consideration of economy and purification of the product after the reaction, but extremely small is disadvantageous in terms of reaction rate. Considering these matters, the amount of the biocatalyst used is preferably 1 to 30% by weight, more preferably 5 to 15% by weight based on the N-substituted pipecolic acid which is the substrate.
生体触媒には反応に適した温度範囲があるため,使用する生体触媒および反応液組成に応じ好適な反応温度を選ぶ必要がある。本発明における好ましい反応温度範囲は30〜90℃であり,反応温度が30℃を下回ると十分な反応速度が得られず,90℃を上回ると熱変性により生体触媒活性が低下し反応速度が落ちるので不利となる。なお、一般的に生体触媒を担体に固定化することによって耐熱性を付与することができるので,反応速度を高めるうえで有用である。 Since the biocatalyst has a temperature range suitable for the reaction, it is necessary to select a suitable reaction temperature according to the biocatalyst to be used and the composition of the reaction solution. A preferable reaction temperature range in the present invention is 30 to 90 ° C. When the reaction temperature falls below 30 ° C, a sufficient reaction rate cannot be obtained. When the reaction temperature exceeds 90 ° C, biocatalytic activity decreases due to thermal denaturation and the reaction rate falls. So it will be disadvantageous. In general, heat resistance can be imparted by immobilizing a biocatalyst on a carrier, which is useful for increasing the reaction rate.
本発明を実施するうえで反応圧力に特別な制限はなく,減圧,常圧,加圧の何れでもよい。 In carrying out the present invention, the reaction pressure is not particularly limited, and may be any of reduced pressure, normal pressure, and increased pressure.
上記方法によってN−置換ピペコリン酸のD体またはL体の何れか一方を立体選択的にエステル化し光学活性N−置換ピペコリン酸エステルに変換することができる。 By the above method, either D-form or L-form of N-substituted pipecolic acid can be stereoselectively esterified and converted to optically active N-substituted pipecolic acid ester.
本発明によって得られる光学活性N−置換ピペコリン酸エステルと光学活性N−置換ピペコリン酸は何れも有機溶媒に溶解するが、そのうちの光学活性N−置換ピペコリン酸については、立体選択的なエステル化反応後の有機溶媒溶液に塩基性物質と水(例えば、炭酸ナトリウム水溶液)を添加し混合すると塩を形成し有機溶媒に対する溶解度が低下し,水に対する溶解度が高くなる。この性質を利用して光学活性N−置換ピペコリン酸エステルと光学活性N−置換ピペコリン酸の分離を行うことができる。即ち,立体選択的なエステル化反応後の有機溶媒溶液に炭酸ナトリウム水溶液などを添加すれば,立体選択的なエステル化を受けなかった光学活性N−置換ピペコリン酸のみをナトリウム塩の形で水層へ移すことができ,有機溶媒層に存在する立体選択的にエステル化された光学活性N−置換ピペコリン酸エステルと分離することができる。 The optically active N-substituted pipecolic acid ester and the optically active N-substituted pipecolic acid obtained by the present invention are both dissolved in an organic solvent, and the optically active N-substituted pipecolic acid is stereoselective esterification reaction. When a basic substance and water (for example, sodium carbonate aqueous solution) are added to and mixed with the later organic solvent solution, a salt is formed, the solubility in the organic solvent is lowered, and the solubility in water is increased. Utilizing this property, optically active N-substituted pipecolic acid ester and optically active N-substituted pipecolic acid can be separated. That is, if an aqueous solution of sodium carbonate or the like is added to the organic solvent solution after the stereoselective esterification reaction, only the optically active N-substituted pipecolic acid that has not undergone stereoselective esterification is converted into an aqueous layer in the form of a sodium salt. And can be separated from the stereoselectively esterified optically active N-substituted pipecolic acid ester present in the organic solvent layer.
有機溶媒層の光学活性N−置換ピペコリン酸エステルは有機溶媒を留去することによって単離することが可能であり,必要に応じて再結晶などの手法を用いて精製することも可能である。また,水層に存在する光学活性N−置換ピペコリン酸の塩は,塩酸などの酸水溶液で処理(中和)することで光学活性N−置換ピペコリン酸として得ることができ,また必要に応じて精製することも可能である。 The optically active N-substituted pipecolic acid ester in the organic solvent layer can be isolated by distilling off the organic solvent, and can be purified using a technique such as recrystallization as necessary. The salt of optically active N-substituted pipecolic acid present in the aqueous layer can be obtained as optically active N-substituted pipecolic acid by treatment (neutralization) with an aqueous acid solution such as hydrochloric acid. It is also possible to purify.
更に本発明によれば,立体選択的なエステル化反応によって得られた光学活性N−置換ピペコリン酸エステルを加水分解することにより,ラセミ化を起こすことなく光学活性N−置換ピペコリン酸や光学活性ピペコリン酸に変換することが可能である。 Furthermore, according to the present invention, an optically active N-substituted pipecolic acid or an optically active pipecoline can be produced without hydrolysis by hydrolysis of an optically active N-substituted pipecolic acid ester obtained by a stereoselective esterification reaction. It can be converted to an acid.
また、公知の方法に基づいて,前述の光学活性N−置換ピペコリン酸から、窒素部位を保護していた保護基を脱離することにより,ラセミ化を起こすことなく光学活性ピペコリン酸を得ることが可能である。 In addition, optically active pipecolic acid can be obtained without racemization by removing the protecting group that protected the nitrogen moiety from the above-mentioned optically active N-substituted pipecolic acid based on a known method. Is possible.
以下,実施例および比較例をもって本発明をより具体的に説明するが,本発明はこれらの例に限定されるものではない。尚,光学純度の分析は,光学分割カラム(CHIRALCEL OD−H/ダイセル化学工業製)を用いてHPLCで行った。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention more concretely, this invention is not limited to these examples. The optical purity was analyzed by HPLC using an optical resolution column (CHIRALCEL OD-H / manufactured by Daicel Chemical Industries).
実施例1
1.N−tert−ブトキシカルボニルピペコリン酸の製造
ラセミ体のピペコリン酸3.9g(30mmol),ニ炭酸−ジ−tert−ブチル6.6g(30mmol)を,tert−ブチルアルコール7.5g,水15gの混合溶媒に加え,25℃の条件下で24%−NaOH水溶液9.7gを滴下した。滴下終了後27℃で3時間反応させ,反応後にtert−ブチルアルコールを減圧下で留去した。18℃の条件下で塩酸を滴下し中和した後,5℃で冷却を行い、結晶を析出させた。得られた結晶を濾別し,水洗後,減圧乾燥を行いラセミ体のN−tert−ブトキシカルボニルピペコリン酸5.6g(24mmol)を得た(ラセミ体のピペコリン酸に対する収率=81%)。
2.L−N−tert−ブトキシカルボニルピペコリン酸メチルエステルの製造
上記のようにして製造したラセミ体のN−tert−ブトキシカルボニルピペコリン酸0.3g(1.3mmol),メタノール0.1g,固定化酵素Chirazyme L2,c−f,C2(ロシュ・ダイアグノスティック社製)0.1gを,ジイソプロピルエーテル3.0gに加え,80℃で7時間振盪し,立体選択的なエステル化反応を行った。その結果,L−N−tert−ブトキシカルボニルピペコリン酸メチルエステル0.13gを得た(ラセミ体に含まれるL− N−tert−ブトキシカルボニルピペコリン酸に対する収率82%,光学純度98%ee)。
Example 1
1. Production of N-tert-butoxycarbonyl pipecolic acid 3.9 g (30 mmol) of racemic pipecolic acid and 6.6 g (30 mmol) of dicarbonate-di-tert-butyl dicarbonate in a mixed solvent of 7.5 g of tert-butyl alcohol and 15 g of water In addition, 9.7 g of a 24% -NaOH aqueous solution was added dropwise at 25 ° C. After completion of the dropwise addition, the mixture was reacted at 27 ° C. for 3 hours. Hydrochloric acid was added dropwise at 18 ° C for neutralization, followed by cooling at 5 ° C to precipitate crystals. The obtained crystals were separated by filtration, washed with water, and dried under reduced pressure to obtain 5.6 g (24 mmol) of racemic N-tert-butoxycarbonylpipecolic acid (yield based on racemic pipecolic acid = 81%).
2. Production of L-N-tert-butoxycarbonylpipecolic acid methyl ester 0.3 g (1.3 mmol) of racemic N-tert-butoxycarbonylpipecolic acid produced as described above, 0.1 g of methanol, immobilized enzyme Chirazyme L2 , c-f, C2 (manufactured by Roche Diagnostics) was added to 3.0 g of diisopropyl ether and shaken at 80 ° C. for 7 hours to carry out a stereoselective esterification reaction. As a result, 0.13 g of LN-tert-butoxycarbonyl pipecolic acid methyl ester was obtained (yield 82% with respect to L-N-tert-butoxycarbonyl pipecolic acid contained in the racemate, optical purity 98% ee). .
実施例2
L−N−tert−ブトキシカルボニルピペコリン酸エチルエステルの製造
実施例1と同様にして製造したラセミ体のN−tert−ブトキシカルボニルピペコリン酸1.0g(4.4mmol),エタノール0.45g,固定化酵素Chirazyme L2,c−f,C2(ロシュ・ダイアグノスティック社製)0.1gを,ジイソプロピルエーテル9.0gに加え,80℃で8時間振盪し,立体選択的なエステル化反応を行った。その結果,L−N−tert−ブトキシカルボニルピペコリン酸エチルエステル0.5gを得た(ラセミ体に含まれるL−N−tert−ブトキシカルボニルピペコリン酸に対する収率84%,光学純度98%ee)。
Example 2
Production of L-N-tert-butoxycarbonyl pipecolic acid ethyl ester Racemic N-tert-butoxycarbonyl pipecolic acid produced in the same manner as in Example 1 1.0 g (4.4 mmol), ethanol 0.45 g, immobilized enzyme Chirazyme L2, cf, C2 (Roche Diagnostics) 0.1 g was added to diisopropyl ether 9.0 g and shaken at 80 ° C. for 8 hours to perform a stereoselective esterification reaction. As a result, 0.5 g of LN-tert-butoxycarbonylpipecolic acid ethyl ester was obtained (yield 84% with respect to L-N-tert-butoxycarbonylpipecolic acid contained in the racemate, optical purity 98% ee). .
実施例3
1.N−ベンジルオキシカルボニルピペコリン酸の製造
ラセミ体のピペコリン酸3.9g(30mmol),24%−NaOH水溶液5.3g(32mmol)を水15gに加え,撹拌下,10℃で塩化ベンジルオキシカルボニル5.6g(33mmol)を滴下した。滴下終了後,反応液のpHをアルカリ性にするため,24%−NaOH水溶液を更に6.0g(36mmol)加え,25℃で3時間反応を行った。エーテル30mlで2回洗浄を行った後,水層に塩酸を少しずつ加えpHを2にした。酢酸エチル30mlで3回抽出を行い,これを水洗した後,減圧下で酢酸エチルの一部(約半量)を留去した。貧溶媒としてヘキサン15mlを加え,析出してきた結晶を濾別,減圧乾燥を行い,ラセミ体のN−ベンジルオキシカルボニルピペコリン酸5.4g(21mmol)を得た(ラセミ体のピペコリン酸に対する収率=68%)。
2.L−N−ベンジルオキシカルボニルピペコリン酸メチルエステルの製造
上記のようにして製造したラセミ体のN−ベンジルオキシカルボニルピペコリン酸0.5g(1.9mmol),メタノール0.2g,固定化酵素Chirazyme L2,c−f,C2(ロシュ・ダイアグノスティック社製)0.12gをジイソプロピルエーテル5.0gに加え,80℃で10時間振盪し,立体選択的なエステル化反応を行った。その結果,L−N−ベンジルオキシカルボニルピペコリン酸メチルエステル0.2gを得た(ラセミ体に含まれるL−N−ベンジルオキシカルボニルピペコリン酸に対する収率80%,光学純度98%ee)。
Example 3
1. Production of N-benzyloxycarbonylpipecolic acid 3.9 g (30 mmol) of racemic pipecolic acid and 5.3 g (32 mmol) of 24% -NaOH aqueous solution were added to 15 g of water and 5.6 g of benzyloxycarbonyl chloride at 10 ° C. with stirring. (33 mmol) was added dropwise. After completion of the dropwise addition, in order to make the pH of the reaction solution alkaline, 6.0 g (36 mmol) of 24% -NaOH aqueous solution was further added, and the reaction was carried out at 25 ° C. for 3 hours. After washing twice with 30 ml of ether, hydrochloric acid was gradually added to the aqueous layer to adjust the pH to 2. Extraction was performed 3 times with 30 ml of ethyl acetate, and this was washed with water, and then a part (about half amount) of ethyl acetate was distilled off under reduced pressure. 15 ml of hexane was added as a poor solvent, and the precipitated crystals were separated by filtration and dried under reduced pressure to obtain 5.4 g (21 mmol) of racemic N-benzyloxycarbonylpipecolic acid (yield of racemic pipecolic acid = 68%).
2. Production of L-N-benzyloxycarbonyl pipecolic acid methyl ester 0.5 g (1.9 mmol) of racemic N-benzyloxycarbonyl pipecolic acid produced as described above, 0.2 g of methanol, immobilized enzyme Chirazyme L2, c -F, C2 (Roche Diagnostics) 0.12 g was added to diisopropyl ether 5.0 g and shaken at 80 ° C. for 10 hours to perform stereoselective esterification reaction. As a result, 0.2 g of LN-benzyloxycarbonyl pipecolic acid methyl ester was obtained (yield 80% with respect to L-N-benzyloxycarbonyl pipecolic acid contained in the racemate, optical purity 98% ee).
実施例4
L−N−tert−ブトキシカルボニルピペコリン酸メチルエステルの製造
実施例1と同様にして製造したラセミ体のN−tert−ブトキシカルボニルピペコリン酸0.3g(1.3mmol),メタノール0.1g,固定化酵素Chirazyme L2,c−f,C2(ロシュ・ダイアグノスティック社製)0.1gを,tert−ブチルメチルエーテル3.2gに加え,80℃で7.5時間振盪し,立体選択的なエステル化反応を行った。その結果,L−N−tert−ブトキシカルボニルピペコリン酸メチルエステル0.13gを得た(ラセミ体に含まれるL− N−tert−ブトキシカルボニルピペコリン酸に対する収率80%,光学純度98%ee)。
Example 4
Production of L-N-tert-butoxycarbonyl pipecolic acid methyl ester Racemic N-tert-butoxycarbonyl pipecolic acid produced in the same manner as in Example 1, 0.3 g (1.3 mmol), methanol 0.1 g, immobilized enzyme 0.1 g of Chirazyme L2, c-f, C2 (Roche Diagnostics) was added to 3.2 g of tert-butyl methyl ether and shaken at 80 ° C. for 7.5 hours to conduct stereoselective esterification. As a result, 0.13 g of L-N-tert-butoxycarbonylpipecolic acid methyl ester was obtained (yield 80% with respect to L-N-tert-butoxycarbonylpipecolic acid contained in the racemate, optical purity 98% ee). .
比較例1
L−ピペコリン酸メチルエステルの製造
ラセミ体のピペコリン酸1.6g(12mmol),メタノール0.9g,固定化酵素Chirazyme L2,c−f,C2(ロシュ・ダイアグノスティック社製)0.2gを,ジイソプロピルエーテル28.8gに加え,80℃で24時間振盪し,立体選択的なエステル化反応を行った。その結果,得られたL−ピペコリン酸メチルエステルは0.1gであった(ラセミ体に含まれるL−ピペコリン酸に対する収率16%,光学純度24%ee)。
Comparative Example 1
Production of L-pipecolic acid methyl ester 1.6 g (12 mmol) of racemic pipecolic acid, 0.9 g of methanol, 0.2 g of immobilized enzyme Chirazyme L2, c-f, C2 (Roche Diagnostics), 28.8 g of diisopropyl ether In addition to g, the mixture was shaken at 80 ° C. for 24 hours to perform a stereoselective esterification reaction. As a result, the obtained L-pipecolic acid methyl ester was 0.1 g (yield 16% with respect to L-pipecolic acid contained in the racemate, optical purity 24% ee).
実施例5
ラセミ体のN−tert−ブトキシカルボニルピペコリン酸からのL−ピペコリン酸およびD−ピペコリン酸の製造
1.L−N−tert−ブトキシカルボニルピペコリン酸メチルエステルの製造
実施例1と同様にして製造したラセミ体のN−tert−ブトキシカルボニルピペコリン酸3.3g(14.4mmol),メタノール1.0g,固定化酵素Chirazyme L2,c−f,C2(ロシュ・ダイアグノスティック社製)0.3gを,ジイソプロピルエーテル28.8gに加え,反応器内をアルゴンで置換した後80℃で24時間振盪し,立体選択的なエステル化反応を行った。その結果,L−N−tert−ブトキシカルボニルピペコリン酸メチルエステル1.6g(6.6mmol,ラセミ体に含まれるL− N−tert−ブトキシカルボニルピペコリン酸に対する収率92%,光学純度97%ee)およびD−N−tert−ブトキシカルボニルピペコリン酸1.8g(7.8mmol,ラセミ体に含まれるD− N−tert−ブトキシカルボニルピペコリン酸に対する収率108%,光学純度83%ee)を含む反応液を得た。
2.L−N−tert−ブトキシカルボニルピペコリン酸の製造
上記反応液中の固定化酵素を濾過し,反応液に炭酸ナトリウム水溶液を加え有機層と水層を分取した。得られた有機層を水洗した後,有機溶媒を留去し,L−N−tert−ブトキシカルボニルピペコリン酸メチルエステル1.6g(6.6mmol)を得た(ラセミ体に含まれるL− N−tert−ブトキシカルボニルピペコリン酸に対する収率92%,光学純度97%ee)。次いで、得られたL−N−tert−ブトキシカルボニルピペコリン酸メチルエステルに水酸化ナトリウム水溶液を加え50℃で3時間反応を行った。氷水冷後,硫酸水素カリウム水溶液で中和しL−N−tert−ブトキシカルボニルピペコリン酸1.5gを得た(工程収率98%,光学純度97%ee)
3.L−ピペコリン酸の製造
上記2の工程で得られたL−N−tert−ブトキシカルボニルピペコリン酸にトリフルオロ酢酸10mlを加え,室温で1時間攪拌することにより脱保護を行った。その結果,トリフルオロ酢酸を減圧留去しL−ピペコリン酸0.8g(6.0mmol)を得た(工程収率92%,光学純度97%ee)。生体触媒を使用した立体選択的なエステル化反応からの通算収率は83%であった(ラセミ体に含まれるL− N−tert−ブトキシカルボニルピペコリン酸基準)。
4.D−N−tert−ブトキシカルボニルピペコリン酸の製造
上記2において炭酸ナトリウム水溶液を加え混合した後、分取した水層に塩酸を加え,D−N−tert−ブトキシカルボニルピペコリン酸を遊離させた。酢酸エチルを加えこれを抽出した後、酢酸エチルを留去しD−N−tert−ブトキシカルボニルピペコリン酸の粗結晶1.8g(7.8mmol)を得た(ラセミ体に含まれるD− N−tert−ブトキシカルボニルピペコリン酸に対する収率108%,光学純度83%ee)。
5.D−ピペコリン酸の製造
上記4の工程で得られたD−N−tert−ブトキシカルボニルピペコリン酸の粗結晶にトリフルオロ酢酸11mlを加え,室温で1時間攪拌することにより脱保護を行った。トリフルオロ酢酸を減圧留去しD−ピペコリン酸0.9g(7.2mmol)を得た(工程収率92%,光学純度83%ee)。生体触媒を使用した立体選択的なエステル化反応からの通算収率は99%であった(ラセミ体に含まれるD− N−tert−ブトキシカルボニルピペコリン酸基準)。
Example 5
Production of L-pipecolic acid and D-pipecolic acid from racemic N-tert-butoxycarbonyl pipecolic acid
1. Production of L-N-tert-butoxycarbonyl pipecolic acid methyl ester Racemic N-tert-butoxycarbonyl pipecolic acid produced in the same manner as in Example 1, 3.3 g (14.4 mmol), methanol 1.0 g, immobilized enzyme Chirazyme L2, c-f, C2 (Roche Diagnostics) 0.3g was added to 28.8g of diisopropyl ether, and the inside of the reactor was purged with argon, followed by shaking at 80 ° C for 24 hours. The reaction was carried out. As a result, L-N-tert-butoxycarbonylpipecolic acid methyl ester 1.6 g (6.6 mmol, 92% yield with respect to L-N-tert-butoxycarbonylpipecolic acid contained in the racemate, optical purity 97% ee) And D-N-tert-butoxycarbonylpipecolic acid 1.8 g (7.8 mmol, 108% yield with respect to D-N-tert-butoxycarbonylpipecolic acid contained in the racemate, optical purity 83% ee) Got.
2. Production of L-N- tert -butoxycarbonylpipecolic acid The immobilized enzyme in the reaction solution was filtered, an aqueous sodium carbonate solution was added to the reaction solution, and an organic layer and an aqueous layer were separated. After washing the obtained organic layer with water, the organic solvent was distilled off to obtain 1.6 g (6.6 mmol) of L-N-tert-butoxycarbonylpipecolic acid methyl ester (L-N-tert contained in the racemate). -Yield 92% with respect to butoxycarbonyl pipecolic acid, optical purity 97% ee). Next, an aqueous sodium hydroxide solution was added to the obtained L-N-tert-butoxycarbonyl pipecolic acid methyl ester, and the reaction was carried out at 50 ° C. for 3 hours. After cooling with ice water, the mixture was neutralized with an aqueous potassium hydrogen sulfate solution to obtain 1.5 g of L-N-tert-butoxycarbonylpipecolic acid (process yield: 98%, optical purity: 97% ee)
3. Production of L-pipecolic acid 10 ml of trifluoroacetic acid was added to LN-tert-butoxycarbonylpipecolic acid obtained in the above two steps and the mixture was stirred at room temperature for 1 hour for deprotection. As a result, trifluoroacetic acid was distilled off under reduced pressure to obtain 0.8 g (6.0 mmol) of L-pipecolic acid (process yield: 92%, optical purity: 97% ee). The total yield from the stereoselective esterification reaction using a biocatalyst was 83% (based on L-N-tert-butoxycarbonyl pipecolic acid contained in the racemate).
4). Production of D-N-tert-butoxycarbonylpipecolic acid After adding and mixing an aqueous sodium carbonate solution in 2 above, hydrochloric acid was added to the separated aqueous layer to release D-N-tert-butoxycarbonylpipecolic acid. . After adding ethyl acetate and extracting this, ethyl acetate was distilled off to obtain 1.8 g (7.8 mmol) of crude crystals of D-N-tert-butoxycarbonylpipecolic acid (D-N-tert contained in the racemate). -Yield 108% with respect to butoxycarbonyl pipecolic acid, optical purity 83% ee).
5. Production of D-pipecolic acid 11 ml of trifluoroacetic acid was added to the crude crystals of D-N-tert-butoxycarbonylpipecolic acid obtained in the above step 4 and the mixture was stirred at room temperature for 1 hour for deprotection. Trifluoroacetic acid was distilled off under reduced pressure to obtain 0.9 g (7.2 mmol) of D-pipecolic acid (process yield 92%, optical purity 83% ee). The total yield from the stereoselective esterification reaction using a biocatalyst was 99% (based on DN-tert-butoxycarbonyl pipecolic acid contained in the racemate).
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007063543A JP5092466B2 (en) | 2007-03-13 | 2007-03-13 | A method for producing optically active pipecolic acid or a derivative thereof. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007063543A JP5092466B2 (en) | 2007-03-13 | 2007-03-13 | A method for producing optically active pipecolic acid or a derivative thereof. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008222637A true JP2008222637A (en) | 2008-09-25 |
JP5092466B2 JP5092466B2 (en) | 2012-12-05 |
Family
ID=39841663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007063543A Expired - Fee Related JP5092466B2 (en) | 2007-03-13 | 2007-03-13 | A method for producing optically active pipecolic acid or a derivative thereof. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5092466B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116500168A (en) * | 2023-05-24 | 2023-07-28 | 南京医科大学 | Application of combination of beta-alanine and piperidine acid as giant infant predictive marker |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004108944A1 (en) * | 2003-06-04 | 2004-12-16 | Mitsubishi Gas Chemical Company, Inc. | Method for producing optically active chroman-carboxylate |
JP2005176758A (en) * | 2003-12-22 | 2005-07-07 | Sanwa Kagaku Kenkyusho Co Ltd | Method for producing 4-oxochroman-2-carboxylic acid derivative having optical activity |
JP2005278426A (en) * | 2004-03-29 | 2005-10-13 | Nippon Zeon Co Ltd | Method for producing optical activator |
-
2007
- 2007-03-13 JP JP2007063543A patent/JP5092466B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004108944A1 (en) * | 2003-06-04 | 2004-12-16 | Mitsubishi Gas Chemical Company, Inc. | Method for producing optically active chroman-carboxylate |
JP2005176758A (en) * | 2003-12-22 | 2005-07-07 | Sanwa Kagaku Kenkyusho Co Ltd | Method for producing 4-oxochroman-2-carboxylic acid derivative having optical activity |
JP2005278426A (en) * | 2004-03-29 | 2005-10-13 | Nippon Zeon Co Ltd | Method for producing optical activator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116500168A (en) * | 2023-05-24 | 2023-07-28 | 南京医科大学 | Application of combination of beta-alanine and piperidine acid as giant infant predictive marker |
CN116500168B (en) * | 2023-05-24 | 2024-02-20 | 南京医科大学 | Application of combination of beta-alanine and piperidine acid as giant infant predictive marker |
Also Published As
Publication number | Publication date |
---|---|
JP5092466B2 (en) | 2012-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3789938B2 (en) | Racemic resolution of primary and secondary heteroatom-substituted amines by enzyme-catalyzed acylation | |
EP2123769B1 (en) | Method for producing optically active 3-aminopiperidine or salt thereof | |
JP5092466B2 (en) | A method for producing optically active pipecolic acid or a derivative thereof. | |
WO2008038050A2 (en) | Reduction of alpha-halo ketones | |
JP5093248B2 (en) | Process for producing optically active indoline-2-carboxylic acids or derivatives thereof | |
JP5092465B2 (en) | Stereoselective esterification of pipecolic acid | |
WO2005073388A1 (en) | Processes for producing optically active 1-substituted 2-methylpyrrolidine and intermediate therefor | |
Yamada et al. | Optically active cyclohexene derivative as a new antisepsis agent: an efficient synthesis of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1-carboxylate (TAK-242) | |
KR101446551B1 (en) | Process of preparing (2RS)-Amino-(3S)-hydroxy-butyric acid or its derivatives | |
JP4720132B2 (en) | Process for producing optically active N-protected-octahydro-1H-indole-2-carboxylic acid | |
EP2725012A1 (en) | 1-amino-2-vinyl cyclopropane carboxylic acid amide, salt of same, and method for producing same | |
JP5329973B2 (en) | From racemic 4- (1-aminoethyl) benzoic acid methyl ester to (R)-and (S) -4- (1-ammoniumethyl) by enantioselective acylation using a lipase catalyst followed by precipitation with sulfuric acid. Method for preparing benzoic acid methyl ester sulfate | |
WO2003042393A1 (en) | Enzymatic preparation of mycophenolate mofetil | |
JP4257975B2 (en) | Process for producing optically active aminoindanols and aminotetralinols | |
US7439036B2 (en) | Process for producing optically active octahydro-1H-indole-2-carboxylic acid | |
JP3814766B2 (en) | Process for producing optically active 2-halo-1- (substituted phenyl) ethanol | |
JP2002253293A (en) | METHOD FOR PRODUCING OPTICALLY ACTIVE L-tert-LEUCINE | |
KR100650546B1 (en) | The method of preparing optically active trans-1-ramino-2-indanol and their esters by enzymatic method | |
WO2019225267A1 (en) | METHOD FOR PRODUCING OPTICALLY ACTIVE cis-AMINOPIPERIDINE | |
WO2006008170A1 (en) | Process for the preparation of (2r, 3r)-2-hydroxy-3-amino-3-aryl-propionamide and (2r, 3r)-2-hydroxy-3-amino-3-aryl-propionic acid alkyl ester | |
JP4544385B2 (en) | Process for producing optically active 2,6-diaminoheptanoic acid | |
JP2007117034A (en) | Method for producing optically active nipecotic acid compound | |
KR101510637B1 (en) | Novel Intermediate of L-Cloperastine and Preparation Method Thereof | |
JP2006075032A (en) | Method for producing optically active (r or s)-3-aminoglutaric acid monoester compound | |
JPH10248592A (en) | Production of optically active 2-benzylsuccinic acid and its derivative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100226 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120117 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120814 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120903 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |