JP2008222578A - METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-FLUOROMETHYLAMINE DERIVATIVE - Google Patents

METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-FLUOROMETHYLAMINE DERIVATIVE Download PDF

Info

Publication number
JP2008222578A
JP2008222578A JP2007059608A JP2007059608A JP2008222578A JP 2008222578 A JP2008222578 A JP 2008222578A JP 2007059608 A JP2007059608 A JP 2007059608A JP 2007059608 A JP2007059608 A JP 2007059608A JP 2008222578 A JP2008222578 A JP 2008222578A
Authority
JP
Japan
Prior art keywords
group
optically active
general formula
mmol
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059608A
Other languages
Japanese (ja)
Other versions
JP4910148B2 (en
Inventor
Tetsuo Shibata
哲男 柴田
Takeshi Toru
健 融
Kenji Mizuta
賢志 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2007059608A priority Critical patent/JP4910148B2/en
Publication of JP2008222578A publication Critical patent/JP2008222578A/en
Application granted granted Critical
Publication of JP4910148B2 publication Critical patent/JP4910148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optically active α-fluoromethylamine derivative in high efficiency. <P>SOLUTION: The method for producing an α-fluoromethylamine derivative in high optical purity comprises carring out the asymmetric Mannich reaction of an α-amidosulfonic acid with a fluorobissulfonylmethane compound in a solvent in the presence of a base and an optically active phase-transfer catalyst, and, the desulfonylation of the resultant α-fluorobis(phenylsulfonyl)methyl adduct in the presence a metal as a reducing agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は光学活性α−フルオロメチルアミン誘導体の製造法に関する。   The present invention relates to a method for producing an optically active α-fluoromethylamine derivative.

光学活性α−フルオロメチルアミン類は医薬,農薬分野における重要な合成中間体である。ラセミ体のα−フルオロメチルアミン類の製造法としては,次に示す方法が挙げられる。(1)SF4/HFの存在下,アミノアルコール類のヒドロキシ基の選択的フッ素化法(非特許文献1)(2)Et4N+F-/HFの存在下,アセトニトリル中,電気酸化法を用いたアルキルベンゼン類のフッ素化法(非特許文献2)(3)アジリジン化合物とHF/ピリジンによるアジリジンのフッ素化−開環する方法(非特許文献3,4)(4)フルオロアセトニトリルから誘導したα−フルオロメチルアミン類の合成法(非特許文献5)(5)N−フルオロベンゼンスルホンイミドを用いたイミンの求電子的フッ素化する方法(非特許文献6)(6)アミノアルコール類をN,N−ジエチル−α,α−ジフルオロベンジルアミンで処理することにより脱酸素−フッ素化する方法(非特許文献7)一方,光学活性α−フルオロメチルアミン誘導体の製造法においては,(7)α−フルオロアセトフェノンとp−アニシジンとで形成するイミンを光学活性りん酸触媒を用いたエチル Hantzsch エステルによる不斉還的アミノ化する方法(非特許文献8)(8)塩基存在下,(R)−(tert−ブタンスルフィニル)イミン化合物とフルオロメチルフェニルスルホンと反応し,フルオロアミン誘導体を脱スルホニル化することにより光学活性α−フルオロメチルアミン誘導体を製造する方法(非特許文献9)などが報告されている。しかしながら,前記(7)の方法では含フッ素置換基を有するイミン化合物を入手する必要がある。さらに,前記(8)の方法ではジアステレオ選択的な反応を用いるので化学量論量の光学活性不斉補助基が必要である。エナンチオ選択的フルオロメチル化反応の報告例は依然としてなく,従来法において工業的に光学活性α−フルオロメチルアミン誘導体を供給に問題がある。従って,工業的スケールで効率良く製造し得る一般式(4)に示される光学活性α−フルオロメチルアミン誘導体の製造法が望まれていた。
J.Org.Chem.,40,3808(1975) Tetrahedron Lett.,43,3799(1977) J.Fluorine Chem.,16,526(1980) J.Chem.Res.Synop.,6,210(1980) J.Org.Chem.,51,2835(1986) Org.Lett.,8,4767(2006) Synlett,11,1744(2006) J.Am.Chem.Soc.,128,84(2006) Org.Lett.,8,1693(2006)
Optically active α-fluoromethylamines are important synthetic intermediates in the fields of medicine and agricultural chemicals. Examples of the method for producing racemic α-fluoromethylamines include the following methods. (1) Selective fluorination method of hydroxy group of amino alcohols in the presence of SF 4 / HF (Non-patent Document 1) (2) Electrooxidation method in acetonitrile in the presence of Et 4 N + F / HF Method of fluorination of alkylbenzenes using benzene (Non-patent Document 2) (3) Fluorination-ring-opening of aziridine with aziridine compound and HF / pyridine (Non-patent Documents 3 and 4) (4) Derived from fluoroacetonitrile Synthesis Method of α-Fluoromethylamines (Non-patent Document 5) (5) Electrophilic fluorination of imine using N-fluorobenzenesulfonimide (Non-patent Document 6) (6) Aminoalcohols with N , N-diethyl-α, α-difluorobenzylamine is a method of deoxygenation and fluorination by treatment (Non-patent Document 7). (7) A method of asymmetrically aminating an imine formed with α-fluoroacetophenone and p-anisidine with an ethyl Hantzsch ester using an optically active phosphoric acid catalyst (Non-patent Document 8) (8) Base A method for producing an optically active α-fluoromethylamine derivative by reacting a (R)-(tert-butanesulfinyl) imine compound with fluoromethylphenylsulfone in the presence to desulfonylate the fluoroamine derivative (Non-Patent Document) 9) etc. have been reported. However, in the method (7), it is necessary to obtain an imine compound having a fluorine-containing substituent. Furthermore, since the method (8) uses a diastereoselective reaction, a stoichiometric amount of an optically active asymmetric auxiliary group is required. There are still no reports of enantioselective fluoromethylation reactions, and there is a problem in supplying optically active α-fluoromethylamine derivatives industrially in the conventional method. Therefore, a method for producing an optically active α-fluoromethylamine derivative represented by the general formula (4) that can be efficiently produced on an industrial scale has been desired.
J. Org. Chem., 40, 3808 (1975) Tetrahedron Lett., 43, 3799 (1977) J. Fluorine Chem., 16,526 (1980) J. Chem. Res. Synop., 6, 210 (1980) J. Org. Chem., 51, 2835 (1986) Org. Lett., 8, 4767 (2006) Synlett, 11, 1744 (2006) J. Am. Chem. Soc., 128, 84 (2006) Org. Lett., 8, 1693 (2006)

本発明は,上記課題を解決するためになされたものであり,その目的は,溶媒中,反応触媒として光学活性な相間移動触媒を用いて前記一般式(1)と(2)とを反応させて,工業的スケールで効率良く前記一般式(3)を製造し,簡便に(3)を変換し,前記一般式(4)示される光学活性α−フルオロメチルアミン誘導体の製造法を提供することである。
The present invention has been made to solve the above-mentioned problems, and its object is to react the above general formulas (1) and (2) in a solvent using an optically active phase transfer catalyst as a reaction catalyst. And producing the optically active α-fluoromethylamine derivative represented by the general formula (4) by efficiently producing the general formula (3) on an industrial scale, easily converting (3). It is.

本発明者らは,上記課題を解決するため鋭意研究を行った結果,溶媒中,塩基存在下,光学活性な相間移動触媒を用いて前記一般式(1)のα−アミドスルホン類と前記一般式(2)フルオロビススルホニルメタン類を反応させて,前記一般式(3)に示されるα−フルオロビス(フェニルスルホニル)メチル付加体を高い光学純度で得ることを見出した。さらに,前記一般式(3)を光学純度を低下することなく脱スルホニル化し,前記一般式(4)に示されるα−フルオロメチルアミン誘導体を得ることを見出し,本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the α-amide sulfones of the general formula (1) and the general formulas are obtained using an optically active phase transfer catalyst in the presence of a base in a solvent. It has been found that α-fluorobis (phenylsulfonyl) methyl adduct represented by the general formula (3) can be obtained with high optical purity by reacting the formula (2) fluorobissulfonylmethanes. Furthermore, it has been found that the general formula (3) is desulfonylated without reducing optical purity to obtain an α-fluoromethylamine derivative represented by the general formula (4), and the present invention has been completed.

すなわち,本発明は下記の(1)〜(6)に関するものである。

(1)溶媒中,塩基と光学活性な相間移動触媒存在下,一般式(1)
That is, the present invention relates to the following (1) to (6).

(1) General formula (1) in the presence of an optically active phase transfer catalyst with a base in a solvent

(式中,Rは,置換もしくは未置換のアルキル基,アルケニル基,アラルキル基,アルキニル基,アリール基,アシル基,アルコキシカルボニル基またはアリールオキシカルボニル基を示す。R2は,置換もしくは未置換のアルキル基,アルケニル基,アラルキル基,アルキニル基,アリール基,アシル基,アルコキシカルボニル基またはアリールオキシカルボニル基を示す。Rは,置換もしくは未置換のアルキル基,アルケニル基,アラルキル基,アルキニル基またはアリール基を示す。)
で表せるα−アミドスルホン化合物を一般式(2)
(Wherein R 1 represents a substituted or unsubstituted alkyl group, alkenyl group, aralkyl group, alkynyl group, aryl group, acyl group, alkoxycarbonyl group or aryloxycarbonyl group. R 2 represents a substituted or unsubstituted group. An alkyl group, an alkenyl group, an aralkyl group, an alkynyl group, an aryl group, an acyl group, an alkoxycarbonyl group or an aryloxycarbonyl group, wherein R 3 is a substituted or unsubstituted alkyl group, alkenyl group, aralkyl group, alkynyl group; Or an aryl group.)
An α-amide sulfone compound represented by the general formula (2)

(式中,R,Rはそれぞれ独立に,置換もしくは未置換のアルキル基,アルケニル基,アラルキル基,アルキニル基またはアリール基を示す。さらに,RおよびRが一体となって,環状構造の一部を形成してもよい。)で示されるフルオロビススルホニルメタン類との不斉マンニッヒ型反応させることを特徴とする一般式(3)
(In the formula, R 4 and R 5 each independently represents a substituted or unsubstituted alkyl group, alkenyl group, aralkyl group, alkynyl group or aryl group. Furthermore, R 4 and R 5 together form a cyclic group. A part of the structure may be formed.) Asymmetric Mannich reaction with the fluorobissulfonylmethanes represented by the general formula (3)


(式中,R,R,R,Rは前記定義に同じ。)
で示される光学活性α−フルオロビス(フェニルスルホニル)メチル付加体の製造法。
(2)前記一般式(3)で表せる光学活性α−フルオロビス(フェニルスルホニル)メチル付加体を溶媒中,還元剤として金属の存在下,脱スルホニル化させることを特徴とする一般式(4)(式中,R,Rは前記定義に同じ。)で示される光学活性α−フルオロメチルアミン誘導体の製造法。
(In the formula, R 1 , R 2 , R 4 and R 5 are the same as defined above.)
A process for producing an optically active α-fluorobis (phenylsulfonyl) methyl adduct represented by the formula:
(2) The optically active α-fluorobis (phenylsulfonyl) methyl adduct represented by the general formula (3) is desulfonylated in a solvent in the presence of a metal as a reducing agent in the general formula (4) (Wherein R 1 and R 2 are the same as defined above), a method for producing an optically active α-fluoromethylamine derivative.


(3)前記塩基は,一般に市販されているアミン類もしくは無機塩一般式(5)から選ばれる少なくとも1種類の塩基であることを特徴とする請求項1に記載の製造法。
アミンとしては,トリエチルアミン,ジイソプロピルエチルアミン,ジメチルアミノピリジン,キヌクリジン,DBU,DABCOなどを用いることができる。無機塩は一般式(5)
(X)nM (5)
(式中,Mは,希土類を含む遷移金属,リチウム,ナトリウム,マグネシウム,アルミニウムから選ばれた元素,nは,Mの原子価と同数の整数を表す。Xはアルコシド,フルオリド,カルボネートなどのマイナスイオンを表す。)

(4)前記光学活性な相間移動触媒は,光学活性4級アンモニウム塩類から選ばれる少なくとも1種類の塩であることを特徴とする請求項1に記載の製造法。
光学活性な相間移動触媒としては,一般式(6),(7)
(3) The process according to claim 1, wherein the base is at least one base selected from amines or inorganic salts of the general formula (5) that are generally commercially available.
As the amine, triethylamine, diisopropylethylamine, dimethylaminopyridine, quinuclidine, DBU, DABCO and the like can be used. The inorganic salt has the general formula (5)
(X) nM (5)
(In the formula, M is an element selected from transition metals including rare earths, lithium, sodium, magnesium and aluminum, n is an integer having the same number as the valence of M. X is a minus such as alkoxide, fluoride, carbonate, etc. Represents an ion.)

(4) The process according to claim 1, wherein the optically active phase transfer catalyst is at least one salt selected from optically active quaternary ammonium salts.
As optically active phase transfer catalysts, general formulas (6), (7)


(式中,Rは水素,置換もしくは未置換のアルキル基もしくはアルコキシ基を示す。もしくはOR10で表せるR10はアルキル基を示す。Rは,エチル基もしくはビニル基を示す。Rは,水素,アルキル基,アリール基またはアシル基を示す。Rは,水素,置換もしくは未置換のアルキル基またはトリフルオロメチル基を示す。mは0〜2の整数を表す。Xは,ハロゲン原子,IO,ClO,OTfまたはHSOを示す。)

(5)前記溶媒が,N,N−ジメチルホルムアミド,ジメチルスルホキシド,クロロホルム,ジクロロメタン,ジクロロエタン,トルエン,テトラヒドロフラン,ヘキサン,ベンゼンからなる群より選ばれる少なくとも1種である請求項1,2のいずれか1項に記載の製造法。

(6)前記金属は,希土類を含む遷移金属リチウム,ナトリウム,マグネシウム,アルミニウム,亜鉛,スズ,インジウム,サマリウムなどから選ばれる少なくとも1種類の元素であることを特徴とする請求項2に記載の製造法。
(In the formula, R 6 represents hydrogen, a substituted or unsubstituted alkyl group or an alkoxy group, or R 10 represented by OR 10 represents an alkyl group. R 7 represents an ethyl group or a vinyl group. R 8 represents , Hydrogen, an alkyl group, an aryl group or an acyl group, R 9 represents hydrogen, a substituted or unsubstituted alkyl group or a trifluoromethyl group, m represents an integer of 0 to 2, and X represents a halogen atom. , IO 4 , ClO 4 , OTf or HSO 4 )

(5) The solvent is at least one selected from the group consisting of N, N-dimethylformamide, dimethyl sulfoxide, chloroform, dichloromethane, dichloroethane, toluene, tetrahydrofuran, hexane, and benzene. The production method according to item.

(6) The production according to claim 2, wherein the metal is at least one element selected from lithium, sodium, magnesium, aluminum, zinc, tin, indium, samarium and the like including transition metals including rare earths. Law.

従来,前記一般式(4)で示される光学活性α−フルオロメチルアミン誘導体の製造法は,還元的アミノ化,またはジアステレオ選択的フルオロメチル化反応に限られている。そのため,入手が容易でない基質を製造するか,光学活性不斉補助基を用いる点が問題であった。また,エナンチオ選択的フルオロメチル化反応はほとんど報告例がない。従来法と比較して,本発明における光学活性α−フルオロメチルアミン誘導体の製造法は,塩基,光学活性な相間移動触媒存在下,前記一般式(1)と(2)とを反応して前記一般式(3)を得た後,脱スルホニル化することにより前記一般式(4)に示されるα−フルオロメチルアミン誘導体を高い光学純度で得ることが可能であり,工業的に利用価値が高い。
Conventionally, the production method of the optically active α-fluoromethylamine derivative represented by the general formula (4) is limited to reductive amination or diastereoselective fluoromethylation reaction. For this reason, it has been a problem to produce a substrate that is not easily available or to use an optically active asymmetric auxiliary group. There are few reports of enantioselective fluoromethylation reactions. Compared with the conventional method, the method for producing an optically active α-fluoromethylamine derivative in the present invention reacts with the above general formulas (1) and (2) in the presence of a base and an optically active phase transfer catalyst. It is possible to obtain the α-fluoromethylamine derivative represented by the general formula (4) with high optical purity by desulfonylation after obtaining the general formula (3), and industrially has high utility value. .

以下,本発明を詳細に説明する。本発明は塩基,光学活性な相間移動触媒存在下,前記一般式(1)と(2)とを反応して前記一般式(3)を得た後,脱スルホニル化することにより前記一般式(4)に示されるα−フルオロメチルアミン誘導体を高い光学純度で得ることを特徴とする製造法である。

前記一般式(1)中のアルキル基は,前記一般式(1)中のアルキル基は炭素数が1〜20の枝分かれがあっても良いアルキル基または炭素数が3〜20のシクロアルキル基が好ましく,炭素数が1〜10のアルキル基または炭素数が3〜10のシクロアルキル基がさらに好ましい。アルキル基はハロゲン原子,シアノ基,ニトロ基,アリール基,アシル基,アルコキシ基,アリールオキシ基,アシルオキシ基などの置換基で置換されていてもよい。

前記一般式(1)中のアルケニル基は炭素数が1〜20の枝分かれがあっても良いアルケニル基または炭素数が3〜20のシクロアルケニル基が好ましく,炭素数が1〜10のアルケニル基または炭素数が3〜10のシクロアルケニル基がさらに好ましい。アルケニル基の例としては,ビニル基,1−プロペニル基,1−ブテニル基,1−ヘキセニル基,シクロヘキセニル基,アリル基などが挙げられる。アルケニル基はハロゲン原子,シアノ基,ニトロ基,アリール基,アシル基,アルコキシ基,アリールオキシ基,アシルオキシ基などの置換基で置換されていてもよい。

前記一般式(1)中のアラルキル基は,例としてベンジル基,ペンタフルオロベンジル基,o−メチルベンジル基,m−メチルベンジル基,p−メチルベンジル基,p−ニトロベンジル基,ナフチルメチル基,フルフリル基,α−フェネチル基等が挙げられる。

前記一般式(1)中のアルキニル基は,例としてエチニル基,フェニルエチニル基,2−プロピニル基等が挙げられる。

前記一般式(1)中のアリール基は炭素数が6〜20のアリール基が好ましく,炭素数が6〜10のアリール基がさらに好ましい。アリール基はアルキル基,ハロゲン原子,シアノ基,ニトロ基,アシル基,アルコキシ基,アシルオキシ基などの置換基で置換されていてもよい。

前記一般式(1)中のアルコキシ基は炭素数が1〜20のアルコキシ基が好ましく,炭素数が1〜10のアルコキシ基がさらに好ましい。アルコキシ基の場合も上記のアルキル基の場合と同様の置換基により置換されていてもよい。

前記一般式(1)中のアリールオキシ基は炭素数が1〜20のアリールオキシ基が好ましく,炭素数が1〜10のアリールオキシ基がさらに好ましい。アリールオキシ基の場合も上記のアリール基の場合と同様の置換基により置換されていてもよい。
The present invention will be described in detail below. In the present invention, the above general formulas (1) and (2) are reacted in the presence of a base and an optically active phase transfer catalyst to obtain the above general formula (3), followed by desulfonylation to obtain the above general formula ( This is a production method characterized in that the α-fluoromethylamine derivative shown in 4) is obtained with high optical purity.

The alkyl group in the general formula (1) is an alkyl group in the general formula (1) that may be branched having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. An alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms is more preferable. The alkyl group may be substituted with a substituent such as a halogen atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, or an acyloxy group.

The alkenyl group in the general formula (1) is preferably an alkenyl group having 1 to 20 carbon atoms which may be branched, or a cycloalkenyl group having 3 to 20 carbon atoms, and an alkenyl group having 1 to 10 carbon atoms or More preferred is a cycloalkenyl group having 3 to 10 carbon atoms. Examples of alkenyl groups include vinyl, 1-propenyl, 1-butenyl, 1-hexenyl, cyclohexenyl, allyl and the like. The alkenyl group may be substituted with a substituent such as a halogen atom, cyano group, nitro group, aryl group, acyl group, alkoxy group, aryloxy group, acyloxy group.

Examples of the aralkyl group in the general formula (1) include benzyl group, pentafluorobenzyl group, o-methylbenzyl group, m-methylbenzyl group, p-methylbenzyl group, p-nitrobenzyl group, naphthylmethyl group, Examples include a furfuryl group and an α-phenethyl group.

Examples of the alkynyl group in the general formula (1) include an ethynyl group, a phenylethynyl group, and a 2-propynyl group.

The aryl group in the general formula (1) is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms. The aryl group may be substituted with a substituent such as an alkyl group, a halogen atom, a cyano group, a nitro group, an acyl group, an alkoxy group, or an acyloxy group.

The alkoxy group in the general formula (1) is preferably an alkoxy group having 1 to 20 carbon atoms, and more preferably an alkoxy group having 1 to 10 carbon atoms. In the case of an alkoxy group, it may be substituted with the same substituent as in the case of the above alkyl group.

The aryloxy group in the general formula (1) is preferably an aryloxy group having 1 to 20 carbon atoms, and more preferably an aryloxy group having 1 to 10 carbon atoms. In the case of an aryloxy group, it may be substituted with the same substituent as in the case of the above aryl group.


前記一般式(1)中のアシル基は炭素数が1〜20のアシル基が好ましく,炭素数が1〜10のアシル基がさらに好ましい。特に制限するわけではないが,例としてホルミル基,アセチル基,マロニル基,ベンゾイル基,シンナモイル基等が挙げられる。

前記一般式(1)中のアルコキシカルボニル基は炭素数が2〜20のアルコキシカルボニル基が好ましく,炭素数が2〜10のアルコキシカルボニル基がさらに好ましい。アルコキシカルボニル基の場合も上記のアルコキシ基の場合と同様の置換基により置換されていてもよい。

前記一般式(1)中のアリールオキシカルボニル基は炭素数が7〜20のアリールオキシカルボニル基が好ましく,炭素数が7〜15のアリールオキシカルボニル基がさらに好ましい。アリールオキシカルボニル基の場合も上記のアリールオキシ基の場合と同様の置換基により置換されていてもよい。

前記一般式(1)中のRはフェニル基,p−トリル基が挙げられるが特に制限するわけではない。

前記一般式(2)中のアルキル基は,置換基を有していても良く,直鎖または分岐した炭素数が1〜20のアルキル基または炭素数が3〜20のシクロアルキル基が好ましく,炭素数が1〜10のアルキル基または炭素数が3〜10のシクロアルキル基がさらに好ましい。

前記一般式(2)中のアリール基は炭素数が6〜20の置換または無置換のアリール基が好ましく,炭素数が6〜10のアリール基がさらに好ましい。

前記一般式(2)中のRおよびRを組み合わせて形成されうる前記環状構造の例としては,3員環から20員環でなる単環,双環,またはそれ以上の多環の構造を示すことができる。

前記一般式(3)で示される光学活性α−フルオロビス(フェニルスルホニル)メチル付加体としては,tert−ブチル 2−フルオロ−1−フェニル−2,2−ビス(フェニルスルホニル)エチルカルバメート,tert−ブチル 2−フルオロ−1−ナフチル−2,2−ビス(フェニルスルホニル)エチルカルバメート,tert−ブチル 1−(4−クロロフェニル)−2−フルオロ−2,2−ビス(フェニルスルホニル)エチルカルバメート,tert−ブチル 1−(3−クロロフェニル)−2−フルオロ−2,2−ビス(フェニルスルホニル)エチルカルバメート, tert−ブチル 1−(2−クロロフェニル)−2−フルオロ−2,2−ビス(フェニルスルホニル)エチルカルバメート,tert−ブチル 2−フルオロ−1−(4−メトキシフェニル)−2,2−ビス(フェニルスルホニル)エチルカルバメート,tert−ブチル 2−フルオロ−1−(フラン−2−イル)−2,2−ビス(フェニルスルホニル)エチルカルバメート,
tert−ブチル 1−フルオロ−4−フェニル−1,1−ビス(フェニルスルホニル)ブタ−2−イルカルバメート,tert−ブチル 1−フルオロ−1,1−ビス(フェニルスルホニル)ノナン−2−イルカルバメート, tert−ブチル1−フルオロ−3−メチル−1,1−ビス(フェニルスルホニル)ブタン−2−イルカルバメート,tert−ブチル1−シクロヘキシル−2−フルオロ−2,2−ビス(フェニルスルホニル)エチルカルバメート,tert−ブチル1−フルオロ−3,3−ジメチル−1,1−ビス(フェニルスルホニル)ブタン−2−イルカルバメート,エチル2−(tert−ブトキシカルボニル)-3-フルオロ−3,3−ビス(フェニルスルホニル)プロパノエートなどが挙げられる。

前記一般式(4)で示されるα−フルオロメチルアミン誘導体では,tert−ブチル2−フルオロ−1−フェニルエチルカルバメート,tert−ブチル2−フルオロ−1−(ナフタレン−2イル)エチルカルバメート,tert−ブチル1−(4−クロロフェニル)−2−フルオロ−エチルカルバメート,tert−ブチル1−(3−クロロフェニル)−2−フルオロ−エチルカルバメート,tert−ブチル1−(2−クロロフェニル)−2−フルオロ−エチルカルバメート,tert−ブチル2−フルオロ−1−(4−メトキシフェニル)エチルカルバメート, tert−ブチル2−フルオロ−1−(フラン−2−イル)エチルカルバメート,tert−ブチル1−フルオロノナン−2−イルカルバメート,tert−ブチル1−フルオロ−4−フェニルブタン−2−イルカルバメート,tert−ブチル1−フルオロ−3−メチルブタン−2−イルカルバメート,tert−ブチル1−シクロヘキシル−2−フルオロエチルカルバメート,tert−ブチル1−フルオロ−3,3−ジメチルブタン−2−イルカルバメート,エチル2−(tert−ブトキシカルボニルアミノ)−3−フルオロプロパノエートなどが挙げられる。

前記塩基触媒として特に制限するわけではないが,トリエチルアミン,ジイソプロピルエチルアミン,ジメチルアミノピリジン,キヌクリジン,DBU,DABCOなどを用いることができる。なお,前記一般式(5)塩基も,特に制限するわけではないが,水酸化ナトリウム,炭酸ナトリウム,水酸化セシウム等が挙げられる。これらは単独で使用し得るのみならず,2種類以上を混合して用いることも可能である。

前記光学活性な相間移動触媒として,特に制限するわけではないが,光学活性4級アンモニウム塩,光学活性チオニウム塩,光学活性オキソニオウム塩,光学活性ホスホニウム塩などが挙げられる。好ましくは,キナアルカロイドの4級アンモニウム塩が挙げられる。これらは単独で使用し得るのみならず,2種類以上を混合して用いることも可能である。

前記還元剤としての金属は,特に制限するわけではないが,希土類を含む遷移金属リチウム,ナトリウム,マグネシウム,アルミニウム,亜鉛,スズ,インジウム,サマリウムなどから選ばれる少なくとも1種類の元素が挙げられる。これらは単独で使用し得るのみならず,2種類以上を混合して用いることも可能である。

前記一般式(6),(7)中のアルキル基は炭素数が1〜20の枝分かれがあっても良いアルキル基が好ましく,炭素数が1〜8の枝分かれがあっても良いアルキル基がさらに好ましい。
前記一般式(6),(7)中のアリール基は炭素数が6〜20の置換または無置換のアリール基が好ましく,炭素数が6〜10のアリール基がさらに好ましい。

前記一般式(6),(7)中のアシル基は炭素数が1〜20のアシル基が好ましく,炭素数が1〜10のアシル基がさらに好ましい。特に制限するわけではないが,例としてホルミル基,アセチル基,マロニル基,ベンゾイル基,シンナモイル基等が挙げられる。

本発明の反応は,溶媒として低極性有機溶媒としては,ヘプタン,ヘキサン,キシレン,トルエン,クロロホルム,ジクロロメタン,ジイソプロピルエーテルが好ましく,クロロホルム,ジクロロメタン,トルエン,ベンゼンが好ましい。非プロトン性溶媒としては,N,N−ジメチルホルムアミド,ジメチルスルホキシド,テトラヒドロフラン,ジメトキシエタン,ジエチレングリコールジメチルエーテル,ヘキサメチルリン酸トリアミドが好ましく,N,N−ジメチルホルムアミド,N−メチル−2−ピロリドン,1,3−ジメチル−2−イミダゾリジノン,ジメチルスルホキシド,テトラヒドロフランがさらに好ましい。これらは単独で使用し得るのみならず,2種類以上を混合して用いることも可能である。

反応温度は特に限定されるものではないが,通常−80℃〜120℃であり,より好ましくは室温付近である。反応器は大気開放型の反応器,またはオートクレーブ等の密閉型の反応器のいずれも可能である。反応圧力は大気圧下,または加圧下のいずれも可能である。反応時間は特に限定されるものではないが,通常1日〜7日で反応は完結する。

反応後,前記一般式(3)で示されるα−フルオロビス(フェニルスルホニル)メチル付加体は一般的な手法によって反応液から単離および精製することができ,例えば反応液を濃縮した後,蒸留精製またはシリカゲル,アルミナ等の吸着剤を用いたカラムクロマトグラフ法での精製,塩析,再結晶等が挙げられる。

The acyl group in the general formula (1) is preferably an acyl group having 1 to 20 carbon atoms, and more preferably an acyl group having 1 to 10 carbon atoms. Although not particularly limited, examples include formyl group, acetyl group, malonyl group, benzoyl group, cinnamoyl group and the like.

The alkoxycarbonyl group in the general formula (1) is preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, and more preferably an alkoxycarbonyl group having 2 to 10 carbon atoms. In the case of an alkoxycarbonyl group, it may be substituted with the same substituent as in the case of the above alkoxy group.

The aryloxycarbonyl group in the general formula (1) is preferably an aryloxycarbonyl group having 7 to 20 carbon atoms, and more preferably an aryloxycarbonyl group having 7 to 15 carbon atoms. In the case of an aryloxycarbonyl group, it may be substituted with the same substituent as in the case of the above aryloxy group.

R 3 in the general formula (1) includes a phenyl group and a p-tolyl group, but is not particularly limited.

The alkyl group in the general formula (2) may have a substituent, and is preferably a linear or branched alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, An alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms is more preferable.

The aryl group in the general formula (2) is preferably a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms.

Examples of the cyclic structure that can be formed by combining R 4 and R 5 in the general formula (2) include a monocyclic, bicyclic or higher polycyclic structure consisting of 3 to 20 members. Can be shown.

Examples of the optically active α-fluorobis (phenylsulfonyl) methyl adduct represented by the general formula (3) include tert-butyl 2-fluoro-1-phenyl-2,2-bis (phenylsulfonyl) ethyl carbamate, tert- Butyl 2-fluoro-1-naphthyl-2,2-bis (phenylsulfonyl) ethylcarbamate, tert-butyl 1- (4-chlorophenyl) -2-fluoro-2,2-bis (phenylsulfonyl) ethylcarbamate, tert- Butyl 1- (3-chlorophenyl) -2-fluoro-2,2-bis (phenylsulfonyl) ethylcarbamate, tert-butyl 1- (2-chlorophenyl) -2-fluoro-2,2-bis (phenylsulfonyl) ethyl Carbamate, tert-butyl 2-fluoro-1- (4-methoxyphenyl) -2,2-bis (fluoro Nirusuruhoniru) ethylcarbamate, tert- butyl 2-fluoro-1- (furan-2-yl) -2,2-bis (phenylsulfonyl) ethyl carbamate,
tert-butyl 1-fluoro-4-phenyl-1,1-bis (phenylsulfonyl) but-2-ylcarbamate, tert-butyl 1-fluoro-1,1-bis (phenylsulfonyl) nonan-2-ylcarbamate, tert-butyl 1-fluoro-3-methyl-1,1-bis (phenylsulfonyl) butan-2-ylcarbamate, tert-butyl 1-cyclohexyl-2-fluoro-2,2-bis (phenylsulfonyl) ethylcarbamate, tert-butyl 1-fluoro-3,3-dimethyl-1,1-bis (phenylsulfonyl) butan-2-ylcarbamate, ethyl 2- (tert-butoxycarbonyl) -3-fluoro-3,3-bis (phenyl) Sulfonyl) propanoate and the like.

In the α-fluoromethylamine derivative represented by the general formula (4), tert-butyl 2-fluoro-1-phenylethyl carbamate, tert-butyl 2-fluoro-1- (naphthalen-2-yl) ethyl carbamate, tert- Butyl 1- (4-chlorophenyl) -2-fluoro-ethyl carbamate, tert-butyl 1- (3-chlorophenyl) -2-fluoro-ethyl carbamate, tert-butyl 1- (2-chlorophenyl) -2-fluoro-ethyl Carbamate, tert-butyl 2-fluoro-1- (4-methoxyphenyl) ethyl carbamate, tert-butyl 2-fluoro-1- (furan-2-yl) ethyl carbamate, tert-butyl 1-fluorononan-2-yl Carbamate, tert-butyl 1-fluoro-4-phenylbutan-2-ylcarbamate tert-butyl 1-fluoro-3-methylbutan-2-ylcarbamate, tert-butyl 1-cyclohexyl-2-fluoroethylcarbamate, tert-butyl 1-fluoro-3,3-dimethylbutan-2-ylcarbamate, ethyl 2 -(Tert-butoxycarbonylamino) -3-fluoropropanoate and the like.

The base catalyst is not particularly limited, but triethylamine, diisopropylethylamine, dimethylaminopyridine, quinuclidine, DBU, DABCO and the like can be used. The base of the general formula (5) is not particularly limited, and examples thereof include sodium hydroxide, sodium carbonate, cesium hydroxide and the like. These can be used alone or in combination of two or more.

Examples of the optically active phase transfer catalyst include, but are not limited to, optically active quaternary ammonium salts, optically active thionium salts, optically active oxonium salts, and optically active phosphonium salts. Preferably, the quaternary ammonium salt of quina alkaloid is mentioned. These can be used alone or in combination of two or more.

The metal as the reducing agent is not particularly limited, and examples thereof include at least one element selected from lithium, sodium, magnesium, aluminum, zinc, tin, indium, samarium, and the like, including rare earths. These can be used alone or in combination of two or more.

The alkyl group in the general formulas (6) and (7) is preferably an alkyl group having 1 to 20 carbon atoms which may be branched, and further having an alkyl group having 1 to 8 carbon atoms which may be branched. preferable.
The aryl group in the general formulas (6) and (7) is preferably a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 10 carbon atoms.

The acyl group in the general formulas (6) and (7) is preferably an acyl group having 1 to 20 carbon atoms, and more preferably an acyl group having 1 to 10 carbon atoms. Although not particularly limited, examples include formyl group, acetyl group, malonyl group, benzoyl group, cinnamoyl group and the like.

In the reaction of the present invention, heptane, hexane, xylene, toluene, chloroform, dichloromethane and diisopropyl ether are preferred as the low polar organic solvent, and chloroform, dichloromethane, toluene and benzene are preferred. As the aprotic solvent, N, N-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, dimethoxyethane, diethylene glycol dimethyl ether and hexamethylphosphoric triamide are preferable. N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1, More preferred are 3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, and tetrahydrofuran. These can be used alone or in combination of two or more.

Although reaction temperature is not specifically limited, Usually, it is -80 degreeC-120 degreeC, More preferably, it is room temperature vicinity. The reactor can be either an open-air reactor or a closed reactor such as an autoclave. The reaction pressure can be either atmospheric pressure or pressurized. The reaction time is not particularly limited, but the reaction is usually completed in 1 to 7 days.

After the reaction, the α-fluorobis (phenylsulfonyl) methyl adduct represented by the general formula (3) can be isolated and purified from the reaction solution by a general method. For example, the reaction solution is concentrated and then distilled. Examples thereof include purification, purification by column chromatography using an adsorbent such as silica gel and alumina, salting out, recrystallization and the like.

前記一般式(4)で示されるα−フルオロメチルアミン誘導体は,一般的な手法によって反応液から単離および精製することができ,例えば反応液を濃縮した後,蒸留精製またはシリカゲル,アルミナ等の吸着剤を用いたカラムクロマトグラフ法での精製,塩析,再結晶等が挙げられる。

以下,実施例により本発明をさらに具体的に説明するが,本発明の範囲は下記の実施例に限定されるものではない。
The α-fluoromethylamine derivative represented by the general formula (4) can be isolated and purified from the reaction solution by a general method. For example, after concentrating the reaction solution, distillation purification or silica gel, alumina, etc. Examples include purification by column chromatography using an adsorbent, salting out, and recrystallization.

EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.

一般的方法:α−アミドスルホンの不斉マンニッヒ型反応
α−アミドスルホン1(0.35 mmol)をCH2Cl2に溶かし,相間移動触媒としてN-benzyl qunidinium chloride (0.018 mmol)とCsOH・H2O (0.42 mmol)を加えた。溶液は,-80℃に冷却したのちfluoro(phenylsulfonyl)methane 2 (0.37 mmol)を加えて,18時間激しく撹拌した。反応後,飽和NH4Cl水溶液にて処理し,酢酸エチルで抽出(2×5 mL)を行った。有機層はMgSO4で乾燥後,ろ過,濃縮した。残渣は,カラムクロマトグラフィーにて精製し,目的とする化合物3を得た。
General method: Asymmetric Mannich reaction of α-amidosulfone α-amidosulfone 1 (0.35 mmol) is dissolved in CH 2 Cl 2 and N-benzyl qunidinium chloride (0.018 mmol) and CsOH · H 2 O are used as phase transfer catalysts. (0.42 mmol) was added. The solution was cooled to −80 ° C., fluoro (phenylsulfonyl) methane 2 (0.37 mmol) was added, and the mixture was vigorously stirred for 18 hours. After the reaction, it was treated with a saturated aqueous NH 4 Cl solution, and extracted with ethyl acetate (2 × 5 mL). The organic layer was dried over MgSO 4 , filtered and concentrated. The residue was purified by column chromatography to obtain the target compound 3.


General procedure for the enantioselective fluoromethylation of α-amido sulfones 2 with 1: (S)-tert-Butyl 2-fluoro-1-phenyl-2,2-bis(phenylsulfonyl)ethylcarbamate (3a)

General procedure for the enantioselective fluoromethylation of α-amido sulfones 2 with 1: (S) -tert-Butyl 2-fluoro-1-phenyl-2,2-bis (phenylsulfonyl) ethylcarbamate (3a)

To a mixture of α-amido sulfone 2a (121.6 mg, 0.35 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) and CsOH・H2O (70.5 mg, 0.42 mmol) in CH2Cl2 (1.0 mL), fluorobis(phenylsulfonyl)methane (1)(118.5 mg, 0.38 mmol) was added in one portion at -80 °C. The reaction mixture was then vigorously stirred at the same temperature. After 1d, the reaction was quenched with saturated NH4Cl, and the aqueous layer was extracted with ethyl acetate (2 × 5 mL). The combined organic extracts were washed with brine, dried over MgSO4, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (acetone/n-hexane = 1/5). Product 3a was obtained in 92% yield, 96% ee as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.49 (s, 9H), 5.62 (t, J = 10.4 Hz, 1H), 6.55 (d, J = 10.4 Hz, 1H), 7.08-7.64 (m, 12H), 7.73 (t, J = 7.4 Hz, 1H) 8.02 (d, J = 8.4 Hz, 2H); 19F NMR (CDCl3, 188 MHz) δ -128.3 (d, J = 9.2 Hz, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 55.4 (d, J = 23.9 Hz), 80.7, 113.4 (d, J = 270.1 Hz), 127.9, 128.0, 128.3, 128.4, 128.7, 130.1, 131.0, 133.1, 134.4, 134.8, 135.0, 135.6, 153.9; IR (KBr) 3436, 3066, 2979, 2932, 1725, 1583, 1497, 1449, 1339, 1314, 1235, 1163, 1077, 1005, 898, 861, 751, 685, 601, 587, 556, 527 cm-1; MS (ESI, m/z); 542.0 (M+Na+), 558.0 (M+K+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 95/5, flow rate 0.2 mL/min, λ = 254 nm, τmin = 144 min, τmaj = 150 min); [α] D 25 = -39.6 (c = 1.0 , CHCl3) , 96% ee. The absolute configuration of 3awas determined to be (S) after chemical derivatization to the known (S)-2-fluoro-1-phenylethanaminium chloride (5a) (see, p-S-14).
The absolute configuration of 3b-e was tentatively assigned as (S) by comparing the optical rotation with that of 3a.

(S)-tert-Butyl 2-fluoro-1-(3-chlorophenyl)-2,2-bis(phenylsulfonyl)ethylcarbamate (3b)
To a mixture of α-amido sulfone 2a (121.6 mg, 0.35 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) and CsOH ・ H 2 O (70.5 mg, 0.42 mmol) in CH 2 Cl 2 (1.0 mL ), fluorobis (phenylsulfonyl) methane (1) (118.5 mg, 0.38 mmol) was added in one portion at -80 ° C. The reaction mixture was then vigorously stirred at the same temperature.After 1d, the reaction was quenched with saturated NH 4 Cl, and the aqueous layer was extracted with ethyl acetate (2 × 5 mL) .The combined organic extracts were washed with brine, dried over MgSO 4 , and concentrated under reduced pressure.The crude product was purified by column chromatography on silica gel (acetone / n-hexane = 1/5 ). Product 3a was obtained in 92% yield, 96% ee as a white solid. 1 H NMR (CDCl 3, 200 MHz) δ 1.49 (s, 9H), 5.62 (t , J = 10.4 Hz, 1H), 6.55 (d, J = 10.4 Hz, 1H), 7.08-7.64 (m, 12H), 7.73 (t, J = 7.4 Hz, 1H) 8.02 (d, J = 8.4 Hz, 2H); 19 F NMR (CDCl 3, 188 MHz) δ -128.3 (d, J = 9.2 Hz, 1F); 13 C NMR (CDCl 3, 50.3 MHz) 28.5, 55.4 (d, J = 23.9 Hz), 80.7, 113.4 (d, J = 270.1 Hz), 127.9, 128.0, 128.3, 128.4, 128.7, 130.1, 131.0, 133.1, 134.4, 134.8, 135.0, 135.6, 153.9; IR (KBr) 3436, 3066, 2979, 2932, 1725, 1583, 1497, 1449, 1339, 1314, 1235, 1163, 1077, 1005, 898, 861, 751, 685, 601, 587, 556, 527 cm -1 ; MS (ESI, m / z); 542.0 (M + Na + ), 558.0 (M + K + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i-PrOH = 95/5, flow rate 0.2 mL / min, λ = 254 nm, τ min = 144 min, τ maj = 150 min); [α] D 25 = -39.6 (c = 1.0, CHCl 3 ) , 96% ee.The absolute configuration of 3awas determined to be (S) after chemical derivatization to the known (S) -2-fluoro-1-phenylethanaminium chloride (5a) (see, pS-14).
The absolute configuration of 3b-e was tentatively assigned as (S) by comparing the optical rotation with that of 3a.

(S) -tert-Butyl 2-fluoro-1- (3-chlorophenyl) -2,2-bis (phenylsulfonyl) ethylcarbamate (3b)

Reaction of 2b (133.5 mg, 0.35 mmol), 1 (115.5 mg, 0.37 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (15.8 mg, 0.035 mmol) in CH2Cl2 (1.0 mL) at -80°C gave 3b(191.1 mg, 98%, 97% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.50 (s, 9H), 5.60 (t, J = 10.4 Hz, 1H), 6.53 (d, J = 10.4 Hz, 1H), 7.06-7.20 (m, 4H), 7.31 (d, J = 7.2 Hz, 2H), 7.39-7.64 (m, 5H), 7.74 (t, J = 7.2 Hz, 1H), 8.02 (d, J = 8.0 Hz, 2H); 19F NMR (CDCl3, 188 MHz) δ -129.2 (d, J = 10.4 Hz, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.4, 54.9 (d, J = 23.9 Hz), 80.9, 113.0 (d, J = 270.6 Hz), 126.0, 126.1, 128.0, 128.1, 128.3, 128.5, 129.1, 129.8, 129.9, 130.8, 130.9, 133.9, 134.7, 135.1, 135.4, 135.4; IR (KBr) 3426, 3380, 3068, 2981, 2930, 1730, 1596, 1583, 1504, 1449, 1393, 1337, 1239, 1169, 1077, 1038, 1005, 930, 883, 858, 827, 787, 751, 729, 684 cm-1; MS (ESI, m/z) = 576.0 (M+Na+), 592.0 (M+K+); The ee of the product was determined by HPLC using an OD-H column (n-hexane/i-PrOH = 95:5, flow rate 0.5 mL/min, λ = 254 nm, τmaj = 27.4 min, τmin = 31.1 min); [α] D 25 = -53.1 (c = 1.0 , CHCl3) , 97% ee.

(S)-tert-Butyl 2-fluoro-1-(4-chlorophenyl)-2,2-bis(phenylsulfonyl)ethylcarbamate (3c)
Reaction of 2b (133.5 mg, 0.35 mmol), 1 (115.5 mg, 0.37 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (15.8 mg, 0.035 mmol) in CH 2 Cl 2 (1.0 mL) at -80 ° C gave 3b (191.1 mg, 98%, 97% ee) as a white solid. 1 H NMR (CDCl 3, 200 MHz) δ 1.50 (s, 9H), 5.60 (t, J = 10.4 Hz, 1H), 6.53 (d, J = 10.4 Hz, 1H), 7.06-7.20 (m, 4H), 7.31 (d, J = 7.2 Hz, 2H), 7.39-7.64 (m, 5H), 7.74 (t, J = 7.2 Hz, 1H), 8.02 (d, J = 8.0 Hz, 2H); 19 F NMR (CDCl 3 , 188 MHz) δ -129.2 (d, J = 10.4 Hz, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.4, 54.9 (d, J = 23.9 Hz), 80.9, 113.0 (d, J = 270.6 Hz), 126.0, 126.1, 128.0, 128.1, 128.3, 128.5, 129.1, 129.8, 129.9, 130.8, 130.9, 133.9, 134.7, 135.1, 135.4, 135.4; IR (KBr) 3426, 3380, 3068, 2981, 2930, 1730, 1596, 1583, 1504, 1449, 1393, 1337, 1239, 1169, 1077, 1038, 1005, 930, 883, 858, 827, 787, 751, 729, 684 cm -1 ; MS (ESI, m / z) = 576.0 (M + Na + ), 592.0 (M + K + ); The ee of the product was determined by HPLC using an OD-H column (n-hexane / i-PrOH = 95: 5, flow rate 0.5 mL / min, λ = 254 nm, τ maj = 27.4 min, τ min = 31.1 min); [α] D 25 = -53.1 (c = 1.0, CHCl 3 ) , 97% ee.

(S) -tert-Butyl 2-fluoro-1- (4-chlorophenyl) -2,2-bis (phenylsulfonyl) ethylcarbamate (3c)

Reaction of 2c (133.5 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2 (1.0 mL) at -80°C gave 3c( 182.4 mg, 94%, 87% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.49 (s, 9H), 5.83 (t, J = 10.4 Hz, 1H), 6.52 (d, J = 10.4 Hz, 1H), 7.07-7.20 (m, 4H), 7.24-7.36 (m, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 8.2 Hz, 3H), 7.68-7.78 (m, 1H), 8.00 (d,J = 8.4 Hz, 2H); 19F NMR (CDCl3, 188 MHz) δ -129.0 (d, J = 10.4 Hz, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 55.0 (d, J = 23.9 Hz), 80.9, 113.2 (d, J = 271.2 Hz), 128.1, 128.4, 128.8, 129.2, 129.3, 130.0, 130.6, 130.9, 131.9, 134.5, 134.6, 134.7, 135.1, 135.5, 153.8; IR (KBr) 3430, 3080, 2972, 2920, 1718, 1507, 1449, 1339, 1235, 1163, 1077, 1013, 911, 819, 754, 719, 684 cm-1; MS (ESI, m/z) = 575.9 (M+Na+), 592.0 (M+K+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm, τmaj = 31.3 min, τmin = 38.2 min); [α] D 25= -27.2 (c = 1.0 , CH3OH) , 92% ee.

(S)-tert-Butyl 2-fluoro-1-(4-methoxyphenyl)-2,2-bis(phenylsulfonyl)ethylcarbamate (3d)
Reaction of 2c (133.5 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at -80 ° C gave 3c (182.4 mg, 94%, ee 87%) as a white solid. 1 H NMR (CDCl 3, 200 MHz) δ 1.49 (s, 9H), 5.83 (t, J = 10.4 Hz, 1H), 6.52 (d, J = 10.4 Hz, 1H), 7.07-7.20 (m, 4H), 7.24-7.36 (m, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 8.2 Hz, 3H), 7.68-7.78 (m, 1H), 8.00 (d, J = 8.4 Hz, 2H); 19 F NMR (CDCl 3 , 188 MHz) δ -129.0 (d, J = 10.4 Hz, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.5, 55.0 (d, J = 23.9 Hz), 80.9, 113.2 (d, J = 271.2 Hz), 128.1, 128.4, 128.8, 129.2, 129.3 , 130.0, 130.6, 130.9, 131.9, 134.5, 134.6, 134.7, 135.1, 135.5, 153.8; IR (KBr) 3430, 3080, 2972, 2920, 1718, 1507, 1449, 1339, 1235, 1163, 1077, 1013, 911 , 819, 754, 719, 684 cm -1 ; MS (ESI, m / z) = 575.9 (M + Na + ), 592.0 (M + K + ); The ee of the product was determined by HPLC using an AD- H column (n-hexane / i-PrOH = 90/10, flow rate 0.5 mL / min, λ = 254 nm, τ maj = 31.3 min, τ min = 38.2 min); [α] D 25 = -27.2 (c = 1.0, CH 3 OH) , 92% ee.

(S) -tert-Butyl 2-fluoro-1- (4-methoxyphenyl) -2,2-bis (phenylsulfonyl) ethylcarbamate (3d)

Reaction of 2d (132.1 mg, 0.35 mmol) with 1 (118.5 mg, 0.37 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2(1.0 mL) at -80°C gave 3d(169.8 mg, 88%, 95% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.49 (s, 9H), 3.74 (s, 3H), 5.81 (t, J = 10.4, 11.2 Hz, 1H), 6.49 (d, J = 9.8 Hz, 1H),6.66 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 7.4 Hz, 2H), 7.21-7.61 (m, 7H), 7.71 (t, J = 7.4 Hz, 1H), 8.00 (d, J = 8.2 Hz, 2H); 19F NMR (CDCl3, 188 MHz) δ -128.2 (d, J = 11.4 Hz, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 55.0 (d, J = 21.1 Hz), 55.2, 80.6, 113.4, 113.6 (d, J = 269.8 Hz), 128.2, 128.7, 129.0, 129.1, 130.0, 130.9, 134.3, 134.9, 135.0, 135.8, 153.8, 159.4; IR (KBr) 3391, 3062, 2985, 2950, 2913, 2840, 1715, 1612, 1583, 1514, 1496, 1447, 1349, 1310, 1298, 1252, 1159, 1077, 1033, 1004, 907, 856, 827, 816, 783, 761, 719, 683, 648 cm-1; MS (ESI, m/z) = 572.1 (M+Na+), 588.1 (M+K+); The ee of the product was determined by HPLC using an OD-H column (n-hexane/i-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm, τmaj = 24.8 min, τmin = 28.0 min); [α] D 25 = -60.6 (c = 1.0 , CHCl3) , 95% ee.
(S)-tert-Butyl 2-fluoro-1-naphthyl-2,2-bis(phenylsulfonyl)ethylcarbamate (3e)
Reaction of 2d (132.1 mg, 0.35 mmol) with 1 (118.5 mg, 0.37 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at -80 ° C gave 3d (169.8 mg, 88%, 95% ee) as a white solid. 1 H NMR (CDCl 3, 200 MHz) δ 1.49 (s, 9H), 3.74 (s, 3H ), 5.81 (t, J = 10.4, 11.2 Hz, 1H), 6.49 (d, J = 9.8 Hz, 1H), 6.66 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 7.4 Hz, 2H ), 7.21-7.61 (m, 7H), 7.71 (t, J = 7.4 Hz, 1H), 8.00 (d, J = 8.2 Hz, 2H); 19 F NMR (CDCl 3 , 188 MHz) δ -128.2 (d , J = 11.4 Hz, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.5, 55.0 (d, J = 21.1 Hz), 55.2, 80.6, 113.4, 113.6 (d, J = 269.8 Hz), 128.2, 128.7, 129.0, 129.1, 130.0, 130.9, 134.3, 134.9, 135.0, 135.8, 153.8, 159.4; IR (KBr) 3391, 3062, 2985, 2950, 2913, 2840, 1715, 1612, 1583, 1514, 1496, 1447, 1349, 1310, 1298, 1252, 1159, 1077, 1033, 1004, 907, 856, 827, 816, 783, 761, 719, 683, 648 cm -1 ; MS (ESI, m / z) = 572.1 (M + Na + ), 588.1 (M + K + ); The ee of the product was determined by HPLC usi ng an OD-H column (n-hexane / i-PrOH = 90/10, flow rate 0.5 mL / min, λ = 254 nm, τ maj = 24.8 min, τ min = 28.0 min); [α] D 25 = -60.6 (c = 1.0, CHCl 3 ) , 95% ee.
(S) -tert-Butyl 2-fluoro-1-naphthyl-2,2-bis (phenylsulfonyl) ethylcarbamate (3e)

Reaction of 2e (139.1 mg, 0.35 mmol), 1 (118.5 mg, 0.37 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2(1.0 mL) at-80°C gave 3e (191.3 mg, 96%, 90% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.51 (s, 9H), 5.83 (t, J = 10.4 Hz, 1H), 6.64 (d, J = 10.4 Hz, 1H), 6.91 (t, J = 7.4 Hz, 2H), 7.16-7.32 (m, 3H), 7.39-7.80 (m, 10H), 8.08 (d, J = 8.2 Hz, 2H); 19F NMR (CDCl3, 188 MHz) δ -128.6 (d, J = 10.4 Hz, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.4, 55.4 (d, J = 23.9 Hz), 80.6, 116.3 (d, J = 271.0 Hz), 125.0, 125.1, 125.9, 126.2, 127.0, 127.4, 127.8, 128.6, 129.6, 130.5, 131.0, 132.5, 132.9, 134.0, 134.9, 135.0, 135.3, 153.8; IR (KBr) 3391, 3062, 3981, 2913, 1712, 1582, 1494, 1447, 1350, 1322, 1237, 1162, 1076, 1007, 860, 813, 758, 718, 683, 631 cm-1; MS (ESI, m/z) = 592.0 (M+Na+), 608.0 (M+K+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, τmaj = 20.6 min, τmin = 25.6 min); [α] D 25 = -99.1 (c = 1.0 , CHCl3), 90% ee.

tert-Butyl 2-fluoro-1-(furan-2-yl)-2,2-bis(phenylsulfonyl)ethylcarbamate (3f)
Reaction of 2e (139.1 mg, 0.35 mmol), 1 (118.5 mg, 0.37 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at-80 ° C gave 3e (191.3 mg, 96%, 90% ee) as a white solid. 1 H NMR (CDCl 3, 200 MHz) δ 1.51 (s, 9H), 5.83 (t, J = 10.4 Hz, 1H), 6.64 (d, J = 10.4 Hz, 1H), 6.91 (t, J = 7.4 Hz, 2H), 7.16-7.32 (m, 3H), 7.39-7.80 (m, 10H), 8.08 (d, J = 8.2 Hz, 2H); 19 F NMR (CDCl 3 , 188 MHz) δ -128.6 (d, J = 10.4 Hz, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.4, 55.4 ( d, J = 23.9 Hz), 80.6, 116.3 (d, J = 271.0 Hz), 125.0, 125.1, 125.9, 126.2, 127.0, 127.4, 127.8, 128.6, 129.6, 130.5, 131.0, 132.5, 132.9, 134.0, 134.9, 135.0, 135.3, 153.8; IR (KBr) 3391, 3062, 3981, 2913, 1712, 1582, 1494, 1447, 1350, 1322, 1237, 1162, 1076, 1007, 860, 813, 758, 718, 683, 631 cm -1 ; MS (ESI, m / z) = 592.0 (M + Na + ), 608.0 (M + K + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i- PrOH = 90/10, flow rate 1.0 mL / min, λ = 254 n m, τ maj = 20.6 min, τ min = 25.6 min); [α] D 25 = -99.1 (c = 1.0, CHCl 3 ), 90% ee.

tert-Butyl 2-fluoro-1- (furan-2-yl) -2,2-bis (phenylsulfonyl) ethylcarbamate (3f)

Reaction of 2f (118.1 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2(1.0 mL) at -80°C gave 3f(144.8 mg, 81%, 93% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.48 (s, 9H), 5.69 (t, J = 9.6 Hz, 1H), 6.21-6.44 (m, 3H), 7.14 (s, 1H), 7.32-7.76 (m, 8H), 7.97 (d, J = 8.2 Hz, 2H); 19F NMR (CDCl3, 188 MHz) δ -130.7 (d, J = 9.6 Hz, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.4, 50.9 (d, J = 25.5 Hz), 80.8, 109.6, 110.2, 110.6, 112.3 (d, J = 270.0 Hz), 128.5, 128.7, 130.2, 130.8, 130.9, 134.6, 135.0, 135.2; IR (KBr) 3430, 3068, 2979, 2931, 1503, 1726, 1583, 1503, 1449, 1239, 1162, 1076, 1008, 951, 894, 861, 814, 753, 685 cm-1; MS (ESI, m/z) =532.0 (M+Na+), 547.9 (M+K+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τmin= 65.6 min, τmaj = 83.1 min); [α] D 25 = +20.9 (c = 1.0 , CHCl3), 91% ee.

tert-butyl 1-fluoro-4-phenyl-1,1-bis(phenylsulfonyl)butan-2-ylcarbamate (3g)
Reaction of 2f (118.1 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at -80 ° C gave 3f (144.8 mg, 81%, 93% ee) as a white solid. 1 H NMR (CDCl 3, 200 MHz) δ 1.48 (s, 9H), 5.69 (t, J = 9.6 Hz, 1H), 6.21-6.44 (m, 3H), 7.14 (s, 1H), 7.32-7.76 (m, 8H), 7.97 (d, J = 8.2 Hz, 2H); 19 F NMR (CDCl 3 , 188 MHz) δ -130.7 (d, J = 9.6 Hz, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.4, 50.9 (d, J = 25.5 Hz), 80.8, 109.6, 110.2, 110.6, 112.3 (d, J = 270.0 Hz), 128.5, 128.7, 130.2, 130.8, 130.9, 134.6, 135.0, 135.2; IR (KBr) 3430, 3068, 2979, 2931, 1503, 1726, 1583, 1503, 1449, 1239, 1162 , 1076, 1008, 951, 894, 861, 814, 753, 685 cm -1 ; MS (ESI, m / z) = 532.0 (M + Na + ), 547.9 (M + K + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i-PrOH = 95/5, flow rate 0.5 mL / min, λ = 254 nm, τ min = 65.6 min, τ maj = 83.1 min); (α ] D 25 = +20.9 (c = 1.0, CHCl 3 ), 91% ee.

tert-butyl 1-fluoro-4-phenyl-1,1-bis (phenylsulfonyl) butan-2-ylcarbamate (3g)

Reaction of 2g (131.3 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2(1.0 mL) at -80°C gave 3g(161.9 mg, 85%, 90% ee) as a white solid. 1H NMR (CDCl3, 200 MHz, mixture of rotamers) δ 1.06 (s, 9/4H), 1.42 (s, 27/4H), 2.29-3.14(m, 4H), 4.06 (t, J = 10.8 Hz, 1/4H), 4.32 (t, J = 10.6 Hz, 3/4), 5.19 (d, J = 10.8 Hz, 1/4H), 5.42 (d, J = 10.7 Hz, 3/4), 2.08-7.78 (m, 13H), 7.94 (d, J = 8.4 Hz, 1/2H), 8.03 (d, J = 7.8 Hz, 3/2); 19F NMR (CDCl3, 188 MHz, mixture of rotamers) δ -134.9 (s, 3/4F), -136.3 (s, 1/4F); 13C NMR (CDCl3, 50.3 MHz, mixture of rotamers) δ 28.0, 28.4, 31.6 (d, J = 18.4 Hz), 32.3, 52.7 (d, J = 18.0 Hz), 53.6 (d, J = 16.3 Hz), 79.8, 80.4, 113.0 (d, J = 267.0 Hz), 125.9, 126.1, 128.2, 128.3, 128.5, 128.8, 129.0, 129.4, 130.5, 130.9, 131.1, 133.5, 133.9, 134.9, 135.0, 135.4, 135.6, 139.5, 139.8, 140.0, 154.8; IR (KBr) 3418, 3063, 2983, 2931, 1716, 1583, 1516, 1449, 1353, 1314, 1267, 1251, 1167, 1080, 1042, 1022, 864, 753, 728, 699, 606, 575, 523 cm-1; MS (ESI, m/z) = 570.1 (M+Na+), 587.1 (M+K+); The ee of the product was determined by HPLC using an OD-H column (n-hexane/i-PrOH = 92.5/7.5, flow rate 0.3 mL/min, λ = 254 nm, τmin= 32.6 min, τmaj = 44.5 min); [α] D 25 = +53.8 (c = 1.0, CHCl3) , 90% ee.

tert-Butyl 1-fluoro-1,1-bis(phenylsulfonyl)nonan-2-ylcarbamate (3h)
Reaction of 2g (131.3 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at -80 ° C gave 3g (161.9 mg, 85%, ee 90%) as a white solid. 1 H NMR (CDCl 3, 200 MHz, mixture of rotamers) δ 1.06 (s, 9 / 4H) , 1.42 (s, 27 / 4H), 2.29-3.14 (m, 4H), 4.06 (t, J = 10.8 Hz, 1 / 4H), 4.32 (t, J = 10.6 Hz, 3/4), 5.19 (d , J = 10.8 Hz, 1 / 4H), 5.42 (d, J = 10.7 Hz, 3/4), 2.08-7.78 (m, 13H), 7.94 (d, J = 8.4 Hz, 1 / 2H), 8.03 ( d, J = 7.8 Hz, 3/2); 19 F NMR (CDCl 3 , 188 MHz, mixture of rotamers) δ -134.9 (s, 3 / 4F), -136.3 (s, 1 / 4F); 13 C NMR (CDCl 3 , 50.3 MHz, mixture of rotamers) δ 28.0, 28.4, 31.6 (d, J = 18.4 Hz), 32.3, 52.7 (d, J = 18.0 Hz), 53.6 (d, J = 16.3 Hz), 79.8, 80.4, 113.0 (d, J = 267.0 Hz), 125.9, 126.1, 128.2, 128.3, 128.5, 128.8, 129.0, 129.4, 130.5, 130.9, 131.1, 133.5, 133.9, 134.9, 135.0, 135.4, 135.6, 139.5, 139.8, 140.0, 154.8; IR (KBr) 3418, 3063, 2983, 2931, 1716, 1583, 1516, 1449, 1353, 1314 , 1267, 1251, 1167, 1080, 1042, 1022, 864, 753, 728, 699, 606, 575, 523 cm -1 ; MS (ESI, m / z) = 570.1 (M + Na + ), 587.1 (M + K + ); The ee of the product was determined by HPLC using an OD-H column (n-hexane / i-PrOH = 92.5 / 7.5, flow rate 0.3 mL / min, λ = 254 nm, τ min = 32.6 min , τ maj = 44.5 min); [α] D 25 = +53.8 (c = 1.0, CHCl 3 ) , 90% ee.

tert-Butyl 1-fluoro-1,1-bis (phenylsulfonyl) nonan-2-ylcarbamate (3h)

Reaction of 2h (129.3 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2(1.0 mL) at-80°C gave 3h (180.3 mg, 95%, 95% ee) as a white solid. 1H NMR (CDCl3, 200 MHz, mixture of rotamers) δ 0.80-0.96 (m, 3H), 1.22-1.34 (m, 10H), 1.41 (s, 9H), 1.64-2.60 (m, 2H), 4.27-4.52(m, 1H), 5.10 (d, J= 10.2 Hz, 1/5H), 5.36 (d, J = 10.8 Hz, 4/5H), 7.51 (dt, J = 1.6, 8.0Hz. 4H), 7.63-7.75 (m, 2H), 7.88 (t, J = 8.0 Hz, 4H); 19F NMR (CDCl3, 188 MHz, mixture of rotamers) δ -133.4 (s, 4/5F), -134.2 (s, 1/5F); 13C NMR (CDCl3, 50.3 MHz, mixture of rotamers) δ 14.2, 22.7, 28.1, 28.3, 29.0, 29.2, 30.2, 30.6, 31.8, 53.7 (d, J = 18.4 Hz), 79.8, 80.3, 113.5 (d, J = 267.8), 128.5, 128.8, 130.5, 130.6, 134.7, 134.8, 135.1, 135.3, 154.9; IR (KBr) 3423, 3074, 2928, 2858, 1713, 1583, 1516, 1450, 1338, 1253, 1169, 1080, 1050, 998, 860, 754, 730, 714 cm-1; MS (ESI, m/z) = 564.1 (M+Na+), 580.1 (M+K+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 92.5/7.5, flow rate 0.5 mL/min, λ = 254 nm, τmaj = 15.5 min, τmin = 17.1 min); [α] D 25 = +48.5 (c = 0.82 , CHCl3) , 95% ee.

tert-Butyl 1-cyclohexyl-2-fluoro-2,2-bis(phenylsulfonyl)ethylcarbamate (3i)
Reaction of 2h (129.3 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at-80 ° C gave 3h (180.3 mg, 95%, ee 95%) as a white solid. 1 H NMR (CDCl 3, 200 MHz, mixture of rotamers) δ 0.80-0.96 (m, 3H) , 1.22-1.34 (m, 10H), 1.41 (s, 9H), 1.64-2.60 (m, 2H), 4.27-4.52 (m, 1H), 5.10 (d, J = 10.2 Hz, 1 / 5H), 5.36 (d, J = 10.8 Hz, 4 / 5H), 7.51 (dt, J = 1.6, 8.0Hz. 4H), 7.63-7.75 (m, 2H), 7.88 (t, J = 8.0 Hz, 4H); 19 F NMR (CDCl 3 , 188 MHz, mixture of rotamers) δ -133.4 (s, 4 / 5F), -134.2 (s, 1 / 5F); 13 C NMR (CDCl 3 , 50.3 MHz, mixture of rotamers) δ 14.2, 22.7, 28.1, 28.3, 29.0, 29.2, 30.2, 30.6, 31.8, 53.7 (d, J = 18.4 Hz), 79.8, 80.3, 113.5 (d, J = 267.8), 128.5, 128.8, 130.5, 130.6, 134.7, 134.8 , 135.1, 135.3, 154.9; IR (KBr) 3423, 3074, 2928, 2858, 1713, 1583, 1516, 1450, 1338, 1253, 1169, 1080, 1050, 998, 860, 754, 730, 714 cm -1 ; MS (ESI, m / z) = 564.1 (M + Na + ), 580.1 (M + K + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i-PrOH = 92.5 / 7.5, flow rate 0.5 mL / min, λ = 254 nm, τ maj = 15.5 min, τ min = 17.1 min); α] D 25 = +48.5 (c = 0.82, CHCl 3 ) , 95% ee.

tert-Butyl 1-cyclohexyl-2-fluoro-2,2-bis (phenylsulfonyl) ethylcarbamate (3i)

Reaction of 2i (123.7 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2 (1.0 mL) at -80°C, the temperature was gradually warmed to -40°C over 2h. After stirring for 22 h at -40°C, the resulting mixture gave 3i(146.6 mg, 80%, 98% ee) as a white solid by column chromatography (acetone/n-hexane = 1/5) on silica gel. 1H NMR (CDCl3, 200 MHz) δ 0.89-2.17 (m, 11H), 1.45 (s, 9H), 4.35(ddd, J = 5.8, 6.2 , 11.2 Hz, 1H), 5.69 (d, J = 11.2 Hz, 1H), 7.45-7.97 (m, 10H) ; 19F NMR (CDCl3, 188 MHz) δ -132.7 (s, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 25.9, 26.1, 26.2, 28.3, 28.4, 32.9, 33.0, 57.2 (d, J = 21.1 Hz), 79.9, 114.7 (d, J= 271.39 Hz), 128.6, 130.61, 130.64, 130.76, 130.79, 134.4, 134.7, 135.0, 135.8, 154.8; IR (KBr) 3430, 3057, 2979, 2941, 2860, 1715, 1489, 1446, 1372, 1345, 1318, 1242, 1170, 1153, 1078, 1002, 959, 859, 794, 760, 728, 712, 688 cm-1; MS (ESI, m/z) = 548.1 (M+Na+), 565.1 (M+K+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 92.5/7.5, flow rate 0.5 mL/min, λ = 254 nm, τmaj = 17.9 min, τmin = 21.1 min); [α] D 25 = -4.80 (c = 1.0 , CHCl3) , 98% ee.

tert-Butyl 1-fluoro-3-methyl-,1,1-bis(phenylsulfonyl)butan-2-ylcarbamate (3j)
Reaction of 2i (123.7 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at -80 ° C, the temperature was gradually warmed to -40 ° C over 2h.After stirring for 22 h at -40 ° C, the resulting mixture gave 3i (146.6 mg, 80%, 98% ee) as a white solid by column chromatography ( acetone / n-hexane = 1/5) on silica gel. 1 H NMR (CDCl 3, 200 MHz) δ 0.89-2.17 (m, 11H), 1.45 (s, 9H), 4.35 (ddd, J = 5.8, 6.2, 11.2 Hz, 1H), 5.69 (d, J = 11.2 Hz, 1H), 7.45-7.97 (m, 10H); 19 F NMR (CDCl 3 , 188 MHz) δ -132.7 ( s, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 25.9, 26.1, 26.2, 28.3, 28.4, 32.9, 33.0, 57.2 (d, J = 21.1 Hz), 79.9, 114.7 (d, J = 271.39 Hz ), 128.6, 130.61, 130.64, 130.76, 130.79, 134.4, 134.7, 135.0, 135.8, 154.8; IR (KBr) 3430, 3057, 2979, 2941, 2860, 1715, 1489, 1446, 1372, 1345, 1318, 1242, 1170, 1153, 1078, 1002, 959, 859, 794, 760, 728, 712, 688 cm -1 ; MS (ESI, m / z) = 548.1 (M + Na + ), 565.1 (M + K + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i-PrOH = 92.5 / 7.5, flow rate 0.5 mL / min, λ = 254 nm, τ maj = 17.9 min, τ min = 21.1 min); [α] D 25 = -4.80 (c = 1.0, CHCl 3 ) , 98% ee.

tert-Butyl 1-fluoro-3-methyl-, 1,1-bis (phenylsulfonyl) butan-2-ylcarbamate (3j)

Reaction of 2j (109.6 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2(1.0 mL) at-80°C, the temperature was gradually warmed to -40°C over 2h. After stirring for 24 h at -40°C, the resulting mixture gave 3j (157.8 mg, 93%, 99% ee) as a white solid by column chromatography (acetone/n-hexane = 1/5) on silica gel. 1H NMR (CDCl3, 200 MHz) δ 0.84 (dd, J = 2.4, 6.8 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 1.48 (s, 9H), 2.38-2.57 (m, 1H), 4.33 (ddd, J = 5.8, 6.0, 11.2 Hz, 1H), 5.70 (d, J = 11.2 Hz, 1H), 7.43-7.78 (m, 6H), 7.84 (d, J = 8.2 Hz, 2H), 7.96 (d, J = 7.8 Hz, 2H); 19F NMR (CDCl3, 188 MHz) δ -132.3 (s, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 18.8, 22.4 (d, J = 5.2 Hz), 28.5, 30.0, 58.0 (d, J = 21.2 Hz), 80.2, 114.8 (d, J= 271.8 Hz), 128.66, 128.70, 130.65, 130.68, 130.89, 130.91, 134.5, 134.8, 135.1, 135.8 ; IR (KBr) 3441, 3068, 2976, 2933, 2877, 1721, 1583, 1499, 1449, 1393, 1348, 1314, 1235, 1163, 1078, 999, 916, 862, 753, 725, 686, 604, 560 cm-1; MS (ESI, m/z) = 508.1 (M+Na+), 524.0 (M+K+); The ee of the product was determined by HPLC using an OD-H column (n-hexane/i-PrOH = 95/5, flow rate 0.2 mL/min, λ = 254 nm, τmaj = 42.8 min, τmin = 46.2 min); [α] D 25 = +13.1 (c = 0.5 , CH3OH) , 99% ee.

tert-Butyl 1-fluoro-3,3-dimethyl-,1,1-bis(phenylsulfonyl)butan-2-ylcarbamate (3k)
Reaction of 2j (109.6 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at-80 ° C, the temperature was gradually warmed to -40 ° C over 2h.After stirring for 24 h at -40 ° C, the resulting mixture gave 3j (157.8 mg, 93%, 99% ee) as a white solid by column chromatography ( acetone / n-hexane = 1/5) on silica gel. 1 H NMR (CDCl 3, 200 MHz) δ 0.84 (dd, J = 2.4, 6.8 Hz, 3H), 1.00 (d , J = 6.8 Hz, 3H), 1.48 (s, 9H), 2.38-2.57 (m, 1H), 4.33 (ddd, J = 5.8, 6.0, 11.2 Hz, 1H), 5.70 (d, J = 11.2 Hz, 1H), 7.43-7.78 (m, 6H), 7.84 (d, J = 8.2 Hz, 2H), 7.96 (d, J = 7.8 Hz, 2H); 19 F NMR (CDCl 3 , 188 MHz) δ -132.3 ( s, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 18.8, 22.4 (d, J = 5.2 Hz), 28.5, 30.0, 58.0 (d, J = 21.2 Hz), 80.2, 114.8 (d, J = 271.8 Hz), 128.66, 128.70, 130.65, 130.68, 130.89, 130.91, 134.5, 134.8, 135.1, 135.8; IR (KBr) 3441, 3068, 2976, 2933, 2877, 1721, 1583, 1499, 1449, 1393, 1348, 1314, 1235 , 1163, 1078, 999, 916, 862, 753, 725, 686, 604, 560 cm -1 ; MS (ESI, m / z) = 508.1 (M + Na + ), 524.0 (M + K + ); The ee of the product was determined by HPLC using an OD-H column (n-hexane / i-PrOH = 95/5, flow rate 0.2 mL / min, λ = 254 nm, τ maj = 42.8 min, τ min = 46.2 min ); [α] D 25 = +13.1 (c = 0.5, CH 3 OH) , 99% ee.

tert-Butyl 1-fluoro-3,3-dimethyl-, 1,1-bis (phenylsulfonyl) butan-2-ylcarbamate (3k)

Reaction of 2k (114.6 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH・H2O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH2Cl2(1.0 mL) at-80°C, the temperature was gradually warmed to -40°C over 2h. After stirring for 22 h, the resulting mixture gave 3k (121.8 mg, 70%, 96% ee) as a white solid by column chromatography (acetone/n-hexane = 1/5) on silica gel. 1H NMR (CDCl3, 200 MHz) δ 0.77 (s, 9H), 1.51 (s, 9H), 4.66 (d, J = 11.2 Hz, 1H), 6.06 (d, J = 11.2 Hz, 1H), 7.48-7.78 (m, 6H), 8.02 (d, J = 7.8 Hz, 2H), 8.09 (d, J = 7.8 Hz, 2H);19F NMR (CDCl3, 188 MHz) δ -133.0 (s, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 27.6 (d, J= 4.4 Hz), 28.5, 59.2 (d, J = 22.0 Hz), 80.1, 116.2 (d, J = 279.0 Hz), 128.4, 128.9, 131.3, 131.6, 133.2, 134.7, 135.0, 136.5, 154.8; IR (KBr) 3441, 3072, 2982, 1720, 1583, 1497, 1450, 1341, 1320, 1238, 1166, 1107, 1080, 1060, 997, 931, 906, 862, 765, 754, 712, 685 cm-1; MS (ESI, m/z) = 522.1 (M+Na+), 538.1 (M+K+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 95/5, flow rate 0.50 mL/min, λ = 254 nm, τmaj = 17.5 min, τmin = 19.6 min); [α] D 25 = -64.4 (c = 1.0 , CHCl3) , 96% ee.

Typical Procedure for the Reductive Desulfonylation of 3: (S)-tert-Butyl 2-fluoro-1phenylethylcarbamate (4a)
Reaction of 2k (114.6 mg, 0.35 mmol), 1 (118.5 mg, 0.38 mmol), CsOH ・ H 2 O (70.5 mg, 0.42 mmol), N-benzyl quinidinium chloride (7.9 mg, 0.018 mmol) in CH 2 Cl 2 (1.0 mL) at-80 ° C, the temperature was gradually warmed to -40 ° C over 2h.After stirring for 22 h, the resulting mixture gave 3k (121.8 mg, 70%, 96% ee) as a white solid by column chromatography (acetone / n-hexane = 1/5) on silica gel. 1 H NMR (CDCl 3, 200 MHz) δ 0.77 (s, 9H), 1.51 (s, 9H), 4.66 (d, J = 11.2 Hz , 1H), 6.06 (d, J = 11.2 Hz, 1H), 7.48-7.78 (m, 6H), 8.02 (d, J = 7.8 Hz, 2H), 8.09 (d, J = 7.8 Hz, 2H); 19 F NMR (CDCl 3 , 188 MHz) δ -133.0 (s, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 27.6 (d, J = 4.4 Hz), 28.5, 59.2 (d, J = 22.0 Hz) , 80.1, 116.2 (d, J = 279.0 Hz), 128.4, 128.9, 131.3, 131.6, 133.2, 134.7, 135.0, 136.5, 154.8; IR (KBr) 3441, 3072, 2982, 1720, 1583, 1497, 1450, 1341 , 1320, 1238, 1166, 1107, 1080, 1060, 997, 931, 906, 862, 765, 754, 712, 685 cm -1 ; MS (ESI, m / z) = 522.1 (M + Na + ), 538.1 (M + K + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i-PrOH = 95/5, flow rate 0.50 mL / min, λ = 254 nm, τ maj = 17.5 min, τ min = 19.6 min) ; [α] D 25 = -64.4 (c = 1.0, CHCl 3 ) , 96% ee.

Typical Procedure for the Reductive Desulfonylation of 3: (S) -tert-Butyl 2-fluoro-1phenylethylcarbamate (4a)

Method A using Mg: Under N2 atmosphere, a flask containing Mg (145.8 mg, 6.0 mmol) was heated for drying. The flask was cooled at 0 °C, and then MeOH (0.28 mL) and 3a (96% ee, 103.7 mg, 0.20 mmol) were added. The reaction mixture was stirred for 2h. The reaction was quenched with sat. NH4Cl aq. and extracted with CH2Cl2 for three times. The combined organic phase was washed with brine, dried over MgSO4and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (EtOAc/n-hexane = 1/10) to give 4a(40.2 mg) in 84% yield, 95% ee.
Method B using Na/Hg amalgam: Na/Hg amalgam (3 wt.% Na in Hg, net sodium content 1.86 mmol) was added to a test tube containing 3a (92% ee, 119.3 mg, 0.23 mmol) and Na2HPO4(263.7 mg, 1.86 mmol) in 3.0 mL of anhydrous MeOH at -20 °C under nitrogen atmosphere. The reaction mixture was stirred at -20 to -10 °C for 1h. The liquid phase was filtered through a pack of Celite, and washed with MeOH. The filtrate was concentrated under vacuum. Brine (10 mL) was added to the residue and it was extracted with EtOAc. The combined organic extracts were dried over MgSO4, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (EtOAc/n-hexane = 1/10). Product 4a was obtained in 92% yield, 92% ee. A white solid, 1H NMR (CDCl3, 200 MHz) δ 1.43 (s, 9H), 4.55 (ddd, J = 5.0, 9.3, 47.1 Hz, 1H), 4.76 (ddd, J = 4.2, 9.2, 47.5 Hz, 1H), 4.68-5.22 (m, 3H), 7.28-7.36 (m, 5H); 19F NMR (CDCl3, 188 MHz) δ -223.4 - -226.0 (m, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 54.9 (br.d), 79.9, 85.0 (d, J = 175.1 Hz), 126.5, 127.7, 128.5, 138.0, 154.8; IR (KBr) 3383, 2981, 1687, 1524, 1458, 1391, 1368, 1318, 1281, 1255, 1173, 1057, 1015, 920, 867, 839, 781, 756.0, 700.0 cm-1; MS (ESI, m/z) = 262.0 (M+Na+), 278.0 (M+K+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 95/5, flow rate 0.25 mL/min, λ = 254 nm, τmaj = 30.1 min, τmin = 32.1min); [α] D 25 = +43.1 (c = 0.40 , CHCl3) , 95% ee.

(S)-tert-Butyl 1-(3-chlorophenyl)-2-fluoroethylcarbamate (4b)
Method A using Mg: Under N 2 atmosphere, a flask containing Mg (145.8 mg, 6.0 mmol) was heated for drying.The flask was cooled at 0 ° C, and then MeOH (0.28 mL) and 3a (96% ee, 103.7 The reaction mixture was stirred for 2h.The reaction was quenched with sat.NH 4 Cl aq. and extracted with CH 2 Cl 2 for three times.The combined organic phase was washed with brine, dried over MgSO 4 and concentrated under reduced pressure.The crude product was purified by column chromatography on silica gel (EtOAc / n-hexane = 1/10) to give 4a (40.2 mg) in 84% yield, 95% ee.
Method B using Na / Hg amalgam: Na / Hg amalgam (3 wt.% Na in Hg, net sodium content 1.86 mmol) was added to a test tube containing 3a (92% ee, 119.3 mg, 0.23 mmol) and Na 2 HPO 4 (263.7 mg, 1.86 mmol) in 3.0 mL of anhydrous MeOH at -20 ° C under nitrogen atmosphere.The reaction mixture was stirred at -20 to -10 ° C for 1h.The liquid phase was filtered through a pack of Celite, The washed was MeOH.The filtrate was concentrated under vacuum.Brine (10 mL) was added to the residue and it was extracted with EtOAc.The combined organic extracts were dried over MgSO 4 , filtered, and concentrated under reduced pressure. was purified by column chromatography on silica gel (EtOAc / n-hexane = 1/10) .Product 4a was obtained in 92% yield, 92% ee.A white solid, 1 H NMR (CDCl 3 , 200 MHz) δ 1.43 ( s, 9H), 4.55 (ddd, J = 5.0, 9.3, 47.1 Hz, 1H), 4.76 (ddd, J = 4.2, 9.2, 47.5 Hz, 1H), 4.68-5.22 (m, 3H), 7.28-7.36 ( m, 5H); 19 F NMR (CDCl 3 , 188 MHz) δ -223.4--226.0 (m, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.5, 54.9 (br.d), 79.9, 85.0 (d, J = 175.1 Hz), 126.5, 127.7, 128.5, 138.0, 154.8; IR (KBr) 3383, 2981, 1687, 1524, 1458, 1391, 1368, 1318, 1281, 1255, 1173, 1057, 1015, 920, 867, 839, 781, 756.0, 700.0 cm -1 ; MS (ESI, m / z) = 262.0 (M + Na + ), 278.0 (M + K + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i-PrOH = 95/5, flow rate 0.25 mL / min, λ = 254 nm, τ maj = 30.1 min, τ min = 32.1 min ); [α] D 25 = +43.1 (c = 0.40, CHCl 3 ) , 95% ee.

(S) -tert-Butyl 1- (3-chlorophenyl) -2-fluoroethylcarbamate (4b)

Using the procedure A, reaction of 3b (97% ee, 110.8 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4b (44.9 mg, 82%, 96% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.43 (s, 9H), 4.54 (ddd, J= 4.8, 9.3, 46.8 Hz, 1H), 4.63 (ddd, J= 4.0, 9.4, 47.3 Hz, 1H), 4.78-5.02 (m, 1H), 5.06-5.28 (m, 2H), 7.17-7.31 (m, 4H); 19F NMR (CDCl3, 188 MHz) δ -225.2 - -226.5 (m, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 54.5 (br. d), 80.3, 84.9 (d, J = 175.6 Hz), 124.8, 126.8, 127.9, 12.8, 134.4, 140.3, 155; IR (KBr) 3380, 2982, 1684, 1525, 1370, 1345, 1275, 1252, 1168, 1055, 1022, 878, 849, 789, 750, 714, 697 cm-1; MS (ESI, m/z) = 296.1 (M+Na+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 95/5, flow rate 0.30 mL/min, λ = 254 nm, τmaj = 22.8 min, τmin = 25.6 min); [α] D 25 = +51.9 (c = 0.40 , CHCl3) , 96% ee.

(S)-tert-Butyl 1-(4-chlorophenyl)-2-fluoroethylcarbamate (4c)
Using the procedure A, reaction of 3b (97% ee, 110.8 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4b (44.9 mg, 82%, 96% ee) as a white solid. 1 H NMR (CDCl 3 , 200 MHz) δ 1.43 (s, 9H), 4.54 (ddd, J = 4.8, 9.3, 46.8 Hz, 1H), 4.63 (ddd, J = 4.0, 9.4, 47.3 Hz, 1H ), 4.78-5.02 (m, 1H), 5.06-5.28 (m, 2H), 7.17-7.31 (m, 4H); 19 F NMR (CDCl 3 , 188 MHz) δ -225.2--226.5 (m, 1F) ; 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.5, 54.5 (br.d), 80.3, 84.9 (d, J = 175.6 Hz), 124.8, 126.8, 127.9, 12.8, 134.4, 140.3, 155; IR (KBr ) 3380, 2982, 1684, 1525, 1370, 1345, 1275, 1252, 1168, 1055, 1022, 878, 849, 789, 750, 714, 697 cm -1 ; MS (ESI, m / z) = 296.1 (M + Na + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i-PrOH = 95/5, flow rate 0.30 mL / min, λ = 254 nm, τ maj = 22.8 min , τ min = 25.6 min); [α] D 25 = +51.9 (c = 0.40, CHCl 3 ) , 96% ee.

(S) -tert-Butyl 1- (4-chlorophenyl) -2-fluoroethylcarbamate (4c)

Using the procedure A, reaction of 3c (87% ee, 110.8 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4c (48.1 mg, 88%, 83% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.42 (s, 9H), 4.52 (ddd, J= 4.8, 9.3, 46.9 Hz, 1H), 4.62 (ddd, J= 4.0, 9.5, 47.5 Hz, 1H), 4.75-5.02 (m, 1H), 5.03-5.30 (m, 1H), 7.24-7.26 (m, 4H); 19F NMR (CDCl3, 188 MHz) δ -225.2 - -226.4 (m, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 54.0 (br. d), 80.2, 84.9 (d, J = 175.1), 128.0, 128.7, 133.6, 136.7, 154.8; IR (KBr) 3384, 2980, 1685, 1521, 1367, 1280, 1173, 1056, 1027, 869, 827 cm-1; MS (ESI, m/z) = 296.0 (M+Na+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 95/5, flow rate 0.30 mL/min, λ = 254 nm, τmaj = 25.4 min, τmin = 28.8 min); [α] D 25 = +47.8 (c = 0.40 , CHCl3) , 83% ee.

(S)-tert-Butyl 2-fluoro 1-(4-methoxyphenyl) ethylcarbamate (4d)
Using the procedure A, reaction of 3c (87% ee, 110.8 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4c (48.1 mg, 88%, 83% ee) as a white solid. 1 H NMR (CDCl 3 , 200 MHz) δ 1.42 (s, 9H), 4.52 (ddd, J = 4.8, 9.3, 46.9 Hz, 1H), 4.62 (ddd, J = 4.0, 9.5, 47.5 Hz, 1H ), 4.75-5.02 (m, 1H), 5.03-5.30 (m, 1H), 7.24-7.26 (m, 4H); 19 F NMR (CDCl 3 , 188 MHz) δ -225.2--226.4 (m, 1F) ; 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.5, 54.0 (br.d), 80.2, 84.9 (d, J = 175.1), 128.0, 128.7, 133.6, 136.7, 154.8; IR (KBr) 3384, 2980, 1685, 1521, 1367, 1280, 1173, 1056, 1027, 869, 827 cm -1 ; MS (ESI, m / z) = 296.0 (M + Na + ); The ee of the product was determined by HPLC using an AD -H column (n-hexane / i-PrOH = 95/5, flow rate 0.30 mL / min, λ = 254 nm, τ maj = 25.4 min, τ min = 28.8 min); [α] D 25 = +47.8 ( c = 0.40, CHCl 3 ) , 83% ee.

(S) -tert-Butyl 2-fluoro 1- (4-methoxyphenyl) ethylcarbamate (4d)

Using the procedure A, reaction of 3d (95% ee, 109.9 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4d (43.1 mg, 80%, 93% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.43 (s, 9H), 3,78 (s, 3H), 4.52 (ddd, J =5.0, 9.4, 47.3 Hz, 1H), 4.60 (ddd, J = 4.2, 9.2, 47.5 Hz, 1H), 4.74-4.98 (m, 1H), 5.00-5.20 (m, 1H), 6.87 (d, J = 6.6 Hz, 2H), 7.24 (d, J = 6.6 Hz, 2H); 19F NMR (CDCl3, 188 MHz) δ -224.0 - -225.8 (m, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 54.3 (br. d), 55.3, 79.9, 85.0 (d, J = 175.2 Hz), 114.0, 127.8, 130.2, 130.3, 154.8, 158.9; IR(KBr) 3382, 2979, 2834, 1685, 1517, 1368, 1249, 1173, 1011, 875, 821 cm-1; MS (ESI, m/z) = 292.1 (M+Na+); The ee of the product was determined by HPLC using an AD-H column (n-hexane/i-PrOH = 95/5, flow rate 0.50 mL/min, λ = 254 nm, τmaj = 32.6 min, τmin = 35.5 min); [α] D 25 = +58.0 (c = 0.20, CHCl3) , 93% ee.

(S)-tert-Butyl 2-fluoro-1-(naphthalene-3-yl) ethylcarbamate (4e)
Using the procedure A, reaction of 3d (95% ee, 109.9 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4d (43.1 mg, 80%, 93% ee) as a white solid. 1 H NMR (CDCl 3 , 200 MHz) δ 1.43 (s, 9H), 3,78 (s, 3H), 4.52 (ddd, J = 5.0, 9.4, 47.3 Hz, 1H), 4.60 (ddd, J = 4.2, 9.2, 47.5 Hz, 1H), 4.74-4.98 (m, 1H), 5.00-5.20 (m, 1H), 6.87 (d, J = 6.6 Hz, 2H), 7.24 (d, J = 6.6 Hz, 2H); 19 F NMR (CDCl 3 , 188 MHz) δ -224.0--225.8 (m, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.5, 54.3 (br.d), 55.3, 79.9, 85.0 (d, J = 175.2 Hz), 114.0, 127.8, 130.2, 130.3, 154.8, 158.9; IR (KBr) 3382, 2979, 2834, 1685, 1517, 1368, 1249, 1173, 1011, 875, 821 cm -1 ; MS (ESI, m / z) = 292.1 (M + Na + ); The ee of the product was determined by HPLC using an AD-H column (n-hexane / i-PrOH = 95/5, flow rate 0.50 mL / min, λ = 254 nm, τ maj = 32.6 min, τ min = 35.5 min); [α] D 25 = +58.0 (c = 0.20, CHCl 3 ) , 93% ee.

(S) -tert-Butyl 2-fluoro-1- (naphthalene-3-yl) ethylcarbamate (4e)

Using the procedure A, reaction of 3e (90% ee, 113.9 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4e (49.4 mg, 85%, 89% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.43 (s, 9H), 4.53-5.42 (m, 4H), 7.35-7.53 (m, 3H), 7.72-7.88 (m, 4H); 19F NMR (CDCl3, 188 MHz) δ -224.2 - -225.5 (m, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 54.7 (br. d), 80.1, 85.0 (d, J = 175.5 Hz), 124.5, 125.6, 125.9, 126.1, 127.4, 127.7, 128.4, 132.7, 133.0, 135.46, 135.54, 154.9; IR (KBr) 3384, 2976, 2925, 1685, 1518, 1457, 1334, 1284, 1169, 1056, 1012, 825, 747 cm-1; MS (ESI, m/z) = 312.1 (M+Na+); The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 99/1, flow rate 0.10 mL/min, λ = 254 nm, τmaj = 85.0 min, τmin = 94.4 min); [α] D 25 = +63.0 (c = 0.60, CHCl3), 89% ee.

tert-Butyl 2-fluoro-1-(furan-2-yl) ethylcarbamate (4f)
Using the procedure A, reaction of 3e (90% ee, 113.9 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4e (49.4 mg, 85%, 89% ee) as a white solid. 1 H NMR (CDCl 3 , 200 MHz) δ 1.43 (s, 9H), 4.53-5.42 (m, 4H), 7.35-7.53 (m, 3H), 7.72-7.88 (m, 4H); 19 F NMR (CDCl 3 , 188 MHz) δ -224.2--225.5 (m, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.5, 54.7 (br.d), 80.1, 85.0 (d, J = 175.5 Hz) , 124.5, 125.6, 125.9, 126.1, 127.4, 127.7, 128.4, 132.7, 133.0, 135.46, 135.54, 154.9; IR (KBr) 3384, 2976, 2925, 1685, 1518, 1457, 1334, 1284, 1169, 1056, 1012 , 825, 747 cm -1 ; MS (ESI, m / z) = 312.1 (M + Na + ); The ee of the product was determined by HPLC using an OJ-H column (n-hexane / i-PrOH = 99 / 1, flow rate 0.10 mL / min, λ = 254 nm, τ maj = 85.0 min, τ min = 94.4 min); [α] D 25 = +63.0 (c = 0.60, CHCl 3 ), 89% ee.

tert-Butyl 2-fluoro-1- (furan-2-yl) ethylcarbamate (4f)

Using the procedure A, reaction of 3f (93% ee, 101.9 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4f (37.1 mg, 81%, 92% ee) as a pale yellow oil. 1H NMR (CDCl3, 200 MHz) δ 1.46 (s, 9H), 4.69 (ddd, J = 4.4, 9.2, 47.3 Hz, 1H), 4.67 (ddd, J = 4.2, 9.5, 46.9 Hz, 1H), 4.87-5.16 (m, 2H), 6.25-6.36 (m, 2H), 7.34-7.38 (m, 1H); 19F NMR (CDCl3, 188 MHz) δ -227.0 (dt, J = 22.9, 45.9, 1F); 13C NMR (CDCl3, 50.3 MHz) δ28.5, 49.2 (br. d), 80.2, 83.2 (d, J = 174.8 Hz), 107.2, 110.3, 142.1, 150.8, 154.7; IR (neat) 3430, 3333, 2979, 2932, 1704, 1505, 1367, 1252, 1169, 1054, 1011, 861, 740 cm-1; MS (ESI, m/z) = 252.0 (M+Na+); The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 95/5, flow rate 0.30 mL/min, λ = 210 nm, τmaj = 19.2 min, τmin = 23.7 min); [α] D 25 = +44.6 (c = 0.43 , CHCl3) , 92% ee.

tert-Butyl 1-fluoro-4-phenylbutan-2-ylcarbamate (4g)
Using the procedure A, reaction of 3f (93% ee, 101.9 mg, 0.20 mmol) with Mg (145.9 mg, 6.0 mmol) in MeOH (2.8 mL) gave 4f (37.1 mg, 81%, 92% ee) as a pale yellow oil. 1 H NMR (CDCl 3 , 200 MHz) δ 1.46 (s, 9H), 4.69 (ddd, J = 4.4, 9.2, 47.3 Hz, 1H), 4.67 (ddd, J = 4.2, 9.5, 46.9 Hz, 1H), 4.87-5.16 (m, 2H), 6.25-6.36 (m, 2H), 7.34-7.38 (m, 1H); 19 F NMR (CDCl 3 , 188 MHz) δ -227.0 (dt, J = 22.9, 45.9, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ28.5, 49.2 (br.d), 80.2, 83.2 (d, J = 174.8 Hz), 107.2, 110.3, 142.1, 150.8, 154.7; IR ( neat) 3430, 3333, 2979, 2932, 1704, 1505, 1367, 1252, 1169, 1054, 1011, 861, 740 cm -1 ; MS (ESI, m / z) = 252.0 (M + Na + ); The ee of the product was determined by HPLC using an OJ-H column (n-hexane / i-PrOH = 95/5, flow rate 0.30 mL / min, λ = 210 nm, τ maj = 19.2 min, τ min = 23.7 min) ; [α] D 25 = +44.6 (c = 0.43, CHCl 3 ) , 92% ee.

tert-Butyl 1-fluoro-4-phenylbutan-2-ylcarbamate (4g)

Using the procedure A, reaction of 3g (90% ee, 80.0 mg, 0.146 mmol) with Mg (106.5 mg, 4.4 mmol) in MeOH (2.0 mL) gave 4g (33.8 mg, 87%, 90% ee) as a white solid. 1H NMR (CDCl3, 200 MHz) δ 1.46 (s, 9H), 1.75-1.97 (m, 2H), 2.70 (dt, J = 2.6, 8.0 Hz, 2H), 4.41 (dd, J= 3.4, 47.4 Hz, 2H), 4.56-4.80 (m, 1H), 7.14-7.32 (m, 5H); 19F NMR (CDCl3, 188 MHz) δ -224.2 (dt, J= 27.4, 47.0, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 28.5, 32.4, 32.9, 33.0, 50.5 (d, J 19.6 Hz), 79.6, 85.0 (d, J = 170.4 Hz, 1H), 125.8, 128.1, 128.2, 141.0, 155.1; IR (KBr) 3369, 2970, 2928, 2862, 1686, 1523, 1455, 1246, 1170, 755, 702 cm-1; MS (ESI, m/z) = 290.1 (M+Na+); The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 95/5, flow rate 0.50 mL/min, λ = 254 nm, τmaj = 11.6 min, τmin = 13.2 min); [α] D 25 = -5.8 (c = 0.16, CHCl3), 89% ee.

tert-Butyl 1-fluorononan-2-ylcarbamate (4h)
Using the procedure A, reaction of 3g (90% ee, 80.0 mg, 0.146 mmol) with Mg (106.5 mg, 4.4 mmol) in MeOH (2.0 mL) gave 4g (33.8 mg, 87%, 90% ee) as a white solid. 1 H NMR (CDCl 3 , 200 MHz) δ 1.46 (s, 9H), 1.75-1.97 (m, 2H), 2.70 (dt, J = 2.6, 8.0 Hz, 2H), 4.41 (dd, J = 3.4 , 47.4 Hz, 2H), 4.56-4.80 (m, 1H), 7.14-7.32 (m, 5H); 19 F NMR (CDCl 3 , 188 MHz) δ -224.2 (dt, J = 27.4, 47.0, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 28.5, 32.4, 32.9, 33.0, 50.5 (d, J 19.6 Hz), 79.6, 85.0 (d, J = 170.4 Hz, 1H), 125.8, 128.1, 128.2, 141.0, 155.1; IR (KBr) 3369, 2970, 2928, 2862, 1686, 1523, 1455, 1246, 1170, 755, 702 cm -1 ; MS (ESI, m / z) = 290.1 (M + Na + ); The ee of the product was determined by HPLC using an OJ-H column (n-hexane / i-PrOH = 95/5, flow rate 0.50 mL / min, λ = 254 nm, τ maj = 11.6 min, τ min = 13.2 min) ; [α] D 25 = -5.8 (c = 0.16, CHCl 3 ), 89% ee.

tert-Butyl 1-fluorononan-2-ylcarbamate (4h)

Using the procedure A, reaction of 3h (95% ee, 135.4 mg, 0.25 mmol) with Mg (182.3 mg, 7.5 mmol) in MeOH (3.5 mL) gave 4b (54.5 mg, 83 %, 96% ee) as a colorless oil. 1H NMR (CDCl3, 200 MHz) δ 0.88 (t, J = 6.8 Hz, 3H), 1.20-1.62 (m, 12H), 1.45 (s, 9H), 3.55-3.90 (m, 1H), 4.39 (dd, J = 3.2, 47.4, 2H), 4.48-4.68 (m, 1H); 19F NMR (CDCl3, 188 MHz) δ -231.2 (dt, J = 27.4, 50.0, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 14.3, 22.8, 26.1, 28.5, 29.3, 29.5, 31.2, 31.9, 50.6 (br. d), 79.5, 85.0 (d, J = 170.0 Hz), 155.1; IR (neat) 3451, 3341, 2928, 2858, 1695, 1519, 1457, 1391, 1366, 1247, 1173, 1057, 1014 cm-1; MS (ESI, m/z) = 284.2 (M+Na+); The ee of the product was determined by GC analysis (CHIRADEX G-TA , 110 °C isothermal) τmaj = 178.1 min, τmin = 179.8 min); [α]D 25 = -15.0 (c = 0.91 , CHCl3), 96% ee.

tert-Butyl 1-cyclohexyl-2-fluoroethylcarbamate (4i)
Using the procedure A, reaction of 3h (95% ee, 135.4 mg, 0.25 mmol) with Mg (182.3 mg, 7.5 mmol) in MeOH (3.5 mL) gave 4b (54.5 mg, 83%, 96% ee) as a colorless oil. 1 H NMR (CDCl 3 , 200 MHz) δ 0.88 (t, J = 6.8 Hz, 3H), 1.20-1.62 (m, 12H), 1.45 (s, 9H), 3.55-3.90 (m, 1H), 4.39 (dd, J = 3.2, 47.4, 2H), 4.48-4.68 (m, 1H); 19 F NMR (CDCl 3 , 188 MHz) δ -231.2 (dt, J = 27.4, 50.0, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 14.3, 22.8, 26.1, 28.5, 29.3, 29.5, 31.2, 31.9, 50.6 (br.d), 79.5, 85.0 (d, J = 170.0 Hz), 155.1; IR (neat) 3451 , 3341, 2928, 2858, 1695, 1519, 1457, 1391, 1366, 1247, 1173, 1057, 1014 cm -1 ; MS (ESI, m / z) = 284.2 (M + Na + ); The ee of the product was determined by GC analysis (CHIRADEX G-TA, 110 ° C isothermal) τ maj = 178.1 min, τ min = 179.8 min); [α] D 25 = -15.0 (c = 0.91, CHCl 3 ), 96% ee.

tert-Butyl 1-cyclohexyl-2-fluoroethylcarbamate (4i)

Using the procedure A, reaction of 3i (98% ee, 131.4 mg, 0.25 mmol) with Mg (182.3 mg, 7.5 mmol) in MeOH (3.5 mL) gave 4i (53.3 mg, 87 %, 98% ee) as a white solid.
1H NMR (CDCl3, 200 MHz) δ 0.97-1.90 (m, 11H), 1.45 (s, 9H), 3.38 (m, 1H), 4.39 (ddd, J = 3.4, 9.3, 47.8 Hz, 1H), 4.52 (ddd, J = 42.8, 9.4, 47.1 Hz, 1H), 4.57-4.75 (m, 3H), 19F NMR (CDCl3, 188 MHz) δ -246.08 (dt, J= 29.9, 47.0, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 26.2, 26.4, 28.5, 29.3, 29.9, 38.8, 55.2 (d, J= 18.4 Hz), 79.4, 83.5 (d, J = 169.5 Hz), 155.3; IR (KBr) 3335, 2968, 2931, 2853, 1677, 1527, 1453, 1366, 1295, 1253, 1177, 1052, 985, 889, 634 cm-1; MS (ESI, m/z) = 268.1 (M+Na+); The ee of the product was determined by GC analysis (CHIRADEX G-TA , 130 °C isothermal) τmaj = 54.1 min, τmin = 55.3 min; [α] D 25 = -17.3 (c = 0.40 , CHCl3) , 98% ee.

tert-Butyl 1-fluoro-3-methylbutan-2-ylcarbamate (4j)
Using the procedure A, reaction of 3i (98% ee, 131.4 mg, 0.25 mmol) with Mg (182.3 mg, 7.5 mmol) in MeOH (3.5 mL) gave 4i (53.3 mg, 87%, 98% ee) as a white solid.
1 H NMR (CDCl 3 , 200 MHz) δ 0.97-1.90 (m, 11H), 1.45 (s, 9H), 3.38 (m, 1H), 4.39 (ddd, J = 3.4, 9.3, 47.8 Hz, 1H), 4.52 (ddd, J = 42.8, 9.4, 47.1 Hz, 1H), 4.57-4.75 (m, 3H), 19 F NMR (CDCl 3 , 188 MHz) δ -246.08 (dt, J = 29.9, 47.0, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 26.2, 26.4, 28.5, 29.3, 29.9, 38.8, 55.2 (d, J = 18.4 Hz), 79.4, 83.5 (d, J = 169.5 Hz), 155.3; IR (KBr ) 3335, 2968, 2931, 2853, 1677, 1527, 1453, 1366, 1295, 1253, 1177, 1052, 985, 889, 634 cm -1 ; MS (ESI, m / z) = 268.1 (M + Na + ) ; The ee of the product was determined by GC analysis (CHIRADEX G-TA, 130 ° C isothermal) τ maj = 54.1 min, τ min = 55.3 min; [α] D 25 = -17.3 (c = 0.40, CHCl 3 ) , 98% ee.

tert-Butyl 1-fluoro-3-methylbutan-2-ylcarbamate (4j)

Using the procedure A, reaction of 3j (99% ee, 121.4 mg, 0.25 mmol) with Mg (182.3 mg, 7.5 mmol) in MeOH (3.5 mL) gave 4j (38.4 mg, 75%, 99%ee) as white solid. 1H NMR (CDCl3, 200 MHz) δ 0.96 (d, J = 4.2 Hz, 3H), 0.99 (d, J = 4.0 Hz, 3H), 1.45 (s, 9H), 1.73-1.97 (m, 1H), 3.37-3.68 (m, 1H), 4.39 (ddd, J = 3.6, 9.4, 47.7 Hz, 1H), 4.69 (ddd, J = 3.6, 9.4, 46.9 Hz, 1H), 4.57-4.76 (m, 1H); 19F NMR (CDCl3, 188 MHz) δ -231.1 (dt, J= 27.6, 47.0, 1F); 13C NMR (CDCl3, 50.3 MHz) δ 18.9, 19.7, 28.5, 29.4 (d, J = 3.6 Hz), 55.9 (d, J = 18.8 Hz), 79.5, 83.8 (d, J = 169.6 Hz), 155.4; IR (KBr) 3340, 2968, 2925, 1699, 1541, 1457, 1366, 1251, 1174, 1072, 867 cm-1; MS (ESI, m/z) = 228.1 (M+Na+); The ee of the product was determined by GC analysis (CP-CHIRASIL-DEX CB, 110 °C isothermal) τmaj = 21.4 min, τmin = 22.9 min; [α] D 25 = -25.1 (c = 0.33 , CHCl3) , 99% ee.

tert-Butyl 1-fluoro-3,3-dimethylbutan-2-ylcarbamate (4k)
Using the procedure A, reaction of 3j (99% ee, 121.4 mg, 0.25 mmol) with Mg (182.3 mg, 7.5 mmol) in MeOH (3.5 mL) gave 4j (38.4 mg, 75%, 99% ee) as white solid 1 H NMR (CDCl 3 , 200 MHz) δ 0.96 (d, J = 4.2 Hz, 3H), 0.99 (d, J = 4.0 Hz, 3H), 1.45 (s, 9H), 1.73-1.97 (m, 1H ), 3.37-3.68 (m, 1H), 4.39 (ddd, J = 3.6, 9.4, 47.7 Hz, 1H), 4.69 (ddd, J = 3.6, 9.4, 46.9 Hz, 1H), 4.57-4.76 (m, 1H ); 19 F NMR (CDCl 3 , 188 MHz) δ -231.1 (dt, J = 27.6, 47.0, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ 18.9, 19.7, 28.5, 29.4 (d, J = 3.6 Hz), 55.9 (d, J = 18.8 Hz), 79.5, 83.8 (d, J = 169.6 Hz), 155.4; IR (KBr) 3340, 2968, 2925, 1699, 1541, 1457, 1366, 1251, 1174, 1072, 867 cm -1 ; MS (ESI, m / z) = 228.1 (M + Na + ); The ee of the product was determined by GC analysis (CP-CHIRASIL-DEX CB, 110 ° C isothermal) τ maj = 21.4 min, τ min = 22.9 min; [α] D 25 = -25.1 (c = 0.33, CHCl 3 ) , 99% ee.

tert-Butyl 1-fluoro-3,3-dimethylbutan-2-ylcarbamate (4k)

Using the procedure A, reaction of 3k (96% ee, 90.0 mg, 0.18 mmol) with Mg (131.2 mg, 5.4 mmol) in MeOH (2.5 mL) gave 4k (10.3 mg, 26 %) as a white solid and recovered 65% of starting material (58.3 mg). 1H NMR (CDCl3, 200 MHz) δ 0.97 (s, 9H), 1.45 (s, 9H), 3.40-3.72 (m, 1H), 4.33-4.87 (m, 3H); 19F NMR (CDCl3, 188 MHz) δ -228.42 (dt, J = 29.7, 47.0, 1F); 13C NMR (CDCl3, 50.3 MHz) δ27.1, 28.6, 34.2, 58.1 (d, J = 17.6 Hz), 79.4, 83.4 (d, J = 170.0 Hz), 155.5; IR (KBr) 3319, 2969, 1700, 1543, 1478, 1367, 1281, 1251, 1176, 1064, 678 cm-1; MS (ESI, m/z ) = 242.05 (M+Na+); The ee of the product was determined by GC analysis (CP-CHIRASIL-DEX CB, 110 °C isothermal) τmaj = 11.7 min, τmin = 14.0 min; [α] D 25 = -20.7 (c = 0.36 , CHCl3), 99% ee.

Determination of Absolute Stereochemistry of 4a:
(S)-2-Fluoro-1-phenylethanaminium chloride (5a)
Using the procedure A, reaction of 3k (96% ee, 90.0 mg, 0.18 mmol) with Mg (131.2 mg, 5.4 mmol) in MeOH (2.5 mL) gave 4k (10.3 mg, 26%) as a white solid and recovered 65 % of starting material (58.3 mg) . 1 H NMR (CDCl 3, 200 MHz) δ 0.97 (s, 9H), 1.45 (s, 9H), 3.40-3.72 (m, 1H), 4.33-4.87 (m, 3H ); 19 F NMR (CDCl 3 , 188 MHz) δ -228.42 (dt, J = 29.7, 47.0, 1F); 13 C NMR (CDCl 3 , 50.3 MHz) δ27.1, 28.6, 34.2, 58.1 (d, J = 17.6 Hz), 79.4, 83.4 (d, J = 170.0 Hz), 155.5; IR (KBr) 3319, 2969, 1700, 1543, 1478, 1367, 1281, 1251, 1176, 1064, 678 cm -1 ; MS ( ESI, m / z) = 242.05 (M + Na + ); The ee of the product was determined by GC analysis (CP-CHIRASIL-DEX CB, 110 ° C isothermal) τ maj = 11.7 min, τ min = 14.0 min; [α] D 25 = -20.7 (c = 0.36, CHCl 3 ), 99% ee .

Determination of Absolute Stereochemistry of 4a:
(S) -2-Fluoro-1-phenylethanaminium chloride (5a)

The absolute configuration of 4a was established to (S) by deprotection under HCl/dioxane
treatment to yield the known (S)-2-fluoro-1-phenylethanaminium chloride (5a).
1173414601859_33
Procedure is as follows: A solution of HCl/dioxane (2.8 M) was added to a solution of 4a (92% ee, 40.0 mg, 0.17 mmol) in MeOH (2.0 mL) at rt. After stirring at the temperature for 1h, the reaction mixture was concentrated under reduced pressure. Ether was added to the mixture and the resulting precipitate was filtered off and washed with ether to provide pure fluoromethylamine hydrochloride 5a (28.3 mg, 95%) as colorless crystals. 1H NMR (CD3OD, 200 MHz) δ 4.42-4.80 (m, 3H), 7.26-7.35 (m, 5H); 19F NMR (CD3OD, 188 MHz) δ -221.78 (dt, J = 17.1, 44.1, 1F); MS (ESI, m/z) = 140.0 (M+-35); [α]D 25 = -27.1 (c = 0.57, CH3OH), 92% ee. The absolute configuration of 4b-e was tentatively assigned as (S) by comparing the optical rotation with that of 4a.



The absolute configuration of 4a was established to (S) by deprotection under HCl / dioxane
treatment to yield the known (S) -2-fluoro-1-phenylethanaminium chloride (5a).
1173414601859_33
Procedure is as follows: A solution of HCl / dioxane (2.8 M) was added to a solution of 4a (92% ee, 40.0 mg, 0.17 mmol) in MeOH (2.0 mL) at rt. After stirring at the temperature for 1h, the reaction mixture was concentrated under reduced pressure . Ether was added to the mixture and the resulting precipitate was filtered off and washed with ether to provide pure fluoromethylamine hydrochloride 5a (28.3 mg, 95%) as colorless crystals. 1 H NMR (CD 3 OD , 200 MHz) δ 4.42-4.80 (m, 3H), 7.26-7.35 (m, 5H); 19 F NMR (CD 3 OD, 188 MHz) δ -221.78 (dt, J = 17.1, 44.1, 1F); MS (ESI, m / z) = 140.0 (M + -35);. [α] D 25 = -27.1 (c = 0.57, CH 3 OH), 92% ee The absolute configuration of 4b-e was tentatively assigned as ( S) by comparing the optical rotation with that of 4a.



本発明の光学活性α−フルオロメチルアミン誘導体の製造法は医農薬産業に利用可能である。   The method for producing the optically active α-fluoromethylamine derivative of the present invention can be used in the medical and agrochemical industry.

Claims (6)

溶媒中,塩基と光学活性な相間移動触媒存在下,一般式(1)

(式中,Rは,置換もしくは未置換のアルキル基,アルケニル基,アラルキル基,アルキニル基,アリール基,アシル基,アルコキシカルボニル基またはアリールオキシカルボニル基を示す。R2は,置換もしくは未置換のアルキル基,アルケニル基,アラルキル基,アルキニル基,アリール基,アシル基,アルコキシカルボニル基またはアリールオキシカルボニル基を示す。Rは,置換もしくは未置換のアルキル基,アルケニル基,アラルキル基,アルキニル基またはアリール基を示す。)
で表せるα−アミドスルホン化合物を一般式(2)

(式中,R,Rはそれぞれ独立に,置換もしくは未置換のアルキル基,アルケニル基,アラルキル基,アルキニル基またはアリール基を示す。さらに,RおよびRが一体となって,環状構造の一部を形成してもよい。)で示されるフルオロビススルホニルメタン類との不斉マンニッヒ型反応させることを特徴とする一般式(3)

(式中,R,R,R,Rは前記定義に同じ。)
で示される光学活性α−フルオロビス(フェニルスルホニル)メチル付加体の製造法。
General formula (1) in the presence of a base and an optically active phase transfer catalyst in a solvent

(Wherein R 1 represents a substituted or unsubstituted alkyl group, alkenyl group, aralkyl group, alkynyl group, aryl group, acyl group, alkoxycarbonyl group or aryloxycarbonyl group. R 2 represents a substituted or unsubstituted group. An alkyl group, an alkenyl group, an aralkyl group, an alkynyl group, an aryl group, an acyl group, an alkoxycarbonyl group or an aryloxycarbonyl group, wherein R 3 is a substituted or unsubstituted alkyl group, alkenyl group, aralkyl group, alkynyl group; Or an aryl group.)
An α-amide sulfone compound represented by the general formula (2)

(In the formula, R 4 and R 5 each independently represents a substituted or unsubstituted alkyl group, alkenyl group, aralkyl group, alkynyl group or aryl group. Furthermore, R 4 and R 5 together form a cyclic group. A part of the structure may be formed.) Asymmetric Mannich reaction with the fluorobissulfonylmethanes represented by the general formula (3)

(In the formula, R 1 , R 2 , R 4 and R 5 are the same as defined above.)
A process for producing an optically active α-fluorobis (phenylsulfonyl) methyl adduct represented by the formula:
前記一般式(3)で表せる光学活性α−フルオロビス(フェニルスルホニル)メチル付加体を溶媒中,還元剤として金属の存在下,脱スルホニル化させることを特徴とする一般式(4)

(式中,R,Rは前記定義に同じ。)で示される光学活性α−フルオロメチルアミン誘導体の製造法。
The optically active α-fluorobis (phenylsulfonyl) methyl adduct represented by the general formula (3) is desulfonylated in a solvent in the presence of a metal as a reducing agent in the general formula (4)

(Wherein R 1 and R 2 are the same as defined above), a method for producing an optically active α-fluoromethylamine derivative.
前記塩基は,一般に市販されているアミン類もしくは無機塩一般式(5)から選ばれる少なくとも1種類の塩基であることを特徴とする請求項1に記載の製造法。
アミンとしては,トリエチルアミン,ジイソプロピルエチルアミン,ジメチルアミノピリジン,キヌクリジン,DBU,DABCOなどを用いることができる。無機塩は一般式(5)
(X)nM (5)
(式中,Mは,希土類を含む遷移金属,リチウム,ナトリウム,マグネシウム,アルミニウムから選ばれた元素,nは,Mの原子価と同数の整数を表す。Xはアルコシド,フルオリド,カルボネートなどのマイナスイオンを表す。)
2. The production method according to claim 1, wherein the base is at least one base selected from commercially available amines or inorganic salt general formula (5).
As the amine, triethylamine, diisopropylethylamine, dimethylaminopyridine, quinuclidine, DBU, DABCO and the like can be used. The inorganic salt has the general formula (5)
(X) nM (5)
(In the formula, M is an element selected from transition metals including rare earths, lithium, sodium, magnesium and aluminum, n is an integer having the same number as the valence of M. X is a minus such as alkoxide, fluoride, carbonate, etc. Represents an ion.)
前記光学活性な相間移動触媒は,光学活性4級アンモニウム塩類から選ばれる少なくとも1種類の塩であることを特徴とする請求項1に記載の製造法。
光学活性な相間移動触媒としては,一般式(6),(7)

(式中,Rは水素,置換もしくは未置換のアルキル基もしくはアルコキシ基を示す。もしくはOR10で表せるR10はアルキル基を示す。Rは,エチル基もしくはビニル基を示す。Rは,水素,アルキル基,アリール基またはアシル基を示す。Rは,水素,置換もしくは未置換のアルキル基またはトリフルオロメチル基を示す。mは0〜2の整数を表す。Xは,ハロゲン原子,IO,ClO,OTfまたはHSOを示す。)

The process according to claim 1, wherein the optically active phase transfer catalyst is at least one salt selected from optically active quaternary ammonium salts.
As optically active phase transfer catalysts, general formulas (6), (7)

(In the formula, R 6 represents hydrogen, a substituted or unsubstituted alkyl group or an alkoxy group, or R 10 represented by OR 10 represents an alkyl group. R 7 represents an ethyl group or a vinyl group. R 8 represents , Hydrogen, an alkyl group, an aryl group or an acyl group, R 9 represents hydrogen, a substituted or unsubstituted alkyl group or a trifluoromethyl group, m represents an integer of 0 to 2, and X represents a halogen atom. , IO 4 , ClO 4 , OTf or HSO 4. )

前記溶媒が,N,N−ジメチルホルムアミド,ジメチルスルホキシド,クロロホルム,ジクロロメタン,ジクロロエタン,トルエン,テトラヒドロフラン,ヘキサン,ベンゼンからなる群より選ばれる少なくとも1種である請求項1,2のいずれか1項に記載の製造法。
The solvent is at least one selected from the group consisting of N, N-dimethylformamide, dimethyl sulfoxide, chloroform, dichloromethane, dichloroethane, toluene, tetrahydrofuran, hexane, and benzene. Manufacturing method.
前記金属は,希土類を含む遷移金属リチウム,ナトリウム,マグネシウム,アルミニウム,亜鉛,スズ,インジウム,サマリウムなどから選ばれる少なくとも1種類の元素であることを特徴とする請求項2に記載の製造法。 The method according to claim 2, wherein the metal is at least one element selected from lithium, sodium, magnesium, aluminum, zinc, tin, indium, samarium, and the like, including rare earths.
JP2007059608A 2007-03-09 2007-03-09 Method for producing optically active α-fluorobis (phenylsulfonyl) methyl adduct and method for producing optically active α-fluoromethylamine derivative Active JP4910148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059608A JP4910148B2 (en) 2007-03-09 2007-03-09 Method for producing optically active α-fluorobis (phenylsulfonyl) methyl adduct and method for producing optically active α-fluoromethylamine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059608A JP4910148B2 (en) 2007-03-09 2007-03-09 Method for producing optically active α-fluorobis (phenylsulfonyl) methyl adduct and method for producing optically active α-fluoromethylamine derivative

Publications (2)

Publication Number Publication Date
JP2008222578A true JP2008222578A (en) 2008-09-25
JP4910148B2 JP4910148B2 (en) 2012-04-04

Family

ID=39841610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059608A Active JP4910148B2 (en) 2007-03-09 2007-03-09 Method for producing optically active α-fluorobis (phenylsulfonyl) methyl adduct and method for producing optically active α-fluoromethylamine derivative

Country Status (1)

Country Link
JP (1) JP4910148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111548298A (en) * 2020-06-18 2020-08-18 成都大学 Chiral trifluoromethyl substituted maleimide derivative and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155362A (en) * 1984-12-27 1986-07-15 Daikin Ind Ltd Fluorine-containing sulfonyl compound
JP2004516286A (en) * 2000-12-18 2004-06-03 メルク エンド カムパニー インコーポレーテッド Benzylamine derivatives and their use as thrombin inhibitors
JP2005247785A (en) * 2004-03-05 2005-09-15 Central Glass Co Ltd Optically active 1-aryl-2-fluoro-substituted ethylamine and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155362A (en) * 1984-12-27 1986-07-15 Daikin Ind Ltd Fluorine-containing sulfonyl compound
JP2004516286A (en) * 2000-12-18 2004-06-03 メルク エンド カムパニー インコーポレーテッド Benzylamine derivatives and their use as thrombin inhibitors
JP2005247785A (en) * 2004-03-05 2005-09-15 Central Glass Co Ltd Optically active 1-aryl-2-fluoro-substituted ethylamine and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111548298A (en) * 2020-06-18 2020-08-18 成都大学 Chiral trifluoromethyl substituted maleimide derivative and preparation method thereof
CN111548298B (en) * 2020-06-18 2023-03-21 成都大学 Chiral trifluoromethyl substituted maleimide derivative and preparation method thereof

Also Published As

Publication number Publication date
JP4910148B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP2003160545A (en) Method for producing intermediate usable for synthesis of retroviralprotease inhibitor
EP1078921B1 (en) Novel intermediates and processes for the preparation of optically active octanoic acid derivatives
JP2022191407A (en) Processes for making, and methods of using, glycopyrronium compounds
KR100953879B1 (en) Novel optically active compounds, method for kinetic optical resolution of carboxylic acid derivatives and catalysts therefor
JP4910148B2 (en) Method for producing optically active α-fluorobis (phenylsulfonyl) methyl adduct and method for producing optically active α-fluoromethylamine derivative
KR101430116B1 (en) METHOD FOR PREPARING CHIRAL α-AMINO NITRILE USING CATALYST FOR STRECKER REACTION
BRPI0616188A2 (en) Methods for preparing a compound, and for preparing (-) - halofenate, compound, and, composition
MXPA05002874A (en) Process for the synthesis of intermediates useful for the synthesis of tubulin inhibitors.
CN1139103A (en) Process for synthesis of hydrocarbon compounds which are fluorinated on carbon of alkyl chain
JP2007112723A (en) Method for producing aminochlorohydrin sulfate
Fujiwara et al. An efficient procedure for the resolution of α-cyano-α-fluoro-p-tolylacetic acid (CFTA) via the diastereomeric N-carbobenzyloxy-cis-1-amino-2-indanol esters
JP5134834B2 (en) Process for producing 5,5-disubstituted-3-pyrrolin-2-one derivatives
Katagiri et al. Efficient synthesis of an optically pure β-bromo-β, β-difluoroalanine derivative, a general precursor for β, β-difluoroamino acids
JP5869311B2 (en) Optically active fluorine-containing β-amino acid derivative and process for producing the same
WO2020148787A1 (en) Enantioselective synthesis of brivaracetam and intermediates thereof
JP2009215239A (en) Method for producing oseltamivir and its analog compound
CN111635359B (en) Method for preparing aromatic alkenyl compound through fluoroalkyl sulfinyl
JP4427266B2 (en) β-alanine derivative and method for producing the same
JP2012240959A (en) METHOD FOR SYNTHESIZING OPTICALLY ACTIVE β-AMINOTHIOL, OR OPTICALLY ACTIVE β-AMINOSULFONIC ACID DERIVATIVE
Satoh et al. A synthesis, including asymmetric synthesis, of α-quaternary α-amino aldehydes from ketones and chloromethyl p-tolyl sulfoxide via sulfinylaziridines
US20220009900A1 (en) N-trifluormethylcarbonyl compounds and methods for their synthesis
US20030236226A1 (en) Catalytic asymmetric cyanosilylation of ketones, aldehydes, thioketones, thioaldehydes, imines and hydrazones
JP3864672B2 (en) Method for producing erythro-3-amino-2-hydroxybutyric acid derivative
JP2000198774A (en) Optically active guanidine derivative
JP3494465B2 (en) Method for producing optically active α-amino acid derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150