JP2000198774A - Optically active guanidine derivative - Google Patents

Optically active guanidine derivative

Info

Publication number
JP2000198774A
JP2000198774A JP197099A JP197099A JP2000198774A JP 2000198774 A JP2000198774 A JP 2000198774A JP 197099 A JP197099 A JP 197099A JP 197099 A JP197099 A JP 197099A JP 2000198774 A JP2000198774 A JP 2000198774A
Authority
JP
Japan
Prior art keywords
group
compound
formula
phenylethyl
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP197099A
Other languages
Japanese (ja)
Inventor
Toshio Isobe
敏男 磯部
Keiko Fukuda
恵子 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRATORI SEIYAKU KK
Shiratori Pharmaceutical Co Ltd
Original Assignee
SHIRATORI SEIYAKU KK
Shiratori Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRATORI SEIYAKU KK, Shiratori Pharmaceutical Co Ltd filed Critical SHIRATORI SEIYAKU KK
Priority to JP197099A priority Critical patent/JP2000198774A/en
Publication of JP2000198774A publication Critical patent/JP2000198774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new compound useful as an asymmetric synthesis reagent capable of selectively producing an optically active compound in high yield. SOLUTION: This new compound is a compound of formula I (R1 and R2 are each an alkyl; R3 is an (OH-contg.) aralkyl or heterocyclic ring; *, denotes an asymmetric carbon atom), e.g. 1,3-bis[(1S)-1-phenylethyl]-2-[(1S)-1- phenylethylimino]imidazolidine. The compound of formula I is obtained, for example, by reaction between a compound of formula II (Z is a halogen) e.g. 2-chloro-1,3-bis[(1S)-1-phenylethyl]imidazolinium chloride) and a primary amine of the formula H2N-R3 [e.g. (S)-α-phenethylamine] in the presence of a base such as triethylamine, wherein it is preferable that either the compound of formula II or the above primary amine is previously dissolved in a solvent such as methylene chloride and the other is gradually dripped into the resulting solution at room temperature or under cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学活性化合物を
選択的に製造するために用いる不斉合成試薬として有用
なグアニジン誘導体に関する。
[0001] The present invention relates to a guanidine derivative useful as an asymmetric synthesis reagent used for selectively producing an optically active compound.

【0002】[0002]

【従来の技術】エナンチオマー(鏡像異性体)が存在す
る有機化合物を香料や食品添加物として用いる場合、各
々のエナンチオマーにより臭いや味が異なることが知ら
れている。また医薬品では、サリドマイドの例に如実に
示されたように各異性体によって薬効や毒性が大きく異
なることが知られている。更に強誘導性液晶では、その
光学純度の低下は、顕著な機能の低下をもたらすとさ
れ、純粋なキラル分子構造を持つ化合物が求められてい
る。
2. Description of the Related Art When an organic compound having an enantiomer (enantiomer) is used as a flavor or a food additive, it is known that each of the enantiomers has a different smell and taste. In addition, it is known that the medicinal properties and toxicity of pharmaceuticals differ greatly depending on each isomer, as shown in the examples of thalidomide. Further, in strongly inducing liquid crystals, a decrease in optical purity is considered to cause a significant decrease in function, and a compound having a pure chiral molecular structure is required.

【0003】このように、医薬、農薬、香料、食品添加
物、エレクトロニクス等の産業分野では、光学純度が高
い、いずれかのエナンチオマーが求められている。
As described above, in the industrial fields such as medicines, agricultural chemicals, flavors, food additives, and electronics, any enantiomer having high optical purity is required.

【0004】光学純度の高い化合物を製造するには、光
学活性な化合物を不斉合成試薬として用い化学反応を行
う方法が一般的かつ容易である。従ってこのような光学
活性化合物の安価で大量の供給が求められている。
[0004] In order to produce a compound having high optical purity, it is common and easy to carry out a chemical reaction using an optically active compound as an asymmetric synthesis reagent. Therefore, there is a demand for a cheap and large-scale supply of such optically active compounds.

【0005】[0005]

【発明が解決しようとする課題】光学活性化合物の製造
法としては、通常の化学反応により得られたラセミ体を
光学活性を有する分割剤を用いて分離する方法が挙げら
れる。
As a method for producing an optically active compound, there is a method in which a racemate obtained by a usual chemical reaction is separated using an optically active resolving agent.

【0006】しかしながら、分割剤を用いる方法では、
産業上利用できない異性体が半分残ってしまうため、資
源の有効利用が図れず、不経済であった。
However, in the method using a resolving agent,
Since half of the isomers that cannot be used industrially remain, resources could not be effectively used, which was uneconomical.

【0007】また、酵素又は生物学的手法を用いて片方
の異性体のみを目的物に変換する方法が知られている
が、この方法は、適用できる化合物が限定され、かつ反
応濃度が低いため大量生産が困難であるという問題点が
あった。
[0007] Further, a method of converting only one isomer into a target substance using an enzyme or a biological technique is known. However, this method is limited in applicable compounds and has a low reaction concentration. There was a problem that mass production was difficult.

【0008】従って、本発明の目的は、光学活性化合物
を選択的に高収率で製造することができる不斉合成試薬
として有用な光学活性化合物を提供することにある。
Accordingly, an object of the present invention is to provide an optically active compound useful as an asymmetric synthesis reagent capable of selectively producing an optically active compound at a high yield.

【0009】[0009]

【課題を解決するための手段】斯かる実情に鑑み本発明
者らは、鋭意研究を行った結果、下記一般式(1)で表
わされる新規化合物を不斉合成試薬として用いれば、高
エナンチオ選択的に反応が進行し、光学活性化合物を選
択的にかつ高収率で製造することができることを見出
し、本発明を完成した。
Means for Solving the Problems In view of such circumstances, the present inventors have conducted intensive studies. As a result, if a novel compound represented by the following general formula (1) is used as an asymmetric synthesis reagent, high enantioselectivity can be obtained. The present inventors have found that the reaction proceeds in a specific manner, and that the optically active compound can be selectively produced at a high yield, and the present invention has been completed.

【0010】すなわち、本発明は、次の一般式(1)That is, the present invention provides the following general formula (1)

【0011】[0011]

【化2】 Embedded image

【0012】〔式中、R1 及びR2 は同一又は異なって
アルキル基を示し、R3 は水酸基を有していてもよいア
ラルキル基又は複素環基を示し、*は不斉炭素の位置を
示す〕で表わされる光学活性グアニジン誘導体又はその
塩を提供するものである。
Wherein R 1 and R 2 are the same or different and each represents an alkyl group, R 3 represents an aralkyl group or a heterocyclic group which may have a hydroxyl group, and * represents the position of the asymmetric carbon. The optically active guanidine derivative represented by the following formula] or a salt thereof is provided.

【0013】[0013]

【発明の実施の形態】本発明の二環性グアニジン誘導体
は前記一般式(1)で表わされるものである。式中のR
1 及びR2 はアルキル基を示し、このうち好ましいもの
としては炭素数1〜24の直鎖又は分岐鎖のアルキル基
が挙げられる。具体的には、メチル基、エチル基、n−
プロピル基、i−プロピル基、n−ブチル基、i−ブチ
ル基、sec−ブチル基、t−ブチル基、n−ペンチル
基、n−ヘキシル基、i−ヘキシル基、sec−ヘキシ
ル基、t−ヘキシル基、n−ヘプチル基、n−オクチル
基、n−ノニル基、n−デシル基、n−ウンデシル基、
n−ドデシル基、n−トリデシル基、n−テトラデシル
基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘ
プタデシル基、n−オクタデシル基、n−ノナデシル
基、n−エイコシル基、n−ドコシル基、n−トリコシ
ル基、n−テトラコシル基等が挙げられる。このうち、
炭素数1〜6のものが特に好ましく、炭素数1〜4のも
のが最も好ましい。なお、R1 とR2 は、同一でも異な
っていてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The bicyclic guanidine derivative of the present invention is represented by the general formula (1). R in the formula
1 and R 2 represent an alkyl group, and preferred examples thereof include a linear or branched alkyl group having 1 to 24 carbon atoms. Specifically, a methyl group, an ethyl group, n-
Propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl, i-hexyl, sec-hexyl, t- Hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group,
n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group, n-docosyl group, Examples thereof include an n-tricosyl group and an n-tetracosyl group. this house,
Those having 1 to 6 carbon atoms are particularly preferred, and those having 1 to 4 carbon atoms are most preferred. Note that R 1 and R 2 may be the same or different.

【0014】一般式(1)中、R3 で示されるアラルキ
ル基としては、フェニルアルキル基(アルキル基は炭素
数1〜5のものが好ましい)、α−ナフチルアルキル基
(アルキル基は炭素数1〜5のものが好ましい)等が好
ましいものとして挙げられる。このうち、フェニルメチ
ル基、フェニルエチル基、フェニルプロピル基、ナフチ
ルメチル基、ナフチルエチル基が好ましい。またアラル
キル基は、水酸基を有していてもよく、特にアルキル基
部分に水酸基を有するものが好ましい。具体的には、1
−ベンジル−2−ヒドロキシエチル基、1−フェニルエ
チル−2−ヒドロキシエチル基、1−フェニルプロピル
−2−ヒドロキシエチル基、1−ナフチルメチル−2−
ヒドロキシエチル基、1−ナフチルエチル−2−ヒドロ
キシエチル基等が挙げられる。
In the general formula (1), the aralkyl group represented by R 3 includes a phenylalkyl group (preferably an alkyl group having 1 to 5 carbon atoms), an α-naphthylalkyl group (an alkyl group having 1 carbon atom). To 5 are preferable). Of these, a phenylmethyl group, a phenylethyl group, a phenylpropyl group, a naphthylmethyl group, and a naphthylethyl group are preferred. The aralkyl group may have a hydroxyl group, and particularly preferably has an hydroxyl group in the alkyl group portion. Specifically, 1
-Benzyl-2-hydroxyethyl group, 1-phenylethyl-2-hydroxyethyl group, 1-phenylpropyl-2-hydroxyethyl group, 1-naphthylmethyl-2-
A hydroxyethyl group, a 1-naphthylethyl-2-hydroxyethyl group and the like.

【0015】R3 で示される複素環基は、飽和、不飽和
のいずれでもよく、複素環を構成するヘテロ原子として
は、窒素原子、酸素原子、硫黄原子の1種又は2種以上
が挙げられる。例えばピリジル基、ピロリル基、フラニ
ル基、オキサゾリル基、チエニル基、チアゾリル基、プ
リニル基、キノリニル基等が挙げられ、このうちピリジ
ル基が特に好ましい。
The heterocyclic group represented by R 3 may be either saturated or unsaturated. Examples of the heteroatom constituting the heterocyclic ring include one or more of a nitrogen atom, an oxygen atom and a sulfur atom. . Examples thereof include a pyridyl group, a pyrrolyl group, a furanyl group, an oxazolyl group, a thienyl group, a thiazolyl group, a purinyl group, a quinolinyl group and the like, with a pyridyl group being particularly preferred.

【0016】前記一般式(1)で表わされるグアニジン
誘導体の2つの不斉炭素原子の立体配置はS,Rのいず
れであってもよいが、同一であることが好ましい。
The configuration of the two asymmetric carbon atoms of the guanidine derivative represented by the general formula (1) may be either S or R, but is preferably the same.

【0017】本発明化合物(1)は、例えば次の反応式
に従って製造することができる。
The compound (1) of the present invention can be produced, for example, according to the following reaction formula.

【0018】[0018]

【化3】 Embedded image

【0019】〔式中、R1 、R2 、R3 及び*は前記と
同じものを示し、X、Y及びZはハロゲン原子を示し、
Bは塩基を示す〕
[Wherein R 1 , R 2 , R 3 and * represent the same as above, X, Y and Z each represent a halogen atom;
B represents a base]

【0020】すなわち、α−フェニルアルキルアミン
(2)とハロゲノアセチルハロゲニド(3)とを塩基存
在下に縮合させることにより、N−(α−フェニルアル
キル)ハロゲノアセトアミド(4)を得、これにα−フ
ェニルアルキルアミン(5)を結合させ、得られたN−
(α−フェニルアルキル)−(α−フェニルアルキル)
アミノアセトアミド(6)を水素化リチウムアルミニウ
ム(7)等を用い還元し、ジアミン(8)を得、これに
塩基(10)存在下、チオホスゲン(9)を反応させ閉
環し環状チオ尿素(11)とし、これにハロゲン化剤を
反応させイミニウム塩を得、これに一級アミン(13)
を塩基存在下で反応せしめることにより本発明のグアニ
ジン誘導体(1)が得られる。
That is, N- (α-phenylalkyl) halogenoacetamide (4) is obtained by condensing α-phenylalkylamine (2) and halogenoacetylhalogenide (3) in the presence of a base. α-Phenylalkylamine (5) was combined with the resulting N-
(Α-phenylalkyl)-(α-phenylalkyl)
The aminoacetamide (6) is reduced using lithium aluminum hydride (7) or the like to obtain a diamine (8), which is reacted with thiophosgene (9) in the presence of a base (10) to close the ring to form a cyclic thiourea (11). And reacting it with a halogenating agent to obtain an iminium salt, to which a primary amine (13)
Is reacted in the presence of a base to obtain the guanidine derivative (1) of the present invention.

【0021】以下、上記反応を工程毎に説明する。 (1)工程1 光学活性なα−フェニルアルキルアミン(2)とハロゲ
ノアセチルハロゲニド(3)とを塩基存在下にて縮合さ
せることによりN−(α−フェニルアルキル)ハロゲノ
アセトアミド(4)が得られる。反応は塩化メチレン、
トルエン等の適当な溶媒にα−フェニルアルキルアミン
(2)と塩基を溶解しておき、この中にハロゲノアセチ
ルハロゲニド(3)を室温あるいは冷却下にゆっくりと
滴下することによって行われる。反応に用いられる塩基
としては、トリエチルアミン、トリブチルアミン、N,
N−ジメチルアニリン、ピリジン等の有機塩基;無水炭
酸カリウム、無水炭酸水素ナトリウム等の無機塩基が挙
げられる。なお、ここで用いられるα−フェニルアルキ
ルアミン(2)は不斉炭素を有するので、R体、S体及
びその混合物が存在するが、斯かる立体配置は、最終生
成物たるグアニジン誘導体(1)まで保持される。すな
わち、所望するグアニジン誘導体(1)の立体配置に応
じた立体配置を有するα−フェニルアルキルアミン
(2)を用いる。
Hereinafter, the above reaction will be described step by step. (1) Step 1 An N- (α-phenylalkyl) halogenoacetamide (4) is obtained by condensing an optically active α-phenylalkylamine (2) and a halogenoacetylhalogenide (3) in the presence of a base. Can be The reaction is methylene chloride,
Α-Phenylalkylamine (2) and a base are dissolved in a suitable solvent such as toluene, and halogenoacetylhalogenide (3) is slowly added dropwise thereto at room temperature or under cooling. The base used for the reaction includes triethylamine, tributylamine, N,
Organic bases such as N-dimethylaniline and pyridine; and inorganic bases such as anhydrous potassium carbonate and anhydrous sodium hydrogen carbonate. Since the α-phenylalkylamine (2) used here has an asymmetric carbon, there are R-forms, S-forms, and mixtures thereof. Such a configuration is based on the guanidine derivative (1) as a final product. Held until That is, α-phenylalkylamine (2) having a configuration according to the configuration of the desired guanidine derivative (1) is used.

【0022】(2)工程2 工程2は、N−(α−フェニルアルキル)ハロゲノアセ
トアミド(4)とα−フェニルアルキルアミン(5)と
を縮合することによりN−(α−フェニルアルキル)−
(α−フェニルアルキル)アミノアセトアミド(6)を
得る工程である。この反応はトルエン、ベンゼン、クロ
ロホルム、テトラヒドロフラン等の不活性溶媒中、塩基
存在下にて加熱下あるいは室温下に行われる。反応に用
いられる塩基としては、トリエチルアミン、トリブチル
アミン、ピリジン等の有機塩基、無水炭酸カリウム、無
水炭酸水素ナトリウム等の無機塩基が挙げられる。な
お、ここで用いられるα−フェニルアルキルアミン
(5)は不斉炭素原子を有するので、R体、S体及び混
合物が存在するが、斯かる立体配置は最終生成物たるグ
アニジン誘導体(1)まで保持される。すなわち、所望
するグアニジン誘導体(1)の立体配置に応じた立体配
置を有するα−フェニルアルキルアミン(5)を用い
る。
(2) Step 2 In step 2, N- (α-phenylalkyl) -halogenoacetamide (4) is condensed with α-phenylalkylamine (5) to form N- (α-phenylalkyl)-
This is a step of obtaining (α-phenylalkyl) aminoacetamide (6). This reaction is carried out in an inert solvent such as toluene, benzene, chloroform or tetrahydrofuran in the presence of a base under heating or at room temperature. Examples of the base used in the reaction include organic bases such as triethylamine, tributylamine and pyridine, and inorganic bases such as anhydrous potassium carbonate and anhydrous sodium hydrogen carbonate. The α-phenylalkylamine (5) used herein has an asymmetric carbon atom, and thus has an R-form, an S-form and a mixture. Such a configuration is limited to the guanidine derivative (1) as a final product. Will be retained. That is, α-phenylalkylamine (5) having a configuration corresponding to the configuration of the desired guanidine derivative (1) is used.

【0023】(3)工程3 工程3はアミド基を還元することによりジアミン(8)
を得る反応である。還元反応は、還元剤(7)として水
素化リチウムアルミニウム等を用い、テトラヒドロフラ
ン、1,4−ジオキサン、ジエチルエーテル等の非プロ
トン性溶媒中、室温ないし加熱下で数時間〜数十時間反
応することによって行われる。
(3) Step 3 Step 3 is to reduce the amide group to obtain the diamine (8)
This is the reaction to obtain The reduction reaction is carried out in an aprotic solvent such as tetrahydrofuran, 1,4-dioxane, diethyl ether or the like using lithium aluminum hydride or the like as the reducing agent (7) for several hours to several tens of hours at room temperature or under heating. Done by

【0024】(4)工程4 工程4はジアミン(8)に塩基(10)存在下チオホス
ゲン(9)を反応せしめることにより閉環反応を行い、
環状チオ尿素(11)を得る反応である。ここで用いら
れる塩基としては、トリエチルアミン、トリn−ブチル
アミン、N−メチルモルホリン等の有機塩基、炭酸カリ
ウム、炭酸ナトリウム等の無機塩基が挙げられる。反応
は、塩化メチレン、クロロホルム、ベンゼン等の非プロ
トン性溶媒にジアミン(8)と塩基(10)を溶解して
おき、この中にチオホスゲンを滴下することによって行
われる。
(4) Step 4 In step 4, a ring-closing reaction is carried out by reacting thiophosgene (9) with diamine (8) in the presence of base (10).
This is a reaction for obtaining a cyclic thiourea (11). Examples of the base used here include organic bases such as triethylamine, tri-n-butylamine and N-methylmorpholine, and inorganic bases such as potassium carbonate and sodium carbonate. The reaction is carried out by dissolving the diamine (8) and the base (10) in an aprotic solvent such as methylene chloride, chloroform, and benzene, and dropping thiophosgene into the solution.

【0025】(5)工程5 チオ尿素(11)にハロゲン化剤を反応せしめることに
よりイミニウム塩(12)が得られる。ここで使用され
るハロゲン化剤としては、オキザリルハロゲニド、三ハ
ロゲン化リン、五ハロゲン化リン、オキシハロゲン化リ
ン、ホスゲン、トリクロロメチルクロロホルメート、ト
リホスゲン等が挙げられる。反応はチオ尿素(11)と
ハロゲン化剤をトルエン等の適当な溶媒に溶解してお
き、室温ないし加熱下で数時間〜数十時間反応すること
によって行うことが好ましい。また、ここで得られるイ
ミニウム塩(12)は単離してもよいが、単離すること
なく次の工程6に用いることもできる。
(5) Step 5 By reacting the thiourea (11) with a halogenating agent, an iminium salt (12) is obtained. Examples of the halogenating agent used here include oxalyl halide, phosphorus trihalide, phosphorus pentahalide, phosphorus oxyhalide, phosgene, trichloromethylchloroformate, triphosgene and the like. The reaction is preferably carried out by dissolving thiourea (11) and a halogenating agent in a suitable solvent such as toluene, and reacting at room temperature or under heating for several hours to several tens of hours. The iminium salt (12) obtained here may be isolated, but can be used in the next step 6 without isolation.

【0026】(6)工程6 イミニウム塩(12)と一級アミン(13)とを塩基
(10)の存在下で反応せしめることにより本発明のグ
アニジン誘導体(1)が得られる。なお一級アミン(1
3)は光学異性体であってもよい。ここで使用される塩
基としては、トリエチルアミン、トリブチルアミン、ジ
メチルアニリン、ピリジン等の有機塩基、炭酸カリウ
ム、炭酸ナトリウム等の無機塩基が挙げられるが、反応
に使用される一級アミンを塩基として用いることもでき
る。反応はイミニウム塩(12)か一級アミン(13)
のどちらか一方をベンゼン、アセトニトリル、塩化メチ
レン等の適当な溶媒に溶解しておき、室温あるいは冷却
下で他方をゆっくりと滴下することにより行うことが好
ましい。
(6) Step 6 The guanidine derivative (1) of the present invention is obtained by reacting the iminium salt (12) with the primary amine (13) in the presence of the base (10). In addition, primary amine (1
3) may be an optical isomer. Examples of the base used herein include organic bases such as triethylamine, tributylamine, dimethylaniline, and pyridine; and inorganic bases such as potassium carbonate and sodium carbonate.The primary amine used in the reaction may be used as the base. it can. Reaction is iminium salt (12) or primary amine (13)
It is preferable to dissolve either of them in an appropriate solvent such as benzene, acetonitrile, methylene chloride or the like, and slowly add the other dropwise at room temperature or under cooling.

【0027】本発明化合物(1)は、種々の不斉合成反
応に不斉合成試薬として用いることができる。例えば、
本発明化合物を触媒として用いる不斉エポキシ化反応は
次の反応式によって実施することができる。
The compound (1) of the present invention can be used as an asymmetric synthesis reagent in various asymmetric synthesis reactions. For example,
The asymmetric epoxidation reaction using the compound of the present invention as a catalyst can be carried out according to the following reaction formula.

【0028】[0028]

【化4】 Embedded image

【0029】〔式中、R4 、R5 は有機基を示す〕 すなわち、エノン(14)、t−ブチルパーオキサイド
(15)を各1当量と触媒量の本発明化合物(1)をト
ルエン、クロロホルム、塩化メチレン等の不活性溶媒中
に加え、室温付近で反応させればエポキシ化反応がエナ
ンチオ選択的に進行し、目的とする光学活性なエポキシ
体(16)を容易に得ることができる。このエポキシ体
(16)は、常法に従い医薬品や農薬へと導くことがで
きる。なお、上記反応に触媒として用いた(1)は特に
精製の操作を必要とせず再使用することができる。ここ
でR4 、R5 で示される有機基としては、脂肪族基、芳
香族基いずれでもよい。
[Wherein R 4 and R 5 represent organic groups] That is, enone (14) and t-butyl peroxide (15) are each equivalent to one equivalent and a catalytic amount of the compound of the present invention (1) in toluene, If the reaction is carried out at around room temperature in an inert solvent such as chloroform or methylene chloride, the epoxidation reaction proceeds enantioselectively, and the desired optically active epoxy compound (16) can be easily obtained. This epoxy compound (16) can be led to pharmaceuticals and agricultural chemicals according to a conventional method. In addition, (1) used as a catalyst in the above reaction can be reused without particularly requiring a purification operation. Here, the organic group represented by R 4 and R 5 may be any of an aliphatic group and an aromatic group.

【0030】[0030]

【発明の効果】本発明化合物を不斉合成試薬として用い
れば、光学活性化合物を選択的かつ高収率で製造するこ
とができる。
According to the present invention, when the compound of the present invention is used as an asymmetric synthesis reagent, an optically active compound can be produced selectively and at a high yield.

【0031】[0031]

【実施例】以下、実施例、製造例等を挙げて本発明を更
に詳細に説明するが、本発明はこれに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Production Examples, but the present invention is not limited thereto.

【0032】製造例1 N−〔(S)−1−フェニルエ
チル〕クロロアセトアミドの製造 塩化メチレン200ml中にクロロアセチルクロライド2
0.00g(0.18mol)を溶解し、この中に氷冷下
(S)−フェネチルアミン21.43g(0.18mo
l)及びトリエチルアミン17.89g(0.18mol)
の塩化メチレン50ml溶液をゆっくりと滴下し、終了後
更に室温で35分間攪拌を続けた。次いで反応液に希塩
酸水溶液を加え、塩化メチレンで抽出し、抽出液は飽和
炭酸水素ナトリウム水溶液で洗浄後、無水硫酸マグネシ
ウムで乾燥した。減圧下に溶媒を留去して得た結晶をn
−ヘキサンで洗浄し、標記化合物を32.93g(収率
94%)を得た。
Production Example 1 Production of N-[(S) -1-phenylethyl] chloroacetamide Chloroacetyl chloride 2 in 200 ml of methylene chloride
0.00g (0.18 mol) was dissolved therein, and 21.43 g (0.18 mol) of (S) -phenethylamine was added thereto under ice cooling.
l) and 17.89 g (0.18 mol) of triethylamine
Of methylene chloride was slowly added dropwise, and after the completion, stirring was continued at room temperature for 35 minutes. Subsequently, a diluted hydrochloric acid aqueous solution was added to the reaction solution, and the mixture was extracted with methylene chloride. The extract was washed with a saturated aqueous solution of sodium hydrogen carbonate and dried over anhydrous magnesium sulfate. The crystals obtained by evaporating the solvent under reduced pressure
After washing with -hexane, 32.93 g (yield 94%) of the title compound was obtained.

【0033】製造例2 N−〔(S)−1−フェニルエ
チル〕−〔(S)−1−フェニルエチル〕アミノアセト
アミドの製造 トルエン300ml中にN−〔(S)−1−フェニルエチ
ル〕クロロアセトアミド32.93g(0.17mo
l)、(S)−α−フェネチルアミン20.17g
(0.17mol)及びトリエチルアミン16.84g
(0.17mol)を加え7時間加熱還流した。放冷後、
希塩酸水溶液で目的物を抽出し、トルエン層を除去した
後、水層をクロロホルムで抽出した。抽出液は炭酸カリ
ウム水溶液で洗浄後、無水硫酸マグネシウムで乾燥し
た。次いで減圧下に溶媒を留去して標記化合物を36.
31g(収率77%)を得た。
Production Example 2 Production of N-[(S) -1-phenylethyl]-[(S) -1-phenylethyl] aminoacetamide N-[(S) -1-phenylethyl] chloroform in 300 ml of toluene 32.93 g of acetamide (0.17mo
l), 20.17 g of (S) -α-phenethylamine
(0.17 mol) and 16.84 g of triethylamine
(0.17 mol), and the mixture was heated under reflux for 7 hours. After cooling down,
The desired product was extracted with a dilute aqueous hydrochloric acid solution, and after removing the toluene layer, the aqueous layer was extracted with chloroform. The extract was washed with an aqueous solution of potassium carbonate and dried over anhydrous magnesium sulfate. Then, the solvent was distilled off under reduced pressure to give the title compound.
31 g (yield 77%) was obtained.

【0034】1H-NMR(CDCl3) δ:1.37(3H,d,J=7.7Hz),
1.43(3H,d,J=7.0Hz), 1.67(1H,bs),3.18(2H,s), 3.71(1
H,q,J=7.0Hz), 5.11(1H,m), 7.23-7.43(8H,m)
1 H-NMR (CDCl 3 ) δ: 1.37 (3H, d, J = 7.7 Hz),
1.43 (3H, d, J = 7.0Hz), 1.67 (1H, bs), 3.18 (2H, s), 3.71 (1
(H, q, J = 7.0Hz), 5.11 (1H, m), 7.23-7.43 (8H, m)

【0035】製造例3 N,N′−ビス〔(S)−1−
フェニルエチル〕エチレンジアミンの製造 テトラヒドロフラン300ml中に水素化リチウムアルミ
ニウム7.14g(188mmol)及びN−〔(S)−1
−フェニルエチル〕−〔(S)−1−フェニルエチル〕
アミノアセトアミド17.66g(63mmol)を加え6
0℃で25時間加熱した。放冷後、反応液を飽和硫酸ナ
トリウム水溶液中に滴下し、終了後不溶晶を濾去した。
次いで、濾液を塩化メチレンで抽出し、減圧下に溶媒を
留去して得た残渣をシリカゲルクロマトグラフィー(溶
媒:クロロホルム/メタノール)にて精製し、標記化合
物を10.79g(収率64%)得た。
Production Example 3 N, N'-bis [(S) -1-
Preparation of phenylethyl] ethylenediamine 7.14 g (188 mmol) of lithium aluminum hydride and N-[(S) -1 in 300 ml of tetrahydrofuran
-Phenylethyl]-[(S) -1-phenylethyl]
17.66 g (63 mmol) of aminoacetamide was added and 6
Heated at 0 ° C. for 25 hours. After cooling, the reaction solution was dropped into a saturated aqueous solution of sodium sulfate, and after completion, insoluble crystals were removed by filtration.
Next, the filtrate was extracted with methylene chloride, the solvent was distilled off under reduced pressure, and the residue obtained was purified by silica gel chromatography (solvent: chloroform / methanol) to obtain 10.79 g (yield: 64%) of the title compound. Obtained.

【0036】製造例4 1,3−ビス〔(S)−1−フ
ェニルエチル〕−2−チオキソイミダゾリジンの製造 塩化メチレン110ml中にN,N′−ビス〔(S)−1
−フェニルエチル〕エチレンジアミン10.79g(4
0.26mmol)及びトリエチルアミン8.13g(8
0.52mmol)を加え、氷冷下チオホスゲン4.63g
(40.26mmol)の塩化メチレン20ml溶液をゆっく
りと滴下し、終了後更に3時間攪拌を続けた。次いで反
応液に水を加え、塩化メチレンで抽出し、減圧下に溶媒
を留去して得た結晶14.61gをシリカゲルクロマト
グラフィー(溶媒:クロロホルム/メタノール)にて精
製し標記化合物を10.53g(収率84%)得た。
Production Example 4 Production of 1,3-bis [(S) -1-phenylethyl] -2-thiooxoimidazolidin N, N'-bis [(S) -1 in 110 ml of methylene chloride
-Phenylethyl] ethylenediamine 10.79 g (4
0.26 mmol) and 8.13 g of triethylamine (8
0.52 mmol) and 4.63 g of thiophosgene under ice cooling.
A solution of (40.26 mmol) in 20 ml of methylene chloride was slowly added dropwise, and after the completion, stirring was continued for another 3 hours. Then, water was added to the reaction mixture, and the mixture was extracted with methylene chloride. The solvent was distilled off under reduced pressure, and 14.61 g of the obtained crystals were purified by silica gel chromatography (solvent: chloroform / methanol) to give 10.53 g of the title compound. (84% yield).

【0037】1H-NMR(CDCl3) δ:1.53(6H,d,J=7.0Hz),
3.01-3.11(2H,m),3.26-3.39(2H,m), 6.18(2H,q,J=7.0H
z), 7.23-7.40(8H,m)
1 H-NMR (CDCl 3 ) δ: 1.53 (6H, d, J = 7.0 Hz),
3.01-3.11 (2H, m), 3.26-3.39 (2H, m), 6.18 (2H, q, J = 7.0H
z), 7.23-7.40 (8H, m)

【0038】製造例5 2−クロロ−1,3−ビス
〔(S)−1−フェニルエチル〕イミダゾリニウムクロ
ライドの製造 トルエン114ml中に1,3−ビス〔(S)−1−フェ
ニルエチル〕−2−チオキソイミダゾリジン5.70g
(18.39mmol)及びオキザリルクロライド2.80
g(22.06mmol)を加え70℃で24時間加熱し
た。放冷後析出晶を濾取し、トルエンで洗浄して標記化
合物を5.11g(収率80%)得た。
Production Example 5 Production of 2-chloro-1,3-bis [(S) -1-phenylethyl] imidazolinium chloride 1,114-ml 1,3-bis [(S) -1-phenylethyl] imidazolinium chloride 5.70 g of -2-thioxoimidazolidine
(18.39 mmol) and oxalyl chloride 2.80
g (22.06 mmol) was added and the mixture was heated at 70 ° C. for 24 hours. After cooling, the precipitated crystals were collected by filtration and washed with toluene to obtain 5.11 g (yield: 80%) of the title compound.

【0039】1H-NMR(CDCl3) δ:1.77(6H,d,J=7.0Hz),
3.89-3.97(2H,m),4.27-4.35(2H,m), 5.33(2H,q,J=7.0H
z), 7.31-7.45(8H,m),
1 H-NMR (CDCl 3 ) δ: 1.77 (6H, d, J = 7.0 Hz),
3.89-3.97 (2H, m), 4.27-4.35 (2H, m), 5.33 (2H, q, J = 7.0H
z), 7.31-7.45 (8H, m),

【0040】実施例1 1,3−ビス〔(1S)−1−
フェニルエチル〕−2−〔(1S)−1−フェニルエチ
ルイミノ〕イミダゾリジンの製造 塩化メチレン20ml中に(S)−α−フェネチルアミン
0.52g(4.30mmol)及びトリエチルアミン0.
87g(8.60mmol)を溶解し、この中に2−クロロ
−1,3−ビス〔(1S)−1−フェニルエチル〕イミ
ダゾリニウムクロライド1.50g(4.30mmol)を
少量ずつ加え、終了後更に1時間攪拌を続けた。反応液
に希塩酸水溶液を加え、塩化メチレンで抽出した。抽出
液は無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留
去して得た残渣にイソプロピルエーテルを加え析出晶を
濾取し、イソプロピルエーテルで洗浄した。得られた結
晶をメタノールに溶解し、水酸化ナトリウム水溶液を加
え強アルカリ性とした後、塩化メチレンで抽出した。抽
出液はイオン交換水で洗浄し、無水硫酸ナトリウムで乾
燥した。次いで減圧下に溶媒を留去して粘稠油状物であ
る標記化合物を1.32g(収率77%)得た。
Example 1 1,3-bis [(1S) -1-
Preparation of phenylethyl] -2-[(1S) -1-phenylethylimino] imidazolidine 0.52 g (4.30 mmol) of (S) -α-phenethylamine and 0.2 ml of triethylamine in 20 ml of methylene chloride.
87 g (8.60 mmol) were dissolved, and 2-chloro-1,3-bis [(1S) -1-phenylethyl] imidazolinium chloride (1.50 g, 4.30 mmol) was added little by little to the solution. Thereafter, stirring was continued for another hour. A diluted hydrochloric acid aqueous solution was added to the reaction solution, and the mixture was extracted with methylene chloride. The extract was dried over anhydrous magnesium sulfate, isopropyl ether was added to the residue obtained by evaporating the solvent under reduced pressure, and the precipitated crystals were collected by filtration and washed with isopropyl ether. The obtained crystals were dissolved in methanol, and the mixture was made strongly alkaline with an aqueous sodium hydroxide solution, and then extracted with methylene chloride. The extract was washed with ion-exchanged water and dried over anhydrous sodium sulfate. Then, the solvent was distilled off under reduced pressure to obtain 1.32 g (yield 77%) of the title compound as a viscous oil.

【0041】〔α〕D 23=-152.10°(c=1.00,CHCl3) IRνmax neatcm-1:1640 UVλmax MeOHnm:207.2(ε34000)[0041] [α] D 23 = -152.10 ° (c = 1.00, CHCl 3) IRν max neat cm -1: 1640 UVλ max MeOH nm: 207.2 (ε34000)

【0042】1H-NMR(CDCl3) δ:1.34(6H,bs), 1.50(3
H,d,J=6.6Hz), 2.73-2.81(2H,m),2.85-2.92(2H,m), 4.9
8(1H,q,J=6.6Hz), 5.33(2H,bs), 7.22-7.40(15H,m)
1 H-NMR (CDCl 3 ) δ: 1.34 (6H, bs), 1.50 (3
(H, d, J = 6.6Hz), 2.73-2.81 (2H, m), 2.85-2.92 (2H, m), 4.9
8 (1H, q, J = 6.6Hz), 5.33 (2H, bs), 7.22-7.40 (15H, m)

【0043】13C-NMR(CDCl3)δ:15.29, 28.13, 40.13,
52.52, 55.55, 125.73, 126.17,126.82, 127.26, 127.9
5, 128.17, 142.12, 149.13, 152.89 MS(FAB):m/z=398(M+1+)
13 C-NMR (CDCl 3 ) δ: 15.29, 28.13, 40.13,
52.52, 55.55, 125.73, 126.17, 126.82, 127.26, 127.9
5, 128.17, 142.12, 149.13, 152.89 MS (FAB): m / z = 398 (M + 1 + )

【0044】実施例2 1,3−ビス〔(1S)−1−
フェニルエチル〕−2−〔(1R)−1−(1−ナフチ
ル)エチルイミノ〕イミダゾリジンの製造 塩化メチレン30ml中に(R)−1−(1−ナフチル)
エチルアミン1.01g(5.90mmol)及びトリエチ
ルアミン1.19g(11.81mmol)を溶解し、この
中に2−クロロ−1,3−ビス〔(1S)−1−フェニ
ルエチル〕イミダゾリニウムクロライド2.06g
(5.09mmol)を少量ずつ加え、終了後更に1時間攪
拌を続けた。以下、実施例1と同様の操作を行い標記化
合物を2.16g(収率82%)を得た。
Example 2 1,3-bis [(1S) -1-
Preparation of phenylethyl] -2-[(1R) -1- (1-naphthyl) ethylimino] imidazolidine (R) -1- (1-naphthyl) in 30 ml of methylene chloride
1.01 g (5.90 mmol) of ethylamine and 1.19 g (11.81 mmol) of triethylamine were dissolved, and 2-chloro-1,3-bis [(1S) -1-phenylethyl] imidazolinium chloride 2 was dissolved therein. .06g
(5.09 mmol) was added little by little, and after the completion, stirring was further continued for 1 hour. Thereafter, the same operation as in Example 1 was performed to obtain 2.16 g (yield: 82%) of the title compound.

【0045】融点:114.9〜115.2℃ 〔α〕D 26=-312.22°(c=1.00,CHCl3) IRνmax KBrcm-1:1650 UVλmax MeOHnm:225.6(ε94800), 283.2(ε8000)Melting point: 114.9-115.2 ° C. [α] D 26 = −312.22 ° (c = 1.00, CHCl 3 ) IRν max KBr cm −1 : 1650 UVλ max MeOH nm: 225.6 (ε94800), 283.2 (ε8000)

【0046】1H-NMR(CDCl3) δ:1.43(6H,d,J=7.1Hz),
1.60(3H,d,J=6.2Hz),2.63-2.99(4H,m), 5.67(1H,q,J=6.
2Hz), 7.17-7.22(10H,m),7.37-7.51(3H,m), 7.67(1H,d,
J=8.1Hz), 7.81(1H,d,J=7.7Hz),8.04(1H,d,J=7.1Hz),
8.22(1H,d,J=8.3Hz)
1 H-NMR (CDCl 3 ) δ: 1.43 (6H, d, J = 7.1 Hz),
1.60 (3H, d, J = 6.2Hz), 2.63--2.99 (4H, m), 5.67 (1H, q, J = 6.
2Hz), 7.17-7.22 (10H, m), 7.37-7.51 (3H, m), 7.67 (1H, d,
J = 8.1Hz), 7.81 (1H, d, J = 7.7Hz), 8.04 (1H, d, J = 7.1Hz),
8.22 (1H, d, J = 8.3Hz)

【0047】13C-NMR(CDCl3)δ:16.09, 27.67, 40.25,
52.61, 123.16, 123.37,124.91, 125.40, 125.86, 126.
46, 126.81, 127.25, 127.99, 128.83 130.36, 133.90, 144.82, 153.38
13 C-NMR (CDCl 3 ) δ: 16.09, 27.67, 40.25,
52.61, 123.16, 123.37, 124.91, 125.40, 125.86, 126.
46, 126.81, 127.25, 127.99, 128.83 130.36, 133.90, 144.82, 153.38

【0048】実施例3 1,3−ビス〔(1S)−1−
フェニルエチル〕−2−〔(1R)−1−ベンジル−2
−ヒドロキシエチルイミノ〕イミダゾリジンの製造 塩化メチレン20ml中に(R)−フェニルアラニノール
0.65g(4.30mmol)及びトリエチルアミン0.
87g(8.60mmol)を溶解し、この中に2−クロロ
−1,3−ビス〔(1S)−1−フェニルエチル〕イミ
ダゾリニウムクロライド1.50g(4.30mmol)を
少量ずつ加え、終了後更に1時間攪拌を続けた。以下、
実施例1と同様の操作を行い標記化合物を1.35g
(収率73%)得た。
Example 3 1,3-bis [(1S) -1-
Phenylethyl] -2-[(1R) -1-benzyl-2
-Hydroxyethylimino] imidazolidine 0.65 g (4.30 mmol) of (R) -phenylalaninol and 0.2 ml of triethylamine in 20 ml of methylene chloride.
87 g (8.60 mmol) were dissolved, and 2-chloro-1,3-bis [(1S) -1-phenylethyl] imidazolinium chloride (1.50 g, 4.30 mmol) was added little by little to the solution. Thereafter, stirring was continued for another hour. Less than,
The same operation as in Example 1 was performed to obtain 1.35 g of the title compound.
(73% yield).

【0049】粘稠油状物 〔α〕D 26=-109.08°(c=1.00,CHCl3) IRνmax neatcm-1:1635 UVλmax MeOHnm:208.0(ε30000)The viscous oil [α] D 26 = -109.08 ° (c = 1.00, CHCl 3) IRν max neat cm -1: 1635 UVλ max MeOH nm: 208.0 (ε30000)

【0050】1H-NMR(CDCl3) δ:1.22(3H,d,J=6.6Hz),
1.43(3H,d,J=7.1Hz),2.63(1H,dd,J=8.3 and 13.5Hz),
2.96-3.04(2H,m),3.10(1H,dd,J=6.0 and 13.5Hz), 3.56
-3.63(2H,m),3.98(1H,dd,J=6.1 and 8.1Hz), 4.12(1H,
t,J=8.1Hz),5.23(1H,q,J=7.1Hz), 5.33(1H,bs), 7.17-
7.31(15H,m)
1 H-NMR (CDCl 3 ) δ: 1.22 (3H, d, J = 6.6 Hz),
1.43 (3H, d, J = 7.1Hz), 2.63 (1H, dd, J = 8.3 and 13.5Hz),
2.96-3.04 (2H, m), 3.10 (1H, dd, J = 6.0 and 13.5Hz), 3.56
-3.63 (2H, m), 3.98 (1H, dd, J = 6.1 and 8.1Hz), 4.12 (1H, m
t, J = 8.1Hz), 5.23 (1H, q, J = 7.1Hz), 5.33 (1H, bs), 7.17-
7.31 (15H, m)

【0051】13C-NMR(CDCl3)δ:17.10, 24.15, 42.42,
44.41, 46.79, 55.10, 57.99,65.13, 71.89, 126.51, 1
26.78, 126.94, 127.20, 128.19, 128.29,128.36, 128.
46, 129.44, 138.24, 141.19, 145.56, 161.78 MS(FAB):m/z=428(M+1+)
13 C-NMR (CDCl 3 ) δ: 17.10, 24.15, 42.42,
44.41, 46.79, 55.10, 57.99, 65.13, 71.89, 126.51, 1
26.78, 126.94, 127.20, 128.19, 128.29, 128.36, 128.
46, 129.44, 138.24, 141.19, 145.56, 161.78 MS (FAB): m / z = 428 (M + 1 + )

【0052】実施例4 1,3−ビス〔(1S)−1−
フェニルエチル〕−2−(4−ピリジルイミノ)イミダ
ゾリジンの製造 クロロホルム20ml中に4−アミノピリジン200mg
(2.10mmol)及びトリエチルアミン420mg(4.
20mmol)を溶解し、この中に2−クロロ−1,3−ビ
ス〔(1S)−1−フェニルエチル〕イミダゾリニウム
クロライド610mg(1.75mmol)を少量ずつ加え、
終了後更に室温で4.5時間攪拌を続けた。以下、実施
例1と同様の操作を行い標記化合物を420mg(収率6
5%)得た。
Example 4 1,3-bis [(1S) -1-
Preparation of phenylethyl] -2- (4-pyridylimino) imidazolidine 200 mg of 4-aminopyridine in 20 ml of chloroform
(2.10 mmol) and 420 mg of triethylamine (4.
20 mmol) was dissolved therein, and 610 mg (1.75 mmol) of 2-chloro-1,3-bis [(1S) -1-phenylethyl] imidazolinium chloride was added little by little.
After the completion, stirring was further continued at room temperature for 4.5 hours. Thereafter, the same operation as in Example 1 was performed to obtain 420 mg of the title compound (yield: 6).
5%).

【0053】粘稠油状物 〔α〕D 25=-165.88°(c=1.00,CHCl3) IRνmax neatcm-1:1615, 1585 UVλmax MeOHnm:207.2(ε22900), 296.8(ε16000)Viscous oil [α] D 25 = -165.88 ° (c = 1.00, CHCl 3 ) IRν max neat cm -1 : 1615, 1585 UVλ max MeOH nm: 207.2 (ε22900), 296.8 (ε16000)

【0054】1H-NMR(CDCl3) δ:1.43(6H,d,J=7.1Hz),
2.88-3.01(2H,m),3.16-3.28(2H,m), 5.16(2H,q,J=7.1H
z), 6.78(2H,dd,J=1.5 and 4.8Hz),7.24-7.36(10H,m),
8.26(2H,dd,J=1.5 and 4.8Hz),
1 H-NMR (CDCl 3 ) δ: 1.43 (6H, d, J = 7.1 Hz),
2.88-3.01 (2H, m), 3.16-3.28 (2H, m), 5.16 (2H, q, J = 7.1H
z), 6.78 (2H, dd, J = 1.5 and 4.8Hz), 7.24-7.36 (10H, m),
8.26 (2H, dd, J = 1.5 and 4.8Hz),

【0055】13C-NMR(CDCl3)δ:15.24, 39.47, 51.97,
116.44, 127.20, 127.54,128.51, 140.03, 149.44, 15
6.15, 158.04
13 C-NMR (CDCl 3 ) δ: 15.24, 39.47, 51.97,
116.44, 127.20, 127.54,128.51, 140.03, 149.44, 15
6.15, 158.04

【0056】参考例 カルコンのエポキシ化反応Reference Example Epoxidation reaction of chalcone

【0057】[0057]

【化5】 Embedded image

【0058】トルエン10mlにt−ブチルパーオキシド
192mg(70%,1.49mmol)を溶解し、無水硫酸
ナトリウムを加え濾過することにより水分を除去した。
濾液にカルコン31mg(0.15mmol)及び1,3−ビ
ス〔(1S)−1−フェニルエチル〕−2−〔(1S)
−1−フェニルエチルイミノ〕イミダゾリジン12mg
(3×10-5mol)を加え室温で24時間攪拌した。次
いで、反応液をシリカゲルクロマトグラフィー(溶媒:
n−ヘキサン/酢酸エチル)にて精製し、1,3−ジフ
ェニル−2,3−エポキシ−1−プロパノンを3mg得
た。この化合物をHPLC分析(カラム:CHIRAL
CEL OD,移動相:n−ヘキサン:イソプロパノー
ル=40:1)したところ2S,3R:2R,3Sの比
は60:40であった。
192 mg (70%, 1.49 mmol) of t-butyl peroxide was dissolved in 10 ml of toluene, anhydrous sodium sulfate was added, and the mixture was filtered to remove water.
31 mg (0.15 mmol) of chalcone and 1,3-bis [(1S) -1-phenylethyl] -2-[(1S) were added to the filtrate.
-1-phenylethylimino] imidazolidine 12 mg
(3 × 10 −5 mol) and the mixture was stirred at room temperature for 24 hours. Then, the reaction solution was subjected to silica gel chromatography (solvent:
The residue was purified with n-hexane / ethyl acetate) to obtain 3 mg of 1,3-diphenyl-2,3-epoxy-1-propanone. This compound was analyzed by HPLC (column: CHIRAL
CEL OD, mobile phase: n-hexane: isopropanol = 40: 1) and the ratio of 2S, 3R: 2R, 3S was 60:40.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 次の一般式(1) 【化1】 〔式中、R1 及びR2 は同一又は異なってアルキル基を
示し、R3 は水酸基を有していてもよいアラルキル基又
は複素環基を示し、*は不斉炭素の位置を示す〕で表わ
される光学活性グアニジン誘導体又はその塩。
1. The following general formula (1): Wherein R 1 and R 2 are the same or different and represent an alkyl group, R 3 represents an aralkyl group or a heterocyclic group which may have a hydroxyl group, and * represents the position of an asymmetric carbon. An optically active guanidine derivative or a salt thereof represented.
JP197099A 1999-01-07 1999-01-07 Optically active guanidine derivative Pending JP2000198774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP197099A JP2000198774A (en) 1999-01-07 1999-01-07 Optically active guanidine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP197099A JP2000198774A (en) 1999-01-07 1999-01-07 Optically active guanidine derivative

Publications (1)

Publication Number Publication Date
JP2000198774A true JP2000198774A (en) 2000-07-18

Family

ID=11516434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP197099A Pending JP2000198774A (en) 1999-01-07 1999-01-07 Optically active guanidine derivative

Country Status (1)

Country Link
JP (1) JP2000198774A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077908A1 (en) * 2004-02-18 2005-08-25 Takasago International Corporation Guanidine compound and asymmetric reaction using the same
WO2005110997A1 (en) * 2004-05-17 2005-11-24 Japan Science And Technology Agency Bisguanidine-compound optical resolver and separating agent for chiral molecule
JP2009285556A (en) * 2008-05-28 2009-12-10 Tokyo Univ Of Agriculture & Technology Organic molecule catalyst and method of manufacturing epoxy ketone

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077908A1 (en) * 2004-02-18 2005-08-25 Takasago International Corporation Guanidine compound and asymmetric reaction using the same
WO2005077921A1 (en) * 2004-02-18 2005-08-25 Takasago International Corporation Guanidine compound and asymmetric reaction using the same
JPWO2005077908A1 (en) * 2004-02-18 2007-10-18 高砂香料工業株式会社 Guanidine compounds and asymmetric reactions using the same
US7781425B2 (en) 2004-02-18 2010-08-24 Takasago International Coporation Guanidine compound and asymmetric reaction using the same
JP4709009B2 (en) * 2004-02-18 2011-06-22 高砂香料工業株式会社 Guanidine compounds and asymmetric reactions using the same
JP4787021B2 (en) * 2004-02-18 2011-10-05 高砂香料工業株式会社 Guanidine compounds and asymmetric reactions using the same
WO2005110997A1 (en) * 2004-05-17 2005-11-24 Japan Science And Technology Agency Bisguanidine-compound optical resolver and separating agent for chiral molecule
JPWO2005110997A1 (en) * 2004-05-17 2008-03-21 独立行政法人科学技術振興機構 Bisguanidine-type compound optical resolution agent and chiral molecular separation agent
JP4601007B2 (en) * 2004-05-17 2010-12-22 国立大学法人 千葉大学 Bisguanidine-type compound optical resolution agent and chiral molecular separation agent
JP2009285556A (en) * 2008-05-28 2009-12-10 Tokyo Univ Of Agriculture & Technology Organic molecule catalyst and method of manufacturing epoxy ketone

Similar Documents

Publication Publication Date Title
RU2742005C2 (en) Methods for producing 4-alkoxy-3-(acyl or alkyl)oxypicolinamides
US7612237B2 (en) Process for preparing β-amino-α-hydroxycarboxamides
WO2007105729A1 (en) Process for production of cyclopropylamide compound
WO1999058513A1 (en) Novel intermediates and processes for the preparation of optically active octanoic acid derivatives
JP2006500407A (en) Methods for the synthesis of intermediates useful for the synthesis of tubulin inhibitors
JP2000198774A (en) Optically active guanidine derivative
WO2023098759A1 (en) DERIVATIVE OF CHIRAL α-AMINOPHOSPHONIC ACID AND PREPARATION METHOD THEREFOR
JP2000327659A (en) Preparation of optically active pyridylalcohol
JP4691230B2 (en) Process for producing optically active 1- (benzofuran-2-yl) -2-propylaminopentane
JP3005669B2 (en) Method for producing asymmetric fluorinated primary amines
JPH09143173A (en) Optically active 5,5-diphenyl-2-oxazolidinone derivative
EP2192110B1 (en) Method of producing optically active n-(halopropyl)amino acid derivative
JP4124509B2 (en) Optically active 4,5-diphenyl-1,3-dialkyl-2- (2-hydroxyethyl) iminoimidazolidine derivatives
JP2000128882A (en) Optically active bicyclic guanidine derivative
JP3808931B2 (en) Optically active 4,5-diphenyl-1,3-dialkyl-2-halogenoimidazolinium halogenide
JPH10279564A (en) Optically active guanidine derivative
JPH10279565A (en) Optically active guanidine derivative
JP2000344694A (en) Production of optically active 3-pentyn-2-ol
KR101881918B1 (en) New process for the synthesis of acylsulfonamides derivatives
Rozwadowska Transformation of (+)-thiomicamine into the p-methylthio analogue of (+)-5-epi-cytoxazone
JPH10251244A (en) Production of delta-lactones of diastereomer hydroxycarboxylic acid amides
JP4094057B2 (en) Novel sulfamate compound containing N-substituted carbamoyl group and process for producing the same
JP2000198775A (en) Cyclic guanidine and its production
KR100395717B1 (en) Synthesis of Optically Active Aminoindanol
KR0140323B1 (en) PROCESS FOR PREPARING OPTICAL ACTIVE Ñß-AMINOACID