JP2008221898A - Feeding control device and feeding switching method - Google Patents

Feeding control device and feeding switching method Download PDF

Info

Publication number
JP2008221898A
JP2008221898A JP2007059102A JP2007059102A JP2008221898A JP 2008221898 A JP2008221898 A JP 2008221898A JP 2007059102 A JP2007059102 A JP 2007059102A JP 2007059102 A JP2007059102 A JP 2007059102A JP 2008221898 A JP2008221898 A JP 2008221898A
Authority
JP
Japan
Prior art keywords
feeder
switching
power source
switching switch
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059102A
Other languages
Japanese (ja)
Other versions
JP4913637B2 (en
Inventor
Koji Agui
浩司 安喰
Tetsuji Watabe
哲至 渡部
Hitoshi Hayashiya
均 林屋
Shiro Sekijima
志郎 関島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
East Japan Railway Co
Original Assignee
Railway Technical Research Institute
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, East Japan Railway Co filed Critical Railway Technical Research Institute
Priority to JP2007059102A priority Critical patent/JP4913637B2/en
Publication of JP2008221898A publication Critical patent/JP2008221898A/en
Application granted granted Critical
Publication of JP4913637B2 publication Critical patent/JP4913637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To safely and surely determine whether a switch is parallel-turned when two different power source feeding lines are parallel-connected by parallel-turning two switches in a switch section of a feeling line of a feeding section. <P>SOLUTION: A voltage Vs between a feeding line of a power source A and a feeding line of a power source B is measured in a switch section, and network impedance between the feeding line of the power source A and the feeding line of the power source B is calculated. Then, a prediction current value I flowing in the switch when the switch is parallel-turned is calculated based on the voltage difference Vs and the network impedance. Also, a current flowing in the switch when the switch is parallel-turned while there is no voltage difference and no phase difference between the feeding line of the power source A and the feeding line of the power source B is calculated based on the network impedance, and designated as a reference current value Is. Whether the switch is parallel-turned or not is determined based on the prediction current value I and the reference current value Is. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、異なるき電区間の間に設けられたき電区分所の切替セクションにおいて、切替セクションに進入する電車へ供給する電源を異なる電源へ切替えるための切替開閉器を制御する、き電制御装置、および該き電制御装置におけるき電切替方法に関する。   The present invention relates to a feeding control device for controlling a switching switch for switching a power supplied to a train entering the switching section to a different power in a switching section of a feeding section provided between different feeding sections. And a feeding switching method in the feeding control apparatus.

AT交流き電方式の電気鉄道においては、変電所から電車に対して電力を供給するき電線が、他の変電所や開閉器からのき電線に切り替わる部分が存在する。このようなき電線の切り替えのために切替セクションが設けられている。   In the electric railway of the AT AC feeding system, there is a part where a feeder that supplies electric power from a substation to a train is switched to a feeder from another substation or a switch. A switching section is provided for switching such feeders.

図11は、電気鉄道におけるき電区分所の切替セクションについて説明するための図である。また、図11(B)、(C)、(D)は、切替セクションにおける開閉器動作について説明するための図である。   FIG. 11 is a diagram for explaining a switching section of a feeding section in an electric railway. 11B, 11C, and 11D are diagrams for explaining the switch operation in the switching section.

図11において、2はA変電所の電源Aに接続されるき電線、3はB変電所の電源Bに接続されるき電線、4はレール、11および12は、電車21に電力を供給するき電線を切り替えるための切替開閉器(例えば、真空開閉器など)、13および14はエアセクション(二つの架線を並べて配置するセクション)、15は中間セクション、21は電車を示している。なお、き電制御装置10は、切替開閉器11、12の開閉制御を行う装置を示している。   In FIG. 11, 2 is a feeder connected to the power source A of the A substation, 3 is a feeder connected to the power source B of the B substation, 4 is a rail, and 11 and 12 supply power to the train 21. A switch for switching feeders (for example, a vacuum switch), 13 and 14 are air sections (sections in which two overhead lines are arranged side by side), 15 is an intermediate section, and 21 is a train. The feeding control device 10 is a device that performs switching control of the switching switches 11 and 12.

そして、図11(A)の例に示すように、切替セクション1は、A変電所から電源Aとして電力供給するき電線2と、B変電所から電源Bとして電力を供給するき電線3とを切り替えるき電区分所に設けられている。   Then, as shown in the example of FIG. 11A, the switching section 1 includes a feeder 2 that supplies power from the A substation as the power source A, and a feeder 3 that supplies power as the power source B from the B substation. It is provided at the switching feeder section.

上記構成において、図11(B)は、電車21が、き電線2の区間を走行中の場合の切替開閉器の開閉状態を示している。この状態では、切替開閉器11が「入」、切替開閉器12が「切」となっている。従って、切替セクション1内の中間セクション15には、電源Aのき電線2により給電される状態になっている。   In the above configuration, FIG. 11B shows the open / close state of the switching switch when the train 21 is traveling in the section of the feeder line 2. In this state, the switching switch 11 is “ON” and the switching switch 12 is “OFF”. Therefore, the intermediate section 15 in the switching section 1 is in a state of being fed by the feeder line 2 of the power source A.

図11(C)は、電車21が切替セクション1内に進入した場合の切替開閉器の開閉状態を示している。この状態では、切替開閉器11が「入→切」に切り替わり、切替開閉器12は「切」のままである。従って、切替セクション1内の中間セクション15は、一時的に停電状態となる。   FIG. 11C shows the open / close state of the switching switch when the train 21 enters the switching section 1. In this state, the switching switch 11 is switched from “ON” to “OFF”, and the switching switch 12 remains “OFF”. Therefore, the intermediate section 15 in the switching section 1 is temporarily in a power failure state.

図11(D)は、電車21が切替セクション1内に進入し、エアセクション14に接近した場合の切替開閉器の開閉状態を示している。この状態では、切替開閉器11が「切」のままであり、切替開閉器12は「切→入」に切り替わる。従って、切替セクション1内の中間セクション15は、電源Bのき電線3により給電されるようになる。   FIG. 11D shows the open / close state of the switching switch when the train 21 enters the switching section 1 and approaches the air section 14. In this state, the switching switch 11 remains “OFF”, and the switching switch 12 is switched from “OFF → ON”. Accordingly, the intermediate section 15 in the switching section 1 is fed by the feeder line 3 of the power source B.

上記手順により、切替セクション1におけるき電線の切り替えが完了し、電車21がき電線3の区間に移動すると、切替セクション1の切替開閉器11、12の開閉状態は、図11(B)に示す状態に復旧する。   When the switching of feeders in the switching section 1 is completed by the above procedure and the train 21 moves to the section of the feeder 3, the switching states of the switching switches 11 and 12 in the switching section 1 are as shown in FIG. To recover.

なお、上述した中間セクション15の一時停電時間は、通常0.3秒程度である。このため、上述した従来の切替方式は、0.3秒停電切替と呼ばれている。   The temporary power failure time of the intermediate section 15 described above is usually about 0.3 seconds. For this reason, the conventional switching method mentioned above is called 0.3 second power failure switching.

ところで、上述した方法によりき電線に切り替えを行う際には、0.3秒程度の一時停電が発生し、電車の主変換器(コンバータまたはインバータなど)は一時停止し、また電車空調設備等が停止する。このため、これらの機器再起動が必要となり、この再起動に時間を要するなどの問題があった。また、切替開閉器の開閉によるサージ電圧の発生により、電車内設備機器にノイズの影響を与える可能性もあった。 By the way, when switching to feeders by the above-mentioned method, a temporary power failure of about 0.3 seconds occurs, the main converter (converter or inverter, etc.) of the train is temporarily stopped, and the train air conditioner etc. Stop. For this reason, it is necessary to restart these devices , and there is a problem that this restart takes time. In addition, the occurrence of surge voltage due to the opening and closing of the switching switch may have a noise effect on the equipment in the train.

また、停電復旧後に電車内の主変圧器(受電変圧器)に励磁突入電流が流れ、保護継電器の不要な動作を生じたり、電力機器などにストレスを与える可能性もあった。勿論、電車内の設備機器は安全上、上記ノイズやストレスに対して、十分に耐えるように設計されているものであるが、上記ノイズやストレスは基本的には発生させないようにすることが最良の対策であり、ノイズやストレスの発生を低減できれば、電車内の設備機器への負担が軽減され、コストダウンを図ることも可能になる。このため、上記ノイズやストレスの発生を抑止することが望まれていた。   In addition, after the power failure was restored, the magnetizing inrush current flowed to the main transformer (receiving transformer) in the train, which could cause unnecessary operation of the protective relay and stress the power equipment. Of course, for safety reasons, the equipment in the train is designed to withstand the noise and stress, but it is best to prevent the noise and stress from occurring. If the generation of noise and stress can be reduced, the burden on equipment in the train can be reduced and the cost can be reduced. For this reason, it has been desired to suppress the generation of the noise and stress.

このような問題に対処するために、従来技術のき電切替制御装置が開示されている(特許文献1を参照)。この従来技術のき電切替制御装置は、列車に搭載された電気機器にショックを与えず、乗客の乗り心地を改善するき電切替制御装置を提供することを目的としている。   In order to deal with such a problem, a feeding switching control device of the prior art has been disclosed (see Patent Document 1). An object of the prior art feeder switching control device is to provide a feeder switching control device that improves the ride comfort of passengers without shocking the electrical equipment mounted on the train.

この従来技術のき電切替制御装置の構成の概要を、図11を参照して説明すると、き電切替制御装置では、中間セクション15を電車21が未通過の状態では切替開閉器11のみ投入され、中間セクション15へ電源が供給されている。電車21が中間セクション15を通過する際、き電線2、3を接続したときに過電流が流れるおそれのない場合には、電車21の全体が中間セクション15に入ってから所定期間は両切替開閉器11、12が投入され、両き電線2、3から中間セクション15へ電源が供給される(並列き電)。所定期間後、切替開閉器12のみ投入状態にされ、電源Bのみから中間セクション15へ電源が供給される。この場合き電切替時に停電しないため、列車に搭載された電気機器にショックを与えず、列車力行中であっても加速が中断されないので乗り心地がよいようにしている。
特開2000−203316号公報
The outline of the configuration of this conventional feeder switching control apparatus will be described with reference to FIG. 11. In the feeder switching control apparatus, only the switching switch 11 is turned on when the train 21 has not passed through the intermediate section 15. The power is supplied to the intermediate section 15. When the train 21 passes through the intermediate section 15 and there is no fear of overcurrent when the feeders 2 and 3 are connected, the two switches are opened and closed for a predetermined period after the entire train 21 enters the intermediate section 15. The devices 11 and 12 are turned on, and power is supplied from the feeders 2 and 3 to the intermediate section 15 (parallel feeding). After a predetermined period, only the switching switch 12 is turned on, and power is supplied from only the power source B to the intermediate section 15. In this case, since there is no power failure at the time of power switching, the electric equipment mounted on the train is not shocked and the acceleration is not interrupted even during train power running, so that the ride comfort is improved.
JP 2000-203316 A

しかしながら、上記従来技術のき電切替制御装置では、異なる2電源のそれぞれのき電線の並列投入(切替開閉器による並列き電)の可否を判定する際に、単に両電源のスカラー量である電圧差(絶対値の差)および位相差を所定の値(閾値、経験値)と比較して判定するとしており、電圧差(絶対値の差)および位相差と過電流値との関係が明確には示されていなかった。   However, in the above-described feeder switching control device of the prior art, when determining whether or not parallel feeding of the feeders of two different power sources (parallel feeding by a switching switch) is possible, a voltage that is simply the scalar amount of both power sources. The difference (absolute value difference) and phase difference are determined by comparing with a predetermined value (threshold value, empirical value), and the relationship between the voltage difference (absolute value difference) and phase difference and the overcurrent value is clear. Was not shown.

実際に並列き電を行うには、実際のき電系統の電圧、位相、およびき電系統の回路網インピーダンスに基づき、並列回路となったときの電流値を予測し、この予測値を求めて安全に切替を行えるかどうかを判定する必要があるが、上記従来技術のき電切替制御装置では、この点が勘案されておらず、安全確実に並列投入(並列き電)を行える方式とはいい難かった。   In order to actually perform parallel feeding, the current value at the time of parallel circuit is predicted based on the voltage and phase of the actual feeding system and the network impedance of the feeding system, and this predicted value is obtained. It is necessary to determine whether or not switching can be performed safely. However, in the above-described conventional power feeding switching control device, this point is not taken into consideration, and a system that can perform parallel charging (parallel feeding) safely and reliably. It was difficult.

本発明はこのような問題を解決するためになされたもので、その目的は、電気鉄道におけるき電線の切替セクションにおいて、2つの切替開閉器の並列投入により異なる2つの電源のき電線を並列接続する際に、切替開閉器に流れる電流値を予測し、該予測電流値に応じて、切替開閉器の並列投入の可否を安全・確実に判定することを可能にすると共に、2つの切替開閉器のうちの一方の開閉のみで並列き電を行うことをも可能にする、き電制御装置、およびき電切替方法を提供することにある。   The present invention has been made to solve such a problem, and the object thereof is to connect two different power feeders in parallel by switching in two switching switches in parallel in a feeder switching section in an electric railway. When predicting the current value flowing through the switching switch, it is possible to safely and reliably determine whether or not the switching switch can be turned on in parallel according to the predicted current value, and two switching switches It is an object of the present invention to provide a feeding control device and a feeding switching method that can perform parallel feeding only by opening and closing one of them.

本発明は上記課題を解決するためになされたものであり、本発明のき電制御装置は、AT交流き電方式を用いた交流電気鉄道のA変電所(ASS)の電源Aのき電線と、前記A変電所(ASS)とは異なるB変電所(BSS)の電源Bのき電線との間のき電区分所(SP)に設けられる切替セクションにおいて、前記両き電線と絶縁して設けられた中間セクションに対し、前記電源Aのき電線と前記中間セクションとを接続又は開放するための第1の切替開閉器と、前記電源Bのき電線と前記中間セクションとを接続又は開放するための第2の切替開閉器とを制御するためのき電制御装置であって、前記切替セクションにおいて、少なくとも前記電源Aのき電線の電圧と前記電源Bのき電線の電圧を含む所定の部分の電圧および電流を測定するための測定手段と、前記き電区分所(SP)の、前記電源Aのき電線と前記電源Bのき電線との間から見た回路網インピーダンスを算出する回路網インピーダンス算出手段と、前記測定手段により測定した前記電源Aのき電線と前記電源Bのき電線との間の電圧差と前記回路網インピーダンスを基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を並列投入した場合に、前記第2の切替開閉器に流れる予測電流値Iを算出する予測電流値算出手段と、前記予測電流値Iの値を基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことの可否判定を行う並列投入可否判定手段と、前記並列投入可否判定手段により並列投入が可能と判定された場合に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を所定時間並列投入すると共に、軌道回路(電車位置検出用)から電車の存在の「有」、「無」を示す検出信号の供給を受け制御している前記第2の切替開閉器を「切」に戻す切替開閉器制御手段と、を備えることを特徴とする。
このような構成により、き電区分所内の切替セクションにおいて、電源Aのき電線と電源Bのき電線との間の電圧差Vsを測定し、また、き電区分所(SP)から見た、電源Aのき電線と電源Bのき電線との間の回路網インピーダンスZを算出する。そして、電圧差Vsと回路網インピーダンスZを基に、第1の切替開閉器が「入」の状態で第2の切替開閉器を並列投入した場合に、第2の切替開閉器に流れる予測電流値Iを算出する。そして、予測電流値Iを基に並列投入の可否判定を行う。
これにより、高い安全度を持って異なるき電線電源の並列投入を行うことができる。従って、従来のように、0.3秒という瞬時並列投入にこだわる必要がなく、例えば、30秒〜1分という長い時間での並列切替ができる。このことより、開閉器の1台によるき電線の切替も可能になる。
The present invention has been made to solve the above problems, and the feeder control device of the present invention includes a feeder line of a power source A of an A substation (ASS) of an AC electric railway using an AT AC feeder system. In the switching section provided in the feeder section (SP) between the feeder B of the power source B of the B substation (BSS) different from the A substation (ASS), it is insulated from the both feeders. A first switching switch for connecting or opening the feeder line of the power source A and the intermediate section to the intermediate section formed; and for connecting or releasing the feeder line of the power source B and the intermediate section. A feeder control device for controlling the second switching switch of the power supply A, wherein, in the switching section, a predetermined portion including at least the voltage of the feeder line of the power source A and the voltage of the feeder line of the power source B Measure voltage and current Measuring means for calculating the network impedance as seen from between the feeder line of the power source A and the feeder line of the power source B of the feeder section (SP), and the measurement On the basis of the voltage difference between the feeder line of the power source A and the feeder line of the power source B measured by the means and the network impedance, the second switching switch is turned on. Based on the value of the predicted current value I, the predicted current value calculation means for calculating the predicted current value I flowing through the second switching switch when the switching switch is turned on in parallel, the first switching switch A parallel on / off availability determining means for determining whether or not the second switching switch can be turned on in parallel in a state where the switch is in the on state, and when the parallel turning on / off determining means determines that parallel turning on is possible When the first switch is in the “ON” state The second switching switch is turned on in parallel for a predetermined time, and the second control switch is controlled by receiving a detection signal indicating “present” or “none” of the presence of the train from the track circuit (for detecting the train position). And a switching switch control means for returning the switching switch to “OFF”.
With such a configuration, the voltage difference Vs between the feeder line of the power source A and the feeder line of the power source B is measured in the switching section in the feeder section, and viewed from the feeder section (SP). The network impedance Z between the feeder line of the power source A and the feeder line of the power source B is calculated. Based on the voltage difference Vs and the network impedance Z, the predicted current that flows through the second switching switch when the second switching switch is turned on in parallel while the first switching switch is “ON”. The value I is calculated. Based on the predicted current value I, it is determined whether or not parallel charging is possible.
Thereby, different feeder power supplies can be turned on in parallel with high safety. Therefore, it is not necessary to stick to instantaneous parallel input of 0.3 seconds as in the prior art, and for example, parallel switching can be performed in a long time of 30 seconds to 1 minute. Thus, the feeder can be switched by one switch.

また、本発明のき電制御装置は、前記電源Aのき電線と前記電源Bのき電線との間に電圧差および位相差がないと仮定し、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を並列投入したと仮定した場合に、前記第2の切替開閉器に流れる電流を前記回路網インピーダンスを基に算出し、該算出した電流値を基準電流値Isとする基準電流値算出手段と、前記予測電流値Iと前記基準電流値Isを基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことの可否判定を行う並列投入可否判定手段と、を備えることを特徴とする。
このような構成により、電源Aのき電線と電源Bのき電線との間に電圧差および位相差がなく、第1の切替開閉器と第2の切替開閉器を並列投入したと仮定した場合に、第2の切替開閉器に流れる電流を、回路網インピーダンスを基に算出し、基準電流値Isとする。そして、予測電流値Iと基準電流値Isを基に、第2の切替開閉器の並列投入を行うことの可否判定を行う。
これにより、高い安全度を持って異なるき電線電源の並列投入を行うことができる。従って、従来のように、0.3秒という瞬時並列投入にこだわる必要がなく、例えば、30秒〜1分という長い時間での並列切替ができる。このことより、開閉器の1台によるき電線の切替も可能になる。
Further, the feeder control device of the present invention assumes that there is no voltage difference and phase difference between the feeder line of the power source A and the feeder line of the power source B, and the first switching switch is “on”. Assuming that the second switching switch is turned on in parallel, the current flowing through the second switching switch is calculated based on the network impedance, and the calculated current value is the reference current value. Based on the reference current value calculation means for Is, the predicted current value I and the reference current value Is, the second switching switch is turned on in parallel when the first switching switch is in the “ON” state. Parallel availability determination means for determining whether it can be performed or not.
With such a configuration, it is assumed that there is no voltage difference and phase difference between the feeder line of the power source A and the feeder line of the power source B, and the first switching switch and the second switching switch are put in parallel. In addition, the current flowing through the second switching switch is calculated based on the network impedance, and is set as the reference current value Is. Then, based on the predicted current value I and the reference current value Is, it is determined whether or not the second switching switch can be turned on in parallel.
Thereby, different feeder power supplies can be turned on in parallel with high safety. Therefore, it is not necessary to stick to instantaneous parallel input of 0.3 seconds as in the prior art, and for example, parallel switching can be performed in a long time of 30 seconds to 1 minute. Thus, the feeder can be switched by one switch.

また、本発明のき電制御装置は、前記予測電流値Iが所定の閾値α1よりも小さく、かつ、前記予測電流値Iと前記基準電流値Isとの差が所定の閾値α2よりも小さい場合にのみ、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことを可能と判定する並列投入可否判定手段を備えることを特徴とする。
このような構成により、予測電流値Iが所定の閾値α1よりも小さく、かつ、予測電流値Iと前記基準電流値Isとの差が所定の閾値α2よりも小さい場合にのみ、第2の切替開閉器の並列投入を行う。例えば、閾値α1として、切替開閉器に流れる上限の電流を設定し、閾値α2として、横流の上限値を設定する。
これにより、高い安全度を持って異なるき電線電源の並列投入を行うことができる。従って、従来のように、0.3秒という瞬時並列投入にこだわる必要がなく、例えば、30秒〜1分という長い時間での並列切替ができる。このことより、開閉器の1台によるき電線の切替も可能になる。
In the power feeding control device of the present invention, the predicted current value I is smaller than a predetermined threshold value α1, and the difference between the predicted current value I and the reference current value Is is smaller than a predetermined threshold value α2. In addition, it is characterized in that it includes a parallel on / off availability determining means for determining that the second switching switch can be turned on in parallel when the first switching switch is in the “on” state.
With such a configuration, the second switching is performed only when the predicted current value I is smaller than the predetermined threshold value α1 and the difference between the predicted current value I and the reference current value Is is smaller than the predetermined threshold value α2. Switch in parallel. For example, the upper limit current flowing in the switching switch is set as the threshold value α1, and the upper limit value of the cross current is set as the threshold value α2.
Thereby, different feeder power supplies can be turned on in parallel with high safety. Therefore, it is not necessary to stick to instantaneous parallel input of 0.3 seconds as in the prior art, and for example, parallel switching can be performed in a long time of 30 seconds to 1 minute. Thus, the feeder can be switched by one switch.

また、本発明のき電制御装置は、前記並列投入可否判定手段により前記第1の切替開閉器の並列投入が不可と判定された場合には、前記第1の切替開閉器と前記第2の切替開閉器の両方を「切」にして前記中間セクションを一時停電させ、その後に前記第2の切替開閉器を「入」にすることにより、電車に給電するき電線を前記電源Aのき電線から前記電源Bのき電線へ切替えるように構成されたことを特徴とする。
このような構成により、第1の切替開閉器と第2の切替開閉器の並列投入が不可と判定された場合には、中間セクションを一時停電させる従来の切替方式(0.3秒停電切替)を選択する。
これにより、並列投入が行えない場合には、従来の切替方式を使用できる。
In addition, the feeding control device according to the present invention is configured such that when the parallel switching availability determination unit determines that the first switching switch cannot be switched in parallel, the first switching switch and the second switching switch. By turning off both of the switching switches and temporarily turning off the intermediate section, and then turning on the second switching switch, the feeder for supplying power to the train can be switched to the feeder of the power source A. From the power source B to the feeder line.
With such a configuration, when it is determined that the first switching switch and the second switching switch cannot be turned on in parallel, the conventional switching method for temporarily stopping the intermediate section (0.3 second power failure switching) Select.
Thereby, when parallel injection cannot be performed, the conventional switching method can be used.

また、本発明のき電制御装置は、前記回路網インピーダンス算出手段により前記電源Aのき電線と前記電源Bのき電線との間の回路網インピーダンスを算出する際には、き電区分所に接近した状態で走行中の電車インピーダンスを含めて算出することを特徴とする。
このような構成により、回路網インピーダンスを算出する際には、電車インピーダンスを含めて算出する。これにより、より正確に回路網インピーダンスを算出でき、予測電流値Iおよび基準電流値Isの精度が高まる。
In addition, the feeder control device according to the present invention is configured so that when the network impedance between the power supply A feeder and the power supply B feeder is calculated by the network impedance calculation means, It is calculated by including the impedance of the train that is running in the approached state.
With such a configuration, when the network impedance is calculated, it is calculated including the train impedance. As a result, the network impedance can be calculated more accurately, and the accuracy of the predicted current value I and the reference current value Is increases.

また、本発明のき電制御装置は、前記き電区分所に単巻変圧器(AT)が設備されている場合に、前記単巻変圧器に流れる吸上げ電流とき電線電圧を基に、前記電車インピーダンスを求めることを特徴とする。
このような構成により、き電区分所設備された単巻変圧器(AT)の吸上げ電流とき電線電圧を基に電車インピーダンスを算出する。これにより、電車インピーダンスを容易に求めることができる。
In addition, the feeder control device of the present invention is configured such that, when a single turn transformer (AT) is installed in the feed section, the suction current flowing through the single turn transformer is based on the wire voltage and the wire voltage. It is characterized by obtaining train impedance.
With such a configuration, and it calculates the train impedance based on line voltage when wicking current autotransformer which is equipment feeding circuit section post (AT). Thereby, the train impedance can be easily obtained.

また、本発明のき電制御装置は、前記電源Aのき電線と電源Bのき電線との間の回路網インピーダンスZを求める際には、Z=[ZCA×(Z0A+ZTA+ZFA)/(Z0A+ZTA+ZFA+ZCA)]+[ZCB×(Z0B+ZTB+ZFB)/(Z0B+ZTB+ZFB+ZCB)]、ここで、Z0A:A変電所(ASS)受電点からみた三相側のインピーダンス、ZTA:A変電所(ASS)のき電用変圧器の漏れインピーダンス、ZFA:A変電所(ASS)〜き電区分所(SP)間のき電回路のインピーダンス、ZCA:き電区分所(SP)付近のA変電所(ASS)側の電車のインピーダンス、Z0B:B変電所(BSS)の受電点からみた三相側のインピーダンス、ZTB:B変電所(BSS)のき電用変圧器の漏れインピーダンス、ZFB:B変電所(BSS)〜き電区分所(SP)間のき電回路のインピーダンス、ZCB:き電区分所(SP)付近のB変電所(BSS)側の電車のインピーダンス、として求め、予測電流値Iは、電源Aのき電線と電源Bのき電線との間の電圧差Vsを基に、I=Vs/Z、で求めることを特徴とする。
このような構成により、変電所の受電側のインピーダンス、き電用変圧器のインピーダンス、き電回路のインピーダンス、電車インピーダンスを個々に求めて、回路網の等価回路を作成する。
これにより、回路網の等価回路を、容易かつ正確に求めることができる。
In addition, the feeder control device of the present invention calculates Z = [Z CA × (Z 0A + Z TA + Z FA) when obtaining the network impedance Z between the feeder of the power source A and the feeder of the power source B. ) / (Z 0A + Z TA + Z FA + Z CA)] + [Z CB × (Z 0B + Z TB + Z FB) / (Z 0B + Z TB + Z FB + Z CB)], where, Z 0A: A substation (ASS ) Three-phase impedance from the power receiving point, Z TA : Leakage impedance of feeder transformer of A substation (ASS), Z FA : Between A substation (ASS) and feeder section (SP) Impedance of electric circuit, Z CA : Impedance of train on A substation (ASS) side near feeder section (SP), Z 0B : Impedance on three phases from receiving point of B substation (BSS), Z TB: B substation (B S) eaves leakage impedance of electric transformers, Z FB: impedance of the feeding circuit circuit between B substation (BSS) ~ feeding circuit section post (SP), Z CB: feeding circuit section post (SP) near the B The estimated current value I is obtained as I = Vs / Z based on the voltage difference Vs between the feeder line of the power source A and the feeder line of the power source B. It is characterized by that.
With such a configuration, the equivalent circuit of the circuit network is created by individually obtaining the impedance of the receiving side of the substation, the impedance of the feeding transformer, the impedance of the feeding circuit, and the train impedance.
Thereby, an equivalent circuit of the circuit network can be obtained easily and accurately.

また、本発明のき電制御装置は、前記き電区分所の電源Aのき電線には単巻変圧器AT1が、電源Bのき電線には単巻変圧器AT3が設けられ、さらに対向する回線側にも電源Aのき電線に単巻変圧器AT2が、電源Bのき電線に単巻変圧器AT4が設けられている場合に、前記単巻変圧器AT1の吸上げ電流IAT1と、前記単巻変圧器AT2の吸上げ電流IAT2と、前記単巻変圧器AT3の吸上げ電流IAT3と、前記単巻変圧器AT4の吸上げ電流IAT4と、電源Aのき電線の電圧VSPAと、電源Bのき電線の電圧VSPBと測定し、前記A変電所(ASS)側の電車インピーダンスZCAを、ZCA=0.92×VSPA/(IAT1+IAT2)、で求め、前記B変電所(BSS)側の電車インピーダンスZCBを、ZCB=0.92×VSPB/(IAT3+IAT4)、で求めることを特徴とする。
このような構成により、き電区分所の電源Aのき電線には単巻変圧器AT1が、電源Bのき電線には単巻変圧器AT3が設けられ、さらに対向する回線側にも電源Aのき電線に単巻変圧器AT2が、電源Bのき電線に単巻変圧器AT4が設けられている場合に、各単巻変圧器に流れる吸上げ電流を基に、電源Aのき電線側の電車インピーダンスと、電源Bのき電線側の電車インピーダンスを算出する。
これにより、各き電線側の電車インピーダンスを容易に求めることができる。
In the feeder control device of the present invention, the feeder A of the feeder A of the feeder section is provided with the autotransformer AT1, and the feeder of the power supply B is provided with the transformer AT3. When the autotransformer AT2 is provided on the feeder line of the power source A on the line side, and the autotransformer AT4 is provided on the feeder line of the power source B, the suction current I AT1 of the autotransformer AT1 ; wherein the wicking current I AT2 of autotransformer AT2, wherein the wicking current I AT3 of autotransformer AT3, wherein the wicking current I AT4 the autotransformer AT4, source a eaves voltage of the wire V The SPA and the voltage V SPB of the feeder line of the power source B are measured, and the train impedance Z CA on the A substation (ASS) side is obtained by Z CA = 0.92 × V SPA / (I AT1 + I AT2 ) the B substation (BSS) side of the train impedance Z CB , Z CB = 0.92 × V SPB / (I AT3 + I AT4), and obtaining at.
With such a configuration, the feeder A of the feeder A in the feeder section is provided with the autotransformer AT1, the transformer A3 of the feeder of the power source B is provided, and the power source A is also provided on the opposite line side. When the winding transformer AT2 is provided on the feeder wire and the winding transformer AT4 is provided on the feeder wire of the power source B, the feeder wire side of the power source A is based on the suction current flowing through each of the transformer transformers. And the train impedance on the feeder side of the power source B are calculated.
Thereby, the train impedance of each feeder side can be easily obtained.

また、本発明のき電制御装置は、前記き電区分所の電源Aのき電線には単巻変圧器AT1が、電源Bのき電線には単巻変圧器AT3が設けられ、さらに対向する回線側にも電源Aのき電線に単巻変圧器AT2が、電源Bのき電線には単巻変圧器AT4が設けられている場合に、前記単巻変圧器AT1の吸上げ電流IAT1と、前記単巻変圧器AT2の吸上げ電流IAT2と、前記単巻変圧器AT3の吸上げ電流IAT3と、前記単巻変圧器AT4の吸上げ電流IAT4とを測定し、前記基準電流値Isを、Is=[Z×(IAT1+2)−Z(IAT3+4)]/[0.92×(Z+Z)]、ここで、Z=(Z0A+ZTA+ZFA)、Z=(Z0B+ZTB+ZFB)、IAT1+2=(IAT1+IAT2)、IAT3+4=(IAT3+IAT4)、として求めることを特徴とする。
このような構成により、き電区分所の電源Aのき電線には単巻変圧器AT1が、電源Bのき電線には単巻変圧器AT3が設けられ、さらに対向する回線側にも電源Aのき電線に単巻変圧器AT2が、電源Bのき電線には単巻変圧器AT4が設けられている場合に、基準電流値Isを、変電所の受電側のインピーダンス、き電用変圧器のインピーダンス、き電回路のインピーダンス、および各単巻変圧器に流れる吸上げ電流を基に算出する。
これにより、基準電流値Isを容易、かつ正確に求めることができる。
In the feeder control device of the present invention, the feeder A of the feeder A of the feeder section is provided with the autotransformer AT1, and the feeder of the power supply B is provided with the transformer AT3. When the autotransformer AT2 is provided for the feeder line of the power source A on the line side and the autotransformer AT4 is provided for the feeder line of the power source B, the suction current I AT1 of the autotransformer AT1 is the a suction current I AT2 of autotransformer AT2, wherein the wicking current I AT3 of autotransformer AT3, and measuring the wicking current I AT4 of the autotransformer AT4, the reference current value Is, Is = [Z A × (I AT1 + 2 ) −Z B (I AT3 + 4 )] / [0.92 × (Z A + Z B )], where Z A = (Z 0A + Z TA + Z FA ), Z B = (Z 0B + Z TB + Z FB ), I AT1 + 2 = (I AT1 + I AT2 ), IAT3 + 4 = ( IAT3 + IAT4 ).
With such a configuration, the feeder A of the feeder A in the feeder section is provided with the autotransformer AT1, the transformer A3 of the feeder of the power source B is provided, and the power source A is also provided on the opposite line side. When the winding transformer AT2 is provided for the feeder line and the winding transformer AT4 is provided for the feeder line of the power source B, the reference current value Is is obtained as the impedance on the power receiving side of the substation, the feeder transformer. The impedance is calculated based on the impedance of the power supply circuit, the impedance of the feeder circuit, and the suction current flowing through each autotransformer.
Thereby, the reference current value Is can be obtained easily and accurately.

また、本発明のき電切替方法は、AT交流き電方式を用いた交流電気鉄道のA変電所(ASS)の電源Aのき電線と、前記A変電所(ASS)とは異なるB変電所(BSS)の電源Bのき電線との間のき電区分所(SP)に設けられる切替セクションにおいて、前記両き電線と絶縁して設けられた中間セクションに対し、前記電源Aのき電線と前記中間セクションとを接続又は開放するための第1の切替開閉器と、前記電源Bのき電線と前記中間セクションとを接続又は開放するための第2の切替開閉器とを制御するためのき電制御装置におけるき電切替方法であって、前記き電制御装置内の制御部により、前記切替セクションにおいて、少なくとも前記電源Aのき電線の電圧と前記電源Bのき電線の電圧を含む所定の部分の電圧および電流を測定するための測定手順と、前記き電区分所(SP)の、前記電源Aのき電線と前記電源Bのき電線との間から見た回路網インピーダンスを算出する回路網インピーダンス算出手順と、前記測定手順により測定した前記電源Aのき電線と前記電源Bのき電線との間の電圧差と前記回路網インピーダンスを基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を並列投入した場合に、前記第2の切替開閉器に流れる予測電流値Iを算出する予測電流値算出手順と、前記予測電流値Iの値を基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことの可否判定を行う並列投入可否判定手順と、前記並列投入可否判定手順により並列投入が可能と判定された場合に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を所定時間並列投入すると共に、軌道回路(電車位置検出用)から電車の存在の「有」、「無」を示す検出信号の供給を受け制御している前記第2の切替開閉器を「切」に戻す切替開閉器制御手順と、が行われることを特徴とする。
このような方法により、き電区分所内の切替セクションにおいて、電源Aのき電線と電源Bのき電線との間の電圧差Vsを測定し、また、き電区分所(SP)の、電源Aのき電線と電源Bのき電線との間から見た回路網インピーダンスZを算出する。そして、電圧差Vsと回路網インピーダンスZを基に、第1の切替開閉器が「入」の状態で第2の切替開閉器を並列投入した場合に、第2の切替開閉器に流れる予測電流値Iを算出する。そして、予測電流値Iを基に並列投入の可否判定を行う。
これにより、高い安全度を持って異なるき電線電源の並列投入を行うことができる。従って、従来のように、0.3秒という瞬時並列投入にこだわる必要がなく、例えば、30秒〜1分という長い時間での並列切替ができる。このことより、開閉器の1台によるき電線の切替も可能になる。
In addition, the feeder switching method of the present invention includes a feeder line of a power source A of an A substation (ASS) of an AC electric railway using an AT AC feeder system, and a B substation different from the A substation (ASS). (BSS) In the switching section provided in the power distribution section (SP) between the power supply B and the power supply B, the power supply A power supply wire is connected to the intermediate section provided insulated from the both power supply wires. A control switch for controlling a first switching switch for connecting or opening the intermediate section and a second switching switch for connecting or opening the feeder line of the power source B and the intermediate section. A feeding switching method in a power control device, wherein a control unit in the power feeding control device includes at least a voltage of a feeder line of the power source A and a voltage of a feeder line of the power source B in the switching section. Part voltage and current A measurement procedure for measuring, and a network impedance calculation procedure for calculating a network impedance as seen from between the feeder line of the power source A and the feeder line of the power source B of the feeder section (SP), Based on the voltage difference between the feeder line of the power source A and the feeder line of the power source B and the network impedance measured by the measurement procedure, the first switching switch is in the “ON” state. When the two switching switches are turned on in parallel, the predicted current value calculation procedure for calculating the predicted current value I flowing in the second switching switch and the predicted current value I are used to calculate the first current It is determined that the parallel switching can be performed by the parallel switching availability determination procedure for determining whether or not the second switching switch can be switched in parallel with the switching switch in the “ON” state, and the parallel switching permission determination procedure. If the first switching switch is “ON” In the state, the second switching switch is turned on in parallel for a predetermined time, and a control signal is supplied from the track circuit (for detecting the train position) to indicate whether there is a train or not. And a switching switch control procedure for returning the second switching switch to “OFF”.
By such a method, the voltage difference Vs between the feeder line of the power source A and the feeder line of the power source B is measured in the switching section in the feeder section, and the power source A of the feeder section (SP) is also measured. The network impedance Z seen from between the feeder wire and the feeder wire of the power source B is calculated. Based on the voltage difference Vs and the network impedance Z, the predicted current that flows through the second switching switch when the second switching switch is turned on in parallel while the first switching switch is “ON”. The value I is calculated. Based on the predicted current value I, it is determined whether or not parallel charging is possible.
Thereby, different feeder power supplies can be turned on in parallel with high safety. Therefore, it is not necessary to stick to instantaneous parallel input of 0.3 seconds as in the prior art, and for example, parallel switching can be performed in a long time of 30 seconds to 1 minute. Thus, the feeder can be switched by one switch.

また、本発明のき電切替方法は、前記電源Aのき電線と前記電源Bのき電線との間に電圧差および位相差がないと仮定し、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を並列投入したと仮定した場合に、前記第2の切替開閉器に流れる電流を前記回路網インピーダンスを基に算出し、該算出した電流値を基準電流値Isとする基準電流値算出手順と、前記予測電流値Iと前記基準電流値Isを基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことの可否判定を行う並列投入可否判定手順と、を含むことを特徴とする。
このような方法により、電源Aのき電線と電源Bのき電線との間に電圧差および位相差がなく、第1の切替開閉器と第2の切替開閉器を並列投入したと仮定した場合に、第2の切替開閉器に流れる電流を、回路網インピーダンスを基に算出し、基準電流値Isとする。そして、予測電流値Iと基準電流値Isを基に、第2の切替開閉器の並列投入を行うことの可否判定を行う。
これにより、より高い安全度を持って異なるき電線電源の並列投入を行うことができる。従って、従来のように、0.3秒という瞬時並列投入にこだわる必要がなく、例えば、30秒〜1分という長い時間での並列切替ができる。このことより、開閉器の1台によるき電線の切替も可能になる。
In addition, the feeder switching method of the present invention assumes that there is no voltage difference and phase difference between the feeder line of the power source A and the feeder line of the power source B, and the first switching switch is “on”. Assuming that the second switching switch is turned on in parallel, the current flowing through the second switching switch is calculated based on the network impedance, and the calculated current value is the reference current value. Based on the reference current value calculation procedure for Is and the predicted current value I and the reference current value Is, the second switching switch is turned on in parallel while the first switching switch is in the “ON” state. And a parallel insertion permission / inhibition determination procedure for determining whether or not it is possible to perform.
When it is assumed that there is no voltage difference and phase difference between the feeder line of the power source A and the feeder line of the power source B by such a method, and the first switching switch and the second switching switch are put in parallel. In addition, the current flowing through the second switching switch is calculated based on the network impedance, and is set as the reference current value Is. Then, based on the predicted current value I and the reference current value Is, it is determined whether or not the second switching switch can be turned on in parallel.
Thereby, different feeder power supplies can be turned on in parallel with higher safety. Therefore, it is not necessary to stick to instantaneous parallel input of 0.3 seconds as in the prior art, and for example, parallel switching can be performed in a long time of 30 seconds to 1 minute. Thus, the feeder can be switched by one switch.

また、本発明のき電切替方法は、前記予測電流値Iが所定の閾値α1よりも小さく、かつ、前記予測電流値Iと前記基準電流値Isとの差が所定の閾値α2よりも小さい場合にのみ、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことを可能と判定する並列投入可否判定手順を含むことを特徴とする。
このような方法により、予測電流値Iが所定の閾値α1よりも小さく、かつ、予測電流値Iと前記基準電流値Isとの差が所定の閾値α2よりも小さい場合にのみ、第2の切替開閉器の並列投入を行う。例えば、閾値α1として、切替開閉器に流れる上限の電流を設定し、閾値α2として、横流の上限値を設定する。
これにより、高い安全度を持って異なるき電線電源の並列投入を行うことができる。従って、従来のように、0.3秒という瞬時並列投入にこだわる必要がなく、例えば、30秒〜1分という長い時間での並列切替ができる。このことより、開閉器の1台によるき電線の切替も可能になる。
In the feeding switching method of the present invention, the predicted current value I is smaller than a predetermined threshold value α1, and the difference between the predicted current value I and the reference current value Is is smaller than a predetermined threshold value α2. Only, it is characterized in that it includes a parallel on / off enabling determination procedure for determining that the second switching switch can be turned on in parallel while the first switching switch is in the “ON” state.
By such a method, the second switching is performed only when the predicted current value I is smaller than the predetermined threshold value α1 and the difference between the predicted current value I and the reference current value Is is smaller than the predetermined threshold value α2. Switch in parallel. For example, the upper limit current flowing in the switching switch is set as the threshold value α1, and the upper limit value of the cross current is set as the threshold value α2.
Thereby, different feeder power supplies can be turned on in parallel with high safety. Therefore, it is not necessary to stick to instantaneous parallel input of 0.3 seconds as in the prior art, and for example, parallel switching can be performed in a long time of 30 seconds to 1 minute. Thus, the feeder can be switched by one switch.

また、本発明のき電切替方法は、前記並列投入可否判定手段により前記第1の切替開閉器の並列投入が不可と判定された場合には、前記第1の切替開閉器と前記第2の切替開閉器の両方を「切」にして前記中間セクションを一時停電させ、その後に前記第2の切替開閉器を「入」にすることにより、電車に給電するき電線を前記電源Aのき電線から前記電源Bのき電線へ切替える手順を含むことを特徴とする。
このような方法により、第1の切替開閉器と第2の切替開閉器の並列投入が不可と判定された場合には、中間セクションを一時停電させる従来の切替方式を選択する。
これにより、並列投入が行えない場合には、従来の切替方式を使用できる。
In addition, in the power feeding switching method of the present invention, when the parallel switching availability determination unit determines that the first switching switch cannot be switched in parallel, the first switching switch and the second switching switch By turning off both of the switching switches and temporarily turning off the intermediate section, and then turning on the second switching switch, the feeder for supplying power to the train can be switched to the feeder of the power source A. Including a procedure for switching from a feeder to the feeder of the power source B.
When it is determined by such a method that the first switching switch and the second switching switch cannot be turned on in parallel, the conventional switching method for temporarily stopping the intermediate section is selected.
Thereby, when parallel injection cannot be performed, the conventional switching method can be used.

本発明のき電制御装置においては、き電区分所内の切替セクションにおいて、切替開閉器により異なるき電線の電源を並列投入した場合に、切替開閉器に流れる電流値を予測するようにしたので、これにより、高い安全度を持って異なるき電線電源の並列投入を行うことができる。従って、従来のように、0.3秒という瞬時並列投入にこだわる必要がなく、例えば、30秒〜1分という長い時間での並列切替ができる。このことより、開閉器1台のみによるき電線の切替も可能になる。   In the feeding control device of the present invention, in the switching section in the feeding section, when the power of different feeders is switched on in parallel by the switching switch, the current value flowing through the switching switch is predicted. Thereby, different feeder power supplies can be turned on in parallel with high safety. Therefore, it is not necessary to stick to instantaneous parallel input of 0.3 seconds as in the prior art, and for example, parallel switching can be performed in a long time of 30 seconds to 1 minute. This makes it possible to switch feeders using only one switch.

次に本発明を実施するための最良の形態について図面を参照して説明する。
本発明のき電制御装置は、異電源間の電圧差・位相差が小さいき電区分所(SP)におけるき電線の切替を、一時的に異電源のき電線を並列に接続することによって行うものである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The feeder control device of the present invention performs switching of feeders in feeder divisions (SP) where the voltage difference / phase difference between different power sources is small by temporarily connecting feeders of different power sources in parallel. Is.

(本発明のき電制御装置におけるき電線の切替方式の説明)
図1は、本発明によるき電制御装置の切替法方式の例を示す図である。本発明のき電制御装置では、図1(A)に示すように、2台の切替開閉器11、12を用いて短時間(例えば、0.3秒〜1分程度)の間に並列回路として切替える方式と、図1(B)に示すような、1台の切替開閉器12のみで切替える方式がある。図1(A)に示す方式は、先に説明した従来技術のき電切替制御装置(特許文献1の方式)と同様な方式であるが、本発明においては、切替開閉器11,12の並列投入の可否の判定を、実際のき電系統の電圧、位相、回路網インピーダンスに基づき判定しており、安全・確実に並列投入が行える点が異なる。
(Description of feeder switching method in feeder control device of the present invention)
FIG. 1 is a diagram showing an example of a switching method of a feeding control device according to the present invention. In the power feeding control device of the present invention, as shown in FIG. 1A, a parallel circuit is used for a short time (for example, about 0.3 seconds to 1 minute) using two switching switches 11 and 12. And a switching method using only one switching switch 12 as shown in FIG. The method shown in FIG. 1 (A) is the same method as that of the prior art feeding switching control device (the method of Patent Document 1) described above, but in the present invention, the switching switches 11 and 12 are arranged in parallel. The determination of whether or not the charging is possible is based on the voltage, phase, and network impedance of the actual feeder system, and the difference is that parallel charging can be performed safely and reliably.

図1(A)の切替方式については既に説明したので、図1(B)の切替方式についてだけ説明する。
図1(B)を参照して、図(1)は、電車21がき電線2の区間を走行中の場合の切替開閉器の開閉状態を示している。この状態では、切替開閉器11は常時「入」であり、切替開閉器12が「切」となっている。従って、切替セクション1内の中間セクション15には、電源Aのみによりき電される状態になっている。
Since the switching method of FIG. 1 (A) has already been described, only the switching method of FIG. 1 (B) will be described.
Referring to FIG. 1B, FIG. 1A shows the open / close state of the switching switch when the train 21 runs on the section of the feeder line 2. In this state, the switching switch 11 is always “ON” and the switching switch 12 is “OFF”. Therefore, the intermediate section 15 in the switching section 1 is in a state of being powered only by the power source A.

図(2)は、電車21が切替セクション1内に進入した場合の切替開閉器の開閉状態を示している。この状態では、切替開閉器11は常時「入」であり、切替開閉器12も「入」となる。従って、切替セクション1内の中間セクション15は、き電線2、3から並列き電される状態となる。   FIG. 2B shows the open / close state of the switching switch when the train 21 enters the switching section 1. In this state, the switching switch 11 is always “ON”, and the switching switch 12 is also “ON”. Therefore, the intermediate section 15 in the switching section 1 is in a state of being electrically fed in parallel from the feeder lines 2 and 3.

図(3)は、電車21が切替セクション1を通過した場合の切替開閉器の開閉状態を示している。この状態では、切替開閉器11は常時「入」のままであり、切替開閉器12は「入→切」に切り替わる。従って、切替セクション1内の中間セクション15は、電源Aのみによりき電されるようになる。   FIG. 3 shows the switching state of the switching switch when the train 21 passes through the switching section 1. In this state, the switching switch 11 always remains “ON”, and the switching switch 12 is switched from “ON → OFF”. Accordingly, the intermediate section 15 in the switching section 1 is powered only by the power source A.

上記手順により、切替セクション1においては、切替開閉器12のみの開閉動作により、中間セクション15を一時停電させることなく、き電線の切替を行うことができる。   According to the above procedure, in the switching section 1, switching of feeders can be performed by the switching operation of only the switching switch 12 without causing the intermediate section 15 to be temporarily interrupted.

(横流がないときに切替開閉器に流れる電流についての説明)
図2は、切替開閉器による並列投入(並列き電)の際に流れる横流について説明するための図であり、A変電所(ASS)〜B変電所(BSS)間の等価回路を示している。
(Explanation about the current that flows through the switch when there is no cross current)
FIG. 2 is a diagram for explaining a cross current that flows during parallel charging (parallel feeding) by a switching switch, and shows an equivalent circuit between an A substation (ASS) and a B substation (BSS). .

本発明においては、変電所間の横流(異なる電源の電圧差および位相差に起因して流れる電流)がないという条件で、切替開閉器を投入(並列投入)したときに切替開閉器に流れる電流値を基準電流値Isとし、異電源間の電圧差および位相差から並列投入したときに実際に流れる電流の予測電流値Iと基準電流値Isを比較して並列投入の可否を判定する。   In the present invention, the current flowing through the switching switch when the switching switch is turned on (in parallel) under the condition that there is no cross current between the substations (current flowing due to the voltage difference and phase difference of different power sources). The value is set as the reference current value Is, and the predicted current value I of the current that actually flows when the current is applied in parallel based on the voltage difference and phase difference between the different power sources and the reference current value Is are compared to determine whether parallel application is possible.

図2(A)に示すように、三相側の負荷条件および回路条件によっては、A変電所(ASS)の電圧・位相とB変電所(BSS)の電圧・位相との間に差が生じるので、A変電所(ASS)側とB変電所(BSS)側にそれぞれ接続された切替開閉器の両端間には電圧差・位相差が発生する。この状態で切替開閉器12を「入」に切り替えると、図2(B)に示すように、横流Iが流れる。 As shown in FIG. 2A, depending on the load conditions and circuit conditions on the three-phase side, a difference occurs between the voltage / phase of the A substation (ASS) and the voltage / phase of the B substation (BSS). Therefore, a voltage difference and a phase difference are generated between both ends of the switching switch connected to the A substation (ASS) side and the B substation (BSS) side. Switching the switching switch 12 to "ON" in this state, as shown in FIG. 2 (B), through lateral flow I B.

逆にA変電所(ASS)の電圧・位相とB変電所(BSS)の電圧・位相が合っていれば、三相側の負荷等の影響は小さいとみなせるので、A変電所(ASS)とB変電所(BSS)間の等価回路は図3(A)のように表すことができる。このとき切替開閉器12の開放時には異電源間に電圧差および位相差はなく、図3(B)に示すように切替開閉器12を投入して電源を並列としても異電源間に横流は流れない。   Conversely, if the voltage / phase of the A substation (ASS) matches the voltage / phase of the B substation (BSS), it can be considered that the influence of the load on the three-phase side is small, so the A substation (ASS) An equivalent circuit between the B substations (BSS) can be expressed as shown in FIG. At this time, there is no voltage difference or phase difference between the different power sources when the switching switch 12 is opened, and a cross current flows between the different power sources even if the switching switch 12 is turned on and the power sources are connected in parallel as shown in FIG. Absent.

図3(A)において、き電区分所(SP)からみたA変電所(ASS)側のインピーダンスをZ、B変電所(BSS)側のインピーダンスをZとし、き電区分所(SP直下)を電車21が走行しているとすると、そのときの等価回路は図4に示すようになり、切替開閉器12にB変電所(BSS)側から電車に供給される電流が流れる。その電流値は(1)式となる。 In FIG. 3 (A), feeding circuit section post (SP) viewed from A substation (ASS) side of the impedance Z A, B substation (BSS) of the side impedance and Z B, feeding circuit section post (SP just below ), The equivalent circuit at that time is as shown in FIG. 4, and the current supplied to the train from the B substation (BSS) flows through the switching switch 12. The current value is given by equation (1).

Figure 2008221898
Figure 2008221898

(1)式で求まる電流値は、A変電所(ASS)とB変電所(BSS)の電圧・位相が合っている条件での切替開閉器12に流れる電流値であるので、これを並列投入可否の判定に用いる基準電流値Isとする。すなわち(1)式で求められる電流値I(基準電流値Is)と、後述する異電源間電圧差から算出される予測電流値Iとを比較して、並列投入の可否を判定する。 Since the current value obtained by equation (1) is the current value that flows through the switching switch 12 under the condition that the voltage and phase of the A substation (ASS) and the B substation (BSS) match, this is input in parallel. A reference current value Is used for determination of availability is used. That is, the current value I B (reference current value Is) obtained by the equation (1) is compared with the predicted current value I calculated from the voltage difference between different power sources described later to determine whether parallel charging is possible.

(切替開閉器に流れる電流の予測方法についての説明)
次に、切替開閉器12に流れる電流の予測方法について、以下に説明する。
回路網のある2点間を短絡したときにその2点間に流れる電流は、2点間が開放されているときの2点間の電圧Vsを、2点間からみた回路網のインピーダンスZで除した値となる。
(Explanation about the prediction method of the current flowing through the switching switch)
Next, a method for predicting the current flowing through the switching switch 12 will be described below.
When a short circuit between two points on the network, the current flowing between the two points is the voltage Vs between the two points when the two points are open, with the impedance Z of the circuit network seen from the two points. The divided value.

したがってA変電所(ASS)〜B変電所(BSS)間の等価回路を図5のように考えると、き電区分所(SP)からみた回路網のインピーダンスZは(2)式で表され、切替開閉器12を投入したときに切替開閉器12に流れる電流は(3)式で表される。   Therefore, when the equivalent circuit between the A substation (ASS) and the B substation (BSS) is considered as shown in FIG. 5, the impedance Z of the circuit network viewed from the feeder section (SP) is expressed by the following equation (2): The current that flows through the switching switch 12 when the switching switch 12 is turned on is expressed by equation (3).

Figure 2008221898
Figure 2008221898

なお、図5に示す各インピーダンスは、
0A:ASS受電点からみた三相側のインピーダンス、
TA:A変電所(ASS)のき電用変圧器の漏れインピーダンス、
FA:A変電所(ASS)〜き電区分所(SP)間のき電回路のインピーダンス、
CA:き電区分所(SP)付近のA変電所(ASS)側の電車のインピーダンス、
0B:B変電所(BSS)の受電点からみた三相側のインピーダンス、
TB:B変電所(BSS)のき電用変圧器の漏れインピーダンス、
FB:B変電所(BSS)〜き電区分所(SP)間のき電回路のインピーダンス、
CB:き電区分所(SP)付近のB変電所(BSS)側の電車のインピーダンス、
SPA:き電区分所(SP)のA変電所(ASS)側のき電電圧、
SPB:き電区分所(SP)のB変電所(BSS)側のき電電圧、である。
Each impedance shown in FIG.
Z 0A : three-phase impedance viewed from the ASS power receiving point,
Z TA : Leakage impedance of feeding transformer of A substation (ASS),
Z FA : impedance of feeder circuit between A substation (ASS) and feeder section (SP),
Z CA : Impedance of the train near the A substation (ASS) near the feeder section (SP),
Z 0B : Impedance on the three-phase side viewed from the receiving point of B substation (BSS),
Z TB : Leakage impedance of feeder transformer of B substation (BSS),
Z FB : impedance of feeder circuit between B substation (BSS) and feeder section (SP),
ZCB : Impedance of the train on the B substation (BSS) side near the feeder section (SP),
V SPA : Feeding voltage on the A substation (ASS) side of feeding section (SP),
V SPB : Feeding voltage on the B substation (BSS) side of the feeding section (SP).

線路インピーダンスおよびき電用変圧器の漏れインピーダンスは、計算または実測により予め求めることができるが、電車インピーダンスは走行状態によって変化するので、切替開閉器12の投入直前の値を求める必要がある。また電車インピーダンスは電車電圧と電車電流から求めることができるが、き電区分所(SP)においてこれを正確に把握することは困難である。   Although the line impedance and the leakage impedance of the feeder transformer can be obtained in advance by calculation or actual measurement, since the train impedance changes depending on the running state, it is necessary to obtain the value immediately before the switching switch 12 is turned on. The train impedance can be obtained from the train voltage and the train current, but it is difficult to accurately grasp this at the feeder section (SP).

しかし、図6に示すようなAT交流き電方式の場合は、電車がき電区分所(SP)直下を走行するときには、電車電流の92%(経験値)がき電区分所(SP)の単巻変圧器(AT:Auto Transformer)に吸上げられるので、これを電車電流とみなすことができる。また、き電区分所(SP)のき電線電圧を電車電圧とみなすことができる。   However, in the case of the AT AC feeding system as shown in FIG. 6, when traveling under the train feeding section (SP), 92% of the train current (experience value) is a single turn of the feeding section (SP). Since it is sucked up by a transformer (AT: Auto Transformer), this can be regarded as a train current. Moreover, the feeder voltage of the feeder section (SP) can be regarded as the train voltage.

ただし、図7に示すように、き電区分所(SP)では通常上り線と下り線のき電線は接続されているので、電車電流は上り線と下り線の2台の単巻変圧器(AT1およびAT2)と、2台の単巻変圧器(AT3およびAT4)で吸上げられ、2台のATの吸上電流の合計IAT1+2(IAT1とIAT2の合計)、IAT3+4(IAT3とIAT4の合計)が電車電流に相当する。 However, as shown in FIG. 7, since the feeder line is normally connected at the feeder section (SP), the train current is generated by two single-turn transformers (upward and downstream) ( AT1 and AT2) and two single-winding transformers (AT3 and AT4), and the total of IAT1 + 2 (the sum of IAT1 and IAT2 ), IAT3 + 4 ( IAT3) And IAT4 ) corresponds to the train current.

したがってき電区分所(SP)のき電線電圧をVSPA、VSPBとすれば電車インピーダンスZCA、ZCBは(4)式および(5)式で表される。なお、この手法で求める電車インピーダンスは電車がき電区分所(SP)から離れるにしたがって実際よりも大きくみえるが、この現象は電車インピーダンスの影響が電車がき電区分所(SP)から離れるにつれ小さくなることと符合する。 Therefore, if the feeder voltage of the feeder section (SP) is V SPA and V SPB , the train impedances Z CA and Z CB are expressed by the equations (4) and (5). The train impedance obtained by this method seems to be larger than the actual distance as the train leaves the service station (SP), but this phenomenon becomes smaller as the train impedance moves away from the service station (SP). Matches.

Figure 2008221898
Figure 2008221898

以上のことより、予め求めることのできる線路インピーダンスおよびき電用変圧器の漏れインピーダンスと、(4)式および(5)式から求められる電車インピーダンスを用いて(2)式によりき電区分所(SP)からみた回路網のインピーダンスZを求めることができ、回路網インピーダンスZで異電源間電圧差Vsを除することにより、切替開閉器を投入したときに切替開閉器に流れる電流を予測することができる。   From the above, using the line impedance that can be obtained in advance and the leakage impedance of the feeder transformer and the train impedance obtained from the expressions (4) and (5), the feeding section ( SP), the impedance Z of the network can be obtained, and by dividing the voltage difference Vs between different power sources by the network impedance Z, the current flowing to the switching switch when the switching switch is turned on is predicted. Can do.

上述した切替開閉器に流れる電流予測値Iの算出手順を以下にまとめる。
手順(1)として、き電区分所(SP)のき電線の単巻変圧器(AT)の吸上電流から電車のインピーダンスを算出する。
The procedure for calculating the predicted current value I flowing through the switching switch described above is summarized below.
As procedure (1), the impedance of the train is calculated from the suction current of the autotransformer (AT) of the feeder of the feeder section (SP).

Figure 2008221898
Figure 2008221898

手順(2)として、き電区分所(SP)からみた回路網のインピーダンスを算出する。   As procedure (2), the impedance of the circuit network as seen from the feeder section (SP) is calculated.

Figure 2008221898
Figure 2008221898

手順(3)として、き電区分所(SP)の異電源間電圧差Vsと(2)式で算出した回路網インピーダンスZから切替開閉器に流れる電流値を予測する。   As the procedure (3), the current value flowing through the switching switch is predicted from the voltage difference Vs between different power sources at the feeding section (SP) and the network impedance Z calculated by the equation (2).

Figure 2008221898
Figure 2008221898

(並列切替可否の判定方法の説明)
次に、並列切替可否の判定方法について説明する。
横流が大きいと故障選択継電器(50F)や距離継電器(44F)の動作に影響を及ぼす可能性がある。したがって切替開閉器投入により並列回路となったときの横流がしきい値よりも大きいと予測される場合には、並列切替を行わないようにすることが望ましい。なお、故障選択継電器は、短絡故障を検出する保護継電器であり、電流の増加を検出し、整定値以上になると作動し、距離継電器は、き電電圧と、き電電流から、き電回路のインピーダンスを検出し、このインピーダンスが所定の値よりも小さい場合に作動する保護継電器である。
(Description of determination method for parallel switching)
Next, a method for determining whether parallel switching is possible will be described.
If the cross current is large, the operation of the failure selection relay (50F) and the distance relay (44F) may be affected. Therefore, it is desirable not to perform the parallel switching when it is predicted that the cross current when the switching circuit is turned into a parallel circuit is larger than the threshold value. The fault selection relay is a protective relay that detects short-circuit faults, detects the amount of increase in current, and operates when the value exceeds the set value.The distance relay starts from the feeding voltage and feeding current. This is a protective relay that operates when the impedance is detected and this impedance is smaller than a predetermined value.

2つの、き電線間に電圧・位相差がなければ(1)式で求めた電流値Iと(3)式で求める予測電流値Iはほぼ等しくなるが、電圧・位相差があればA変電所(ASS)とB変電所(BSS)間の横流の影響により、基準電流値Isと予測電流値Iとの差は大きくなり、その差は、き電線間の電圧・位相差による横流と考えられる。よって基準電流値Isと予測電流値Iとの差によって並列切替可否を判定することができる。 Two predicted current value I calculated by the the Without voltage and phase differences between the feeder line (1) with the current value I B was determined (3) is substantially equal, A if the voltage and phase difference The difference between the reference current value Is and the predicted current value I increases due to the influence of the cross current between the substation (ASS) and the B substation (BSS). Conceivable. Therefore, it is possible to determine whether parallel switching is possible based on the difference between the reference current value Is and the predicted current value I.

基準電流値Isを求める(1)式では、電車電流を既知かつ電車がき電区分所(SP)のA変電所(ASS)側にのみあるとして計算したが、電車電流としてAT吸上電流を用い、AT吸上電流とほぼ等しい負荷電流をとる電車がき電区分所(SP)のA変電所(ASS)側とBSS側の直下にあるとして考えると等価回路は図8のようになる。   In the equation (1) for obtaining the reference current value Is, the train current is calculated assuming that the train current is known and only on the A substation (ASS) side of the train feeding station (SP), but the AT suction current is used as the train current. If it is assumed that the train having a load current substantially equal to the AT suction current is located immediately below the A substation (ASS) side and the BSS side of the distribution station (SP), the equivalent circuit is as shown in FIG.

また、図8において、ICAとICBは、以下の(6)式、(7)式のようになる。 In FIG. 8, I CA and I CB are as shown in the following formulas (6) and (7).

Figure 2008221898
Figure 2008221898

また、図8より(8)式が成り立つ。   Further, from FIG. 8, the equation (8) is established.

Figure 2008221898
Figure 2008221898

なお、Z=(Z0A+ZTA+ZFA)、Z=(Z0B+ZTB+ZFB)、である。 Note that Z A = (Z 0A + Z TA + Z FA ), Z B = (Z 0B + Z TB + Z FB ).

切替開閉器12に流れる電流(基準電流値Is)は(9)式で表される   The current (reference current value Is) flowing through the switching switch 12 is expressed by equation (9).

Figure 2008221898
Figure 2008221898

(8)式を(9)式に代入して整理すると(10)式になる。   Substituting equation (8) into equation (9) and rearranging results in equation (10).

Figure 2008221898
Figure 2008221898

(6)式と(7)式を(10)式に代入して整理すると(11)式となる。   Substituting the formulas (6) and (7) into the formula (10) and rearranging them gives the formula (11).

Figure 2008221898
Figure 2008221898

(11)式で算出される電流(基準電流値Is)は横流がないとしたときに切替開閉器に流れる電流である。したがって(11)式で算出される電流(基準電流値Is)と、(4)式、(5)式、(2)式、(3)式で求まる予測電流値Iの差が横流の大きさの指標となり、並列投入可否を判定する要素として用いることができる。   The current (reference current value Is) calculated by the equation (11) is a current that flows through the switching switch when there is no cross current. Therefore, the difference between the current (reference current value Is) calculated by equation (11) and the predicted current value I obtained by equations (4), (5), (2), and (3) is the magnitude of the cross current. And can be used as an element for determining whether or not parallel loading is possible.

並列切替可否判定のアルゴリズムを図9に示す。図9のアルゴリズムでは、α1とα2という2つの閾値を設けている。α1は切替開閉器に流れる電流の上限値で、α2は横流の上限値である。以下、図9を参照して、並列切替可否判定処理の手順について説明する。   FIG. 9 shows an algorithm for determining whether or not parallel switching is possible. In the algorithm of FIG. 9, two threshold values α1 and α2 are provided. α1 is an upper limit value of the current flowing through the switching switch, and α2 is an upper limit value of the cross current. Hereinafter, with reference to FIG. 9, the procedure of the parallel switching availability determination process will be described.

最初に、切替セクション内に電車が進入したかどうかを判定する(ステップS1)。電車が進入していなければ(ステップS1:NO)、電車が進入するまで待機する。   First, it is determined whether a train has entered the switching section (step S1). If the train has not entered (step S1: NO), it waits until the train enters.

ステップS1において、電車が切替セクションに進入したと判定された場合は(ステップS1:YES)、き電線の電圧等の測定を行う。すなわち、き電線電圧VSPを測定し、異電源間電圧差Vsを測定し、AT吸上電流IAT1+1、IAT3+4を測定する(ステップS2)。 If it is determined in step S1 that the train has entered the switching section (step S1: YES), the voltage of the feeder is measured. That is, the feeder voltage VSP is measured, the voltage difference Vs between different power sources is measured, and the AT suction currents IAT1 + 1 and IAT3 + 4 are measured (step S2).

次に、(4)式、(5)式、(2)式、(3)式により、予測電流値Iを算出する(ステップS3)。
それから、横流がないとしたときに切替開閉器に流れる電流(基準電流値Is)を算出する(ステップS4)。
Next, the predicted current value I is calculated by the equations (4), (5), (2), and (3) (step S3).
Then, the current (reference current value Is) flowing through the switching switch when there is no cross current is calculated (step S4).

そして、予測電流値Iが所定の閾値α1以下(I<α1)になるかどうかを判定する(ステップS5)。「I>α1」の場合は(ステップS5:NO)、従来と同じ0.3秒停電切替を行う(ステップS6)。   Then, it is determined whether or not the predicted current value I is equal to or less than a predetermined threshold value α1 (I <α1) (step S5). If “I> α1” (step S5: NO), the same 0.3 second power failure switching as in the prior art is performed (step S6).

「I<α1」の場合は(ステップS5:YES)、次に、予測電流値Iと基準電流値Isとの差(I−Is)の絶対値が所定の閾値α2以下(|I−Is|<α2)になるかどうかを判定する(ステップS7)。「|I―Is|>α2」の場合は(ステップS7:NO)、従来と同じ0.3秒停電切替を行う(ステップS6)。   If “I <α1” (step S5: YES), then the absolute value of the difference (I−Is) between the predicted current value I and the reference current value Is is equal to or smaller than a predetermined threshold value α2 (| I−Is |). It is determined whether or not <α2) is satisfied (step S7). If “| I−Is |> α2” (step S7: NO), the same 0.3 second power failure switching as in the conventional case is performed (step S6).

「|I―Is|<α2」の場合は(ステップS7:YES)、並列切替を行う(ステップS8)。すなわち、予測電流値Iは所定の閾値α1よりも小さく、かつ、基準電流値Isとの差が所定の閾値α2よりも小さい場合に、並列切替が行われることになる。なお、実際のき電線系統の実情に応じて、ステップS7の手順を省略できる場合もある。すなわち、閾値α1(切替開閉器に流れる上限の電流)のみより、並列投入の可否を判定する。   If “| I−Is | <α2” (step S7: YES), parallel switching is performed (step S8). That is, parallel switching is performed when the predicted current value I is smaller than the predetermined threshold value α1 and the difference from the reference current value Is is smaller than the predetermined threshold value α2. Depending on the actual situation of the actual feeder system, the procedure of step S7 may be omitted. That is, it is determined whether or not parallel charging is possible based only on the threshold value α1 (the upper limit current flowing through the switching switch).

以上説明した手順により、切替開閉器により異なるき電線を並列投入した場合に流れる電流値を予測することにより、高い安全度を持ってき電線の並列投入を行うことができる。従って、0.3秒という瞬時並列投入にこだわる必要がなく、例えば、30秒〜1分という長い時間での切替ができる。このことより、開閉器が1台での切替(図1(B)を参照)も可能になる。   By predicting the value of the current that flows when different feeders are inserted in parallel by the switching switch by the procedure described above, it is possible to bring in the wires in parallel with high safety. Therefore, it is not necessary to be particular about instantaneous parallel input of 0.3 seconds, and for example, switching in a long time of 30 seconds to 1 minute can be performed. Thus, switching with one switch (see FIG. 1B) is also possible.

(き電制御装置の構成例の説明)
次に、切替開閉器の開閉を制御する、き電制御装置の構成例について説明する。
図10は、切替セクションの切替開閉器を制御する、き電制御装置の構成例を示す図であり、本発明に直接関係する部分を示したものである。なお。この制御装置としては、シーケンスコントローラ(プログラマブルコントローラ)などを使用することができる。
(Description of configuration example of feeder control device)
Next, a configuration example of a feeding control device that controls opening and closing of the switching switch will be described.
FIG. 10 is a diagram showing a configuration example of a feeding control device that controls the switching switch of the switching section, and shows a portion directly related to the present invention. Note that. As this control device, a sequence controller (programmable controller) or the like can be used.

図10において、き電制御装置10内の主制御部101は、CPU(中央処理装置)やメモリ等で構成され、き電制御装置10の全体を統括制御するための処理部である。
電車進入判定部102は、切替開閉器11が「入」かつ切替開閉器12が「切」の状態で、切替セクション1にき電線2側から電車21が接近または進入したことを判定するための処理部である。電車進入の有無は起動回路(電車位置)から電車の存在の有無を示す検出信号の供給をき電制御装置10が受け、電車進入判定部102が、上記検出信号に基づいて既存の方法で判定する。
In FIG. 10, a main control unit 101 in the feeding control device 10 is configured by a CPU (central processing unit), a memory, and the like, and is a processing unit for performing overall control of the feeding control device 10.
The train entry determination unit 102 determines whether the train 21 has approached or entered the switching section 1 from the feeder 2 side while the switching switch 11 is “ON” and the switching switch 12 is “OFF”. It is a processing unit. The presence / absence of a train is received by the power control device 10 by receiving a detection signal indicating the presence / absence of a train from the activation circuit (train position), and the train entry determination unit 102 determines the existing method based on the detection signal. To do.

測定部103は、切替セクション1の各部の部分の電圧または電流を測定するための処理部である。測定対象となるのは、単巻変圧器AT1に流れる吸上げ電流IAT1、単巻変圧器AT2に流れる吸上げ電流IAT2、単巻変圧器AT3に流れる吸上げ電流IAT3、単巻変圧器AT4に流れる吸上げ電流IAT4、き電線2とレール4との間の電圧VSPAと、き電線3とレール4との間の電圧VSPBと、である。 The measuring unit 103 is a processing unit for measuring the voltage or current of each part of the switching section 1. It becomes a measurement object, wicking current I AT1 flowing through the autotransformer AT1 wicking current I AT2 flowing through the autotransformer AT2, wicking current I AT3 flowing through the autotransformer AT3, autotransformer Suction current I AT4 flowing through AT4 , voltage V SPA between feeder 2 and rail 4, and voltage V SPB between feeder 3 and rail 4.

電流値算出部104は、回路網インピーダンス算出部104Aと、予測電流値算出部104Bと、基準電流値算出部104Cとで構成されており。回路網インピーダンス算出部104Aは、き電区分所(SP)の、電源Aのき電線と電源Bのき電線との間から見た回路網インピーダンスを算出する。すなわち、(2)式に従い、回路網インピーダンスZを算出する。また、この回路網インピーダンス算出部104Aでは、単巻変圧器AT1〜AT4に流れる吸上げ電流を基に、電車インピーダンスを算出する処理も行う。   The current value calculation unit 104 includes a network impedance calculation unit 104A, a predicted current value calculation unit 104B, and a reference current value calculation unit 104C. The network impedance calculation unit 104A calculates the network impedance seen from between the feeder line of the power source A and the feeder line of the power source B in the feeder section (SP). That is, the network impedance Z is calculated according to the equation (2). In addition, the network impedance calculation unit 104A also performs a process of calculating the train impedance based on the suction current flowing through the autotransformers AT1 to AT4.

予測電流値算出部104Bは、電源Aのき電線と電源Bのき電線との間の電圧差と回路網インピーダンスを基に、切替開閉器11の「入」の状態で、切替開閉器12を並列投入した場合に、切替開閉器12に流れる予測電流値Iを算出するための処理部である。この予測電流値Iは、(3)式により算出される。   The predicted current value calculation unit 104B sets the switching switch 12 in the “ON” state of the switching switch 11 based on the voltage difference between the feeder line of the power source A and the feeder line of the power source B and the network impedance. It is a processing unit for calculating the predicted current value I flowing through the switching switch 12 when the switches are connected in parallel. This predicted current value I is calculated by equation (3).

また、基準電流値算出部104Cは、横流がないとした場合(異電源間に電圧差および位相差がない場合)に、回路網インピーダンスと単巻変圧器AT1〜AT4に流れる吸上げ電流とを基に、切替開閉器12に流れる電流を算出するための処理部である。この基準電流値Isは(11)式により算出される。   Further, the reference current value calculation unit 104C calculates the network impedance and the suction current flowing through the autotransformers AT1 to AT4 when there is no cross current (when there is no voltage difference and phase difference between different power sources). Based on this, it is a processing unit for calculating the current flowing through the switching switch 12. This reference current value Is is calculated by the equation (11).

並列投入可否判定部105は、電流値算出部104で算出された予測電流値Iおよび基準電流値Isの値に応じて、切替開閉器12の並列投入の可否判定を行うための処理部である。この場合、予測電流値Iが所定の閾値α1よりも小さく、かつ、予測電流値Iと基準電流値Isとの差が所定の閾値α2よりも小さい場合に、切替開閉器の並列投入が可能と判定する。   The parallel switching availability determination unit 105 is a processing unit for determining whether the switching switch 12 can be switched in parallel according to the predicted current value I and the reference current value Is calculated by the current value calculation unit 104. . In this case, when the predicted current value I is smaller than the predetermined threshold value α1 and the difference between the predicted current value I and the reference current value Is is smaller than the predetermined threshold value α2, switching switches can be turned on in parallel. judge.

切替開閉器制御部106は、並列投入可否判定部105により並列投入が可能と判定された場合に、切替開閉器11と切替開閉器12とを所定時間並列投入すると共に、所定時間経過後に切替開閉器12を「切」にする制御を行う。また、並列投入可否判定部105により、並列投入が不可と判定された場合には、切替開閉器11と切替開閉器12の両方を「切」として中間セクションを一時停電させ、その後に切替開閉器12を「入」とする従来の0.3秒停電切替えを行うように制御する。   The switching switch control unit 106 switches on the switching switch 11 and the switching switch 12 in parallel for a predetermined time when the parallel switching availability determination unit 105 determines that parallel switching is possible, and switches the switching switch after a predetermined time has elapsed. Control to turn off the device 12 is performed. In addition, when it is determined by the parallel switching availability determination unit 105 that parallel switching is impossible, both the switching switch 11 and the switching switch 12 are set to “OFF”, the intermediate section is temporarily interrupted, and then the switching switch Control is performed so as to perform the conventional 0.3 second power failure switching with 12 set to “ON”.

以上、本発明の実施の形態について説明したが、本発明のき電制御装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Although the embodiment of the present invention has been described above, the feed control device of the present invention is not limited to the above-described illustrated examples, and various modifications can be made without departing from the scope of the present invention. Of course.

本発明においては、き電区分所内の切替セクションにおいて、切替開閉器により異なるき電線の電源を並列投入する際に、切替開閉器に流れる電流値を予測し、高い安全度を持って異なるき電線の並列投入を行うことができるので、本発明は、AT交流き電方式における切替セクション内のき電制御装置、およびき電切替方法等に有用である。   In the present invention, when the power of different feeders is switched on in parallel by the switching switch in the switching section in the feeder section, the current value flowing through the switching switch is predicted, and the feeders differ with high safety. Therefore, the present invention is useful for a feeding control device in a switching section, a feeding switching method, and the like in an AT AC feeding system.

本発明のき電制御装置による切替方式の説明図である。It is explanatory drawing of the switching system by the feeding control apparatus of this invention. A変電所(ASS)とB変電所(BSS)との間の等価回路を示す図である(異電源間に電圧差がある場合)。It is a figure which shows the equivalent circuit between A substation (ASS) and B substation (BSS) (when there is a voltage difference between different power supplies). A変電所(ASS)とB変電所(BSS)との間の等価回路を示す図である(異電源間に電圧差がない場合)。It is a figure which shows the equivalent circuit between A substation (ASS) and B substation (BSS) (when there is no voltage difference between different power supplies). 切替開閉器に流れる電流を示す図である。It is a figure which shows the electric current which flows into a switching switch. 異電源間電圧差から切替開閉器電流を求める等価回路を示す図である。It is a figure which shows the equivalent circuit which calculates | requires switching switch electric current from the voltage difference between different power sources. き電区分所(SP)の直下を走行する電車の電流経路を示す図である。It is a figure which shows the electric current path | route of the train which drive | works directly under the feeder section (SP). き電区分所(SP)におけるAT吸上電流を示す図である。It is a figure which shows AT wicking current in a feeding section (SP). 基準電流値を求める等価回路を示す図である。It is a figure which shows the equivalent circuit which calculates | requires a reference current value. 並列切替判定アルゴリズムを示す図である。It is a figure which shows a parallel switching determination algorithm. き電制御装置の構成例を示す図である。It is a figure which shows the structural example of a feeding control apparatus. き電区分所の切替セクションについて説明するための図である。It is a figure for demonstrating the switching section of a feeder section.

符号の説明Explanation of symbols

1 切替セクション
2、3 き電線
4 レール
10 き電制御装置
11、12 切替開閉器
13、14 エアセクション
15 中間セクション
21 電車
101 主制御部
102 電車進入判定部
103 測定部
104 電流値算出部
104A 回路網インピーダンス算出部
104B 予測電流値算出部
104C 基準電流値算出部
105 並列投入可否判定部
106 切替開閉器制御部
AT1、AT2、AT3、AT4 単巻変圧器
Is 基準電流値
AT1 単巻変圧器AT1の吸上げ電流
AT2 単巻変圧器AT2の吸上げ電流
AT3 単巻変圧器AT3の吸上げ電流
AT4 単巻変圧器AT4の吸上げ電流
Vs き電線間電圧差
DESCRIPTION OF SYMBOLS 1 Switching section 2, 3 feeder 4 Rail 10 Feed controller 11, 12 Switching switch 13, 14 Air section 15 Middle section 21 Train 101 Main control part 102 Train approach determination part 103 Measurement part 104 Current value calculation part 104A circuit Net impedance calculation unit 104B Predicted current value calculation unit 104C Reference current value calculation unit 105 Parallel application availability determination unit 106 Switching switch control unit AT1, AT2, AT3, AT4 Single-turn transformer Is Reference current value I AT1 single-turn transformer AT1 I Suction current of AT2 autotransformer AT2 I Suction current of AT3 autotransformer AT3 I Suction current of AT4 autotransformer AT4 Vs Voltage difference between feeders

Claims (13)

AT交流き電方式を用いた交流電気鉄道のA変電所(ASS)の電源Aのき電線と、前記A変電所(ASS)とは異なるB変電所(BSS)の電源Bのき電線との間のき電区分所(SP)に設けられる切替セクションにおいて、前記両き電線と絶縁して設けられた中間セクションに対し、前記電源Aのき電線と前記中間セクションとを接続又は開放するための第1の切替開閉器と、前記電源Bのき電線と前記中間セクションとを接続又は開放するための第2の切替開閉器とを制御するためのき電制御装置であって、
前記切替セクションにおいて、少なくとも前記電源Aのき電線の電圧と前記電源Bのき電線の電圧を含む所定の部分の電圧および電流を測定するための測定手段と、
前記き電区分所(SP)の前記電源Aのき電線と前記電源Bのき電線との間から見た回路網インピーダンスを算出する回路網インピーダンス算出手段と、
前記測定手段により測定した前記電源Aのき電線と前記電源Bのき電線との間の電圧差と前記回路網インピーダンスを基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を並列投入した場合に、前記第2の切替開閉器に流れる予測電流値Iを算出する予測電流値算出手段と、
前記予測電流値Iの値を基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことの可否判定を行う並列投入可否判定手段と、
前記並列投入可否判定手段により並列投入が可能と判定された場合に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を所定時間並列投入すると共に、軌道回路(電車位置検出用)から電車の存在の「有」、「無」を示す検出信号の供給を受け制御している前記第2の切替開閉器を「切」に戻す切替開閉器制御手段と、
を備えることを特徴とするき電制御装置。
A power source A feeder line of an A substation (ASS) of an AC electric railway using an AT AC feeder system and a power source B feeder wire of a B substation (BSS) different from the A substation (ASS) In a switching section provided in a power distribution section (SP), for connecting or opening the power supply A and the intermediate section to or from the intermediate section provided insulated from the both power lines. A feeder control device for controlling a first switching switch and a second switching switch for connecting or opening the feeder line of the power source B and the intermediate section,
In the switching section, measuring means for measuring voltage and current of a predetermined portion including at least the voltage of the feeder line of the power source A and the voltage of the feeder line of the power source B;
Network impedance calculating means for calculating a network impedance seen from between the feeder line of the power source A and the feeder line of the power source B of the feeder section (SP);
Based on the voltage difference between the feeder line of the power source A and the feeder line of the power source B and the network impedance measured by the measuring means, the first switching switch is in the “ON” state. Predicted current value calculating means for calculating a predicted current value I flowing through the second switching switch when two switching switches are connected in parallel;
Based on the value of the predicted current value I, parallel on / off availability determination means for determining whether or not the second switching switch can be turned on in parallel when the first switching switch is in an “on” state;
When the parallel switching availability determination unit determines that parallel switching is possible, the second switching switch is switched on in parallel for a predetermined time while the first switching switch is “ON”, and a track circuit ( Switching switch control means for returning the second switching switch, which is controlled by receiving a supply of a detection signal indicating “present” or “absent” of the presence of a train from (for train position detection);
A feeder control device comprising:
前記電源Aのき電線と前記電源Bのき電線との間に電圧差および位相差がないと仮定し、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を並列投入したと仮定した場合に、
前記第2の切替開閉器に流れる電流を前記回路網インピーダンスを基に算出し、該算出した電流値を基準電流値Isとする基準電流値算出手段と、
前記予測電流値Iと前記基準電流値Isを基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことの可否判定を行う並列投入可否判定手段と、
を備えることを特徴とする請求項1に記載のき電制御装置。
Assuming that there is no voltage difference and phase difference between the feeder line of the power source A and the feeder line of the power source B, the second switching switch is turned on when the first switching switch is in the “on” state. Assuming that they were put in parallel,
A reference current value calculation means for calculating a current flowing through the second switching switch based on the network impedance, and setting the calculated current value as a reference current value Is;
Based on the predicted current value I and the reference current value Is, it is determined whether or not the parallel switching can be performed to determine whether or not the second switching switch can be switched in parallel when the first switching switch is “ON”. A determination means;
The feeding control device according to claim 1, further comprising:
前記予測電流値Iが所定の閾値α1よりも小さく、かつ、前記予測電流値Iと前記基準電流値Isとの差が所定の閾値α2よりも小さい場合にのみ、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことを可能と判定する並列投入可否判定手段を
備えることを特徴とする請求項2に記載のき電制御装置。
Only when the predicted current value I is smaller than the predetermined threshold value α1 and the difference between the predicted current value I and the reference current value Is is smaller than the predetermined threshold value α2, the first switching switch is The feeding control device according to claim 2, further comprising: a parallel on / off availability determining unit that determines that the second switching switch can be turned on in parallel in the "on" state.
前記並列投入可否判定手段により前記第1の切替開閉器の並列投入が不可と判定された場合には、
前記第1の切替開閉器と前記第2の切替開閉器の両方を「切」にして前記中間セクションを一時停電させ、その後に前記第2の切替開閉器を「入」にすることにより、電車に給電するき電線を前記電源Aのき電線から前記電源Bのき電線へ切替えるように構成されたこと
を特徴とする請求項1から3のいずれかに記載のき電制御装置。
When it is determined that the parallel switching of the first switching switch is impossible by the parallel switching availability determination unit,
By turning off both the first switching switch and the second switching switch to temporarily interrupt the intermediate section, and then turning on the second switching switch, The feeder control device according to any one of claims 1 to 3, wherein the feeder for supplying power is switched from the feeder of the power source A to the feeder of the power source B.
前記回路網インピーダンス算出手段により前記電源Aのき電線と前記電源Bのき電線との間の回路網インピーダンスを算出する際には、
き電区分所に接近した状態で走行中の電車インピーダンスを含めて算出すること
を特徴とする請求項1から4のいずれかに記載のき電制御装置。
When calculating the network impedance between the feeder line of the power source A and the feeder line of the power source B by the network impedance calculation means,
The feeder control device according to any one of claims 1 to 4, wherein the feeder controller is calculated including the impedance of the train that is running while approaching the feeder section.
前記き電区分所に単巻変圧器(AT)が設備されている場合に、
前記単巻変圧器に流れる吸上げ電流値を基に、前記電車インピーダンスを求めること
を特徴とする請求項5に記載のき電制御装置。
When a self-winding transformer (AT) is installed at the feeding section,
The feeding control device according to claim 5, wherein the train impedance is obtained based on a suction current value flowing through the autotransformer.
前記電源Aのき電線と電源Bのき電線との間の回路網インピーダンスZを求める際には、
Z=[ZCA×(Z0A+ZTA+ZFA)/(Z0A+ZTA+ZFA+ZCA)]
+[ZCB×(Z0B+ZTB+ZFB)/(Z0B+ZTB+ZFB+ZCB)]、
ここで、
0A:A変電所(ASS)受電点からみた三相側のインピーダンス、
TA:A変電所(ASS)のき電用変圧器の漏れインピーダンス、
FA:A変電所(ASS)〜き電区分所(SP)間のき電回路のインピーダンス、
CA:き電区分所(SP)付近のA変電所(ASS)側の電車のインピーダンス、
0B:B変電所(BSS)の受電点からみた三相側のインピーダンス、
TB:B変電所(BSS)のき電用変圧器の漏れインピーダンス、
FB:B変電所(BSS)〜き電区分所(SP)間のき電回路のインピーダンス、
CB:き電区分所(SP)付近のB変電所(BSS)側の電車のインピーダンス、
として求め、
予測電流値Iは、電源Aのき電線と電源Bのき電線との間の電圧差Vsを基に、
I=Vs/Z、
で求めることを特徴とする請求項1から6のいずれかに記載のき電制御装置。
When determining the network impedance Z between the feeder line of the power source A and the feeder line of the power source B,
Z = [Z CA × (Z 0A + Z TA + Z FA) / (Z 0A + Z TA + Z FA + Z CA)]
+ [Z CB × (Z 0B + Z TB + Z FB) / (Z 0B + Z TB + Z FB + Z CB)],
here,
Z 0A : Impedance on the three-phase side as seen from the A substation (ASS) receiving point,
Z TA : Leakage impedance of feeding transformer of A substation (ASS),
Z FA : impedance of feeder circuit between A substation (ASS) and feeder section (SP),
Z CA : Impedance of the train near the A substation (ASS) near the feeder section (SP),
Z 0B : Impedance on the three-phase side viewed from the receiving point of B substation (BSS),
Z TB : Leakage impedance of feeder transformer of B substation (BSS),
Z FB : impedance of feeder circuit between B substation (BSS) and feeder section (SP),
ZCB : Impedance of the train on the B substation (BSS) side near the feeder section (SP),
As sought
The predicted current value I is based on the voltage difference Vs between the feeder line of the power source A and the feeder line of the power source B.
I = Vs / Z,
The feeding control device according to claim 1, wherein the feeding control device is obtained by:
前記き電区分所の電源Aのき電線には単巻変圧器AT1が、電源Bのき電線には単巻変圧器AT3が設けられ、さらに対向する回線側にも電源Aのき電線に単巻変圧器AT2が、電源Bのき電線に単巻変圧器AT4が設けられている場合に、
前記単巻変圧器AT1の吸上げ電流IAT1と、前記単巻変圧器AT2の吸上げ電流IAT2と、前記単巻変圧器AT3の吸上げ電流IAT3と、前記単巻変圧器AT4の吸上げ電流IAT4と、電源Aのき電線の電圧VSPAと、電源Bのき電線の電圧VSPBと測定し、
前記A変電所(ASS)側の電車インピーダンスZCAを、
CA=0.92×VSPA/(IAT1+IAT2)、
で求め、
前記B変電所(BSS)側の電車インピーダンスZCBを、
CB=0.92×VSPB/(IAT3+IAT4)、
で求めること
を特徴とする請求項7に記載のき電制御装置。
A power transformer A1 is provided for the feeder line of the power source A in the feeder section, a transformer A3 is provided for the feeder line of the power source B, and the feeder line of the power source A is also provided on the opposite line side. When the winding transformer AT2 is provided with the winding transformer AT4 on the feeder line of the power source B,
Wherein the wicking current I AT1 autotransformer AT1, wherein the wicking current I AT2 of autotransformer AT2, wherein the wicking current I AT3 of autotransformer AT3, absorption of the autotransformer AT4 Measure the rising current IAT4 , the voltage V SPA of the power supply A feeder line, and the voltage V SPB of the power supply B feeder line,
The train impedance Z CA on the A substation (ASS) side is
Z CA = 0.92 × V SPA / (I AT1 + I AT2 ),
In
Train impedance Z CB on the B substation (BSS) side,
Z CB = 0.92 × V SPB / (I AT3 + I AT4 ),
The feeding control device according to claim 7, wherein
前記き電区分所の電源Aのき電線には単巻変圧器AT1が、電源Bのき電線には単巻変圧器AT3が設けられ、さらに対向する回線側にも電源Aのき電線に単巻変圧器AT2が、電源Bのき電線には単巻変圧器AT4が設けられている場合に、
前記単巻変圧器AT1の吸上げ電流IAT1と、前記単巻変圧器AT2の吸上げ電流IAT2と、前記単巻変圧器AT3の吸上げ電流IAT3と、前記単巻変圧器AT4の吸上げ電流IAT4とを測定し、
前記基準電流値Isを、
Is=[Z×(IAT1+2)−Z(IAT3+4)]/[0.92×(Z+Z)]、
ここで、
=(Z0A+ZTA+ZFA)、
=(Z0B+ZTB+ZFB)、
AT1+2=(IAT1+IAT2)、
AT3+4=(IAT3+IAT4)、
として求めることを特徴とする請求項7または請求項8に記載のき電制御装置。
A power transformer A1 is provided for the feeder line of the power source A in the feeder section, a transformer A3 is provided for the feeder line of the power source B, and the feeder line of the power source A is also provided on the opposite line side. When the winding transformer AT2 is provided with the winding transformer AT4 in the feeder line of the power source B,
Wherein the wicking current I AT1 autotransformer AT1, wherein the wicking current I AT2 of autotransformer AT2, wherein the wicking current I AT3 of autotransformer AT3, absorption of the autotransformer AT4 Measure the raised current IAT4 ,
The reference current value Is is
Is = [Z A × (I AT1 + 2 ) −Z B (I AT3 + 4 )] / [0.92 × (Z A + Z B )],
here,
Z A = (Z 0A + Z TA + Z FA ),
Z B = (Z 0B + Z TB + Z FB ),
I AT1 + 2 = (I AT1 + I AT2 ),
I AT3 + 4 = (I AT3 + I AT4 ),
The feeding control device according to claim 7, wherein the feeding control device is obtained as follows.
AT交流き電方式を用いた交流電気鉄道のA変電所(ASS)の電源Aのき電線と、前記A変電所(ASS)とは異なるB変電所(BSS)の電源Bのき電線との間のき電区分所(SP)に設けられる切替セクションにおいて、前記両き電線と絶縁して設けられた中間セクションに対し、前記電源Aのき電線と前記中間セクションとを接続又は開放するための第1の切替開閉器と、前記電源Bのき電線と前記中間セクションとを接続又は開放するための第2の切替開閉器とを制御するためのき電制御装置におけるき電切替方法であって、
前記き電制御装置内の制御部により、
前記切替セクションにおいて、少なくとも前記電源Aのき電線の電圧と前記電源Bのき電線の電圧を含む所定の部分の電圧および電流を測定するための測定手順と、
前記き電区分所(SP)の、前記電源Aのき電線と前記電源Bのき電線との間から見た回路網インピーダンスを算出する回路網インピーダンス算出手順と、
前記測定手順により測定した前記電源Aのき電線と前記電源Bのき電線との間の電圧差と前記回路網インピーダンスを基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を並列投入した場合に、前記第2の切替開閉器に流れる予測電流値Iを算出する予測電流値算出手順と、
前記予測電流値Iの値を基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことの可否判定を行う並列投入可否判定手順と、
前記並列投入可否判定手順により並列投入が可能と判定された場合に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を所定時間並列投入すると共に、軌道回路(電車位置検出用)から電車の存在の「有」、「無」を示す検出信号の供給を受け制御している前記第2の切替開閉器を「切」に戻す切替開閉器制御手順と、
が行われることを特徴とするき電切替方法。
A power source A feeder line of an A substation (ASS) of an AC electric railway using an AT AC feeder system and a power source B feeder wire of a B substation (BSS) different from the A substation (ASS) In a switching section provided in a power distribution section (SP), for connecting or opening the power supply A and the intermediate section to or from the intermediate section provided insulated from the both power lines. A feeding switching method in a feeding control device for controlling a first switching switch and a second switching switch for connecting or opening the feeder line of the power source B and the intermediate section. ,
By the control unit in the feeding control device,
In the switching section, a measurement procedure for measuring voltage and current of a predetermined portion including at least the voltage of the feeder line of the power source A and the voltage of the feeder line of the power source B;
A network impedance calculation procedure for calculating a network impedance seen from between the feeder line of the power source A and the feeder line of the power source B of the feeder section (SP);
Based on the voltage difference between the feeder line of the power source A and the feeder line of the power source B and the network impedance measured by the measurement procedure, the first switching switch is in the “ON” state. A predicted current value calculating procedure for calculating a predicted current value I flowing through the second switching switch when two switching switches are connected in parallel;
Based on the value of the predicted current value I, the parallel switching availability determination procedure for determining whether or not the second switching switch can be switched in parallel when the first switching switch is in the “ON” state;
When it is determined that parallel charging is possible according to the parallel switching availability determination procedure, the second switching switch is switched on in parallel for a predetermined time while the first switching switch is in the “ON” state, and a track circuit ( A switching switch control procedure for returning the second switching switch that is controlled by receiving a supply of a detection signal indicating “present” or “absent” of the presence of a train from “for train position detection”;
Switching method, characterized in that is performed.
前記電源Aのき電線と前記電源Bのき電線との間に電圧差および位相差がないと仮定し、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器を並列投入したと仮定した場合に、
前記第2の切替開閉器に流れる電流を前記回路網インピーダンスを基に算出し、該算出した電流値を基準電流値Isとする基準電流値算出手順と、
前記予測電流値Iと前記基準電流値Isを基に、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことの可否判定を行う並列投入可否判定手順と、
を含むことを特徴とする請求項10に記載のき電切替方法。
Assuming that there is no voltage difference and phase difference between the feeder line of the power source A and the feeder line of the power source B, the second switching switch is turned on when the first switching switch is in the “on” state. Assuming that they were put in parallel,
A reference current value calculation procedure for calculating a current flowing through the second switching switch based on the network impedance and using the calculated current value as a reference current value Is;
Based on the predicted current value I and the reference current value Is, it is determined whether or not the parallel switching can be performed to determine whether or not the second switching switch can be switched in parallel when the first switching switch is “ON”. Judgment procedure;
The feeding switching method according to claim 10, further comprising:
前記予測電流値Iが所定の閾値α1よりも小さく、かつ、前記予測電流値Iと前記基準電流値Isとの差が所定の閾値α2よりも小さい場合にのみ、前記第1の切替開閉器が「入」の状態で前記第2の切替開閉器の並列投入を行うことを可能と判定する並列投入可否判定手順を
含むことを特徴とする請求項11に記載のき電切替方法。
Only when the predicted current value I is smaller than the predetermined threshold value α1 and the difference between the predicted current value I and the reference current value Is is smaller than the predetermined threshold value α2, the first switching switch is The feeding switching method according to claim 11, further comprising a parallel switching permission / inhibition determination procedure for determining that the second switching switch can be switched in parallel in the “ON” state.
前記並列投入可否判定手段により前記第2の切替開閉器の並列投入が不可と判定された場合には、
前記第1の切替開閉器と前記第2の切替開閉器の両方を「切」にして前記中間セクションを一時停電させ、その後に前記第2の切替開閉器を「入」にすることにより、電車に給電するき電線を前記電源Aのき電線から前記電源Bのき電線へ切替える手順を
含むことを特徴とする請求項10から12のいずれかに記載のき電切替方法。
When the parallel switching availability determination means determines that the parallel switching of the second switching switch is impossible,
By turning off both the first switching switch and the second switching switch to temporarily interrupt the intermediate section, and then turning on the second switching switch, The feeder switching method according to any one of claims 10 to 12, further comprising a step of switching a feeder to be fed to the feeder from the feeder of the power source A to the feeder of the power source B.
JP2007059102A 2007-03-08 2007-03-08 Feeding control device and feeding switching method Expired - Fee Related JP4913637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059102A JP4913637B2 (en) 2007-03-08 2007-03-08 Feeding control device and feeding switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059102A JP4913637B2 (en) 2007-03-08 2007-03-08 Feeding control device and feeding switching method

Publications (2)

Publication Number Publication Date
JP2008221898A true JP2008221898A (en) 2008-09-25
JP4913637B2 JP4913637B2 (en) 2012-04-11

Family

ID=39841020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059102A Expired - Fee Related JP4913637B2 (en) 2007-03-08 2007-03-08 Feeding control device and feeding switching method

Country Status (1)

Country Link
JP (1) JP4913637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343835A (en) * 2011-07-13 2012-02-08 北京兰德迅捷科技有限公司 Method for realizing electric auto-passing neutral section of train by utilizing power electronic switching device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172833A (en) * 1981-04-17 1982-10-23 Meidensha Electric Mfg Co Ltd Current supply method for ac operated railway
JPS58152628A (en) * 1982-03-05 1983-09-10 Toshiba Corp Power source switching device
JPS62157833A (en) * 1985-12-28 1987-07-13 Toshiba Corp Feeder for alternating current electrified electric railroad
JPH05270303A (en) * 1992-03-27 1993-10-19 Railway Technical Res Inst Protective relay
JP2000203316A (en) * 1999-01-11 2000-07-25 Central Japan Railway Co Feeder switching control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172833A (en) * 1981-04-17 1982-10-23 Meidensha Electric Mfg Co Ltd Current supply method for ac operated railway
JPS58152628A (en) * 1982-03-05 1983-09-10 Toshiba Corp Power source switching device
JPS62157833A (en) * 1985-12-28 1987-07-13 Toshiba Corp Feeder for alternating current electrified electric railroad
JPH05270303A (en) * 1992-03-27 1993-10-19 Railway Technical Res Inst Protective relay
JP2000203316A (en) * 1999-01-11 2000-07-25 Central Japan Railway Co Feeder switching control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343835A (en) * 2011-07-13 2012-02-08 北京兰德迅捷科技有限公司 Method for realizing electric auto-passing neutral section of train by utilizing power electronic switching device

Also Published As

Publication number Publication date
JP4913637B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4653238B2 (en) Delta I ground fault protection relay system for DC traction power supply system and control method thereof
CN106664008B (en) Method for the auxiliary operation current transformer in parallel in running track vehicle
JP6299920B1 (en) DC ground fault detection system and DC ground fault detection method for DC electric railway
US11766954B2 (en) Control method and system of neutral section passing of multi-locomotive short broke trains
US9660435B2 (en) Multi-directional electrical power protection system
CN101771269A (en) Directional zone select interlock method
JP4396606B2 (en) Alternating power supply switching facility for AC electric railway
CN102253308B (en) Method for determining asymmetric short circuit fault of long stator according to negative sequence voltage
KR20170070889A (en) Device for preventing a reverse current of the DC-DC converter of vehicle and method thereof
JP6003949B2 (en) AC electric vehicle power supply equipment
CA2815464C (en) Inrush current suppressing device
JP4260779B2 (en) Arc suppression system and method for booster section
JP2009190641A (en) Control method of switch in alternating-current electric railway
KR100694279B1 (en) Ground fault protective relaying method using distance relay in traction power supply system
JP2000203316A (en) Feeder switching control device
JP4718407B2 (en) Section section overhead wire cutting prevention device
JP4913637B2 (en) Feeding control device and feeding switching method
JP2012188009A (en) Method and device for detecting breakage of rail
JP2018036054A (en) Earth detector, ground fault protection device, and method for detecting ground fault
JP5416910B2 (en) Method and apparatus for calculating current passing through parallel connection point of different power sources
WO2005119871A1 (en) Directionnal and differential ground fault protective relay system for ungrounded dc traction power feed system and ground fault protective relay apparatus for detecting ground fault current
JPH08205377A (en) Protective device for feeding equipment
JP2005119519A (en) Position/current detecting device of electric vehicle
CN112238793A (en) Phase detection during passage through a separate point in a rail vehicle current supply device
CN110293846B (en) Method and system for controlling train alternating current bus contactor and train

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees