JP2008221875A - Ventilation duct for spacecraft - Google Patents

Ventilation duct for spacecraft Download PDF

Info

Publication number
JP2008221875A
JP2008221875A JP2007058656A JP2007058656A JP2008221875A JP 2008221875 A JP2008221875 A JP 2008221875A JP 2007058656 A JP2007058656 A JP 2007058656A JP 2007058656 A JP2007058656 A JP 2007058656A JP 2008221875 A JP2008221875 A JP 2008221875A
Authority
JP
Japan
Prior art keywords
lid
shielding plate
radiation shielding
spacecraft
structure panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007058656A
Other languages
Japanese (ja)
Inventor
Shiro Sakata
詞郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007058656A priority Critical patent/JP2008221875A/en
Publication of JP2008221875A publication Critical patent/JP2008221875A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ventilation duct capable of shutting out the heat inputted from the outside on an orbit and functioning as a heat radiation face while ensuring an air vent flow passage when reducing pressure of a spacecraft and launching it. <P>SOLUTION: This ventilation duct for the spacecraft is provided with a structural body panel 4 provided with a through-hole 5 passing through the inside and the outside of the spacecraft, a lid 1 attached to the outside of the structural body panel 4 to cover the through hole 5 while forming a clearance between the structural body panel 4 and it, and a radiation shielding plate provided in the clearance between the structural body panel 4 and the lid 1 to surround the through hole 5 and form the air ventilation flow passage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、人工衛星や探査機等の宇宙機を打上げる際の、減圧時の空気抜け流路を確保する宇宙機用通気ダクトに関するものである。   The present invention relates to a spacecraft ventilation duct that secures an air escape passage during decompression when launching a spacecraft such as an artificial satellite or a spacecraft.

従来の技術として、宇宙機構体パネルの貫通穴を囲むように、構体パネルの外側に中空ブラケットを設けた通気ダクトが知られている。この通気ダクトは、構体パネル内側の貫通穴の周囲に、シェルと断熱シートにより構成された遮光BOXが取り付けられている( 例えば、特許文献1参照)。   As a conventional technique, there is known a ventilation duct in which a hollow bracket is provided on the outside of a structure panel so as to surround a through hole of a space mechanism panel. In this ventilation duct, a light shielding BOX composed of a shell and a heat insulating sheet is attached around a through hole inside the structure panel (see, for example, Patent Document 1).

特開2005−59770号公報(図5)Japanese Patent Laying-Open No. 2005-59770 (FIG. 5)

最近、宇宙機の高機能化に伴い搭載機器の発熱量が増加している。排熱性能を維持するためには、宇宙機構体パネル上での放熱面の面積確保が重要な課題となっている。従来の排気ダクトは外部からの熱入力に対する遮断効果は有しているものの、放熱面としての排熱性能は有していない。このため、構体パネルの放熱面に通気ダクトを設置することによって、その放熱面積が減少し、排熱能力が低下するという問題があった。   In recent years, the amount of heat generated by onboard equipment has increased with the advancement of spacecraft functionality. In order to maintain the exhaust heat performance, securing the area of the heat radiation surface on the spacecraft panel is an important issue. Although the conventional exhaust duct has a shielding effect against heat input from the outside, it does not have exhaust heat performance as a heat radiating surface. For this reason, by installing a ventilation duct on the heat radiating surface of the structure panel, there is a problem that the heat radiating area is reduced and the heat exhausting ability is lowered.

この発明は、宇宙機打上げ減圧時の空気抜け流路を確保しつつ、軌道上において外部からの熱入力を遮断し、さらには放熱面としても機能させることが出来る通気ダクトを得ることを目的としている。   An object of the present invention is to obtain a ventilation duct that can shut off heat input from the outside on an orbit and can also function as a heat radiating surface while ensuring an air escape passage when a spacecraft is launched and decompressed. Yes.

この発明による宇宙機用通気ダクトは、宇宙機の内外を貫通する貫通穴の設けられた構体パネルと、上記構体パネルとの間に間隙を有して、上記貫通穴を覆うように上記構体パネルの外部に取り付けられた蓋と、上記蓋と構体パネルの間隙に設けられ、上記貫通穴の周囲を囲む輻射遮蔽板と、を備え、上記輻射遮蔽板に、上記宇宙機の外部と貫通穴の間を連通する通気口が設けられたものである。   The spacecraft ventilation duct according to the present invention includes a structure panel provided with a through-hole penetrating the inside and outside of the spacecraft, and the structure panel having a gap between the structure panel and covering the through-hole. And a radiation shielding plate that is provided in a gap between the lid and the structure panel and surrounds the periphery of the through hole, and the radiation shielding plate has an opening between the outside of the spacecraft and the through hole. Ventilation holes that communicate with each other are provided.

この発明によれば、宇宙機打上げ減圧時の空気抜け流路を確保しつつ、軌道上において外部からの熱入力を遮断するとともに、貫通穴の形成に伴う放熱面積の減少を低減した宇宙機用通気ダクトを得ることができる。   According to the present invention, for a spacecraft that secures an air escape passage at the time of spacecraft launch depressurization, blocks heat input from the outside in orbit, and reduces a reduction in heat radiation area due to formation of a through hole. A ventilation duct can be obtained.

実施の形態1.
図1はこの発明に係る実施の形態1による通気ダクトの構造を示す図であり、(a)は正面図、(b)は側面図である。図2は図1のAA断面図である。通気ダクトは、蓋1と、蓋側の輻射遮蔽板2と、構体パネル側の輻射遮蔽板3と、宇宙機の構体パネル4と、構体パネル4上に開けられた貫通穴5により形成される通気路から構成される。構体パネル4は宇宙機の構体を形成し、図1には構体パネルの放熱面部を図示している。また、貫通穴5は構体パネル4の放熱面部に形成され、構体パネル4を貫通して内外を通気している。蓋側の輻射遮蔽板2と構体パネル側の輻射遮蔽板3とは輻射遮蔽板を構成する。
Embodiment 1 FIG.
1A and 1B are views showing the structure of a ventilation duct according to Embodiment 1 of the present invention. FIG. 1A is a front view, and FIG. 1B is a side view. 2 is a cross-sectional view taken along the line AA in FIG. The ventilation duct is formed by a lid 1, a radiation shielding plate 2 on the lid side, a radiation shielding plate 3 on the structure panel side, a structure panel 4 of a spacecraft, and a through hole 5 opened on the structure panel 4. Consists of air passages. The structure panel 4 forms a structure of a spacecraft, and FIG. 1 illustrates a heat radiation surface portion of the structure panel. The through hole 5 is formed in the heat radiating surface portion of the structure panel 4 and penetrates the structure panel 4 to ventilate the inside and outside. The radiation shielding plate 2 on the lid side and the radiation shielding plate 3 on the structure panel side constitute a radiation shielding plate.

蓋1は構体パネル4の放熱面部から所定の距離離れて配置されている。蓋1は円板形状を成し、蓋1における構体パネル4と対向した面(内面側)に、環状に蓋側の輻射遮蔽板2が取り付けられている。図1の例では、蓋1と蓋側の輻射遮蔽板2とで、構体パネル4側が開口した円筒形状を成している。貫通穴5の周囲には、環状に構体パネル側の輻射遮蔽板3が取り付けられている。図1の例では、構体パネル側の輻射遮蔽板3は、蓋1の側が開口した円筒形状を成している。構体パネル側の輻射遮蔽板3は蓋1を取り付けるためのステー機構(延長部材)を備えている。これによって、蓋1が構体パネル4から浮いた状態で取り付けられ、貫通穴5から蓋1までの間の通気路が形成される。また、構体パネル側の輻射遮蔽板3の外径よりも蓋側の輻射遮蔽板2の外径の方が、大きくなっている。これによって、蓋側の輻射遮蔽板2と構体パネル側の輻射遮蔽板3の間に、宇宙機構体内部から吐出される空気を排気する通気口が形成される。   The lid 1 is disposed at a predetermined distance from the heat radiation surface portion of the structure panel 4. The lid 1 has a disc shape, and a radiation shielding plate 2 on the lid side is attached to the surface (inner surface side) of the lid 1 facing the structure panel 4. In the example of FIG. 1, the lid 1 and the radiation shielding plate 2 on the lid side form a cylindrical shape with an opening on the structure panel 4 side. Around the through hole 5, a radiation shielding plate 3 on the structure panel side is attached in a ring shape. In the example of FIG. 1, the radiation shielding plate 3 on the structure panel side has a cylindrical shape with an opening on the lid 1 side. The radiation shielding plate 3 on the structure panel side includes a stay mechanism (extension member) for attaching the lid 1. As a result, the lid 1 is attached in a state of floating from the structure panel 4, and a ventilation path from the through hole 5 to the lid 1 is formed. Further, the outer diameter of the radiation shielding plate 2 on the lid side is larger than the outer diameter of the radiation shielding plate 3 on the structure panel side. As a result, a vent for exhausting air discharged from the space mechanism body is formed between the radiation shielding plate 2 on the lid side and the radiation shielding plate 3 on the structure panel side.

このように構成された通気ダクトは、衛星打上げ時に衛星内部の気圧に対して、衛星外部の気圧が減少し、衛星の内部と外部の間に気圧差が生じた際、この気圧差を減少させるように衛星内部の空気を衛星外部に排気する空気抜け流路として機能する。図2はこの空気抜け流路としての通気路を示したものである。図に示すように、衛星打上げ時に、衛星内部の空気は図の矢印に沿って衛星外部に排気される。   The air duct configured in this way reduces the pressure difference when the pressure outside the satellite decreases with respect to the pressure inside the satellite when the satellite is launched, and when a pressure difference occurs between the inside and outside of the satellite. Thus, it functions as an air vent channel for exhausting the air inside the satellite to the outside of the satellite. FIG. 2 shows an air passage as the air escape passage. As shown in the figure, when the satellite is launched, the air inside the satellite is exhausted outside the satellite along the arrow in the figure.

この空気流路において、可動部は存在しないため、確実で信頼性の高い空気流路と熱制御性能を期待することができる。   Since there are no moving parts in this air flow path, a reliable and highly reliable air flow path and thermal control performance can be expected.

ここで、熱制御機能として、熱の遮蔽効果について説明する。
図において、外形寸法を、蓋1の取付け高さ(構体パネル4の外表面から蓋1の外表面までの距離)h 、蓋側の輻射遮蔽板2の取付け高さ(蓋側の輻射遮蔽板2の幅)a、構体パネル側の輻射遮蔽板3の取付け高さ(構体パネル側の輻射遮蔽板3の幅)bと記載している。この実施の形態1では、蓋取付け高さh≦蓋側の輻射遮蔽板2の取付け高さa+構体パネル側の輻射遮蔽板3の取付け高さbとなるように寸法設定している。このため、構体パネル4に対する軌道上での外部熱入力の最小仰角が0 °の場合において、外部熱入力の構体内部への入射を確実に遮蔽することができる。また、蓋1の内側面に赤外線を吸収する表面処理が施されていることから、外部熱入力が構体パネル4の外表面で反射しても、反射熱が蓋1の内側面で吸収されるので、貫通孔5に反射されることはない。
Here, the heat shielding effect will be described as the heat control function.
In the figure, the external dimensions are the mounting height of the lid 1 (distance from the outer surface of the structure panel 4 to the outer surface of the lid 1) h, the mounting height of the radiation shielding plate 2 on the lid side (radiation shielding plate on the lid side) 2) a, and the mounting height of the radiation shielding plate 3 on the structure panel side (width of the radiation shielding plate 3 on the structure panel side) b. In the first embodiment, the dimensions are set so that the lid mounting height h ≦ the mounting height a of the radiation shielding plate 2 on the lid side + the mounting height b of the radiation shielding plate 3 on the structure panel side. For this reason, when the minimum elevation angle of the external heat input on the orbit with respect to the structure panel 4 is 0 °, the external heat input can be reliably shielded from entering the structure. In addition, since the inner surface of the lid 1 is subjected to a surface treatment that absorbs infrared rays, the reflected heat is absorbed by the inner surface of the lid 1 even if external heat input is reflected by the outer surface of the structure panel 4. Therefore, it is not reflected by the through hole 5.

次に、放熱特性について説明する。蓋1、蓋側の輻射遮蔽板2、構体パネル側の輻射遮蔽板3の外部側、内部側の表面光学特性は、構体パネル4の外部側、内部側の表面光学特性と同じ、または同等となるよう表面処理することにより、蓋1、蓋側の輻射遮蔽板2、構体パネル側の輻射遮蔽板3は宇宙機の放熱面として機能する。   Next, heat dissipation characteristics will be described. The surface optical characteristics of the outer side and the inner side of the lid 1, the radiation shielding plate 2 on the lid side, and the radiation shielding plate 3 on the structure panel side are the same as or equivalent to the surface optical characteristics of the outer side and the inner side of the structure panel 4. By performing the surface treatment, the lid 1, the radiation shielding plate 2 on the lid side, and the radiation shielding plate 3 on the structure panel side function as a heat radiation surface of the spacecraft.

図3は蓋1の表面の部分断面図である。図において、蓋1はアルミ合金16で形成される。蓋1の外側表面には、銀蒸着テープ11が貼り付けられている。銀蒸着テープ11は、銀14を内側に蒸着したフッ素樹脂系合成樹脂のテフロン(登録商標)13と、銀14の内側に付着された接着剤15とから成る。蓋1の内側には黒色塗装17が施されている。なお、各輻射遮蔽板の表面についても、外部表面と内部表面とが同様の構成をなしているので、ここでは説明を省く。   FIG. 3 is a partial cross-sectional view of the surface of the lid 1. In the figure, the lid 1 is made of an aluminum alloy 16. A silver vapor-deposited tape 11 is attached to the outer surface of the lid 1. The silver vapor-deposited tape 11 includes a fluororesin-based synthetic resin Teflon (registered trademark) 13 having silver 14 deposited on the inside and an adhesive 15 attached to the inside of the silver 14. A black paint 17 is applied to the inside of the lid 1. In addition, also about the surface of each radiation shielding board, since the external surface and the internal surface have comprised the same structure, description is abbreviate | omitted here.

ここで、銀蒸着テープ11は、赤外放射率εが高く且つ太陽光を透過する特性をもったテフロン(登録商標)13に、太陽光吸収率αの低い銀14を蒸着したものである。テフロン(登録商標)の厚みや経年変化等によるが、一般にα≦0.01、ε≧0.75となる。太陽光はテフロン(登録商標)13を通過するが、銀14により反射され、再びテフロン(登録商標)13を通過して宇宙空間に戻っていく。このため、その熱は吸収されない。これに対し、構体内部で発生する熱は蓋1の内側面における黒色塗装面に輻射結合し吸収される。この蓋1の内側面に吸収された熱は、蓋1の母材であるアルミ合金16の熱伝導により外側面のテフロン(登録商標)13に伝わる。そこからテフロン(登録商標)13の特性により、宇宙空間に赤外領域の熱エネルギーとして放射されることとなる。すなわち、貫通穴5を通じて放射される熱は蓋1の内側表面に輻射結合し、蓋1の内部を熱伝導して、蓋1の外側表面から外部の宇宙空間に放熱される。   Here, the silver vapor-deposited tape 11 is obtained by vapor-depositing silver 14 having a low solar absorptance α on Teflon (registered trademark) 13 having a high infrared emissivity ε and a characteristic of transmitting sunlight. In general, α ≦ 0.01 and ε ≧ 0.75 depending on the thickness of Teflon (registered trademark), aging, and the like. Sunlight passes through Teflon (registered trademark) 13, but is reflected by silver 14 and again passes through Teflon (registered trademark) 13 to return to outer space. For this reason, the heat is not absorbed. On the other hand, the heat generated inside the structure is radiatively coupled to the black painted surface on the inner surface of the lid 1 and absorbed. The heat absorbed by the inner surface of the lid 1 is transmitted to the Teflon (registered trademark) 13 on the outer surface by the heat conduction of the aluminum alloy 16 which is the base material of the lid 1. From there, due to the characteristics of Teflon (registered trademark) 13, it is radiated as thermal energy in the infrared region into outer space. That is, the heat radiated through the through hole 5 is radiatively coupled to the inner surface of the lid 1, conducts heat inside the lid 1, and is radiated from the outer surface of the lid 1 to the outer space.

なお、銀蒸着テープ11の他に、放熱面としては、白色塗装(材料特性としてαが低くεが高いが太陽照射によりα値が劣化し高くなるもの)や、OSR(Otical soler reflector;テフロン(登録商標)の変わりに石英を用いたもの)等を用いても良い。また、蓋1の材料としては、アルミハニカムパネルやCFRPハニカムパネル等を用いても良く、特にCFRPの場合は黒色塗装が不要となる。   In addition to the silver vapor-deposited tape 11, the heat-dissipating surface may be white paint (having a low α and high ε as a material property, but the α value deteriorates and becomes high by solar irradiation), OSR (Otical soler reflector; Teflon ( Instead of (registered trademark), quartz may be used). Further, as the material of the lid 1, an aluminum honeycomb panel, a CFRP honeycomb panel, or the like may be used. In particular, in the case of CFRP, black coating is not necessary.

実施の形態2.
図4はこの発明に係る実施の形態2の構成を示す図であり、宇宙機の構体パネル4の外側表面には、多層断熱シート6が取り付けされている。また、蓋1、蓋側の輻射遮蔽板2、および構体パネル側の輻射遮蔽板3の外側表面には多層断熱シート6が取り付けされている。なお、その他の構成については実施の形態1と同じものを示す。
Embodiment 2. FIG.
FIG. 4 is a diagram showing the configuration of the second embodiment according to the present invention, and a multilayer heat insulating sheet 6 is attached to the outer surface of the structure panel 4 of the spacecraft. A multilayer heat insulating sheet 6 is attached to the outer surface of the lid 1, the radiation shielding plate 2 on the lid side, and the radiation shielding plate 3 on the structure panel side. Other configurations are the same as those in the first embodiment.

この実施の形態では、蓋1、蓋側の輻射遮蔽板2、構体パネル側の輻射遮蔽板3の外部側に多層断熱シート7を取り付けることにより、多層断熱シートを取り付けた構体パネル4と同じ断熱機能を有することができる。   In this embodiment, the same heat insulation as that of the structure panel 4 to which the multilayer heat insulation sheet is attached is provided by attaching the multilayer heat insulation sheet 7 to the outside of the cover 1, the radiation shield plate 2 on the cover side, and the radiation shield plate 3 on the structure panel side. Can have functions.

実施の形態3.
図5はこの発明の形態3を示す図であり、上記実施の形態1または2において蓋側の輻射遮蔽板2がない形態である。上記実施の形態1または2による蓋側の輻射遮蔽板2がない代わりに、蓋1と構体側の輻射遮蔽板3との間に間隙を形成するように、構体側の輻射遮蔽板3に蓋取付け用ステー8を設置している。
Embodiment 3 FIG.
FIG. 5 is a diagram showing a third embodiment of the present invention, in which the lid-side radiation shielding plate 2 is not provided in the first or second embodiment. Instead of the cover-side radiation shielding plate 2 according to the first or second embodiment, the structure-side radiation shielding plate 3 is covered with a lid so that a gap is formed between the cover 1 and the structure-side radiation shielding plate 3. A mounting stay 8 is provided.

この実施の形態では、宇宙機の構体パネル4に対する軌道上での外部熱入力の最小仰角が0 °以上の場合において、外部熱入力の構体内部への入射を遮蔽することができる。また、蓋1および構体側の輻射遮蔽板3の内側面に赤外線を吸収する表面処理が施されていることから、外部熱入力が構体パネル4の外表面で反射しても、蓋1および構体側の輻射遮蔽板3の内側面で反射熱が吸収されるので、貫通孔5に反射されることはない。   In this embodiment, when the minimum elevation angle of the external heat input on the orbit with respect to the structure panel 4 of the spacecraft is 0 ° or more, it is possible to shield the external heat input from entering the structure. Further, since the inner surface of the lid 1 and the radiation shielding plate 3 on the structure side is subjected to a surface treatment that absorbs infrared rays, the lid 1 and the structure even if external heat input is reflected on the outer surface of the structure panel 4. The reflected heat is absorbed by the inner side surface of the radiation shielding plate 3 on the side, so that it is not reflected by the through hole 5.

実施の形態4.
図6はこの発明の形態4 を示す図であり、宇宙機の構体パネル4における貫通孔5の周囲には、蓋取付け用ステー8が設けられている。上記実施の形態1または2による構体側の輻射遮蔽板5がなく、その代わりに、蓋1および蓋側の輻射遮蔽板2と、構体パネル4との間に間隙を形成するように、蓋取付け用ステー8を設置している。
Embodiment 4 FIG.
FIG. 6 is a view showing Embodiment 4 of the present invention, and a lid mounting stay 8 is provided around the through hole 5 in the structure panel 4 of the spacecraft. There is no structure-side radiation shielding plate 5 according to the first or second embodiment. Instead, the lid is attached so that a gap is formed between the cover 1 and the radiation shielding plate 2 on the lid side and the structure panel 4. A stay 8 is installed.

この実施の形態では、宇宙機構体パネル4または6に対する軌道上での外部熱入力の最小仰角が0 °以上の場合において、外部熱入力の構体内部への入射を遮蔽することができる。また、蓋1の内側面に赤外線を吸収する表面処理が施されていることから、外部熱入力が構体パネル4の外表面で反射しても、大部分の反射熱が蓋1の内側面で吸収されるので、貫通孔5に反射される熱を低減することができる。   In this embodiment, when the minimum elevation angle of the external heat input on the orbit for the spacecraft panel 4 or 6 is 0 ° or more, the external heat input can be shielded from entering the structure. In addition, since the inner surface of the lid 1 is subjected to a surface treatment that absorbs infrared rays, even if external heat input is reflected on the outer surface of the structure panel 4, most of the reflected heat is reflected on the inner surface of the lid 1. Since it is absorbed, the heat reflected by the through-hole 5 can be reduced.

実施の形態5.
図7 はこの発明の形態5 を示す図であり、上記実施の形態4において蓋側の輻射遮蔽板2がない形態である。
Embodiment 5. FIG.
FIG. 7 is a diagram showing a fifth embodiment of the present invention, in which the lid side radiation shielding plate 2 is not provided in the fourth embodiment.

この実施の形態では、宇宙機構体パネル4または6に対する軌道上での外部熱入力の最小仰角が0 °以上の場合において、外部熱入力の構体内部への入射を遮蔽することができる。また、蓋1の内側面に赤外線を吸収する表面処理が施されていることから、外部熱入力が構体パネル4の外表面で反射しても、大部分の反射熱が蓋1の内側面で吸収されるので、貫通孔5に反射される熱を低減することができる。   In this embodiment, when the minimum elevation angle of the external heat input on the orbit for the spacecraft panel 4 or 6 is 0 ° or more, the external heat input can be shielded from entering the structure. In addition, since the inner surface of the lid 1 is subjected to a surface treatment that absorbs infrared rays, even if external heat input is reflected on the outer surface of the structure panel 4, most of the reflected heat is reflected on the inner surface of the lid 1. Since it is absorbed, the heat reflected by the through-hole 5 can be reduced.

この発明に係る通気ダクトの実施の形態1を示す図である。It is a figure which shows Embodiment 1 of the ventilation duct which concerns on this invention. 実施の形態1による通気ダクトの断面を示す図である。FIG. 3 is a view showing a cross section of a ventilation duct according to the first embodiment. 実施の形態1による蓋の表面における部分断面図である。4 is a partial cross-sectional view of the surface of the lid according to Embodiment 1. FIG. この発明に係る通気ダクトの実施の形態2を示す図である。It is a figure which shows Embodiment 2 of the ventilation duct which concerns on this invention. この発明に係る通気ダクトの実施の形態3を示す図である。It is a figure which shows Embodiment 3 of the ventilation duct which concerns on this invention. この発明に係る通気ダクトの実施の形態4を示す図である。It is a figure which shows Embodiment 4 of the ventilation duct which concerns on this invention. この発明に係る通気ダクトの実施の形態5を示す図である。It is a figure which shows Embodiment 5 of the ventilation duct which concerns on this invention.

符号の説明Explanation of symbols

1 蓋、2 蓋側の輻射遮蔽板、3 構体パネル側の輻射遮蔽板、4 構体パネル(放熱部)、5 貫通穴、6 多層断熱シート、8 蓋取付け用ステー。   DESCRIPTION OF SYMBOLS 1 Cover, 2 Radiation shielding board on the lid side, 3 Radiation shielding board on the structure panel side, 4 Structure panel (heat radiation part), 5 Through-hole, 6 Multi-layer insulation sheet, 8 Stay for lid attachment.

Claims (5)

宇宙機の内外を貫通する貫通穴の設けられた構体パネルと、
上記構体パネルとの間に間隙を有して、上記貫通穴を覆うように上記構体パネルの外部に取り付けられた蓋と、
上記蓋と構体パネルの間隙に設けられ、上記貫通穴の周囲を囲む輻射遮蔽板と、
を備え、
上記輻射遮蔽板に、上記宇宙機の外部と貫通穴の間を連通する通気口が設けられたことを特徴とする宇宙機用通気ダクト。
A structure panel provided with a through hole penetrating the inside and outside of the spacecraft;
A lid attached to the outside of the structure panel so as to cover the through hole with a gap between the structure panel and
A radiation shielding plate provided in a gap between the lid and the structure panel and surrounding the periphery of the through hole;
With
An air duct for a spacecraft, wherein the radiation shielding plate is provided with a vent opening communicating between the outside of the spacecraft and a through hole.
上記輻射遮蔽板は、上記蓋の構体パネル側の面に環状に取り付けられた蓋側の輻射遮蔽板と、上記構体パネルに環状に取り付けられた構体側の輻射遮蔽板から構成され、
上記蓋側の輻射遮蔽板と上記構体側の輻射遮蔽板は外径が異なり、上記蓋側の輻射遮蔽板と上記構体側の輻射遮蔽板との間隙により通気口を形成することを特徴とする請求項1記載の宇宙機用通気ダクト。
The radiation shielding plate is composed of a lid-side radiation shielding plate attached to the surface of the lid on the structure panel side, and a structure-side radiation shielding plate attached to the structure panel in an annular shape,
The lid-side radiation shielding plate and the structure-side radiation shielding plate have different outer diameters, and a vent is formed by a gap between the lid-side radiation shielding plate and the structure-side radiation shielding plate. The ventilation duct for spacecraft according to claim 1.
上記蓋側の輻射遮蔽板の幅と上記構体側の輻射遮蔽板の幅の和が、上記蓋の外表面と構体パネルの外表面間の距離よりも大きくなるように構成されたことを特徴とする請求項2記載の宇宙機用通気ダクト。 The sum of the width of the radiation shielding plate on the lid side and the width of the radiation shielding plate on the structure side is configured to be larger than the distance between the outer surface of the lid and the outer surface of the structure panel. The ventilation duct for spacecraft according to claim 2. 上記蓋と、上記蓋側の輻射遮蔽板と、上記構体側の輻射遮蔽板の内外表面に、上記構体パネルの内側もしくは外側表面光学特性と同じかもしくは同等の表面処理を施したことを特徴とする請求項2記載の宇宙機用通気ダクト。 The lid, the radiation shielding plate on the lid side, and the inner and outer surfaces of the radiation shielding plate on the structure side are subjected to a surface treatment that is the same or equivalent to the inner or outer surface optical characteristics of the structure panel. The ventilation duct for spacecraft according to claim 2. 上記蓋と、上記蓋側の輻射遮蔽板と、上記構体側の輻射遮蔽板の外側表面に、多層断熱シートを取り付けたことを特徴とする請求項2記載の宇宙機用通気ダクト。 The space duct according to claim 2, wherein a multilayer heat insulating sheet is attached to an outer surface of the lid, the radiation shielding plate on the lid side, and the radiation shielding plate on the structure side.
JP2007058656A 2007-03-08 2007-03-08 Ventilation duct for spacecraft Pending JP2008221875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007058656A JP2008221875A (en) 2007-03-08 2007-03-08 Ventilation duct for spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007058656A JP2008221875A (en) 2007-03-08 2007-03-08 Ventilation duct for spacecraft

Publications (1)

Publication Number Publication Date
JP2008221875A true JP2008221875A (en) 2008-09-25

Family

ID=39841003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007058656A Pending JP2008221875A (en) 2007-03-08 2007-03-08 Ventilation duct for spacecraft

Country Status (1)

Country Link
JP (1) JP2008221875A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029840A1 (en) * 2016-08-10 2018-02-15 株式会社ispace Probe
CN109264027A (en) * 2018-08-13 2019-01-25 北京蓝箭空间科技有限公司 Blanking cover, cargo tank structure and the space launch vehicle of bay section for space launch vehicle
RU2692286C1 (en) * 2018-04-19 2019-06-24 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Non-tight instrument compartment of spacecraft
CN110901964A (en) * 2019-12-31 2020-03-24 航天科工火箭技术有限公司 Load board and satellite adapter device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029840A1 (en) * 2016-08-10 2018-02-15 株式会社ispace Probe
WO2018030368A1 (en) * 2016-08-10 2018-02-15 株式会社ispace Probe, method for manufacturing probe component, and probe manufacturing method
RU2692286C1 (en) * 2018-04-19 2019-06-24 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Non-tight instrument compartment of spacecraft
CN109264027A (en) * 2018-08-13 2019-01-25 北京蓝箭空间科技有限公司 Blanking cover, cargo tank structure and the space launch vehicle of bay section for space launch vehicle
CN109264027B (en) * 2018-08-13 2021-09-14 蓝箭航天空间科技股份有限公司 A blanking cover, cabin section structure and space launch vehicle for cabin section of space launch vehicle
CN110901964A (en) * 2019-12-31 2020-03-24 航天科工火箭技术有限公司 Load board and satellite adapter device
CN110901964B (en) * 2019-12-31 2021-09-07 航天科工火箭技术有限公司 Load board and satellite adapter device

Similar Documents

Publication Publication Date Title
US9352855B2 (en) Heat generating transfer orbit shield
JP2008221875A (en) Ventilation duct for spacecraft
JP3237019B2 (en) Thermal barrier
WO2017169080A1 (en) Heat dissipation device using heat pipe panel
MX2009000466A (en) Wind turbine comprising enclosure structure formed as a faraday cage.
BRPI0807633A2 (en) FUSELING OF AN AIRPLANE OR SPACON AND CORRESPONDING AIRPLANE OR SPACON
US6176453B1 (en) Radiator using thermal control coating
US4847506A (en) Hardening of spacecraft structures against momentary high level radiation exposure using a radiation shield
EP0529776A1 (en) Thermal control and electrostatic discharge laminate
CN111418113A (en) Radome structure, protected radioactive active system and methods of use thereof
WO2002078039A8 (en) Exit window for electron beam emitter
KR101502452B1 (en) EM wave absorber design applicable for the inside of a structure
JP2020195124A (en) Electronic apparatus
KR20170064344A (en) Glass window structure of electromagnetic interference shielding for warship and ship having the same
JP2005163989A (en) Vacuum insulating material and using method of same
JP5915663B2 (en) Satellite with built-in antenna
US20180257758A1 (en) Aircraft having a thermal insulation component
RU2679483C1 (en) Antenna fairing
US20200166288A1 (en) Deployable Heat Radiator System and Method for Small Satellite Applications
US7021776B2 (en) Space navigation optical instrument and contaminant removing method thereof
US4850337A (en) Solar energy apparatus with apertured shield
RU2596859C2 (en) Agent reducing radar visibility of aircraft
JP2005059770A (en) Ventilation duct
JP6471582B2 (en) Electronic device and manufacturing method thereof
KR20160044804A (en) Heating jacket with electromagnetic wave shielding function