WO2018030368A1 - Probe, method for manufacturing probe component, and probe manufacturing method - Google Patents

Probe, method for manufacturing probe component, and probe manufacturing method Download PDF

Info

Publication number
WO2018030368A1
WO2018030368A1 PCT/JP2017/028682 JP2017028682W WO2018030368A1 WO 2018030368 A1 WO2018030368 A1 WO 2018030368A1 JP 2017028682 W JP2017028682 W JP 2017028682W WO 2018030368 A1 WO2018030368 A1 WO 2018030368A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacecraft
camera
housing
probe
plate
Prior art date
Application number
PCT/JP2017/028682
Other languages
French (fr)
Japanese (ja)
Inventor
ジョン ウォーカー
敏郎 清水
利樹 田中
大輔 古友
裕 工藤
清菜 宮本
武史 袴田
貴裕 中村
大士 松倉
モハメド ラガブ
アブデルカデル ハウシン
ダミヤン ハイカル
チイホン ヤン
Original Assignee
株式会社ispace
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ispace filed Critical 株式会社ispace
Publication of WO2018030368A1 publication Critical patent/WO2018030368A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/16Extraterrestrial cars
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00

Definitions

  • the present disclosure relates to a probe, a method of manufacturing a probe component, and a probe manufacturing method.
  • Spacecraft used for lunar or planetary exploration activities are known.
  • a spacecraft there is a space exploration vehicle that can travel on the moon surface or on the planet (refer to Japanese Patent Application Laid-Open No. 2010-132261), and a US Mars rover is known.
  • a spacecraft is a travelable spacecraft, and can travel a wheel, a first camera arranged in a direction in which the spacecraft can travel, and the spacecraft.
  • a second camera arranged in a direction other than the direction, and the lens of the first camera and / or the second camera is oriented downward from the horizontal, and the first camera Wheels are included in the camera field of view and / or in the field of view of the second camera.
  • FIG. 27 is a cross-sectional view of the hub HB when cut along the DD cross section of FIG. 26. It is sectional drawing of the clamp HC when it cuts in CC section of FIG. It is a schematic diagram which shows the usage pattern of the heat insulation sheet which concerns on 2nd Embodiment.
  • This disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a probe that can be searched even if it is downsized.
  • the spacecraft according to the first aspect of the present disclosure is a travelable spacecraft, and includes a wheel, a first camera arranged in a direction in which the spacecraft can travel, and the spacecraft traveling.
  • This configuration makes it possible to confirm whether or not stones are caught in the wheels.
  • the spacecraft according to the second aspect of the present disclosure is the spacecraft according to the first aspect, and the resolution of the first camera is higher than the resolution of the second camera.
  • This configuration allows the field of view in the direction of travel to be viewed with higher resolution, so that obstacles in the direction of travel can be easily found.
  • a spacecraft according to a third aspect of the present disclosure is a spacecraft according to the first or second aspect, and includes a plurality of processors, and the spacecraft is capable of traveling both in the front and rear directions.
  • a camera it has a front camera arranged toward the front and a rear camera arranged toward the rear, and the front camera and the rear camera are respectively connected to separate processors.
  • the spacecraft can be moved either forward or backward while viewing the image of either the front camera or the rear camera.
  • a probe according to a fourth aspect of the present disclosure is the probe according to any one of the first to third aspects, and is connected to the first camera or the second camera via a serial or parallel interface.
  • a camera controller, and a communication controller for communicating the camera controller requests and obtains video data from the camera at a predetermined frame rate, and compresses the obtained video data by hardware encoding.
  • the communication controller transmits the compressed data.
  • moving image data captured by the probe camera can be transferred to the ground station, and the operator operating the probe can view the moving image data on the earth.
  • the first camera or the second camera need not always be turned on, and only needs to operate when moving image data is requested, so that power consumption can be suppressed.
  • a probe according to a fifth aspect of the present disclosure is the probe according to any one of the first to fourth aspects, and includes a housing, and the housing includes a substrate, a Teflon (registered trademark) layer, A quartz glass layer, and a metal film provided between the substrate and the Teflon (registered trademark) layer or the quartz glass layer.
  • a probe according to a sixth aspect of the present disclosure is the probe according to the fifth aspect, and an indium tin oxide layer is provided on the Teflon (registered trademark) layer or the quartz glass layer. .
  • a probe according to a seventh aspect of the present disclosure is a probe according to any one of the first to sixth aspects, and includes a housing and an electronic device, and the housing includes a side plate, The top plate to which the electronic device is fixed is provided, and a heat insulating material is provided between the side plate and the top plate.
  • the probe according to the eighth aspect of the present disclosure is the probe according to the seventh aspect, and the electronic device is provided on the back of the top board.
  • a spacecraft according to a ninth aspect of the present disclosure is the spacecraft according to any one of the first to eighth aspects, wherein the spacecraft is exposed to the top plate in a state of being exposed from the top surface of the housing and the housing.
  • the heat generated from the battery can be released from the top plate of the housing to the outer space to suppress the temperature rise of the battery.
  • a probe according to a tenth aspect of the present disclosure is the probe according to any one of the first to ninth aspects, and includes a housing, and the front plate and / or the rear plate of the housing is formed from a bottom plate. It leans to the inside of the spacecraft over the top plate.
  • This configuration can reduce the rate at which sunlight reflected on the lunar surface hits the front plate and the rear plate, so that the temperature rise of the spacecraft can be suppressed.
  • a probe according to an eleventh aspect of the present disclosure is the probe according to any one of the first to tenth aspects, with respect to a contour line between a casing and a bottom surface of a side plate of the casing.
  • the solar cells are arranged obliquely with respect to the perpendicular.
  • This configuration makes it possible to increase the exclusive area ratio of the outer surface of the solar cell housing, and to arrange a large number of solar cells within a limited area.
  • a probe according to a twelfth aspect of the present disclosure is the probe according to the eleventh aspect, further comprising a charge / discharge circuit to which power generated by the solar cell is supplied, and penetrating the casing. A hole is provided, and wiring from the solar cell is connected to a charge / discharge circuit in the casing through a through hole provided in the casing.
  • This configuration eliminates the need to provide a space for fixing the wiring on the outer surface of the housing, so that many solar cells can be arranged within a limited area.
  • a probe according to a thirteenth aspect of the present disclosure is the probe according to any one of the first to twelfth aspects, further including a solar cell disposed on the housing, wherein the solar cell is disposed.
  • the surface of the case is tilted to the inside of the spacecraft from the bottom plate to the top plate.
  • This configuration makes it possible to efficiently receive light from the sun, thus increasing the amount of power generation.
  • the probe according to the fourteenth aspect of the present disclosure is the probe according to the thirteenth aspect, and the inclination of the surface of the housing in which the solar cell is disposed is the latitude at which the probe is to be disposed. It is decided according to.
  • This configuration sets the solar cell inclination according to the maximum elevation angle of the sun, so that the amount of power generation can be increased.
  • a probe according to a fifteenth aspect of the present disclosure is the probe according to any one of the first to fourteenth aspects, and includes a motor provided on the wheel and a cone-shaped convex portion in the vicinity of the center.
  • the convex portion is fitted in the second hole in a state where the back surface of the clamp and the hub are opposed to each other.
  • a spacecraft according to a sixteenth aspect of the present disclosure is a spacecraft, is folded and stored, and includes a heat insulating sheet that can be expanded from a folded state. It is configured to cover the outside of the spacecraft.
  • a spacecraft includes an interface connected to a payload or an accessory, and when the interface is connected to the payload or the accessory, the interface converts the voltage to the payload or the accessory to generate power.
  • This configuration provides power to the payload or accessory and allows the spacecraft to exchange electrical signals with the payload or accessory.
  • the method for manufacturing a probe component according to the eighteenth aspect of the present disclosure includes a step of manufacturing the probe component using a 3D printer disposed on a celestial body other than the earth.
  • the probe component when a probe component fails or is damaged, the probe component can be manufactured on a celestial body other than the earth with a 3D printer, and the manufactured component can be replaced with the failed component.
  • a method of manufacturing a probe component according to a nineteenth aspect of the present disclosure is a method of manufacturing a probe component according to the eighteenth aspect, the step of melting the probe component that has failed or is damaged, In the manufacturing step, spacecraft parts are manufactured by a 3D printer using the material after melting as a raw material.
  • This configuration allows the spacecraft parts to be manufactured by reusing the spacecraft parts when the spacecraft parts break down or are damaged.
  • a method for manufacturing a probe component according to a twentieth aspect of the present disclosure is a method for manufacturing a probe component according to the eighteenth aspect, the step of collecting natural resources in a celestial body other than the earth, and the manufacture In this step, the parts of the probe are manufactured by a 3D printer using the collected natural resources as raw materials.
  • This configuration makes it possible to manufacture spacecraft parts at a lower cost.
  • a probe manufacturing method is a probe manufacturing method for manufacturing a probe in a celestial body other than the earth, in which a natural resource is collected from a celestial body other than the earth, or a fault or damage is detected.
  • This configuration makes it possible to manufacture a spacecraft at low cost, or to replace a damaged or failed spacecraft component at low cost. Alternatively, even if the parts of the probe are broken or damaged, the probe can be regenerated by regenerating and replacing the parts of the probe.
  • a spacecraft is based on a solar panel, a drive mechanism that changes the inclination of the solar panel from a horizontal plane, and the time, the position of the sun, or the amount of power generated by the solar panel. And a controller for controlling the drive mechanism so as to change the inclination with respect to the horizontal plane of the solar panel.
  • the inclination with respect to the horizontal plane of the solar panel can be changed according to the irradiation angle of sunlight, and the amount of light hitting the solar panel can be increased. Can be increased.
  • the spacecraft according to the twenty-third aspect of the present disclosure includes a reflector that reflects light, and a direction of the reflector so that sunlight reflected by the reflector is applied to a solar panel of an object. And / or a controller that controls to change the angle.
  • the reflected light can be applied to the solar panel of the object, so that the solar panel of the object can generate power.
  • a spacecraft includes a camera, an injection mechanism that can inject the camera, and a controller that controls the camera and the injection mechanism. Control is performed so that the camera takes a picture at the landing point, and an image obtained by the photography is acquired from the camera.
  • a spacecraft includes a casing, a switching mechanism that switches between an open state that releases heat in the casing and a blocking state that blocks heat in the casing, and an exterior of the casing Alternatively, a temperature sensor that measures the internal temperature and a processor that controls the switching mechanism to switch between an open state and a shut-off state according to the temperature measured by the temperature sensor.
  • a spacecraft includes a housing, a support post coupled to the housing, two pairs of legs connected to the support at one end, and the other ends of the legs. And the two pairs of legs are configured to be rotatable with respect to the column so that the angle between the two pairs of legs is variable.
  • This configuration lowers the center of gravity, so if the vibration during transportation is large, it can reduce the shake of the probe due to the vibration and suppress the damage caused by the shake. Further, when the spacecraft or the lander is loaded with the spacecraft as a payload, the height can be reduced by folding the legs, so that the space occupied by the spacecraft when loaded is reduced.
  • the spacecraft according to the twenty-seventh aspect of the present disclosure includes a housing including graphene or graphene fiber as a material.
  • This configuration can improve the heat insulation of the housing.
  • FIG. 1 is a schematic diagram showing an outline of an exploration system according to the present embodiment.
  • the exploration system S includes an exploration device (also referred to as a rover) R for exploring the lunar surface LS, and a landing ship (also referred to as a lander) L for transporting the exploration device to the moon MN.
  • a ground station E provided on the earth ET.
  • the spacecraft R according to the present embodiment is an unmanned spacecraft as an example, and can travel on the moon surface.
  • the probe R can communicate with the lander L.
  • the landing ship L can communicate with the ground station. Thereby, the spacecraft E can be controlled from the ground station E.
  • FIG. 2 is a perspective view showing an outline of the spacecraft according to the present embodiment.
  • the spacecraft R according to the present embodiment includes a housing HS, shafts LSF and RSF provided in the housing HS, wheels FW1 and RW1 connected to a shaft RSF (not shown), Wheels FW2 and RW2 connected to the shaft LSF are provided.
  • the spacecraft R includes a distance sensor DS provided on the front surface of the casing, and a first antenna AT1 and a second antenna AT2 provided on the top plate of the casing HS.
  • the distance sensor DS measures a distance from an object on the moon (for example, an obstacle such as a rock).
  • the probe R according to the present embodiment has no difference in driving mechanism between the case of traveling in the direction in which the distance sensor DS is provided and the case of traveling in the opposite direction.
  • the direction where the distance sensor DS is provided is assumed to be the front, and the opposite direction is assumed to be the rear.
  • the spacecraft R includes a front camera FC, a rear camera BC, a right side camera RC, and a left side camera LC.
  • the front camera FC, the rear camera BC, the right-side camera RC, and the left-side camera LC have a lens and an imaging unit that captures an object using light incident from the lens. As shown in FIGS. 13A and 13C described later, the probe R can move back and forth, but cannot move left and right.
  • the front camera FC and the rear camera BC are an example of a first camera arranged in a direction in which the spacecraft R can travel.
  • the right side camera RC and the left side camera LC are an example of a second camera arranged in a direction other than the direction in which the spacecraft can travel.
  • FIG. 3 is a front view of the spacecraft according to the present embodiment as viewed from the front. As shown in FIG. 3, the wheel FW1 is connected to the shaft RSF, and the wheel FW2 connected to the shaft LSF is connected.
  • FIG. 4 is a side view of the spacecraft according to the present embodiment as viewed from the left side.
  • the directions of the lenses LF and LB of the front camera FC and the rear camera BC, which are the first cameras, are directed downward from the horizontal. Thereby, the obstacle on the moon surface in the running direction can be visualized.
  • FIG. 5 is a top view of the spacecraft according to the present embodiment as viewed from above.
  • the solar cells M7-1 to M7-4, M8 to M8-5, M9-1 to M9-5, M10-1 to M10- are also applied to the right side plate RP on the right side of the housing HS. 4, M11-1 to M11-5, and M12-1 to M12-5 are provided.
  • the solar cell when assuming a perpendicular along the side plate of the housing HS with respect to the contour line between the bottom surface of the side plate of the housing HS, the solar cell is It is arranged diagonally.
  • casing HS outer surface of a solar cell can be made high, and many solar cells can be arrange
  • the housing HS has a top plate TP, a front plate FP, a rear plate BP, a right side plate RP, a left side plate LP, and a bottom plate DP (not shown).
  • the right side plate RP or the left side plate LP may be collectively referred to as a side plate.
  • the plates PL1, PL2, PL3, and PL4 are fixed to the top plate TP in a state where they are exposed from the top plate TP of the housing HS. That is, the surface is exposed to the outside by connecting to the top plate TP of the housing HS.
  • FIG. 6 is a schematic diagram of the AA cross section of FIG.
  • the spacecraft according to the present embodiment searches outside the equator of the moon. That is, it is assumed that sunlight is incident on the spacecraft R at an angle. For this reason, as shown in FIG. 6, the electronic device is provided in the back of the top plate, and the electronic device is being fixed to the top plate TP. Thereby, since reflected light when sunlight reflects on the ground such as the lunar surface LS does not hit the top plate TP, the electronic device is provided on the back of the top plate to prevent the temperature of the electronic device from rising. can do.
  • a battery board BB on which a battery which is one of electronic devices is mounted is fixed to the back surface of the plate PL1 via support columns P1-1 and P1-2.
  • the plate PL1 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS.
  • the battery which is one of the electronic devices, is fixed to the top plate TP.
  • an adhesive material (gel) GL1 having high thermal conductivity is sandwiched between the battery board BB and the back surface of the top plate TP. Thereby, the heat generated in the battery can be efficiently transmitted to the plate PL1, and the heat dissipation effect can be improved.
  • a power supply board PUB on which a power supply controller, which is one of electronic devices, is mounted is fixed to the back surface of the plate PL2 via support columns P2-1 and P2-2.
  • the plate PL2 has a convex cross section, and is fitted in an opening provided in the top plate TP of the housing HS.
  • the power supply controller that is one of the electronic devices is fixed to the top plate TP.
  • an adhesive material (gel) GL2 having high thermal conductivity is sandwiched between the power supply board PUB and the back surface of the top plate TP. Thereby, the heat generated by the power supply controller can be efficiently transmitted to the plate PL2, and the heat dissipation effect can be improved.
  • a motor board MCB on which a motor controller which is one of electronic devices is mounted is fixed to the back surface of the plate PL3 via support columns P3-1 and P3-2.
  • the plate PL3 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS.
  • the motor controller which is one of the electronic devices is fixed to the top plate TP.
  • an adhesive (gel) GL3 having a high thermal conductivity is sandwiched between the motor board MCB and the back surface of the top plate TP. Thereby, the heat generated by the motor controller can be efficiently transmitted to the plate PL3, and the heat dissipation effect can be improved.
  • a camera board CB on which a camera controller which is one of electronic devices is mounted is fixed to the back surface of the plate PL4 via support columns P4-1 and P4-2.
  • the plate PL4 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS.
  • the camera controller which is one of the electronic devices is fixed to the top plate TP.
  • an adhesive (gel) GL4 having a high thermal conductivity is sandwiched between the camera board CB and the back surface of the top plate TP. Thereby, the heat generated by the camera controller can be efficiently transmitted to the plate PL4, and the heat dissipation effect can be improved.
  • a communication board RB on which a communication controller that is one of electronic devices is mounted is fixed to the back surface of the plate PL5 via support columns P5-1 and P5-2.
  • the plate PL5 has a convex cross section, and is fitted into an opening provided in the rear plate BP of the housing HS.
  • the communication controller which is one of the electronic devices is fixed to the rear plate BP.
  • an adhesive (gel) GL4 having a high thermal conductivity is sandwiched between the camera board CB and the back surface of the top plate TP. Thereby, the heat generated by the camera controller can be efficiently transmitted to the plate PL4, and the heat dissipation effect can be improved.
  • FIG. 7 is a perspective view showing the structure of the plate PL4.
  • a camera board CB on which a camera controller is mounted and a plate PL4 are connected via four columns P4-1 to P4-4.
  • four holes HE1 to HE4 for fixing the plate PL4 to the top plate TP with screws are provided.
  • assembly can be simplified by packaging.
  • FIG. 8 is a table showing an example of the heat radiation amount for each plate and the paint color of the exposed surface (surface) of the plate.
  • the reflectance and absorption rate of light differ depending on the color. Therefore, the color of the exposed surface of the plate on which the electronic device is mounted is set so that the greater the heat dissipation amount of the electronic device, the higher the light reflectance and the lower the absorption rate.
  • the plates PL1 and PL4 to which the heat radiation source having a large heat radiation amount is fixed have, for example, a white paint color on the exposed surface (surface).
  • White has high light reflectivity and low absorptance, so it can suppress the temperature rise of the plates PL1 and PL4 even when exposed to sunlight, and can suppress the temperature rise of the battery and camera controller with large heat dissipation. it can.
  • the plates PL2 and PL3 to which the heat radiation source having a small heat radiation amount is fixed have, for example, a black painted color on the exposed surface (surface). Black has low light reflectivity and high absorption, so when sunlight is applied, it promotes the temperature rise of the plates PL2 and PL3, and makes the temperature of the battery and camera controller with a small amount of heat dissipation moderate. Can do.
  • the front plate FP and the rear plate BP of the housing HS are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP.
  • the ratio which the sunlight reflected on the moon surface hits the front board FP and the back board BP can be reduced, the temperature rise of the spacecraft R can be suppressed.
  • FIG. 9 is a schematic view of the BB cross section of FIG.
  • the right side plate RP and the left side plate LP of the housing HS are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP.
  • the ratio which the sunlight reflected on the lunar surface hits the right side board RP and the left side board LP can be reduced, the temperature rise of the spacecraft R can be suppressed.
  • a heat insulating material HI-1 is provided between the right side plate RP and the top plate TP, and the heat insulating material HI-1 is fixed to the top plate TP with bolts B1.
  • a heat insulating material HI-2 is provided between the left side plate LP and the top plate TP, and the heat insulating material HI-2 is fixed to the top plate TP with bolts B2.
  • the heat insulating materials HI-1 and HI-2 according to the present embodiment are, for example, engineering plastics, for example, ULTEM (registered trademark) of amorphous thermoplastic polyetherimide (PEI) resin.
  • FIG. 10 is a schematic diagram showing the visual field range of the camera in the horizontal direction.
  • the front view range FHV is the view range of the front camera FC
  • the rear view range BHV is the view range of the rear camera BC
  • the right view range RHV is the view range of the right camera RC
  • the left view range LHV is the left camera.
  • LC viewing range As shown in FIG. 10, the front visual field range FHV and the right side visual field range RHV partially overlap, and the front visual field range FHV and the left side visual field range LHV partially overlap.
  • the rear visual field range BHV and the right side visual field range RHV partially overlap, and the rear visual field range BHV and the left side visual field range LHV partially overlap. Thereby, 360 degrees around can be seen in the horizontal direction.
  • FIG. 11 is a schematic diagram showing the field of view of the camera in the AA section of FIG.
  • the front vertical visual field range FVV is a vertical visual field range of the front camera FC
  • the rear vertical visual field range is a vertical visual field range of the rear camera BC.
  • the front vertical visual field range FVV includes wheels FW1 and FW2.
  • wheels RW1 and RW2 are included in the rear vertical visual field range BVV.
  • both the front camera FC and the rear camera BC are in the field of view above the horizontal line L1.
  • FIG. 12 is a schematic diagram showing the field of view of the camera in the BB cross section of FIG.
  • the right vertical visual field range RVV is a vertical visual field range of the right-side camera RC
  • the left vertical visual field range is a vertical visual field range of the left-side camera LC.
  • the right vertical visual field range RVV includes wheels FW1 and RW1. Thereby, it can be confirmed whether or not stones are sandwiched between the wheels FW1 and RW1.
  • the left vertical visual field range LVV includes wheels FW2 and RW2. Thereby, it can be confirmed whether or not stones are sandwiched between the wheels FW2 and RW2.
  • both the right side camera RC and the left side camera LC are in the field of view above the horizontal line L2.
  • the resolution of the first camera such as the front camera FC and the rear camera BC is higher than the resolution of the second camera such as the right side camera RC and the left side camera LC. That is, the resolution of the camera in the traveling method (the method in which the wheel advances) is higher than the resolution of the side camera. Thereby, since the visual field range in the traveling direction can be seen with higher resolution, an obstacle or the like in the traveling direction can be easily found.
  • FIG. 13A is a schematic diagram illustrating a first movement mode of the spacecraft R.
  • FIG. 13B is a schematic diagram illustrating a second movement mode of the spacecraft R.
  • FIG. 13C is a schematic diagram showing directions in which the spacecraft R cannot move.
  • FIG. 13D is a schematic diagram illustrating a third movement mode of the spacecraft R. As shown to FIG. 13A, it can move to back and front, and as shown to FIG. 13B, it can turn on the spot. However, as shown in FIG.
  • FIG. 14 is a schematic block diagram showing the configuration of the spacecraft R according to the present embodiment.
  • the probe R includes a battery BAT and a power supply controller that controls the battery BAT.
  • the spacecraft R includes a motor MT, a gear box GB, and a motor controller MC that controls the motor MT and the gear box GB.
  • the spacecraft R is connected to the front camera FC, the right side camera RC, the first camera controller CMC1 that controls the front camera FC and the right side camera RC, and the first camera controller CMC1 via wiring.
  • 1 communication controller CC1 and 1st antenna AT1 connected to 1st communication controller CC1 are provided.
  • the first camera controller CMC1 includes a first processor PC1.
  • the spacecraft R is connected to the rear camera BC, the left camera LC, the second camera controller CMC2 for controlling the rear camera BC and the left camera LC, and the second camera controller CMC2 via wiring.
  • 2 communication controller CC2 and 2nd antenna AT2 connected to 2nd communication controller CC2.
  • the second camera controller CMC2 includes a second processor PC2.
  • the front camera FC is connected to the first processor PC1
  • the rear camera BC is connected to the second processor PC2. That is, the front camera and the rear camera are connected to separate processors.
  • the other processor can operate. Therefore, either the front camera FC or the rear camera BC can be operated. Can be transferred to the ground station E. Therefore, the spacecraft R can be moved either forward or backward while viewing the image of either the front camera FC or the rear camera BC.
  • FIG. 15 is a schematic diagram showing a hardware configuration of the first camera controller CMC1.
  • the front camera FC is connected to an A / D converter AD1
  • the A / D converter AD1 is connected to the serial interface SI1 of the first camera controller CMC1 via a flat cable.
  • the serial interface SI1 is an interface compliant with, for example, MIPI (Mobile Industry Processor Interface) standard.
  • the right side camera RC is connected to the A / D converter AD2, and the A / D converter AD2 is connected to the parallel interface PI1 of the first camera controller CMC1 via a flat cable.
  • the first camera controller CMC1 is connected to the front camera FC or the right camera RC via a serial or parallel interface.
  • the first camera controller CMC1 requests and acquires moving image data from the front camera FC and the right side camera RC at a predetermined frame rate, and compresses the acquired moving image data by hardware encoding.
  • the compressed data is transferred to the first communication controller CC1.
  • the first communication controller CC1 transmits the compressed data from the first antenna AT1 to the landing ship (lander) L. Thereafter, the compressed data is transferred from the lander L to the ground station E.
  • the moving image data photographed by the front camera FC and the right-side camera RC of the spacecraft R can be transferred to the ground station, and the operator who operates the spacecraft R can view the moving image data on the earth.
  • the operator who operates the spacecraft R can see the image of the moon on the earth.
  • the front camera FC and the right-side camera RC do not need to be always turned on like the USB camera, and need only operate when requesting moving image data, thereby reducing power consumption. Can do.
  • FIG. 16 is a schematic diagram showing a hardware configuration of the second camera controller CMC2.
  • the rear camera BC is connected to an A / D converter AD3, and the A / D converter AD3 is connected to the serial interface SI2 of the second camera controller CMC2 via a flat cable.
  • the serial interface SI2 is an interface compliant with, for example, MIPI (Mobile Industry Processor Interface) standard.
  • the left side camera LC is connected to the A / D converter AD4, and the A / D converter AD4 is connected to the parallel interface PI2 of the second camera controller CMC2 via a flat cable.
  • the second camera controller CMC2 is connected to the rear camera BC or the left camera LC via a serial or parallel interface.
  • the second camera controller CMC2 requests and acquires moving image data from the rear camera BC and the left camera LC at a predetermined frame rate, and compresses the acquired moving image data by hardware encoding.
  • the compressed data is transferred to the second communication controller CC2.
  • the second communication controller CC2 transmits the compressed data from the second antenna AT2 to the landing ship (lander) L. Thereafter, the compressed data is transferred from the lander L to the ground station E.
  • FIG. 17 is a schematic diagram illustrating an outline of a cross section of the housing HS.
  • the housing HS includes a substrate 1, a metal film (here, a silver film) 2 deposited on the substrate 1, and a Teflon ( Registered trademark) layer 3.
  • the substrate is, for example, carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastics: hereinafter referred to as CFRP).
  • CFRP Carbon Fiber Reinforced Plastics
  • the housing HS has an indium tin oxide (hereinafter referred to as ITO) layer 4 provided on the Teflon (registered trademark) layer 3.
  • ITO is a transparent conductive film.
  • FIG. 18 is a flowchart illustrating an example of a process flow relating to coating of the casing on the front plate FP, the rear plate BP, the top plate TP, and the bottom plate DP.
  • Step S101 First, the CFRP plate is processed.
  • a CFRP plate is cut out to a predetermined size, and an opening for fitting a distance sensor is made.
  • CFRP is cut out to a predetermined size, and an opening for fitting the plate PL5 is made.
  • CFRP is cut out to a predetermined size, and openings for fitting the plates PL1 to PL4 are made.
  • CFRP is cut out to a predetermined size.
  • Step S102 silver is deposited on the CFRP plate in a vacuum.
  • Step S103 Teflon (registered trademark) powder is sprayed on the silver deposition surface.
  • Teflon (registered trademark) particles on the beads adhere to the silver deposition surface.
  • Step S104 Next, the temperature is raised and Teflon (registered trademark) is melted and baked. Thereby, the particles of Teflon (registered trademark) are melted and connected to each other, and the surface of the Teflon (registered trademark) layer becomes flat.
  • Step S105 ITO is deposited in vacuum. Thereby, the front plate FP, the rear plate BP, the top plate TP, and the bottom plate DP are obtained.
  • FIG. 19 is a schematic diagram showing the left side plate LP before coating.
  • the left side plate LP is provided with through holes H1 to H6 for drawing wirings connected to the solar cell into the housing HS. ing.
  • casing HS is similarly provided in the left side plate LP.
  • FIG. 20 is a diagram illustrating an example of the configuration of the power controller PU.
  • the solar cells are connected in series for each column by wiring, and the wiring is drawn into the housing HS from, for example, the through holes H1 to H6 shown in FIG. Connected.
  • each wiring from the solar cell is connected to the anodes of the corresponding diodes D1 to D12 and rectified.
  • the cathodes of the diodes D1 to D12 are respectively connected to the charge / discharge circuit CDC, and the current rectified by the diodes D1 to D12 is input to the charge / discharge circuit CDC.
  • the wiring from the solar cell is connected to the charge / discharge circuit CDC in the housing HS through the through holes H1 to H6 provided in the housing HS.
  • the charge / discharge circuit CDC charges the battery BAT using the input current.
  • the charge / discharge circuit CDC supplies power to other electronic devices using the power of the battery BAT.
  • FIG. 21 is a flowchart showing an example of a process of creating the right side plate RP or the left side plate LP which is a side plate.
  • Step S201 First, CFRP is cut into a predetermined size, and a through hole is opened in the CFRP plate.
  • Step S202 Next, the through hole provided in the CFRP plate is masked. Thereby, it can avoid that a through-hole is obstruct
  • Step S203 silver is deposited on the CFRP plate in a vacuum.
  • Step S204 Teflon (registered trademark) powder is sprayed onto the silver deposition surface.
  • Teflon (registered trademark) particles on the beads adhere to the silver deposition surface.
  • Step S205 Next, the temperature is raised and Teflon (registered trademark) is melted and baked. Thereby, the particles of Teflon (registered trademark) are melted and connected to each other, and the surface of the Teflon (registered trademark) layer becomes flat.
  • Step S206 ITO is deposited in vacuum.
  • Step S207 Next, the masking attached in Step S202 is taken.
  • Step S208 a heat-resistant and cold-resistant polyimide film is stuck on the ITO.
  • the polyimide film is, for example, Kapton (registered trademark).
  • Step S209 the solar cell is fixed on the polyimide film. Thereby, the right side plate RP or the left side plate LP which is a side plate is obtained.
  • FIG. 22 is a schematic diagram of a front view of the probe R at a predetermined latitude where the probe R is arranged.
  • the surface of the housing on which the solar cells are arranged (in this embodiment, the right side surface and the left side surface as an example) is inclined inward of the spacecraft R from the bottom plate DP to the top plate TP. ing. Thereby, since the light from the sun can be received efficiently, the power generation amount can be increased.
  • the right side surface and the left side surface which are the surfaces of the housing where the solar cells are disposed, are inclined at an angle at which the power generation capacity from when the sun rises to when it sinks is maximized at the latitude where the spacecraft R is to be disposed. Yes. Specifically, as shown in FIG. 22, when the maximum elevation angle of the sun at the latitude where the spacecraft R is to be arranged is ⁇ 1 degree, the angle at which the power generation capacity from when the sun rises until it sinks is maximum is ⁇ 1. Therefore, the inclination of the right side surface and the left side surface from the horizontal plane is set to ⁇ 1 degree.
  • FIG. 23 is a schematic diagram of a front view of the spacecraft R when the latitude where the spacecraft R is to be arranged is higher than that in FIG.
  • the maximum elevation angle ⁇ 2 of the sun at the latitude where the spacecraft R is to be arranged becomes smaller than ⁇ 1.
  • the angle at which the power generation capacity from when the sun rises until it sinks becomes ⁇ 2, which is larger than ⁇ 1, so the inclination of the right side surface and the left side surface from the horizontal plane is set to ⁇ 2 degrees.
  • FIG. 24 is a schematic diagram of a front view of the spacecraft R when the latitude where the spacecraft R is to be arranged is lower than in the case of FIG.
  • the maximum elevation angle ⁇ 3 of the sun at the latitude where the spacecraft R is to be arranged becomes larger than ⁇ 1.
  • the angle at which the power generation capacity from when the sun rises until it sinks becomes ⁇ 3 smaller than ⁇ 1, so the inclination of the right side surface and the left side surface from the horizontal plane is set to ⁇ 3 degrees.
  • the inclination of the surface (here, the right side surface and the left side surface) of the casing on which the solar cell is disposed is determined according to the latitude at which the spacecraft R is to be disposed. Specifically, the higher the latitude at which the spacecraft R is to be arranged, the smaller the maximum elevation angle of the sun, so the inclination of the right side RP and the left side from the horizontal plane increases. Thereby, since the inclination of the solar cell is set according to the maximum elevation angle of the sun, the amount of power generation can be increased.
  • FIG. 25 is an exploded perspective view of the wheel FW2.
  • the wheel FW2 includes a motor MT, a motor slave SV, a bearing BR1, a bearing spacer BS, a bearing BR2, a motor housing MH, a bearing hold plate BHP, a clamp HC, a hub HB, and a wheel WL2.
  • the motor MT is inserted into the motor slave SV, the rotation shaft of the motor MT is inserted into the first hole HL in FIG. 26 of the hub HB, and the rotation shaft of the motor MT is clamped to the hub HB by the clamp HC.
  • FIG. 26 is a front view of the hub HB as seen from the direction of the arrow A1 in FIG. As shown in FIG. 26, it has the 1st hole HL and the notch CO connected to the said 1st hole HL.
  • FIG. 27 is a cross-sectional view of the hub HB when cut along the DD cross section of FIG. As shown in FIG. 27, the hub HB has a cone-shaped projection PJ near the center. As described above, the hub HB has the cone-shaped convex portion PJ near the center, and communicates with the first hole HL in which the rotation shaft of the motor MT is fitted in the convex portion PJ and the first hole HL. Has cutout CO.
  • FIG. 28 is a cross-sectional view of the clamp HC taken along the CC cross section of FIG.
  • the rotating shaft of the motor MT is inserted from the front surface FS side, and the hub HB is on the back surface RS side.
  • the clamp HC has a second hole HL2 whose diameter gradually decreases from the rear surface RS toward the front surface FS.
  • the convex portion PJ is fitted in the second hole HL2 with the back surface RS of the clamp HC and the hub HB facing each other.
  • the notch CO is narrowed
  • the contour around the first hole HL of the hub HB is narrowed
  • the rotation shaft of the motor MT is strongly restrained. .
  • the motor MT is fixed, if an excessive force is applied to the rotating shaft of the motor MT in the rotating shaft direction, the motor MT suddenly stops rotating.
  • the electronic device is not fixed to the top plate, but the electronic device may be disposed on the back surface of the front plate FP or the rear plate BP, or the electronic device may be disposed on the back surface of the bottom plate DP.
  • an electronic device can be provided on the back side of the surface where sunlight does not enter, and an increase in temperature of the electronic device can be prevented.
  • the heat generated from the electronic device can be released from the top plate TP of the housing HS to the outer space to suppress the temperature rise of the electronic device.
  • both the front plate FP and the rear plate BP of the housing are inclined to the inside of the spacecraft R from the bottom plate DP to the top plate TP. Good.
  • both the right side plate RP and the left side plate LP of the housing are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP, but only one of them is inclined. Also good.
  • the wheel FW1 is included in both the field of view of the front camera FC that is one of the first cameras and the field of view of the right-side camera RC that is one of the second cameras.
  • the present invention is not limited to this, and the wheel FW1 may be included only in one field of view.
  • the other wheels FW2, RW1, RW2. In this way, it is only necessary to see the wheels with at least one of the cameras. Thereby, it can be confirmed whether the wheel is not clogged with stones.
  • FIG. 29 is a schematic diagram illustrating a usage pattern of the heat insulating sheet according to the second embodiment.
  • the spacecraft RV1 is folded and stored, and includes a heat insulating sheet TT that can be expanded from the folded state.
  • the heat insulating sheet TT is configured to cover the outside of the spacecraft RV1 when it is spread. With this configuration, sunlight is reflected by the heat insulating sheet and has a heat insulating property, so that the temperature change of the spacecraft can be reduced.
  • the heat insulating sheet TT is preferably self-supporting.
  • the spacecraft RV1 may have a gas discharge mechanism that discharges gas into the heat insulation sheet TT and a controller that controls the gas discharge mechanism in a state where the heat insulation sheet TT is folded. Accordingly, the controller may control the gas discharge mechanism so as to discharge the gas into the heat insulating sheet TT in a state where the heat insulating sheet TT is folded. Thereby, since the heat insulation sheet swells with gas from the state in which the heat insulation sheet TT is folded, the outside of the spacecraft RV1 can be covered with the heat insulation sheet TT.
  • the probe according to the third embodiment includes an interface connected to a payload or an accessory, and the interface converts a voltage to the payload or the accessory when the interface is connected to the payload or the accessory. And a communication unit for exchanging electrical signals with the payload or accessory when connected to the payload or accessory.
  • This configuration provides power to the payload or accessory and allows the spacecraft to exchange electrical signals with the payload or accessory.
  • FIG. 30 is a perspective view of the spacecraft according to the third embodiment.
  • the probe RV2 includes an antenna AT, a camera CR, a resource search sensor SS, and a drill DR for mining.
  • the payload or accessory according to the present embodiment is, for example, a camera, a resource search sensor, and a mining drill.
  • the resource exploration sensor is a sensor for exploring resources. Resources include minerals and water. Here, as an example, the resource exploration sensor explores water. Note that the payload or accessory is not limited to these and may be any one that is connected to the probe.
  • FIG. 31 is a functional block diagram of the spacecraft according to the third embodiment.
  • the spacecraft RV2 includes a housing HS and three interfaces IF connected to the housing HS.
  • a camera CR, a resource exploration sensor SS, and a mining drill DR are connected to each interface IF.
  • the spacecraft RV2 includes a communication unit CM that communicates with a lander or another spacecraft via an antenna AT, a processor PS that controls the communication unit CM, and a power supply BT.
  • the communication by the communication unit CM may be wired or wireless.
  • FIG. 32 is a functional block diagram of an interface according to the third embodiment.
  • the interface IF includes a communication unit CU, a DC converter unit DCU, and a recording unit MU.
  • the communication unit CU exchanges an electric signal with the payload or the accessory.
  • the payload or accessory is the camera CR
  • a control signal for controlling the camera CR is transmitted to the camera CR via the communication unit CU.
  • the payload or the accessory is the drill DR
  • a control signal for controlling the drill DR is transmitted to the drill DR via the communication unit CU.
  • the DC converter unit DCU converts the voltage of the power supply BT to the payload or the accessory and supplies power.
  • the voltage of the power supply BT is converted into a voltage for the camera CR, and the converted voltage is supplied to the camera CR.
  • the payload or accessory is the resource exploration sensor SS
  • the voltage of the power supply BT is converted into a voltage for the resource exploration sensor SS, and the converted voltage is supplied to the resource exploration sensor SS.
  • the payload or accessory is a drill DR
  • the voltage of the power supply BT is converted into a voltage for the drill DR, and the converted voltage is supplied to the camera CR.
  • the recording unit MU When the recording unit MU is connected to the payload or accessory, the recording unit MU records and / or transfers data acquired by the payload or accessory. For example, the recording unit MU transfers the sensor signal obtained by the resource exploration sensor SS to the processor PS. This sensor signal is transmitted from the communication unit CM to a lander or another probe. In addition, the recording unit MU transfers, for example, a video signal obtained by the camera CR to the processor PS. The video signal represents a still image or a moving image. This video signal is transmitted from the communication unit CM to a lander or another probe.
  • a method of manufacturing a probe component according to the fourth embodiment is a process of manufacturing a probe component by a 3D printer arranged on a celestial body other than the earth (for example, a planet, a satellite, an asteroid, or a comet).
  • the parts of the spacecraft include wheels, housings, antennas, solar panels, instruments, electrical harnesses, and the like.
  • FIG. 33 is a schematic diagram for explaining an example of the manufacturing method according to the fourth embodiment.
  • the 3D printer PR arranged on the moon surface manufactures wheels TY and solar panels SP.
  • the wheel TY and solar panel SP obtained by manufacture are attached to the lander L5.
  • the installation may be performed manually by an astronaut on the moon, by an astronaut operating a robot arm, or by moving a robot arm of the robot. Good.
  • the spacecraft part when a part of the spacecraft breaks down or is damaged, the spacecraft part (for example, the same spacecraft) is melted with the 3D printer using the melted material as a raw material. Such faulty or damaged parts). Thereby, when the parts of the spacecraft are out of order or broken, the spacecraft parts can be manufactured by reusing the spacecraft parts.
  • a 3D printer for example, manufactures the same or failed part of the same spacecraft as a spacecraft part
  • the same part of the spacecraft can be manufactured by reusing the failed or damaged part. it can.
  • you may manufacture the part of another spacecraft for example, a spacecraft or a lander), not only the same part, but another part of a spacecraft.
  • a probe manufacturing method for manufacturing a probe in a celestial body other than the earth uses a step of melting a failed or damaged probe part and a material after melting as a raw material, For example, manufacturing a probe component with a 3D printer on a planet, a satellite, an asteroid, or a comet, and attaching the manufactured probe component to the target probe.
  • the probe can be regenerated by regenerating and replacing the probe component.
  • resources such as planets, satellites, asteroids, or comets
  • non-Earth objects such as natural resources such as minerals and rare metals
  • the spacecraft collects natural resources (for example, minerals) on the moon, and the three-dimensional printer uses the natural resources (for example, minerals) collected on the moon as raw materials.
  • natural resources for example, minerals
  • the three-dimensional printer uses the natural resources (for example, minerals) collected on the moon as raw materials.
  • Manufacture parts when manufacturing a solar panel, a mineral is the silica contained in the regolith of the lunar surface, for example. With this configuration, the parts of the spacecraft can be manufactured at a lower cost. Then, the manufactured probe parts are attached to the target probe. As a result, it is possible to manufacture the probe at a low cost, or to replace a damaged or broken probe component at a low cost.
  • the spacecraft according to the fifth embodiment changes the inclination of the solar panel from the horizontal plane according to the position of the sun. Thereby, the electric power generation amount of a solar panel can be increased.
  • FIG. 34 is a schematic diagram showing an outline of a spacecraft according to the fifth embodiment.
  • the spacecraft RV4 of the fifth embodiment includes a housing HS4, a solar panel SP1 provided on the side surface of the housing HS4, and a drive mechanism DM that changes the inclination of the solar panel SP1.
  • a controller CON that controls the drive mechanism DM.
  • the controller CON changes the inclination with respect to the horizontal plane of the solar panel SP1 according to the time, the position of the sun (for example, the angle of the sun with respect to the horizontal plane), or the amount of power generated by the solar panel SP1.
  • the drive mechanism DM is controlled. Thereby, the inclination based on the horizontal plane of the solar panel SP1 can be changed according to the irradiation angle of sunlight, and the amount of light hitting the solar panel SP1 can be increased. The amount can be increased.
  • the position of solar panel SP1 was provided in the side surface of housing
  • the solar panel SP1 may be wound like a carpet, and the wound solar panel SP1 may be expanded when it is desired to generate power.
  • FIG. 35 is a schematic diagram showing a schematic configuration of the exploration system according to the sixth embodiment.
  • the exploration system S5 includes a lander L11 provided with a reflector RL1, a explorer R11 provided with a reflector RL2, and a solar panel (not shown) on the outer surface of the own aircraft.
  • a spacecraft R12 provided on the surface.
  • the lander L11 and the spacecraft R11 are disposed at positions where the sunlight hits.
  • the spacecraft R12 is searching for a vertical hole in the moon and is located in the shadow area SA, and the spacecraft R12 is in a location where the sun does not hit.
  • the solar light is reflected by the reflector RL1, so that the spacecraft R12 is irradiated with the solar light.
  • the solar light is reflected by the reflector RL2, so that the spacecraft R12 is irradiated with the solar light.
  • electric power is generated by the solar panel of the probe R12, and the probe R12 is driven using the generated electric power.
  • the spacecraft R12 drives a power source (not shown, for example, a motor or an engine) with the generated electric power.
  • a power source not shown, for example, a motor or an engine
  • the spacecraft R11 includes a controller CON.
  • the controller CON determines the direction and / or angle of the reflector RL2 so that the reflected light is irradiated to another probe R12 according to the position of the sun relative to the own aircraft and the position of the other probe R12. May be changed. Thereby, even if the position of the sun and the position of another spacecraft R12 change, the reflected light is irradiated to the spacecraft R12, so that the solar panel of another spacecraft R12 can continue to generate electricity. And the search can be continued using the generated power.
  • the lander L11 includes a controller CON.
  • the controller CON changes the orientation and / or angle of the reflector RL1 so that the reflected light is irradiated to the spacecraft R12 according to the position of the sun relative to the spacecraft and the position of the spacecraft R12. You may do it. Thereby, even if the position of the sun and the position of the spacecraft R12 change, the reflected light is irradiated to the spacecraft R12, so that the solar panel of the spacecraft R12 can continue the power generation, and the generated power The exploration can be continued using.
  • the exploration system S5 includes the reflectors RL1 and RL2 and the explorer R12 having a solar panel.
  • the spacecraft R12 When the spacecraft R12 is in a place where it is not exposed to the sunlight, the sunlight is reflected by the reflector RL1 provided in the lander L11 and / or the reflector RL2 provided in the explorer R11.
  • the spacecraft R12 is irradiated with solar light and is generated by the solar panel of the spacecraft R12. With this configuration, it is possible to generate power even in a place where the sun does not hit the probe R12, and the search can be continued using the generated power.
  • the spacecraft R11 is configured so that the reflector RL2 reflects light and the reflector RL2 is oriented so that sunlight reflected by the reflector RL2 is applied to the solar panel of the object. And / or a controller C1 that controls to change the angle. Even if it is a case where a target object is in a shadow by this structure, since the reflected light can be irradiated to the solar panel of a target object, the solar panel of a target object can generate electric power. In particular, when the object is another probe R12, even if another probe R12 is in the shadow, the reflected light can be applied to the solar panel of the other probe R12. The solar panel of machine R12 can generate electricity and can continue exploration.
  • the target object irradiated with the reflected sunlight was described as the spacecraft R12 as an example, it may be the lander L11.
  • the lander L11 when the lander L11 is located in the shadow area SA, the lander L11 can generate power and continue communication and the like by irradiating the solar panel of the lander L11 with the reflected sunlight. can do.
  • the spacecraft R11 includes a camera that captures another spacecraft R12, and the controller C1 uses the image captured by the camera to convert the sunlight reflected by the reflector RL2 into another spacecraft R12. You may control to change the direction and / or angle of reflector RL2 so that it may follow and irradiate with the solar panel. Thereby, even if another probe R12 moves, reflected light can be irradiated to the solar panel of the probe R12.
  • the lander L11 includes a camera that images the spacecraft R12, and the controller C2 uses the image captured by the camera to convert the sunlight reflected by the reflector RL1 into the sunlight of the spacecraft R12. You may control to change the direction and / or angle of reflecting plate RL1 so that it may irradiate following a panel. Thereby, even if another probe R12 moves, reflected light can be irradiated to the solar panel of the probe R12.
  • the spacecraft emits a camera to a place where it is difficult for the spacecraft to enter (in this case, a vertical hole). Get the captured image.
  • FIG. 36 is a schematic diagram showing a schematic configuration of the exploration system according to the seventh embodiment.
  • the exploration system S8 includes a probe R41 arranged on the moon surface.
  • the probe R41 includes a probe main body B41, a wiring WR, a camera CR connected to the probe main body B41 via the wiring WR, and an injection mechanism IJ for injecting the camera CR.
  • FIG. 36 shows a state in which the camera CR is ejected by the ejection mechanism IJ and landed after the ejection. In this state, the camera CR captures an image and transmits an image obtained by the capture to the probe R41 via the wiring WR.
  • the probe R41 includes the camera CR, the injection mechanism IJ that can inject the camera CR, and the controller CON that controls the camera CR and the injection mechanism IJ.
  • the controller CON controls the camera CR to take a picture at a point where the camera CR has landed after injection, and acquires an image obtained by the photography from the camera.
  • an image at a location where it is difficult for the spacecraft to enter the camera CR is obtained, and thus a location where the spacecraft R41 is difficult to enter (here, a vertical hole) can be observed.
  • the exploration method according to the seventh embodiment includes a step of ejecting the camera CR from the probe R41 having the ejection mechanism IJ, a step of photographing at the point where the camera CR has landed after the ejection, and the camera CR And a step of transmitting the image obtained by the above to the probe R41 via the wiring WR.
  • the spacecraft R41 may further have a winding mechanism for winding the wiring WR.
  • the take-up mechanism may take up the wiring WR so that the camera CR can be stored in the injection mechanism IJ in an injectable manner. Thereby, it can inject
  • the camera CR and the probe main body B41 may each have a wireless communication function, and in that case, an image may be wirelessly transmitted from the camera CR to the probe main body B41.
  • the spacecraft according to the eighth embodiment measures a case, a switching mechanism that switches between an open state that releases heat in the case and a blocking state that blocks heat in the case, and a temperature outside the case. And a processor, and the processor controls the switching mechanism to switch between the open state and the shut-off state according to the temperature measured by the temperature sensor.
  • FIG. 37 is a schematic diagram showing a schematic configuration of the spacecraft according to the eighth embodiment.
  • the probe RV5 includes a housing HS5, a processor PS, a temperature sensor TS, and a switching mechanism SW.
  • the temperature sensor TS measures the temperature outside the housing HS5.
  • the switching mechanism SW switches between an open state in which the heat in the housing HS5 is released and a blocking state in which the heat in the housing HS5 is cut off.
  • the processor PS controls the switching mechanism SW so as to switch between the open state and the shut-off state according to the temperature measured by the temperature sensor TS.
  • FIG. 38A is a schematic perspective view illustrating an example of the switching mechanism SW in the cutoff state.
  • FIG. 38B is a schematic perspective view illustrating an example of the switching mechanism SW in the open state.
  • the switching mechanism SW includes a first frame HM, a second frame IM stacked on the first frame, a shutter frame SF provided on the second frame IM, and a shutter frame.
  • the shutter SH is slidable in the longitudinal direction with respect to the SF.
  • a plurality of rectangular first through holes are formed in the shutter SH at intervals.
  • a plurality of rectangular second through holes are formed at intervals.
  • the second through hole is, for example, approximately the same size as the first through hole.
  • the shutter frame SF When the switching mechanism SW is in the shut-off state, as shown in FIG. 38A, the shutter frame SF has a main body portion (the second through hole is not opened) below the first through hole of the shutter SH. Part) is arranged. Thereby, when the sun hits the spacecraft RV5, heat from the outside is blocked by the main body portion of the shutter frame SF, so that a heat insulating effect can be obtained, and a temperature rise inside the housing HS5 can be suppressed.
  • the shutter frame SF is preferably made of a highly heat-insulating material. Thereby, when the switching mechanism SW is in the cut-off state, the heat insulation effect can be improved. Also, as shown by the arrows in FIG. 38A, the internal gas is blocked by the back surface of the main body portion of the shutter SH (the portion where the first through hole is not opened) and does not escape to the outside.
  • the switching mechanism SW when the switching mechanism SW is in the open state, as shown in FIG. 38B, in the shutter frame SF, the second through hole of the shutter frame SF is disposed below the first through hole of the shutter SH. Thereby, the heat inside the housing HS5 is discharged to the outside of the housing HS5 through the first through hole of the shutter SH and the second through hole of the shutter frame SF.
  • the processor PS may control to switch to the shut-off state as shown in FIG. 38A. Thereby, inflow of the heat
  • the processor PS may control to switch to the open state as shown in FIG. 38B. Thereby, the heat inside the housing HS5 can be discharged as shown by the arrow in FIG. 38B. In this way, the shutter SH is closed when it is hot such as when the sun hits it, and the shutter SH is opened when it is cold such as when the sun does not hit it, so that a change in the temperature inside the housing HS5 can be suppressed. .
  • the temperature sensor TS may measure the temperature inside the housing HS5. Accordingly, the processor PS can control the switching mechanism SW so as to switch between the open state and the shut-off state according to the temperature inside the housing HS5.
  • the processor PS may control the switching mechanism SW so as to switch between an open state and a shut-off state according to a preset month cycle.
  • the processor PS may control the switching mechanism SW so as to switch to the cut-off state during a period when sunlight falls on the moon, and may control the switching mechanism SW so as to switch to an open state when the moon does not receive sunlight. Good.
  • the spacecraft according to the ninth embodiment folds the legs that support the wheels. With this configuration, the center of gravity is lowered, so that when the vibration during transportation or the like is large, the vibration of the spacecraft due to the vibration can be reduced and the damage due to the vibration can be suppressed. Further, when the spacecraft or the lander is loaded with the spacecraft as a payload, the height can be reduced by folding the legs, so that the space occupied by the spacecraft when loaded is reduced.
  • FIG. 39A is a schematic side view of the spacecraft when the legs are not folded.
  • FIG. 39B is a schematic side view of the spacecraft when the legs are folded.
  • FIG. 39C is a schematic perspective view of a leg portion and a support column. As shown in FIGS. 39A to 39C, the housing HS, the support column PL connected to the housing HS, the two pairs of legs LG1 and LG2 whose one ends are connected to the support PL, and the legs LG1 and LG2, respectively. And wheels TY1, TY2 connected to the other end.
  • the legs LG1 and LG2 are supported by the holding structure HD.
  • the two pairs of legs LG1 and LG2 are configured to be rotatable with respect to the support column PL so that the angle between the two pairs of legs LG1 and LG2 is variable.
  • the two pairs of legs LG1, LG2 are rotated to the vicinity of the lower surface of the housing HS to open the angle between the two pairs of legs LG1, LG2.
  • LG1 and LG2 can be folded.
  • the legs LG1 and LG2 may be made of, for example, flexible carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastic: CFRP).
  • the spacecraft according to the ninth embodiment is connected to the housing, the support column connected to the housing, the two pairs of legs connected at one end to the support column, and the other ends of the legs.
  • the two pairs of legs are configured to be rotatable with respect to the support so that the angle between the two pairs of legs is variable.
  • the casing of the spacecraft according to each embodiment may include graphene or graphene fiber as a material. Part of the material of the housing may be used, or all of the material may be used. Thereby, the heat insulation of a housing
  • casing can be improved.
  • the present disclosure is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • AD1, AD2, AD3, AD4 A / D converter AT antenna AT1 first antenna AT2 second antenna B1, B2 bolt B41 probe body BAT battery BB battery board BC rear camera BHP bearing hold plate BP rear plate BR1, BR2 bearing BS Bearing spacer BT Power source C1, C2, CON Controller CB Camera board CC1 First communication controller CC2 Second communication controller CDC Charge / discharge circuit CM communication unit CMC1 First camera controller CMC2 Second camera controller CO Notch CR Camera CU Communication unit D1 Diode DCU DC converter unit DM Drive mechanism DP Bottom plate DR Drill DS Distance sensor E Ground station ET Earth FC Front camera FP Front plate FW1, F W2, RW1, RW2 Wheel GB Gearbox H1 Through-hole HB Hub HD Holding structure HC Clamp HE1 Hole HI Thermal insulation HL First hole HL2 Second hole HM First frame HS, HS2, HS4 Housing IF interface IM First 2 frames L Lander L5, L11 Lander LC Left side camera LG1, LG2 Leg LP

Abstract

Disclosed is a probe capable of travelling, said probe having: wheels; a first camera disposed facing the direction in which the probe can travel; and a second camera disposed facing the directions except the direction in which the probe can travel. The lens of the first camera and/or the second camera is directed downward from the horizontal line, and the wheels are included within the visual field of the first camera and/or the visual field of the second camera.

Description

探査機、探査機の部品の製造方法及び探査機製造方法Rover, exploration parts manufacturing method and rover manufacturing method
 本開示は、探査機、探査機の部品の製造方法及び探査機製造方法に関する。 The present disclosure relates to a probe, a method of manufacturing a probe component, and a probe manufacturing method.
 月または惑星の探査活動に用いられる探査機が知られている。例えば、探査機には、月面上または惑星上を走行可能な宇宙探査用走行車があり(特開2010-132261号公報参照)、米国の火星ローバーなどが知られている。 Spacecraft used for lunar or planetary exploration activities are known. For example, as a spacecraft, there is a space exploration vehicle that can travel on the moon surface or on the planet (refer to Japanese Patent Application Laid-Open No. 2010-132261), and a US Mars rover is known.
 本開示の一側面に係る探査機は、走行可能な探査機であって、車輪と、当該探査機が進行可能な方向に向けて配置された第1のカメラと、当該探査機が進行可能な方向以外の方向に向けて配置された第2のカメラと、を備え、前記第1のカメラ及び/または前記第2のカメラのレンズの向きが水平よりも下方に向けられており、前記第1のカメラの視野内及び/または前記第2のカメラの視野内に、車輪が含まれている。 A spacecraft according to one aspect of the present disclosure is a travelable spacecraft, and can travel a wheel, a first camera arranged in a direction in which the spacecraft can travel, and the spacecraft. A second camera arranged in a direction other than the direction, and the lens of the first camera and / or the second camera is oriented downward from the horizontal, and the first camera Wheels are included in the camera field of view and / or in the field of view of the second camera.
本実施形態に係る探査システムの概略を示す模式図である。It is a mimetic diagram showing the outline of the exploration system concerning this embodiment. 本実施形態に係る探査機の概略を示す斜視図である。It is a perspective view which shows the outline of the explorer which concerns on this embodiment. 実施形態に係る探査機を前方から見た正面図である。It is the front view which looked at the spacecraft concerning an embodiment from the front. 本実施形態に係る探査機を左側から見た側面図である。It is the side view which looked at the spacecraft concerning this embodiment from the left side. 本実施形態に係る探査機を上から見た上面図である。It is the top view which looked at the spacecraft concerning this embodiment from the top. 図2のAA断面の模式図である。It is a schematic diagram of the AA cross section of FIG. プレートPL4の構造を示す斜視図である。It is a perspective view which shows the structure of plate PL4. プレート毎の放熱量とプレートの露出面(表面)の塗装色の例を示す表である。It is a table | surface which shows the example of the coating color of the heat radiation amount for every plate, and the exposed surface (surface) of a plate. 図2のBB断面の模式図である。It is a schematic diagram of the BB cross section of FIG. 水平方向のカメラの視野範囲を示す模式図である。It is a schematic diagram which shows the visual field range of the camera of a horizontal direction. 図2のAA断面におけるカメラの視野範囲を示す模式図である。It is a schematic diagram which shows the visual field range of the camera in the AA cross section of FIG. 図2のBB断面におけるカメラの視野範囲を示す模式図である。It is a schematic diagram which shows the visual field range of the camera in the BB cross section of FIG. 探査機Rの第1の移動様式を示す模式図である。It is a schematic diagram which shows the 1st movement mode of the spacecraft. 探査機Rの第2の移動様式を示す模式図である。It is a schematic diagram which shows the 2nd movement mode of the spacecraft. 探査機Rが移動できない方向を示す模式図である。It is a schematic diagram which shows the direction where the spacecraft R cannot move. 探査機Rの第3の移動様式を示す模式図である。It is a schematic diagram which shows the 3rd movement mode of the spacecraft. 本実施形態に係る探査機Rの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the spacecraft R which concerns on this embodiment. 第1カメラコントローラCMC1のハードウェア構成を示す概略図である。It is the schematic which shows the hardware constitutions of 1st camera controller CMC1. 第2カメラコントローラCMC2のハードウェア構成を示す概略図である。It is the schematic which shows the hardware constitutions of 2nd camera controller CMC2. 筐体HSの断面の概略を示す模式図である。It is a schematic diagram which shows the outline of the cross section of housing | casing HS. 前板FP、後板BP、天板TP、底板DPにおける筐体のコーティングに関する工程の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process regarding the coating of the housing | casing in front board FP, rear board BP, top board TP, and bottom board DP. コーティング前のCFRPの板を示す模式図である。It is a schematic diagram which shows the board of CFRP before coating. 電源コントローラPUの構成の一例を示す図である。It is a figure which shows an example of a structure of power supply controller PU. 側板である右側板RPあるいは左側板LPの作成工程の一例を示すフローチャートである。It is a flowchart which shows an example of the production process of the right side plate RP or the left side plate LP which is a side plate. 探査機Rが配置される所定の緯度における探査機Rの正面図の模式図である。It is a schematic diagram of the front view of the probe R in the predetermined latitude where the probe R is arrange | positioned. 探査機Rが配置される予定の緯度が図22の場合よりも高い場合における探査機Rの正面図の模式図である。It is a schematic diagram of the front view of the probe R when the latitude where the probe R is planned is higher than the case of FIG. 探査機Rが配置される予定の緯度が図22の場合よりも低い場合における探査機Rの正面図の模式図である。It is a schematic diagram of the front view of the probe R when the latitude where the probe R is planned is lower than the case of FIG. 車輪FW2の分解斜視図である。It is a disassembled perspective view of wheel FW2. ハブHBを図25の矢印A1方向からみた正面図である。It is the front view which looked at the hub HB from the arrow A1 direction of FIG. 図26のDD断面で切ったときのハブHBの断面図である。FIG. 27 is a cross-sectional view of the hub HB when cut along the DD cross section of FIG. 26. 図25のCC断面で切ったときのクランプHCの断面図である。It is sectional drawing of the clamp HC when it cuts in CC section of FIG. 第2の実施形態に係る断熱シートの使用形態を示す模式図である。It is a schematic diagram which shows the usage pattern of the heat insulation sheet which concerns on 2nd Embodiment. 第3の実施形態に係る探査機の斜視図である。It is a perspective view of the spacecraft concerning a 3rd embodiment. 第3の実施形態に係る探査機の機能ブロック図である。It is a functional block diagram of the spacecraft concerning a 3rd embodiment. 第3の実施形態に係るインタフェースに機能ブロック図である。It is a functional block diagram to the interface concerning a 3rd embodiment. 第4の実施形態の製造方法の一例について説明する模式図である。It is a schematic diagram explaining an example of the manufacturing method of 4th Embodiment. 第5の実施形態の変形例に係る探査機の概略を示す模式図である。It is a schematic diagram which shows the outline of the explorer which concerns on the modification of 5th Embodiment. 第6の実施形態に係る探査システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the search system which concerns on 6th Embodiment. 第7の実施形態に係る探査システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the search system which concerns on 7th Embodiment. 第8の実施形態に係る探査機の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the explorer which concerns on 8th Embodiment. 遮断状態の切替機構SWの一例を表す概略斜視図である。It is a schematic perspective view showing an example of the switching mechanism SW in the cutoff state. 開放状態の切替機構SWの一例を表す概略斜視図である。It is a schematic perspective view showing an example of switching mechanism SW of an open state. 脚部を折り畳んでいないときの探査機の概略側面図である。It is a schematic side view of a spacecraft when a leg part is not folded. 脚部を折り畳んだときの探査機の概略側面図である。It is a schematic side view of a spacecraft when a leg part is folded. 脚部と支柱の概略斜視図である。It is a schematic perspective view of a leg part and a support | pillar.
 これまでの探査機は大型で重いので、月または惑星などに探査機を輸送するのに大きなコストがかかるという問題があった。 Since the conventional spacecraft is large and heavy, there is a problem that it takes a large cost to transport the spacecraft to the moon or planet.
 本開示は、上記問題に鑑みてなされたものであり、小型化しても探査することを可能とする探査機を提供することを目的とする。 This disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a probe that can be searched even if it is downsized.
 本開示の第1の態様に係る探査機は、走行可能な探査機であって、車輪と、当該探査機が進行可能な方向に向けて配置された第1のカメラと、当該探査機が進行可能な方向以外の方向に向けて配置された第2のカメラと、を備え、前記第1のカメラ及び/または前記第2のカメラのレンズの向きが水平よりも下方に向けられており、前記第1のカメラの視野内及び/または前記第2のカメラの視野内に、車輪が含まれている。 The spacecraft according to the first aspect of the present disclosure is a travelable spacecraft, and includes a wheel, a first camera arranged in a direction in which the spacecraft can travel, and the spacecraft traveling. A second camera arranged in a direction other than a possible direction, and the lens orientation of the first camera and / or the second camera is directed downward from the horizontal, Wheels are included in the field of view of the first camera and / or in the field of view of the second camera.
 この構成により、車輪に、石などが挟まっているか否かを確認することができる。 This configuration makes it possible to confirm whether or not stones are caught in the wheels.
 本開示の第2の態様に係る探査機は、第1の態様に係る探査機であって、前記第1のカメラの解像度は、前記第2のカメラの解像度より高い。 The spacecraft according to the second aspect of the present disclosure is the spacecraft according to the first aspect, and the resolution of the first camera is higher than the resolution of the second camera.
 この構成により、進行方向の視野範囲をより高い解像度で見ることができるので、進行方向にある障害物などを容易に発見することができる。 This configuration allows the field of view in the direction of travel to be viewed with higher resolution, so that obstacles in the direction of travel can be easily found.
 本開示の第3の態様に係る探査機は、第1または2の態様に係る探査機であって、プロセッサを複数備え、当該探査機は、前後どちらにも走行可能であり、前記第1のカメラとして、前方に向けて配置された前方カメラと、後方に向けて配置された後方カメラとを有し、前記前方カメラと、前記後方カメラはそれぞれ別々のプロセッサに接続されている。 A spacecraft according to a third aspect of the present disclosure is a spacecraft according to the first or second aspect, and includes a plurality of processors, and the spacecraft is capable of traveling both in the front and rear directions. As a camera, it has a front camera arranged toward the front and a rear camera arranged toward the rear, and the front camera and the rear camera are respectively connected to separate processors.
 この構成により、仮に、プロセッサのうちの一方が故障して動作できない場合でも、他方のプロセッサが動作することができるので、前方カメラ、後方カメラのいずれかのカメラの画像を地上局に転送することができる。よって、前方カメラ、後方カメラのいずれかのカメラの画像を見ながら、前後のいずれかに探査機を移動することができる。 With this configuration, even if one of the processors fails and cannot operate, the other processor can operate, so the images of either the front camera or the rear camera can be transferred to the ground station. Can do. Therefore, the spacecraft can be moved either forward or backward while viewing the image of either the front camera or the rear camera.
 本開示の第4の態様に係る探査機は、第1から3のいずれかの態様に係る探査機であって、前記第1のカメラまたは前記第2のカメラと、シリアルあるいはパラレルインタフェースで接続されているカメラコントローラと、通信するための通信コントローラと、を備え、前記カメラコントローラは、所定のフレームレートで前記カメラに動画データを要求して取得し、取得した動画データをハードウェアエンコーディングで圧縮し、前記通信コントローラは、圧縮後のデータを送信する。 A probe according to a fourth aspect of the present disclosure is the probe according to any one of the first to third aspects, and is connected to the first camera or the second camera via a serial or parallel interface. A camera controller, and a communication controller for communicating, the camera controller requests and obtains video data from the camera at a predetermined frame rate, and compresses the obtained video data by hardware encoding. The communication controller transmits the compressed data.
 この構成により、探査機のカメラが撮影した動画データを地上局に転送可能であり、探査機を操作するオペレータは地球上で動画データを見ることができる。第1のカメラまたは第2のカメラは、カメラの電源を常時オンしておく必要がなく、動画データの要求時だけ動作すればよいので消費電力を抑えることができる。 With this configuration, moving image data captured by the probe camera can be transferred to the ground station, and the operator operating the probe can view the moving image data on the earth. The first camera or the second camera need not always be turned on, and only needs to operate when moving image data is requested, so that power consumption can be suppressed.
 本開示の第5の態様に係る探査機は、第1から4のいずれかの態様に係る探査機であって、筐体を備え、前記筐体は、基板と、テフロン(登録商標)層あるいは石英ガラス層と、前記基板と前記テフロン(登録商標)層あるいは石英ガラス層との間に設けられた金属膜と、を有する。 A probe according to a fifth aspect of the present disclosure is the probe according to any one of the first to fourth aspects, and includes a housing, and the housing includes a substrate, a Teflon (registered trademark) layer, A quartz glass layer, and a metal film provided between the substrate and the Teflon (registered trademark) layer or the quartz glass layer.
 この構成により、金属膜で太陽光を反射し、筐体の熱をテフロン(登録商標)層あるいは石英ガラス層から輻射により赤外線として放出することができる。 With this structure, sunlight is reflected by the metal film, and the heat of the housing can be emitted as infrared rays from the Teflon (registered trademark) layer or the quartz glass layer by radiation.
 本開示の第6の態様に係る探査機は、第5の態様に係る探査機であって、前記テフロン(登録商標)層あるいは前記石英ガラス層の上に、酸化インジウム錫層が設けられている。 A probe according to a sixth aspect of the present disclosure is the probe according to the fifth aspect, and an indium tin oxide layer is provided on the Teflon (registered trademark) layer or the quartz glass layer. .
 この構成により、テフロン(登録商標)層の上に酸化インジウム錫層を設けることにより、太陽光を透過させることができるとともに、酸化インジウム錫層上に発生した電荷をグラウンドに流すことができる。 With this configuration, by providing the indium tin oxide layer on the Teflon (registered trademark) layer, it is possible to transmit sunlight and to allow the charge generated on the indium tin oxide layer to flow to the ground.
 本開示の第7の態様に係る探査機は、第1から6のいずれかの態様に係る探査機であって、筐体と、電子機器と、を備え、前記筐体は、側板と、前記電子機器が固定された天板とを有し、前記側板と前記天板との間に断熱材が設けられている。 A probe according to a seventh aspect of the present disclosure is a probe according to any one of the first to sixth aspects, and includes a housing and an electronic device, and the housing includes a side plate, The top plate to which the electronic device is fixed is provided, and a heat insulating material is provided between the side plate and the top plate.
 この構成により、側板から天板への熱伝達を遮断することにより、天板に固定された電子機器の温度上昇を抑制することができる。 With this configuration, by blocking the heat transfer from the side plate to the top plate, the temperature rise of the electronic device fixed to the top plate can be suppressed.
 本開示の第8の態様に係る探査機は、第7の態様に係る探査機であって、前記電子機器は、前記天板の裏に設けられている。 The probe according to the eighth aspect of the present disclosure is the probe according to the seventh aspect, and the electronic device is provided on the back of the top board.
 この構成により、太陽光が地面に反射した場合の反射光が天板には当らないので、電子機器が天板の裏に設けられていることで電子機器の温度上昇を予防することができる。 With this configuration, since the reflected light when sunlight is reflected on the ground does not hit the top plate, it is possible to prevent the temperature of the electronic device from rising by providing the electronic device behind the top plate.
 本開示の第9の態様に係る探査機は、第1から8のいずれかの態様に係る探査機であって、筐体と、前記筐体の天板から露出された状態で当該天板に固定されているプレートと、前記プレートの裏面側に固定されている電子機器と、を備え、前記プレートは断面が凸状の形状を有し、前記筐体の天板に設けられた開口に嵌まっている。 A spacecraft according to a ninth aspect of the present disclosure is the spacecraft according to any one of the first to eighth aspects, wherein the spacecraft is exposed to the top plate in a state of being exposed from the top surface of the housing and the housing. A plate that is fixed, and an electronic device that is fixed to the back side of the plate, the plate having a convex cross section and fitted into an opening provided in the top plate of the housing. waiting.
 この構成により、筐体の天板から宇宙空間に、バッテリから発生した熱を放出して、バッテリの温度上昇を抑えることができる。 With this configuration, the heat generated from the battery can be released from the top plate of the housing to the outer space to suppress the temperature rise of the battery.
 本開示の第10の態様に係る探査機は、第1から9のいずれかの態様に係る探査機であって、筐体を備え、前記筐体の前板及び/または後板は、底板から天板にかけて当該探査機の内側に傾いている。 A probe according to a tenth aspect of the present disclosure is the probe according to any one of the first to ninth aspects, and includes a housing, and the front plate and / or the rear plate of the housing is formed from a bottom plate. It leans to the inside of the spacecraft over the top plate.
 この構成により、月面に反射した太陽光が前板及び後板に当たる割合を低減することができるので、探査機の温度上昇を抑制することができる。 This configuration can reduce the rate at which sunlight reflected on the lunar surface hits the front plate and the rear plate, so that the temperature rise of the spacecraft can be suppressed.
 本開示の第11の態様に係る探査機は、第1から10のいずれかの態様に係る探査機であって、筐体と、前記筐体の側板の底面との間の輪郭線に対して当該筐体の側板に沿った垂線を仮定したときに、当該垂線に対して斜めに配列されている太陽電池と、を備える。 A probe according to an eleventh aspect of the present disclosure is the probe according to any one of the first to tenth aspects, with respect to a contour line between a casing and a bottom surface of a side plate of the casing. When a perpendicular along the side plate of the housing is assumed, the solar cells are arranged obliquely with respect to the perpendicular.
 この構成により、太陽電池の筐体外面における専有面積率を高くすることができ、限られた面積のうちに多くの太陽電池を配置できる。 This configuration makes it possible to increase the exclusive area ratio of the outer surface of the solar cell housing, and to arrange a large number of solar cells within a limited area.
 本開示の第12の態様に係る探査機は、第11の態様に係る探査機であって、前記太陽電池で発電された電力が供給される充放電回路を更に備え、前記筐体には貫通孔が設けられており、前記太陽電池からの配線は、前記筐体に設けられた貫通孔を通して前記筐体内の充放電回路に接続されている。 A probe according to a twelfth aspect of the present disclosure is the probe according to the eleventh aspect, further comprising a charge / discharge circuit to which power generated by the solar cell is supplied, and penetrating the casing. A hole is provided, and wiring from the solar cell is connected to a charge / discharge circuit in the casing through a through hole provided in the casing.
 この構成により、筐体外面に配線を固定するスペースを設けなくてもよくなるので、限られた面積のうちに多くの太陽電池を配置できる。 This configuration eliminates the need to provide a space for fixing the wiring on the outer surface of the housing, so that many solar cells can be arranged within a limited area.
 本開示の第13の態様に係る探査機は、第1から12のいずれかの態様に係る探査機であって、前記筐体の上に配置された太陽電池を更に備え、前記太陽電池が配置された筐体の面は、底板から天板にかけて当該探査機の内側に傾いている。 A probe according to a thirteenth aspect of the present disclosure is the probe according to any one of the first to twelfth aspects, further including a solar cell disposed on the housing, wherein the solar cell is disposed. The surface of the case is tilted to the inside of the spacecraft from the bottom plate to the top plate.
 この構成により、太陽からの光を効率よく受けることができるので、発電量を増加させることができる。 This configuration makes it possible to efficiently receive light from the sun, thus increasing the amount of power generation.
 本開示の第14の態様に係る探査機は、第13の態様に係る探査機であって、前記太陽電池が配置された筐体の面の傾きは、当該探査機が配置される予定の緯度に応じて決定されている。 The probe according to the fourteenth aspect of the present disclosure is the probe according to the thirteenth aspect, and the inclination of the surface of the housing in which the solar cell is disposed is the latitude at which the probe is to be disposed. It is decided according to.
 この構成により、太陽の最大仰角に応じて太陽電池の傾きが設定されるので、発電量を増加させることができる。 This configuration sets the solar cell inclination according to the maximum elevation angle of the sun, so that the amount of power generation can be increased.
 本開示の第15の態様に係る探査機は、第1から14のいずれかの態様に係る探査機であって、前記車輪に設けられたモータと、コーン状の凸部を中央付近に有し、当該凸部に前記モータの回転軸が嵌っている第1の穴と当該第1の穴に連通する切り欠きを有するハブと、裏面から表面に向けて徐々に直径が小さくなる第2の穴を有するクランプと、を備え、前記クランプの当該裏面と前記ハブとが対向状態で前記第2の穴に前記凸部が嵌まっている。 A probe according to a fifteenth aspect of the present disclosure is the probe according to any one of the first to fourteenth aspects, and includes a motor provided on the wheel and a cone-shaped convex portion in the vicinity of the center. A first hole in which the rotating shaft of the motor is fitted in the convex part, a hub having a notch communicating with the first hole, and a second hole whose diameter gradually decreases from the back surface to the surface. And the convex portion is fitted in the second hole in a state where the back surface of the clamp and the hub are opposed to each other.
 この構成により、第2の穴に凸部が嵌まることにより、切り欠きが狭まって、ハブの第1の穴の回りの輪郭が狭まり、モータの回転軸を強く拘束する。これにより、モータの回転軸が滑るのを防止することができる。また、モータを固定するときに、モータの回転軸に回転軸方向に過剰な力を与えると、モータが突然、回転を停止する問題があった。それに対し、上記の構成によれば、クランプで締め上げるときに、ハブは動かずにクランプだけ動かすので、モータの回転軸に回転軸方向への過剰な力を与えないので、モータの突然の回転の停止を防止することができる。 With this configuration, when the convex portion is fitted in the second hole, the notch is narrowed, the contour around the first hole of the hub is narrowed, and the rotation shaft of the motor is strongly restrained. Thereby, it can prevent that the rotating shaft of a motor slips. Further, when fixing the motor, if an excessive force is applied to the rotating shaft of the motor in the direction of the rotating shaft, the motor suddenly stops rotating. On the other hand, according to the above configuration, when the clamp is tightened, the hub is moved only by the clamp without moving, so that an excessive force in the direction of the rotation axis is not given to the rotation axis of the motor, so that the sudden rotation of the motor Can be prevented.
 本開示の第16の態様に係る探査機は、探査機であって、折り畳まれて収納されており、折り畳まれた状態から広げることが可能な断熱シートを備え、前記断熱シートは、広げると当該探査機の外側を覆うように構成されている。 A spacecraft according to a sixteenth aspect of the present disclosure is a spacecraft, is folded and stored, and includes a heat insulating sheet that can be expanded from a folded state. It is configured to cover the outside of the spacecraft.
 この構成により、太陽光を断熱シートで反射し、断熱性を有するので、探査機の温度変化を低減することができる。 With this configuration, sunlight is reflected by the heat insulating sheet and has a heat insulating property, so the temperature change of the spacecraft can be reduced.
 本開示の第17の態様に係る探査機は、ペイロードまたはアクセサリと接続するインタフェースを備え、前記インタフェースは、ペイロードまたはアクセサリと接続した場合に、当該ペイロードまたはアクセサリに対して電圧を変換して電力を供給するためのコンバータユニットと、前記ペイロードまたはアクセサリと接続した場合に、当該ペイロードまたはアクセサリとの間で電気信号を交換するための通信ユニットと、を有する。 A spacecraft according to a seventeenth aspect of the present disclosure includes an interface connected to a payload or an accessory, and when the interface is connected to the payload or the accessory, the interface converts the voltage to the payload or the accessory to generate power. A converter unit for supplying, and a communication unit for exchanging electrical signals with the payload or accessory when connected to the payload or accessory.
 この構成により、ペイロードまたはアクセサリに電力を供給するとともに、探査機はペイロードまたはアクセサリとの間で電気信号を交換することができる。 This configuration provides power to the payload or accessory and allows the spacecraft to exchange electrical signals with the payload or accessory.
 本開示の第18の態様に係る探査機の部品の製造方法は、地球以外の天体上に配置された3Dプリンタによって、探査機の部品を製造する工程を有する。 The method for manufacturing a probe component according to the eighteenth aspect of the present disclosure includes a step of manufacturing the probe component using a 3D printer disposed on a celestial body other than the earth.
 この構成により、探査機の部品が故障または破損した場合に、探査機の部品を地球以外の天体上において3Dプリンタで製造し、製造した部品と、故障した部品を交換することができる。 With this configuration, when a probe component fails or is damaged, the probe component can be manufactured on a celestial body other than the earth with a 3D printer, and the manufactured component can be replaced with the failed component.
 本開示の第19の態様に係る探査機の部品の製造方法は、第18の態様に係る探査機の部品の製造方法であって、故障または破損した前記探査機の部品を熔解する工程と、前記製造する工程において、前記熔解後の材料を原料として用いて、3Dプリンタで宇宙機の部品を製造する。 A method of manufacturing a probe component according to a nineteenth aspect of the present disclosure is a method of manufacturing a probe component according to the eighteenth aspect, the step of melting the probe component that has failed or is damaged, In the manufacturing step, spacecraft parts are manufactured by a 3D printer using the material after melting as a raw material.
 この構成により、探査機の部品が故障または破損した場合に、探査機の部品を再利用して、宇宙機の部品を製造することができる。 This configuration allows the spacecraft parts to be manufactured by reusing the spacecraft parts when the spacecraft parts break down or are damaged.
 本開示の第20の態様に係る探査機の部品の製造方法は、第18の態様に係る探査機の部品の製造方法であって、地球以外の天体において天然資源を採取する工程と、前記製造する工程において、前記採取された天然資源を原料として用いて3Dプリンタで探査機の部品を製造する。 A method for manufacturing a probe component according to a twentieth aspect of the present disclosure is a method for manufacturing a probe component according to the eighteenth aspect, the step of collecting natural resources in a celestial body other than the earth, and the manufacture In this step, the parts of the probe are manufactured by a 3D printer using the collected natural resources as raw materials.
 この構成により、より安価に探査機の部品を製造することができる。 This configuration makes it possible to manufacture spacecraft parts at a lower cost.
 本開示の第21の態様に係る探査機製造方法は、地球以外の天体において探査機を製造する探査機製造方法であって、地球以外の天体において天然資源を採取するか、故障または破損した探査機の部品を熔解する工程と、前記採取された天然資源または前記熔解後の材料を原料として用いて、3Dプリンタで探査機の部品を製造する工程と、前記製造された探査機の部品を対象の探査機に取り付ける工程と、を有する。 A probe manufacturing method according to a twenty-first aspect of the present disclosure is a probe manufacturing method for manufacturing a probe in a celestial body other than the earth, in which a natural resource is collected from a celestial body other than the earth, or a fault or damage is detected. The process of melting the parts of the aircraft, the process of manufacturing the parts of the probe with a 3D printer using the collected natural resources or the material after the melting as a raw material, and the manufactured parts of the probe Attaching to the spacecraft.
 この構成により、安価に探査機を製造したり、破損または故障した探査機の部品を安価に交換したりすることができる。あるいは探査機の部品が故障または破損しても、探査機の部品を再生して交換することにより、探査機を再生することができる。 This configuration makes it possible to manufacture a spacecraft at low cost, or to replace a damaged or failed spacecraft component at low cost. Alternatively, even if the parts of the probe are broken or damaged, the probe can be regenerated by regenerating and replacing the parts of the probe.
 本開示の第22の態様に係る探査機は、太陽光パネルと、前記太陽光パネルの水平面からの傾きを変更する駆動機構と、時刻、太陽の位置、または前記太陽光パネルの発電量に応じて、前記太陽光パネルの水平面を基準とする傾きを変更するよう前記駆動機構を制御するコントローラと、を備える。 A spacecraft according to a twenty-second aspect of the present disclosure is based on a solar panel, a drive mechanism that changes the inclination of the solar panel from a horizontal plane, and the time, the position of the sun, or the amount of power generated by the solar panel. And a controller for controlling the drive mechanism so as to change the inclination with respect to the horizontal plane of the solar panel.
 この構成により、太陽光の照射角度に応じて太陽光パネルの水平面を基準とする傾きを変更することができ、太陽光パネルに当たる光の量を増やすことができるので、太陽光パネルにおける発電量を増やすことができる。 With this configuration, the inclination with respect to the horizontal plane of the solar panel can be changed according to the irradiation angle of sunlight, and the amount of light hitting the solar panel can be increased. Can be increased.
 本開示の第23の態様に係る探査機は、光を反射する反射板と、前記反射板によって反射された太陽光が対象物の太陽光パネルに照射されるように、前記反射板の向き及び/または角度を変更するよう制御するコントローラと、を備える。 The spacecraft according to the twenty-third aspect of the present disclosure includes a reflector that reflects light, and a direction of the reflector so that sunlight reflected by the reflector is applied to a solar panel of an object. And / or a controller that controls to change the angle.
 この構成により、対象物が影の中にいる場合であっても、対象物の太陽光パネルに反射光を照射できるので、対象物の太陽光パネルは発電することができる。 With this configuration, even if the object is in the shadow, the reflected light can be applied to the solar panel of the object, so that the solar panel of the object can generate power.
 本開示の第24の態様に係る探査機は、カメラと、前記カメラを射出可能な射出機構と、前記カメラと射出機構とを制御するコントローラと、を備え、前記コントローラは、前記カメラが射出後に着地した地点において前記カメラで撮影するよう制御し、撮影により得られた画像を前記カメラから取得する。 A spacecraft according to a twenty-fourth aspect of the present disclosure includes a camera, an injection mechanism that can inject the camera, and a controller that controls the camera and the injection mechanism. Control is performed so that the camera takes a picture at the landing point, and an image obtained by the photography is acquired from the camera.
 この構成により、カメラを探査機が進入することが困難な場所における画像が得られるため、探査機が進入することが困難な場所を観察することができる。 With this configuration, an image in a place where it is difficult for the probe to enter the camera can be obtained, so that it is possible to observe a place where the probe is difficult to enter.
 本開示の第25の態様に係る探査機は、筐体と、前記筐体内の熱を開放する開放状態と前記筐体内の熱を遮断する遮断状態とを切り替える切替機構と、前記筐体の外部または内部の温度を計測する温度センサと、前記温度センサが計測した温度に応じて、開放状態と遮断状態とを切り替えるように前記切替機構を制御するプロセッサと、を備える。 A spacecraft according to a twenty-fifth aspect of the present disclosure includes a casing, a switching mechanism that switches between an open state that releases heat in the casing and a blocking state that blocks heat in the casing, and an exterior of the casing Alternatively, a temperature sensor that measures the internal temperature and a processor that controls the switching mechanism to switch between an open state and a shut-off state according to the temperature measured by the temperature sensor.
 この構成により、筐体の外部の温度が上昇した場合は、遮断状態に切り替えて、筐体の内部への熱の流入を抑制し、筐体の外部の温度が低下した場合は、開放状態に切り替えて、筐体の内部への熱を排出することにより、筐体の内部の温度の変化を抑制することができる。 With this configuration, when the temperature outside the housing rises, it is switched to the shut-off state, suppressing the inflow of heat into the housing, and when the temperature outside the housing is lowered, it is opened. By switching and discharging the heat to the inside of the housing, a change in the temperature inside the housing can be suppressed.
 本開示の第26の態様に係る探査機は、筐体と、前記筐体に連結された支柱と、一端が前記支柱に連結された2対の脚部と、前記脚部それぞれの他端に連結された車輪と、を有し、前記2対の脚部の間の角度が可変になるように、前記支柱に対して前記2対の脚部が回動可能に構成されている。 A spacecraft according to a twenty-sixth aspect of the present disclosure includes a housing, a support post coupled to the housing, two pairs of legs connected to the support at one end, and the other ends of the legs. And the two pairs of legs are configured to be rotatable with respect to the column so that the angle between the two pairs of legs is variable.
 この構成により、重心が低くなるので輸送時などの振動が大きな場合に、振動による探査機の揺れを低減し、揺れによる破損を抑制することができる。また探査機をペイロードとして宇宙機またはランダーに積載する場合に脚部を畳むことで高さを低くすることができるので、積載されたときに探査機が占める空間を小さくすることができる。 This configuration lowers the center of gravity, so if the vibration during transportation is large, it can reduce the shake of the probe due to the vibration and suppress the damage caused by the shake. Further, when the spacecraft or the lander is loaded with the spacecraft as a payload, the height can be reduced by folding the legs, so that the space occupied by the spacecraft when loaded is reduced.
 本開示の第27の態様に係る探査機は、グラフェンまたはグラフェンファイバーを素材として含む筐体を備える。 The spacecraft according to the twenty-seventh aspect of the present disclosure includes a housing including graphene or graphene fiber as a material.
 この構成により、筐体の断熱性を向上させることができる。 This configuration can improve the heat insulation of the housing.
 各実施形態では、探査機を、一例として月の探査活動に用いる場合について説明する。なお、各実施形態に係る探査機は、惑星、小惑星、他の衛星など他の天体の探索活動にも用いることができる。以下、各実施形態について、図面を参照しながら説明する。 In each embodiment, a case where the spacecraft is used for lunar exploration activities will be described as an example. In addition, the spacecraft according to each embodiment can be used for searching for other celestial bodies such as planets, asteroids, and other satellites. Each embodiment will be described below with reference to the drawings.
<第1の実施形態>
 図1は、本実施形態に係る探査システムの概略を示す模式図である。図1に示すように、本実施形態に係る探査システムSは、月面LSを探査する探査装置(ローバーともいう)Rと、月MNまで探査装置を輸送する着陸船(ランダーともいう)Lと、地球ET上に設けられた地上局Eを備える。本実施形態に係る探査機Rは、一例として無人探査機であり、月面上を走行可能である。探査機Rは着陸船Lと通信可能である。また、着陸船Lは地上局と通信可能である。これにより、地上局Eから探査機Rを制御することができる。
<First Embodiment>
FIG. 1 is a schematic diagram showing an outline of an exploration system according to the present embodiment. As shown in FIG. 1, the exploration system S according to the present embodiment includes an exploration device (also referred to as a rover) R for exploring the lunar surface LS, and a landing ship (also referred to as a lander) L for transporting the exploration device to the moon MN. And a ground station E provided on the earth ET. The spacecraft R according to the present embodiment is an unmanned spacecraft as an example, and can travel on the moon surface. The probe R can communicate with the lander L. The landing ship L can communicate with the ground station. Thereby, the spacecraft E can be controlled from the ground station E.
 図2は、本実施形態に係る探査機の概略を示す斜視図である。図2に示すように、本実施形態に係る探査機Rは、筐体HSと、筐体HSに設けられたシャフトLSF、RSFと、不図示のシャフトRSFに連結された車輪FW1、RW1と、シャフトLSFに連結された車輪FW2、RW2とを備える。 FIG. 2 is a perspective view showing an outline of the spacecraft according to the present embodiment. As shown in FIG. 2, the spacecraft R according to the present embodiment includes a housing HS, shafts LSF and RSF provided in the housing HS, wheels FW1 and RW1 connected to a shaft RSF (not shown), Wheels FW2 and RW2 connected to the shaft LSF are provided.
 探査機Rは、筐体の前面に設けられた距離センサDSと、筐体HSの天板に設けられた第1アンテナAT1、第2アンテナAT2とを備える。ここで距離センサDSは、月面上の物体(例えば、岩などの障害物)との間の距離を計測する。本実施形態に係る探査機Rは一例として、距離センサDSが設けられた方向に進む場合とその反対方向に進む場合で駆動機構上の違いはない。本実施形態では一例として、距離センサDSが設けられた方を前方とし、その反対方向を後方として以下、説明する。 The spacecraft R includes a distance sensor DS provided on the front surface of the casing, and a first antenna AT1 and a second antenna AT2 provided on the top plate of the casing HS. Here, the distance sensor DS measures a distance from an object on the moon (for example, an obstacle such as a rock). As an example, the probe R according to the present embodiment has no difference in driving mechanism between the case of traveling in the direction in which the distance sensor DS is provided and the case of traveling in the opposite direction. In the present embodiment, as an example, the direction where the distance sensor DS is provided is assumed to be the front, and the opposite direction is assumed to be the rear.
 探査機Rは、前方カメラFCと、後方カメラBCと、右側方カメラRCと、左側方カメラLCとを備える。前方カメラFCと、後方カメラBCと、右側方カメラRCと、左側方カメラLCは、レンズと、レンズから入射した光を用いて被写体を撮像する撮像部とを有している。後述する図13A、図13Cに示すように、探査機Rは、前後移動が可能であるのに対し、左右に移動できない。前方カメラFCと後方カメラBCは、探査機Rが進行可能な方向に向けて配置された第1のカメラの一例である。右側方カメラRCと左側方カメラLCは、探査機が進行可能な方向以外の方向に向けて配置された第2のカメラの一例である。 The spacecraft R includes a front camera FC, a rear camera BC, a right side camera RC, and a left side camera LC. The front camera FC, the rear camera BC, the right-side camera RC, and the left-side camera LC have a lens and an imaging unit that captures an object using light incident from the lens. As shown in FIGS. 13A and 13C described later, the probe R can move back and forth, but cannot move left and right. The front camera FC and the rear camera BC are an example of a first camera arranged in a direction in which the spacecraft R can travel. The right side camera RC and the left side camera LC are an example of a second camera arranged in a direction other than the direction in which the spacecraft can travel.
 図3は、本実施形態に係る探査機を前方から見た正面図である。図3に示すように、シャフトRSFに車輪FW1が連結され、シャフトLSFに連結された車輪FW2が連結されている。 FIG. 3 is a front view of the spacecraft according to the present embodiment as viewed from the front. As shown in FIG. 3, the wheel FW1 is connected to the shaft RSF, and the wheel FW2 connected to the shaft LSF is connected.
 図4は、本実施形態に係る探査機を左側から見た側面図である。図4の水平線HXと比較すると明らかなように、第1のカメラである前方カメラFC及び後方カメラBCのレンズLF、LBの向きが水平よりも下方に向けられている。これにより、走行方向にある月面上の障害物を可視化することができる。 FIG. 4 is a side view of the spacecraft according to the present embodiment as viewed from the left side. As is clear from comparison with the horizontal line HX in FIG. 4, the directions of the lenses LF and LB of the front camera FC and the rear camera BC, which are the first cameras, are directed downward from the horizontal. Thereby, the obstacle on the moon surface in the running direction can be visualized.
 また図4に示すように、筐体HSの左側面側の左側板LPには、太陽電池M1-1~M1-4、M2-1~M2-5、M3-1~M3-5、M4-1~M4-4、M5-1~M5-5、M6-1~M6-5が設けられている。
 図5は、本実施形態に係る探査機を上から見た上面図である。図5に示すように、筐体HSの右側面側の右側板RPにも太陽電池M7-1~M7-4、M8~M8-5、M9-1~M9-5、M10-1~M10-4、M11-1~M11-5、M12-1~M12-5が設けられている。
 図4及び図5に示すように、筐体HSの側板の底面との間の輪郭線に対して筐体HSの側板に沿った垂線を仮定したときに、太陽電池は、当該垂線に対して斜めに配列されている。これにより、太陽電池の筐体HS外面における専有面積率を高くすることができ、限られた面積のうちに多くの太陽電池を配置できる。
As shown in FIG. 4, solar cells M1-1 to M1-4, M2-1 to M2-5, M3-1 to M3-5, M4- 1 to M4-4, M5-1 to M5-5, and M6-1 to M6-5 are provided.
FIG. 5 is a top view of the spacecraft according to the present embodiment as viewed from above. As shown in FIG. 5, the solar cells M7-1 to M7-4, M8 to M8-5, M9-1 to M9-5, M10-1 to M10- are also applied to the right side plate RP on the right side of the housing HS. 4, M11-1 to M11-5, and M12-1 to M12-5 are provided.
As shown in FIGS. 4 and 5, when assuming a perpendicular along the side plate of the housing HS with respect to the contour line between the bottom surface of the side plate of the housing HS, the solar cell is It is arranged diagonally. Thereby, the exclusive area rate in the housing | casing HS outer surface of a solar cell can be made high, and many solar cells can be arrange | positioned within the limited area.
 図5に示すように、筐体HSは、天板TP、前板FP、後板BP、右側板RP、左側板LP及び不図示の底板DPを有している。以下、右側板RPあるいは左側板LPを総称して側板ということもある。図5に示すように、プレートPL1、PL2、PL3、PL4が筐体HSの天板TPから露出された状態で天板TPに固定されている。すなわち、筐体HSの天板TPに連結して表面が外側に露出している。 As shown in FIG. 5, the housing HS has a top plate TP, a front plate FP, a rear plate BP, a right side plate RP, a left side plate LP, and a bottom plate DP (not shown). Hereinafter, the right side plate RP or the left side plate LP may be collectively referred to as a side plate. As shown in FIG. 5, the plates PL1, PL2, PL3, and PL4 are fixed to the top plate TP in a state where they are exposed from the top plate TP of the housing HS. That is, the surface is exposed to the outside by connecting to the top plate TP of the housing HS.
 図6は、図2のAA断面の模式図である。本実施形態に係る探査機は一例として、月の赤道付近以外で探査する。つまり太陽光が探査機Rに対して斜めに入射することを想定する。このため、図6に示すように、電子機器が天板の裏に設けられており、天板TPに電子機器が固定されている。これにより、太陽光が月面LSなどの地面に反射した場合の反射光が天板TPには当らないので、電子機器が天板の裏に設けられていることで電子機器の温度上昇を予防することができる。 FIG. 6 is a schematic diagram of the AA cross section of FIG. As an example, the spacecraft according to the present embodiment searches outside the equator of the moon. That is, it is assumed that sunlight is incident on the spacecraft R at an angle. For this reason, as shown in FIG. 6, the electronic device is provided in the back of the top plate, and the electronic device is being fixed to the top plate TP. Thereby, since reflected light when sunlight reflects on the ground such as the lunar surface LS does not hit the top plate TP, the electronic device is provided on the back of the top plate to prevent the temperature of the electronic device from rising. can do.
 図6に示すように、電子機器の一つであるバッテリが搭載されたバッテリボードBBが、支柱P1-1、P1-2を介してプレートPL1の裏面に固定されている。当該プレートPL1は断面が凸状の形状を有し、筐体HSの天板TPに設けられた開口に嵌まっている。このようにして、天板TPに、電子機器の一つであるバッテリが固定されている。これにより、筐体HSの天板TPから宇宙空間に、バッテリから発生した熱を放出して、バッテリの温度上昇を抑えることができる。また、バッテリボードBBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL1が挟まれている。これにより、バッテリで生じた熱を、効率良くプレートPL1まで伝達することができ、放熱効果を向上させることができる。 As shown in FIG. 6, a battery board BB on which a battery which is one of electronic devices is mounted is fixed to the back surface of the plate PL1 via support columns P1-1 and P1-2. The plate PL1 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS. In this way, the battery, which is one of the electronic devices, is fixed to the top plate TP. Thereby, the heat generated from the battery can be released from the top plate TP of the housing HS to the outer space, and the temperature rise of the battery can be suppressed. Further, an adhesive material (gel) GL1 having high thermal conductivity is sandwiched between the battery board BB and the back surface of the top plate TP. Thereby, the heat generated in the battery can be efficiently transmitted to the plate PL1, and the heat dissipation effect can be improved.
 同様にして、電子機器の一つである電源コントローラが搭載された電源ボードPUBが、支柱P2-1、P2-2を介してプレートPL2の裏面に固定されている。当該プレートPL2は断面が凸状の形状を有し、筐体HSの天板TPに設けられた開口に嵌まっている。このようにして、天板TPに、電子機器の一つである電源コントローラが固定されている。これにより、筐体HSの天板TPから宇宙空間に、電源コントローラから発生した熱を放出して、電源コントローラの温度上昇を抑えることができる。また、電源ボードPUBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL2が挟まれている。これにより、電源コントローラで生じた熱を、効率良くプレートPL2まで伝達することができ、放熱効果を向上させることができる。 Similarly, a power supply board PUB on which a power supply controller, which is one of electronic devices, is mounted is fixed to the back surface of the plate PL2 via support columns P2-1 and P2-2. The plate PL2 has a convex cross section, and is fitted in an opening provided in the top plate TP of the housing HS. In this way, the power supply controller that is one of the electronic devices is fixed to the top plate TP. Thereby, the heat generated from the power supply controller can be released from the top plate TP of the housing HS to the outer space, and the temperature rise of the power supply controller can be suppressed. Further, an adhesive material (gel) GL2 having high thermal conductivity is sandwiched between the power supply board PUB and the back surface of the top plate TP. Thereby, the heat generated by the power supply controller can be efficiently transmitted to the plate PL2, and the heat dissipation effect can be improved.
 同様にして、電子機器の一つであるモータコントローラが搭載されたモータ用ボードMCBが、支柱P3-1、P3-2を介してプレートPL3の裏面に固定されている。当該プレートPL3は断面が凸状の形状を有し、筐体HSの天板TPに設けられた開口に嵌まっている。このようにして、天板TPに、電子機器の一つであるモータコントローラが固定されている。これにより、筐体HSの天板TPから宇宙空間に、モータコントローラから発生した熱を放出して、モータコントローラの温度上昇を抑えることができる。また、モータ用ボードMCBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL3が挟まれている。これにより、モータコントローラで生じた熱を、効率良くプレートPL3まで伝達することができ、放熱効果を向上させることができる。 Similarly, a motor board MCB on which a motor controller which is one of electronic devices is mounted is fixed to the back surface of the plate PL3 via support columns P3-1 and P3-2. The plate PL3 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS. Thus, the motor controller which is one of the electronic devices is fixed to the top plate TP. Thereby, the heat generated from the motor controller can be released from the top plate TP of the housing HS to the outer space, and the temperature rise of the motor controller can be suppressed. Further, an adhesive (gel) GL3 having a high thermal conductivity is sandwiched between the motor board MCB and the back surface of the top plate TP. Thereby, the heat generated by the motor controller can be efficiently transmitted to the plate PL3, and the heat dissipation effect can be improved.
 同様にして、電子機器の一つであるカメラコントローラが搭載されたカメラ用ボードCBが、支柱P4-1、P4-2を介してプレートPL4の裏面に固定されている。当該プレートPL4は断面が凸状の形状を有し、筐体HSの天板TPに設けられた開口に嵌まっている。このようにして、天板TPに、電子機器の一つであるカメラコントローラが固定されている。これにより、筐体HSの天板TPから宇宙空間に、カメラコントローラから発生した熱を放出して、カメラコントローラの温度上昇を抑えることができる。また、カメラ用ボードCBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL4が挟まれている。これにより、カメラコントローラで生じた熱を、効率良くプレートPL4まで伝達することができ、放熱効果を向上させることができる。 Similarly, a camera board CB on which a camera controller which is one of electronic devices is mounted is fixed to the back surface of the plate PL4 via support columns P4-1 and P4-2. The plate PL4 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS. Thus, the camera controller which is one of the electronic devices is fixed to the top plate TP. Thereby, the heat generated from the camera controller can be released from the top plate TP of the housing HS to the outer space, and the temperature rise of the camera controller can be suppressed. Further, an adhesive (gel) GL4 having a high thermal conductivity is sandwiched between the camera board CB and the back surface of the top plate TP. Thereby, the heat generated by the camera controller can be efficiently transmitted to the plate PL4, and the heat dissipation effect can be improved.
 同様にして、電子機器の一つである通信コントローラが搭載された通信用ボードRBが、支柱P5-1、P5-2を介してプレートPL5の裏面に固定されている。当該プレートPL5は断面が凸状の形状を有し、筐体HSの後板BPに設けられた開口に嵌まっている。このようにして、後板BPに、電子機器の一つである通信コントローラが固定されている。これにより、筐体HSの後板BPから宇宙空間に、通信コントローラから発生した熱を放出して、通信コントローラの温度上昇を抑えることができる。また、カメラ用ボードCBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL4が挟まれている。これにより、カメラコントローラで生じた熱を、効率良くプレートPL4まで伝達することができ、放熱効果を向上させることができる。 Similarly, a communication board RB on which a communication controller that is one of electronic devices is mounted is fixed to the back surface of the plate PL5 via support columns P5-1 and P5-2. The plate PL5 has a convex cross section, and is fitted into an opening provided in the rear plate BP of the housing HS. Thus, the communication controller which is one of the electronic devices is fixed to the rear plate BP. As a result, the heat generated from the communication controller can be released from the rear plate BP of the housing HS to the outer space to suppress the temperature increase of the communication controller. Further, an adhesive (gel) GL4 having a high thermal conductivity is sandwiched between the camera board CB and the back surface of the top plate TP. Thereby, the heat generated by the camera controller can be efficiently transmitted to the plate PL4, and the heat dissipation effect can be improved.
 続いて、プレートPL1~PL5を代表してプレートPL4の構造について説明する。図7は、プレートPL4の構造を示す斜視図である。図7に示すように、カメラコントローラが搭載されたカメラ用ボードCBとプレートPL4とが、4本の支柱P4-1~P4-4を介して連結されている。そして、プレートPL4の四隅には、プレートPL4をねじで天板TPに固定するための四つの穴HE1~HE4が設けられている。このように、パッケージ化することによって組み立てを簡易にすることができる。 Subsequently, the structure of the plate PL4 will be described on behalf of the plates PL1 to PL5. FIG. 7 is a perspective view showing the structure of the plate PL4. As shown in FIG. 7, a camera board CB on which a camera controller is mounted and a plate PL4 are connected via four columns P4-1 to P4-4. At the four corners of the plate PL4, four holes HE1 to HE4 for fixing the plate PL4 to the top plate TP with screws are provided. Thus, assembly can be simplified by packaging.
 図8は、プレート毎の放熱量とプレートの露出面(表面)の塗装色の例を示す表である。色によって光の反射率及び吸収率が異なる。そのため、電子機器の放熱量が大きいほど光の反射率が高く且つ吸収率が低くなるように、当該電子機器が搭載されたプレートの露出面の色が設定されている。例えば、図8に示すように、放熱量が大きい放熱源が固定されているプレートPL1、PL4は、例えば、露出面(表面)の塗装色が白である。白は光の反射率が高く吸収率が低いので、太陽光が照射されてもプレートPL1、PL4の温度上昇を抑制することでき、放熱量が大きいバッテリ及びカメラコントローラの温度上昇を抑制することができる。一方、図8に示すように、放熱量が小さい放熱源が固定されているプレートPL2、PL3は、例えば、露出面(表面)の塗装色が黒である。黒は光の反射率が低く吸収率が高いので、太陽光が照射されるとプレートPL2、PL3の温度上昇を促進して、放熱量が小さいバッテリ及びカメラコントローラの温度を適度な温度にすることができる。 FIG. 8 is a table showing an example of the heat radiation amount for each plate and the paint color of the exposed surface (surface) of the plate. The reflectance and absorption rate of light differ depending on the color. Therefore, the color of the exposed surface of the plate on which the electronic device is mounted is set so that the greater the heat dissipation amount of the electronic device, the higher the light reflectance and the lower the absorption rate. For example, as shown in FIG. 8, the plates PL1 and PL4 to which the heat radiation source having a large heat radiation amount is fixed have, for example, a white paint color on the exposed surface (surface). White has high light reflectivity and low absorptance, so it can suppress the temperature rise of the plates PL1 and PL4 even when exposed to sunlight, and can suppress the temperature rise of the battery and camera controller with large heat dissipation. it can. On the other hand, as shown in FIG. 8, the plates PL2 and PL3 to which the heat radiation source having a small heat radiation amount is fixed have, for example, a black painted color on the exposed surface (surface). Black has low light reflectivity and high absorption, so when sunlight is applied, it promotes the temperature rise of the plates PL2 and PL3, and makes the temperature of the battery and camera controller with a small amount of heat dissipation moderate. Can do.
 図2及び図6に示すように、筐体HSの前板FP及び後板BPは、底板DPから天板TPにかけて当該探査機Rの内側に傾いている。これにより、月面に反射した太陽光が前板FP及び後板BPに当たる割合を低減することができるので、探査機Rの温度上昇を抑制することができる。 As shown in FIGS. 2 and 6, the front plate FP and the rear plate BP of the housing HS are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP. Thereby, since the ratio which the sunlight reflected on the moon surface hits the front board FP and the back board BP can be reduced, the temperature rise of the spacecraft R can be suppressed.
 図9は、図2のBB断面の模式図である。図9に示すように筐体HSの右側板RP及び左側板LPは、底板DPから天板TPにかけて当該探査機Rの内側に傾いている。これにより、月面に反射した太陽光が右側板RP及び左側板LPに当たる割合を低減することができるので、探査機Rの温度上昇を抑制することができる。 FIG. 9 is a schematic view of the BB cross section of FIG. As shown in FIG. 9, the right side plate RP and the left side plate LP of the housing HS are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP. Thereby, since the ratio which the sunlight reflected on the lunar surface hits the right side board RP and the left side board LP can be reduced, the temperature rise of the spacecraft R can be suppressed.
 図9に示すように、右側板RPと天板TPとの間に断熱材HI-1が設けられ、ボルトB1で断熱材HI-1が天板TPに固定されている。同様に、左側板LPと天板TPとの間に断熱材HI-2が設けられ、ボルトB2で断熱材HI-2が天板TPに固定されている。ここで本実施形態に係る断熱材HI-1、HI-2は一例として、エンジニアリングプラスチックであり、例えば非晶性熱可塑性ポリエーテルイミド(PEI)樹脂のULTEM(登録商標)である。これにより、右側板RP及び左側板LPから天板TPへの熱伝達を遮断することにより、天板TPに固定された電子機器の温度上昇を抑制することができる。 As shown in FIG. 9, a heat insulating material HI-1 is provided between the right side plate RP and the top plate TP, and the heat insulating material HI-1 is fixed to the top plate TP with bolts B1. Similarly, a heat insulating material HI-2 is provided between the left side plate LP and the top plate TP, and the heat insulating material HI-2 is fixed to the top plate TP with bolts B2. Here, the heat insulating materials HI-1 and HI-2 according to the present embodiment are, for example, engineering plastics, for example, ULTEM (registered trademark) of amorphous thermoplastic polyetherimide (PEI) resin. Thereby, the temperature rise of the electronic device fixed to the top plate TP can be suppressed by blocking the heat transfer from the right side plate RP and the left side plate LP to the top plate TP.
 続いて、カメラの視野範囲について図10~図12を用いて説明する。
 図10は、水平方向のカメラの視野範囲を示す模式図である。前方視野範囲FHVは前方カメラFCの視野範囲で、後方視野範囲BHVは後方カメラBCの視野範囲で、右側方視野範囲RHVは右側方カメラRCの視野範囲で、左側方視野範囲LHVは左側方カメラLCの視野範囲である。図10に示すように、前方視野範囲FHVと右側方視野範囲RHVが一部重なっており、前方視野範囲FHVと左側方視野範囲LHVが一部重なっている。同様に、後方視野範囲BHVと右側方視野範囲RHVが一部重なっており、後方視野範囲BHVと左側方視野範囲LHVが一部重なっている。これにより、水平方向に周囲360度を見ることができる。
Subsequently, the visual field range of the camera will be described with reference to FIGS.
FIG. 10 is a schematic diagram showing the visual field range of the camera in the horizontal direction. The front view range FHV is the view range of the front camera FC, the rear view range BHV is the view range of the rear camera BC, the right view range RHV is the view range of the right camera RC, and the left view range LHV is the left camera. LC viewing range. As shown in FIG. 10, the front visual field range FHV and the right side visual field range RHV partially overlap, and the front visual field range FHV and the left side visual field range LHV partially overlap. Similarly, the rear visual field range BHV and the right side visual field range RHV partially overlap, and the rear visual field range BHV and the left side visual field range LHV partially overlap. Thereby, 360 degrees around can be seen in the horizontal direction.
 図11は、図2のAA断面におけるカメラの視野範囲を示す模式図である。前方垂直視野範囲FVVは、前方カメラFCの垂直方向の視野範囲で、後方垂直視野範囲は、後方カメラBCの垂直方向の視野範囲である。図11に示すように、前方垂直視野範囲FVVに、車輪FW1、FW2が含まれている。これにより、車輪FW1、FW2に、石などが挟まっているか否かを確認することができる。同様に、後方垂直視野範囲BVVに、車輪RW1、RW2が含まれている。これにより、車輪RW1、RW2に、石などが挟まっているか否かを確認することができる。また前方カメラFC、後方カメラBCは一例として両方とも、水平線L1より上も視野に入っている。 FIG. 11 is a schematic diagram showing the field of view of the camera in the AA section of FIG. The front vertical visual field range FVV is a vertical visual field range of the front camera FC, and the rear vertical visual field range is a vertical visual field range of the rear camera BC. As shown in FIG. 11, the front vertical visual field range FVV includes wheels FW1 and FW2. Thereby, it is possible to confirm whether or not stones are sandwiched between the wheels FW1 and FW2. Similarly, wheels RW1 and RW2 are included in the rear vertical visual field range BVV. Thereby, it is possible to confirm whether or not stones are sandwiched between the wheels RW1 and RW2. Further, as an example, both the front camera FC and the rear camera BC are in the field of view above the horizontal line L1.
 図12は、図2のBB断面におけるカメラの視野範囲を示す模式図である。右垂直視野範囲RVVは、右側方カメラRCの垂直方向の視野範囲で、左垂直視野範囲は、左側方カメラLCの垂直方向の視野範囲である。図12に示すように、右垂直視野範囲RVVに、車輪FW1、RW1が含まれている。これにより、車輪FW1、RW1に、石などが挟まっているか否かを確認することができる。同様に、左垂直視野範囲LVVに、車輪FW2、RW2が含まれている。これにより、車輪FW2、RW2に、石などが挟まっているか否かを確認することができる。また右側方カメラRC、左側方カメラLCは一例として両方とも、水平線L2より上も視野に入っている。 FIG. 12 is a schematic diagram showing the field of view of the camera in the BB cross section of FIG. The right vertical visual field range RVV is a vertical visual field range of the right-side camera RC, and the left vertical visual field range is a vertical visual field range of the left-side camera LC. As shown in FIG. 12, the right vertical visual field range RVV includes wheels FW1 and RW1. Thereby, it can be confirmed whether or not stones are sandwiched between the wheels FW1 and RW1. Similarly, the left vertical visual field range LVV includes wheels FW2 and RW2. Thereby, it can be confirmed whether or not stones are sandwiched between the wheels FW2 and RW2. Further, as an example, both the right side camera RC and the left side camera LC are in the field of view above the horizontal line L2.
 前方カメラFC及び後方カメラBCといった第1のカメラの解像度は、右側方カメラRC及び左側方カメラLCといった第2のカメラの解像度より高い。すなわち、進行方法(車輪が進む方法)のカメラの解像度が側方のカメラの解像度より高い。これにより、進行方向の視野範囲をより高い解像度で見ることができるので、進行方向にある障害物などを容易に発見することができる。 The resolution of the first camera such as the front camera FC and the rear camera BC is higher than the resolution of the second camera such as the right side camera RC and the left side camera LC. That is, the resolution of the camera in the traveling method (the method in which the wheel advances) is higher than the resolution of the side camera. Thereby, since the visual field range in the traveling direction can be seen with higher resolution, an obstacle or the like in the traveling direction can be easily found.
 続いて、図13A~13Dを用いて、探査機Rの移動様式について説明する。図13Aは、探査機Rの第1の移動様式を示す模式図である。図13Bは、探査機Rの第2の移動様式を示す模式図である。図13Cは、探査機Rが移動できない方向を示す模式図である。図13Dは、探査機Rの第3の移動様式を示す模式図である。
 図13Aに示すように、前後いずれにも移動可能であり、図13Bに示すように、その場で旋回可能である。しかし、図13Cに示すように、左右方向に車輪FW1、FW2、RW1、RW2が回転しないので、そのままの状態では左右に移動ができない。その代わりに図13Dに示すように、その場で90度し、その後に前後に動くことにより、結果的に左右方向に動くことが可能である。
Subsequently, the movement mode of the probe R will be described with reference to FIGS. 13A to 13D. FIG. 13A is a schematic diagram illustrating a first movement mode of the spacecraft R. FIG. FIG. 13B is a schematic diagram illustrating a second movement mode of the spacecraft R. FIG. 13C is a schematic diagram showing directions in which the spacecraft R cannot move. FIG. 13D is a schematic diagram illustrating a third movement mode of the spacecraft R.
As shown to FIG. 13A, it can move to back and front, and as shown to FIG. 13B, it can turn on the spot. However, as shown in FIG. 13C, since the wheels FW1, FW2, RW1, and RW2 do not rotate in the left-right direction, the left-right movement cannot be performed. Instead, as shown in FIG. 13D, by moving 90 degrees on the spot and then moving back and forth, it is possible to move left and right as a result.
 続いて、本実施形態に係る探査機Rの機能について図14を用いて説明する。図14は、本実施形態に係る探査機Rの構成を示す概略ブロック図である。図14に示すように、探査機Rは、バッテリBATと、バッテリBATを制御する電源コントローラとを備える。更に、探査機Rは、モータMTと、ギアボックスGBと、モータMTとギアボックスGBを制御するモータコントローラMCとを備える。 Subsequently, the function of the spacecraft R according to the present embodiment will be described with reference to FIG. FIG. 14 is a schematic block diagram showing the configuration of the spacecraft R according to the present embodiment. As shown in FIG. 14, the probe R includes a battery BAT and a power supply controller that controls the battery BAT. Further, the spacecraft R includes a motor MT, a gear box GB, and a motor controller MC that controls the motor MT and the gear box GB.
 更に、探査機Rは、前方カメラFCと、右側方カメラRCと、前方カメラFC及び右側方カメラRCを制御する第1カメラコントローラCMC1と、第1カメラコントローラCMC1に配線を介して接続された第1通信コントローラCC1と、第1通信コントローラCC1に接続された第1アンテナAT1を備える。ここで第1カメラコントローラCMC1は、第1プロセッサPC1を備える。 Further, the spacecraft R is connected to the front camera FC, the right side camera RC, the first camera controller CMC1 that controls the front camera FC and the right side camera RC, and the first camera controller CMC1 via wiring. 1 communication controller CC1 and 1st antenna AT1 connected to 1st communication controller CC1 are provided. Here, the first camera controller CMC1 includes a first processor PC1.
 更に、探査機Rは、後方カメラBCと、左側方カメラLCと、後方カメラBC及び左側方カメラLCを制御する第2カメラコントローラCMC2と、第2カメラコントローラCMC2に配線を介して接続された第2通信コントローラCC2と、第2通信コントローラCC2に接続された第2アンテナAT2を備える。ここで第2カメラコントローラCMC2は、第2プロセッサPC2を備える。 Further, the spacecraft R is connected to the rear camera BC, the left camera LC, the second camera controller CMC2 for controlling the rear camera BC and the left camera LC, and the second camera controller CMC2 via wiring. 2 communication controller CC2 and 2nd antenna AT2 connected to 2nd communication controller CC2. Here, the second camera controller CMC2 includes a second processor PC2.
 このように、前方カメラFCは第1プロセッサPC1に、後方カメラBCは第2プロセッサPC2に接続されている。すなわち、前方カメラと、後方カメラはそれぞれ別々のプロセッサに接続されている。
 これにより、仮に、第1プロセッサPC1と第2プロセッサPC2のうちの一方が故障して動作できない場合でも、他方のプロセッサが動作することができるので、前方カメラFC、後方カメラBCのいずれかのカメラの画像を地上局Eに転送することができる。よって、前方カメラFC、後方カメラBCのいずれかのカメラの画像を見ながら、前後のいずれかに探査機Rを移動することができる。
Thus, the front camera FC is connected to the first processor PC1, and the rear camera BC is connected to the second processor PC2. That is, the front camera and the rear camera are connected to separate processors.
As a result, even if one of the first processor PC1 and the second processor PC2 fails and cannot operate, the other processor can operate. Therefore, either the front camera FC or the rear camera BC can be operated. Can be transferred to the ground station E. Therefore, the spacecraft R can be moved either forward or backward while viewing the image of either the front camera FC or the rear camera BC.
 図15は、第1カメラコントローラCMC1のハードウェア構成を示す概略図である。図15に示すように、前方カメラFCはA/D変換器AD1に接続され、A/D変換器AD1は、フラットケーブルを介して第1カメラコントローラCMC1のシリアルインタフェースSI1に接続されている。ここで、シリアルインタフェースSI1は例えばMIPI(Mobile Industry Processor Interface)規格に準拠したインタフェースである。 FIG. 15 is a schematic diagram showing a hardware configuration of the first camera controller CMC1. As shown in FIG. 15, the front camera FC is connected to an A / D converter AD1, and the A / D converter AD1 is connected to the serial interface SI1 of the first camera controller CMC1 via a flat cable. Here, the serial interface SI1 is an interface compliant with, for example, MIPI (Mobile Industry Processor Interface) standard.
 右側方カメラRCはA/D変換器AD2に接続され、A/D変換器AD2は、フラットケーブルを介して第1カメラコントローラCMC1のパラレルインタフェースPI1に接続されている。このように、第1カメラコントローラCMC1は、前方カメラFCまたは右側方カメラRCと、シリアルあるいはパラレルインタフェースで接続されている。 The right side camera RC is connected to the A / D converter AD2, and the A / D converter AD2 is connected to the parallel interface PI1 of the first camera controller CMC1 via a flat cable. As described above, the first camera controller CMC1 is connected to the front camera FC or the right camera RC via a serial or parallel interface.
 第1カメラコントローラCMC1は、所定のフレームレートで前方カメラFC及び右側方カメラRCに動画データを要求して取得し、取得した動画データをハードウェアエンコーディングで圧縮する。圧縮後のデータは、第1通信コントローラCC1に転送される。
 第1通信コントローラCC1は、圧縮後のデータを第1アンテナAT1から着陸船(ランダー)Lへ送信する。その後、圧縮後のデータは、着陸船(ランダー)Lから地上局Eに転送される。これにより、探査機Rの前方カメラFC及び右側方カメラRCが撮影した動画データを地上局に転送可能であり、探査機Rを操作するオペレータは地球上で動画データを見ることができる。このように、探査機Rを操作するオペレータは、月面の映像を地球上で見ることができる。この構成によれば、前方カメラFC及び右側方カメラRCは、USBカメラのようにカメラの電源を常時オンしておく必要がなく、動画データの要求時だけ動作すればよいので消費電力を抑えることができる。
The first camera controller CMC1 requests and acquires moving image data from the front camera FC and the right side camera RC at a predetermined frame rate, and compresses the acquired moving image data by hardware encoding. The compressed data is transferred to the first communication controller CC1.
The first communication controller CC1 transmits the compressed data from the first antenna AT1 to the landing ship (lander) L. Thereafter, the compressed data is transferred from the lander L to the ground station E. Thereby, the moving image data photographed by the front camera FC and the right-side camera RC of the spacecraft R can be transferred to the ground station, and the operator who operates the spacecraft R can view the moving image data on the earth. Thus, the operator who operates the spacecraft R can see the image of the moon on the earth. According to this configuration, the front camera FC and the right-side camera RC do not need to be always turned on like the USB camera, and need only operate when requesting moving image data, thereby reducing power consumption. Can do.
 図16は、第2カメラコントローラCMC2のハードウェア構成を示す概略図である。図16に示すように、後方カメラBCはA/D変換器AD3に接続され、A/D変換器AD3は、フラットケーブルを介して第2カメラコントローラCMC2のシリアルインタフェースSI2に接続されている。ここで、シリアルインタフェースSI2は例えばMIPI(Mobile Industry Processor Interface)規格に準拠したインタフェースである。 FIG. 16 is a schematic diagram showing a hardware configuration of the second camera controller CMC2. As shown in FIG. 16, the rear camera BC is connected to an A / D converter AD3, and the A / D converter AD3 is connected to the serial interface SI2 of the second camera controller CMC2 via a flat cable. Here, the serial interface SI2 is an interface compliant with, for example, MIPI (Mobile Industry Processor Interface) standard.
 左側方カメラLCはA/D変換器AD4に接続され、A/D変換器AD4は、フラットケーブルを介して第2カメラコントローラCMC2のパラレルインタフェースPI2に接続されている。このように、第2カメラコントローラCMC2は、後方カメラBCまたは左側方カメラLCと、シリアルあるいはパラレルインタフェースで接続されている。 The left side camera LC is connected to the A / D converter AD4, and the A / D converter AD4 is connected to the parallel interface PI2 of the second camera controller CMC2 via a flat cable. As described above, the second camera controller CMC2 is connected to the rear camera BC or the left camera LC via a serial or parallel interface.
 第2カメラコントローラCMC2は、所定のフレームレートで後方カメラBC及び左側方カメラLCに動画データを要求して取得し、取得した動画データをハードウェアエンコーディングで圧縮する。圧縮後のデータは、第2通信コントローラCC2に転送される。
 第2通信コントローラCC2は、圧縮後のデータを第2アンテナAT2から着陸船(ランダー)Lへ送信する。その後、圧縮後のデータは、着陸船(ランダー)Lから地上局Eに転送される。
The second camera controller CMC2 requests and acquires moving image data from the rear camera BC and the left camera LC at a predetermined frame rate, and compresses the acquired moving image data by hardware encoding. The compressed data is transferred to the second communication controller CC2.
The second communication controller CC2 transmits the compressed data from the second antenna AT2 to the landing ship (lander) L. Thereafter, the compressed data is transferred from the lander L to the ground station E.
 続いて、筐体のコーティングについて図17及び図18を用いて説明する。図17は、筐体HSの断面の概略を示す模式図である。図17に示すように、筐体HSは、基板1と、基板1の上に蒸着されている金属膜(ここでは一例として銀の膜)2と、金属膜2の上に設けられたテフロン(登録商標)層3とを備える。ここで基板は例えば、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics:以下、CFRPという)である。これにより、金属膜2で太陽光を反射し、筐体HSの熱をテフロン(登録商標)層3から輻射により赤外線として放出することができる。なお、テフロン(登録商標)層3ではなく、石英ガラス層でもよい。 Subsequently, the casing coating will be described with reference to FIGS. 17 and 18. FIG. 17 is a schematic diagram illustrating an outline of a cross section of the housing HS. As shown in FIG. 17, the housing HS includes a substrate 1, a metal film (here, a silver film) 2 deposited on the substrate 1, and a Teflon ( Registered trademark) layer 3. Here, the substrate is, for example, carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastics: hereinafter referred to as CFRP). Thereby, sunlight is reflected by the metal film 2, and the heat of the housing HS can be emitted from the Teflon (registered trademark) layer 3 as infrared rays by radiation. Note that a quartz glass layer may be used instead of the Teflon (registered trademark) layer 3.
 更に、筐体HSは、テフロン(登録商標)層3の上に設けられた酸化インジウム錫(Indium Tin Oxide:以下、ITOという)層4を有する。ITOは透明伝導膜である。このように、テフロン(登録商標)層の上にITO層4を設けることにより、太陽光を透過させることができるとともに、ITO上に発生した電荷をグラウンドに流すことができる。 Further, the housing HS has an indium tin oxide (hereinafter referred to as ITO) layer 4 provided on the Teflon (registered trademark) layer 3. ITO is a transparent conductive film. Thus, by providing the ITO layer 4 on the Teflon (registered trademark) layer, it is possible to transmit sunlight and to allow the electric charge generated on the ITO to flow to the ground.
 続いて筐体のコーティングに関するプロセスを図18を用いて説明する。図18は、前板FP、後板BP、天板TP、底板DPにおける筐体のコーティングに関する工程の流れの一例を示すフローチャートである。 Next, a process related to coating of the casing will be described with reference to FIG. FIG. 18 is a flowchart illustrating an example of a process flow relating to coating of the casing on the front plate FP, the rear plate BP, the top plate TP, and the bottom plate DP.
 (ステップS101)まず、CFRPの板を加工する。前板FPの場合には例えば、所定の大きさにCFRPの板を切り出し、距離センサを嵌めるための開口を作る。また、後板BPの場合には例えば、所定の大きさにCFRPを切り出し、プレートPL5を嵌めるための開口を作る。また天板TPの場合には例えば、所定の大きさにCFRPを切り出し、プレートPL1~PL4を嵌めるための開口を作る。また底板DPの場合には例えば、所定の大きさにCFRPを切り出す。 (Step S101) First, the CFRP plate is processed. In the case of the front plate FP, for example, a CFRP plate is cut out to a predetermined size, and an opening for fitting a distance sensor is made. In the case of the rear plate BP, for example, CFRP is cut out to a predetermined size, and an opening for fitting the plate PL5 is made. In the case of the top plate TP, for example, CFRP is cut out to a predetermined size, and openings for fitting the plates PL1 to PL4 are made. In the case of the bottom plate DP, for example, CFRP is cut out to a predetermined size.
 (ステップS102)次に、真空中でCFRPの板に銀を蒸着する。 (Step S102) Next, silver is deposited on the CFRP plate in a vacuum.
 (ステップS103)次に、銀の蒸着面にテフロン(登録商標)の粉体を吹き付ける。これにより、銀の蒸着面にビーズ上のテフロン(登録商標)の粒子が付着する。 (Step S103) Next, Teflon (registered trademark) powder is sprayed on the silver deposition surface. As a result, Teflon (registered trademark) particles on the beads adhere to the silver deposition surface.
 (ステップS104)次に、昇温してテフロン(登録商標)を溶かして焼き固める。これにより、テフロン(登録商標)の粒子が溶けて互いにつながり、テフロン(登録商標)層の表面が平坦(フラット)になる。 (Step S104) Next, the temperature is raised and Teflon (registered trademark) is melted and baked. Thereby, the particles of Teflon (registered trademark) are melted and connected to each other, and the surface of the Teflon (registered trademark) layer becomes flat.
 (ステップS105)次に、真空中でITOを蒸着する。これにより、前板FP、後板BP、天板TP、底板DPが得られる。 (Step S105) Next, ITO is deposited in vacuum. Thereby, the front plate FP, the rear plate BP, the top plate TP, and the bottom plate DP are obtained.
 続いて、側板である右側板RPと左側板LPの作成プロセスについて図19~21を用いて説明する。図19は、コーティング前の左側板LPを示す模式図である。本実施形態では、右側板RPと左側板LPに太陽電池を配置するため、左側板LPには、太陽電池に接続される配線を筐体HS内に引き込むための貫通孔H1~H6が設けられている。なお、図示は省略するが、同様に、左側板LPにも太陽電池に接続される配線を筐体HS内に引き込むための貫通孔が設けられている。 Subsequently, a process of creating the right side plate RP and the left side plate LP as side plates will be described with reference to FIGS. FIG. 19 is a schematic diagram showing the left side plate LP before coating. In the present embodiment, since the solar cells are arranged on the right side plate RP and the left side plate LP, the left side plate LP is provided with through holes H1 to H6 for drawing wirings connected to the solar cell into the housing HS. ing. In addition, although illustration is abbreviate | omitted, the through-hole for drawing in the wiring connected to a solar cell in the housing | casing HS is similarly provided in the left side plate LP.
 図20は、電源コントローラPUの構成の一例を示す図である。図20に示すように、太陽電池は、列ごとに直列に配線で接続されており、当該配線が、例えば図19に示す貫通孔H1~H6から筐体HS内に引き込まれて電源コントローラPUに接続される。具体的には、太陽電池からの配線それぞれが、対応するダイオードD1~D12のアノードに接続されて整流される。ダイオードD1~D12のカソードはそれぞれ充放電回路CDCに接続されており、ダイオードD1~D12で整流された電流が充放電回路CDCに入力される。このように、太陽電池からの配線は、筐体HSに設けられた貫通孔H1~H6を通して筐体HS内の充放電回路CDCに接続されている。この構成により、筐体HS外面に配線を固定するスペースを設けなくてもよくなるので、限られた面積のうちに多くの太陽電池を配置できる。充放電回路CDCは、入力された電流を用いてバッテリBATを充電する。また充放電回路CDCは、バッテリBATの電力を用いて、他の電子機器に電力を供給する。 FIG. 20 is a diagram illustrating an example of the configuration of the power controller PU. As shown in FIG. 20, the solar cells are connected in series for each column by wiring, and the wiring is drawn into the housing HS from, for example, the through holes H1 to H6 shown in FIG. Connected. Specifically, each wiring from the solar cell is connected to the anodes of the corresponding diodes D1 to D12 and rectified. The cathodes of the diodes D1 to D12 are respectively connected to the charge / discharge circuit CDC, and the current rectified by the diodes D1 to D12 is input to the charge / discharge circuit CDC. In this manner, the wiring from the solar cell is connected to the charge / discharge circuit CDC in the housing HS through the through holes H1 to H6 provided in the housing HS. With this configuration, it is not necessary to provide a space for fixing the wiring on the outer surface of the housing HS, so that many solar cells can be arranged within a limited area. The charge / discharge circuit CDC charges the battery BAT using the input current. The charge / discharge circuit CDC supplies power to other electronic devices using the power of the battery BAT.
 図21は、側板である右側板RPあるいは左側板LPの作成工程の一例を示すフローチャートである。 FIG. 21 is a flowchart showing an example of a process of creating the right side plate RP or the left side plate LP which is a side plate.
 (ステップS201)まずCFRPを所定の大きさに切り出し、CFRPの板に貫通孔を開ける。 (Step S201) First, CFRP is cut into a predetermined size, and a through hole is opened in the CFRP plate.
 (ステップS202)次に、CFRPの板に設けられた貫通孔をマスキングする。これにより、以降の処理で付着する物質により、貫通孔が塞がれることを避けることができる。 (Step S202) Next, the through hole provided in the CFRP plate is masked. Thereby, it can avoid that a through-hole is obstruct | occluded with the substance adhering by subsequent processes.
 (ステップS203)次に、真空中でCFRPの板に銀を蒸着する。 (Step S203) Next, silver is deposited on the CFRP plate in a vacuum.
 (ステップS204)次に、銀の蒸着面にテフロン(登録商標)の粉体を吹き付ける。これにより、銀の蒸着面にビーズ上のテフロン(登録商標)の粒子が付着する。 (Step S204) Next, Teflon (registered trademark) powder is sprayed onto the silver deposition surface. As a result, Teflon (registered trademark) particles on the beads adhere to the silver deposition surface.
 (ステップS205)次に、昇温してテフロン(登録商標)を溶かして焼き固める。これにより、テフロン(登録商標)の粒子が溶けて互いにつながり、テフロン(登録商標)層の表面が平坦(フラット)になる。 (Step S205) Next, the temperature is raised and Teflon (registered trademark) is melted and baked. Thereby, the particles of Teflon (registered trademark) are melted and connected to each other, and the surface of the Teflon (registered trademark) layer becomes flat.
 (ステップS206)次に、真空中でITOを蒸着する。 (Step S206) Next, ITO is deposited in vacuum.
 (ステップS207)次に、ステップS202で貼付したマスキングをとる。 (Step S207) Next, the masking attached in Step S202 is taken.
 (ステップS208)次に、ITOの上から、耐熱性且つ耐寒性のポリイミドフィルムを貼る。ポリイミドフィルムは例えばカプトン(登録商標)である。 (Step S208) Next, a heat-resistant and cold-resistant polyimide film is stuck on the ITO. The polyimide film is, for example, Kapton (registered trademark).
 (ステップS209)次に、ポリイミドフィルムの上からソーラセルを固定する。これにより、側板である右側板RPあるいは左側板LPが得られる。 (Step S209) Next, the solar cell is fixed on the polyimide film. Thereby, the right side plate RP or the left side plate LP which is a side plate is obtained.
 続いて、太陽電池が配置された筐体の面の傾きについて説明する。図22は、探査機Rが配置される所定の緯度における探査機Rの正面図の模式図である。図2及び図22に示すように、太陽電池が配置された筐体の面(本実施形態では一例として右側面と左側面)は、底板DPから天板TPにかけて当該探査機Rの内側に傾いている。これにより太陽からの光を効率よく受けることができるので、発電量を増加させることができる。
 太陽電池が配置された筐体の面である右側面と左側面は、当該探査機Rが配置される予定の緯度において、太陽が昇ってから沈むまでの発電容量が最大になる角度で傾いている。具体的には図22に示すように、探査機Rが配置される予定の緯度における太陽の最大仰角がφ1度になる場合、太陽が昇ってから沈むまでの発電容量が最大になる角度はθ1度であるので、右側面と左側面の水平面からの傾きはθ1度に設定される。
Then, the inclination of the surface of the housing | casing in which the solar cell is arrange | positioned is demonstrated. FIG. 22 is a schematic diagram of a front view of the probe R at a predetermined latitude where the probe R is arranged. As shown in FIGS. 2 and 22, the surface of the housing on which the solar cells are arranged (in this embodiment, the right side surface and the left side surface as an example) is inclined inward of the spacecraft R from the bottom plate DP to the top plate TP. ing. Thereby, since the light from the sun can be received efficiently, the power generation amount can be increased.
The right side surface and the left side surface, which are the surfaces of the housing where the solar cells are disposed, are inclined at an angle at which the power generation capacity from when the sun rises to when it sinks is maximized at the latitude where the spacecraft R is to be disposed. Yes. Specifically, as shown in FIG. 22, when the maximum elevation angle of the sun at the latitude where the spacecraft R is to be arranged is φ1 degree, the angle at which the power generation capacity from when the sun rises until it sinks is maximum is θ1. Therefore, the inclination of the right side surface and the left side surface from the horizontal plane is set to θ1 degree.
 図23は、探査機Rが配置される予定の緯度が図22の場合よりも高い場合における探査機Rの正面図の模式図である。図23に示すように、探査機Rが配置される予定の緯度における太陽の最大仰角φ2がφ1より小さくなる。このとき、太陽が昇ってから沈むまでの発電容量が最大になる角度はθ1より大きいθ2となるので、右側面と左側面の水平面からの傾きはθ2度に設定される。 FIG. 23 is a schematic diagram of a front view of the spacecraft R when the latitude where the spacecraft R is to be arranged is higher than that in FIG. As shown in FIG. 23, the maximum elevation angle φ2 of the sun at the latitude where the spacecraft R is to be arranged becomes smaller than φ1. At this time, the angle at which the power generation capacity from when the sun rises until it sinks becomes θ2, which is larger than θ1, so the inclination of the right side surface and the left side surface from the horizontal plane is set to θ2 degrees.
 一方、図24は、探査機Rが配置される予定の緯度が図22の場合よりも低い場合における探査機Rの正面図の模式図である。図24に示すように、探査機Rが配置される予定の緯度における太陽の最大仰角φ3がφ1より大きくなる。このとき、太陽が昇ってから沈むまでの発電容量が最大になる角度はθ1より小さいθ3となるので、右側面と左側面の水平面からの傾きはθ3度に設定される。 On the other hand, FIG. 24 is a schematic diagram of a front view of the spacecraft R when the latitude where the spacecraft R is to be arranged is lower than in the case of FIG. As shown in FIG. 24, the maximum elevation angle φ3 of the sun at the latitude where the spacecraft R is to be arranged becomes larger than φ1. At this time, the angle at which the power generation capacity from when the sun rises until it sinks becomes θ3 smaller than θ1, so the inclination of the right side surface and the left side surface from the horizontal plane is set to θ3 degrees.
 このように、太陽電池が配置された筐体の面(ここでは右側面と左側面)の傾きは、当該探査機Rが配置される予定の緯度に応じて決定されている。具体的には、探査機Rが配置される予定の緯度が高くなるほど、太陽の最大仰角が小さくなるので、右側面RPと左側面の水平面からの傾きは大きくなる。これにより、太陽の最大仰角に応じて太陽電池の傾きが設定されるので、発電量を増加させることができる。 Thus, the inclination of the surface (here, the right side surface and the left side surface) of the casing on which the solar cell is disposed is determined according to the latitude at which the spacecraft R is to be disposed. Specifically, the higher the latitude at which the spacecraft R is to be arranged, the smaller the maximum elevation angle of the sun, so the inclination of the right side RP and the left side from the horizontal plane increases. Thereby, since the inclination of the solar cell is set according to the maximum elevation angle of the sun, the amount of power generation can be increased.
 続いて、図25~27を用いて、車輪FW1、RW1、RW2の構造は、車輪FW2と同様であるので、車輪を代表して、モータMTを車輪FW2へ固定するための構造について説明する。 Subsequently, since the structures of the wheels FW1, RW1, and RW2 are the same as those of the wheels FW2, the structure for fixing the motor MT to the wheels FW2 as a representative of the wheels will be described with reference to FIGS.
 図25は、車輪FW2の分解斜視図である。図25に示すように、車輪FW2は、モータMT、モータスレーブSV、ベアリングBR1、ベアリングスペーサBS、ベアリングBR2、モータハウジングMH、ベアリングホールドプレートBHP、クランプHC、ハブHB、及びホイールWL2を備える。モータMTがモータスレーブSV内に挿入されて、モータMTの回転軸がハブHBの図26の第1の穴HLに挿入され、クランプHCによってモータMTの回転軸がハブHBにクランプされる。 FIG. 25 is an exploded perspective view of the wheel FW2. As shown in FIG. 25, the wheel FW2 includes a motor MT, a motor slave SV, a bearing BR1, a bearing spacer BS, a bearing BR2, a motor housing MH, a bearing hold plate BHP, a clamp HC, a hub HB, and a wheel WL2. The motor MT is inserted into the motor slave SV, the rotation shaft of the motor MT is inserted into the first hole HL in FIG. 26 of the hub HB, and the rotation shaft of the motor MT is clamped to the hub HB by the clamp HC.
 図26は、ハブHBを図25の矢印A1方向からみた正面図である。図26に示すように、第1の穴HLと当該第1の穴HLに連通する切り欠きCOを有する。図27は、図26のDD断面で切ったときのハブHBの断面図である。図27に示すように、ハブHBは、コーン状の凸部PJを中央付近に有する。このように、ハブHBは、コーン状の凸部PJを中央付近に有し、当該凸部PJにモータMTの回転軸が嵌っている第1の穴HLと当該第1の穴HLに連通する切り欠きCOを有する。 FIG. 26 is a front view of the hub HB as seen from the direction of the arrow A1 in FIG. As shown in FIG. 26, it has the 1st hole HL and the notch CO connected to the said 1st hole HL. FIG. 27 is a cross-sectional view of the hub HB when cut along the DD cross section of FIG. As shown in FIG. 27, the hub HB has a cone-shaped projection PJ near the center. As described above, the hub HB has the cone-shaped convex portion PJ near the center, and communicates with the first hole HL in which the rotation shaft of the motor MT is fitted in the convex portion PJ and the first hole HL. Has cutout CO.
 図28は、図25のCC断面で切ったときのクランプHCの断面図である。図28において、表面FS側の方からモータMTの回転軸が挿入され、裏面RS側にハブHBがある。図28に示すように、クランプHCは、裏面RSから表面FSに向けて徐々に直径が小さくなる第2の穴HL2を有する。 FIG. 28 is a cross-sectional view of the clamp HC taken along the CC cross section of FIG. In FIG. 28, the rotating shaft of the motor MT is inserted from the front surface FS side, and the hub HB is on the back surface RS side. As shown in FIG. 28, the clamp HC has a second hole HL2 whose diameter gradually decreases from the rear surface RS toward the front surface FS.
 クランプHCの当該裏面RSとハブHBとが対向状態で第2の穴HL2に凸部PJが嵌まっている。この構成により、第2の穴HL2に凸部PJが嵌まることにより、切り欠きCOが狭まって、ハブHBの第1の穴HLの回りの輪郭が狭まり、モータMTの回転軸を強く拘束する。これにより、モータMTの回転軸が滑るのを防止することができる。また、モータMTを固定するときに、モータMTの回転軸に回転軸方向に過剰な力を与えると、モータMTが突然、回転を停止する問題があった。それに対し、上記の構成によれば、クランプHCで締め上げるときに、ハブHBは動かずにクランプHCだけ動かすので、モータMTの回転軸に回転軸方向への過剰な力を与えないので、モータMTの突然の回転の停止を防止することができる。 The convex portion PJ is fitted in the second hole HL2 with the back surface RS of the clamp HC and the hub HB facing each other. With this configuration, when the convex portion PJ is fitted into the second hole HL2, the notch CO is narrowed, the contour around the first hole HL of the hub HB is narrowed, and the rotation shaft of the motor MT is strongly restrained. . Thereby, it is possible to prevent the rotation shaft of the motor MT from slipping. Further, when the motor MT is fixed, if an excessive force is applied to the rotating shaft of the motor MT in the rotating shaft direction, the motor MT suddenly stops rotating. On the other hand, according to the above configuration, when tightening with the clamp HC, the hub HB does not move but moves only by the clamp HC, so that an excessive force in the direction of the rotation axis is not applied to the rotation shaft of the motor MT. Stop of sudden rotation of MT can be prevented.
 なお、本実施形態では一例として月の赤道付近以外で探査することを想定したが、月の赤道付近で探査することを想定してもよい。この場合、電子機器が天板に固定されるのではなく、電子機器が前板FPあるいは後板BPの裏面に配置されるか、電子機器が底板DPの裏面に配置されていてもよい。これにより、太陽光が入射しない面の裏側に電子機器を設けられることができ、電子機器の温度上昇を予防することができる。更に筐体HSの天板TPから宇宙空間に、電子機器から発生した熱を放出して、電子機器の温度上昇を抑えることができる。 In this embodiment, as an example, it is assumed that the exploration is not performed near the equator of the moon. However, the exploration may be assumed near the equator of the moon. In this case, the electronic device is not fixed to the top plate, but the electronic device may be disposed on the back surface of the front plate FP or the rear plate BP, or the electronic device may be disposed on the back surface of the bottom plate DP. Thereby, an electronic device can be provided on the back side of the surface where sunlight does not enter, and an increase in temperature of the electronic device can be prevented. Furthermore, the heat generated from the electronic device can be released from the top plate TP of the housing HS to the outer space to suppress the temperature rise of the electronic device.
 また、本実施形態では一例として、筐体の前板FP及び後板BPの両方とも、底板DPから天板TPにかけて当該探査機Rの内側に傾いているとしたが、片方だけ傾いていてもよい。
 同様に、本実施形態では一例として、筐体の右側板RP及び左側板LPの両方とも、底板DPから天板TPにかけて当該探査機Rの内側に傾いているとしたが、片方だけ傾いていてもよい。
In the present embodiment, as an example, both the front plate FP and the rear plate BP of the housing are inclined to the inside of the spacecraft R from the bottom plate DP to the top plate TP. Good.
Similarly, in the present embodiment, as an example, both the right side plate RP and the left side plate LP of the housing are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP, but only one of them is inclined. Also good.
 また、本実施形態では一例として、第1のカメラの一つである前方カメラFCの視野内と、第2のカメラの一つである右側方カメラRCの視野内の両方に車輪FW1が含まれていたが、これに限らず、片方の視野内だけに車輪FW1が含まれていてもよい。同様のことは、他の車輪FW2、RW1、RW2にも当てはまる。このように、少なくともいずれかのカメラで車輪が見えればよい。これにより、車輪に石などが詰まっていないか否か確認することができる。 In the present embodiment, as an example, the wheel FW1 is included in both the field of view of the front camera FC that is one of the first cameras and the field of view of the right-side camera RC that is one of the second cameras. However, the present invention is not limited to this, and the wheel FW1 may be included only in one field of view. The same applies to the other wheels FW2, RW1, RW2. In this way, it is only necessary to see the wheels with at least one of the cameras. Thereby, it can be confirmed whether the wheel is not clogged with stones.
 <第2の実施形態>
 続いて、第2の実施形態について説明する。第2の実施形態に係る断熱方法は、断熱性を有する素材が含まれる断熱シートで探査機の外側を覆うものである。
 図29は、第2の実施形態に係る断熱シートの使用形態を示す模式図である。探査機RV1は、折り畳まれて収納されており、折り畳まれた状態から広げることが可能な断熱シートTTを備える。図29に示すように、断熱シートTTは、広げると当該探査機RV1の外側を覆うように構成されている。この構成により、太陽光を断熱シートで反射し、断熱性を有するので、探査機の温度変化を低減することができる。断熱シートTTは自立することが好ましい。
<Second Embodiment>
Next, the second embodiment will be described. The heat insulation method according to the second embodiment covers the outside of the spacecraft with a heat insulation sheet containing a material having heat insulation properties.
FIG. 29 is a schematic diagram illustrating a usage pattern of the heat insulating sheet according to the second embodiment. The spacecraft RV1 is folded and stored, and includes a heat insulating sheet TT that can be expanded from the folded state. As shown in FIG. 29, the heat insulating sheet TT is configured to cover the outside of the spacecraft RV1 when it is spread. With this configuration, sunlight is reflected by the heat insulating sheet and has a heat insulating property, so that the temperature change of the spacecraft can be reduced. The heat insulating sheet TT is preferably self-supporting.
 なお、探査機RV1は、この断熱シートTTが折り畳まれた状態で、断熱シートTTの内部へガスを排出するガス排出機構と、ガス排出機構を制御するコントローラとを有してもよい。これにより、コントローラは、断熱シートTTが折り畳まれた状態で、断熱シートTTの内部へガスを排出するようガス排出機構を制御してもよい。これによって、断熱シートTTが折り畳まれた状態から、ガスによって断熱シートが膨らむので、断熱シートTTで探査機RV1の外側を覆うことができる。 The spacecraft RV1 may have a gas discharge mechanism that discharges gas into the heat insulation sheet TT and a controller that controls the gas discharge mechanism in a state where the heat insulation sheet TT is folded. Accordingly, the controller may control the gas discharge mechanism so as to discharge the gas into the heat insulating sheet TT in a state where the heat insulating sheet TT is folded. Thereby, since the heat insulation sheet swells with gas from the state in which the heat insulation sheet TT is folded, the outside of the spacecraft RV1 can be covered with the heat insulation sheet TT.
 <第3の実施形態>
 続いて第3の実施形態について説明する。第3の実施形態に係る探査機は、ペイロードまたはアクセサリと接続するインタフェースを備え、インタフェースは、ペイロードまたはアクセサリと接続した場合に、当該ペイロードまたはアクセサリに対して電圧を変換して供給するためのコンバータユニットと、ペイロードまたはアクセサリと接続した場合に、当該ペイロードまたはアクセサリとの間で電気信号を交換するための通信ユニットと、を有する。この構成により、ペイロードまたはアクセサリに電力を供給するとともに、探査機はペイロードまたはアクセサリとの間で電気信号を交換することができる。
<Third Embodiment>
Next, a third embodiment will be described. The probe according to the third embodiment includes an interface connected to a payload or an accessory, and the interface converts a voltage to the payload or the accessory when the interface is connected to the payload or the accessory. And a communication unit for exchanging electrical signals with the payload or accessory when connected to the payload or accessory. This configuration provides power to the payload or accessory and allows the spacecraft to exchange electrical signals with the payload or accessory.
 図30は、第3の実施形態に係る探査機の斜視図である。図30に示すように、探査機RV2は、アンテナAT、カメラCR、資源探査センサSS、及び採掘用のドリルDRを備える。本実施形態に係るペイロードまたはアクセサリは一例として、カメラ、資源探査センサ、及び採掘用のドリルである。資源探査センサは、資源を探査する用のセンサである。資源には、鉱物、水などが含まれる。ここでは一例として資源探査センサは水を探査するものとする。なお、ペイロードまたはアクセサリはこれらに限定されるものではなく、探査機に接続されるものであればよい。 FIG. 30 is a perspective view of the spacecraft according to the third embodiment. As shown in FIG. 30, the probe RV2 includes an antenna AT, a camera CR, a resource search sensor SS, and a drill DR for mining. The payload or accessory according to the present embodiment is, for example, a camera, a resource search sensor, and a mining drill. The resource exploration sensor is a sensor for exploring resources. Resources include minerals and water. Here, as an example, the resource exploration sensor explores water. Note that the payload or accessory is not limited to these and may be any one that is connected to the probe.
 図31は、第3の実施形態に係る探査機の機能ブロック図である。図31に示すように、探査機RV2は、筐体HSと、筐体HSに連結された3つのインタフェースIFを備える。それぞれのインタフェースIFには、それぞれカメラCR、資源探査センサSS、採掘用のドリルDRが接続されている。
 探査機RV2は、アンテナATを介してランダーまたは他の探査機と通信する通信部CM、通信部CMを制御するプロセッサPS、電源BTを備える。ここで通信部CMによる通信は、有線であっても無線であってもよい。
FIG. 31 is a functional block diagram of the spacecraft according to the third embodiment. As shown in FIG. 31, the spacecraft RV2 includes a housing HS and three interfaces IF connected to the housing HS. A camera CR, a resource exploration sensor SS, and a mining drill DR are connected to each interface IF.
The spacecraft RV2 includes a communication unit CM that communicates with a lander or another spacecraft via an antenna AT, a processor PS that controls the communication unit CM, and a power supply BT. Here, the communication by the communication unit CM may be wired or wireless.
 図32は、第3の実施形態に係るインタフェースに機能ブロック図である。インタフェースIFは、通信ユニットCUと、DCコンバータユニットDCUと、記録ユニットMUとを備える。
 通信ユニットCUは、ペイロードまたはアクセサリと接続した場合に、当該ペイロードまたはアクセサリとの間で電気信号を交換する。例えばペイロードまたはアクセサリがカメラCRの場合、カメラCRを制御する制御信号が通信ユニットCUを介してカメラCRに伝送される。また例えばペイロードまたはアクセサリがドリルDRの場合、ドリルDRを制御する制御信号が通信ユニットCUを介してドリルDRに伝送される。
FIG. 32 is a functional block diagram of an interface according to the third embodiment. The interface IF includes a communication unit CU, a DC converter unit DCU, and a recording unit MU.
When the communication unit CU is connected to a payload or an accessory, the communication unit CU exchanges an electric signal with the payload or the accessory. For example, when the payload or accessory is the camera CR, a control signal for controlling the camera CR is transmitted to the camera CR via the communication unit CU. For example, when the payload or the accessory is the drill DR, a control signal for controlling the drill DR is transmitted to the drill DR via the communication unit CU.
 DCコンバータユニットDCUは、ペイロードまたはアクセサリと接続した場合に、当該ペイロードまたはアクセサリに対して電源BTの電圧を変換して電力を供給する。例えばペイロードまたはアクセサリがカメラCRの場合、電源BTの電圧を、カメラCR用の電圧に変換して、変換後の電圧をカメラCRへ供給する。また例えばペイロードまたはアクセサリが資源探査センサSSの場合、電源BTの電圧を、資源探査センサSS用の電圧に変換して、変換後の電圧を資源探査センサSSへ供給する。また例えばペイロードまたはアクセサリがドリルDRの場合、電源BTの電圧を、ドリルDR用の電圧に変換して、変換後の電圧をカメラCRへ供給する。 When the DC converter unit DCU is connected to a payload or an accessory, the DC converter unit DCU converts the voltage of the power supply BT to the payload or the accessory and supplies power. For example, when the payload or accessory is a camera CR, the voltage of the power supply BT is converted into a voltage for the camera CR, and the converted voltage is supplied to the camera CR. For example, when the payload or accessory is the resource exploration sensor SS, the voltage of the power supply BT is converted into a voltage for the resource exploration sensor SS, and the converted voltage is supplied to the resource exploration sensor SS. For example, when the payload or accessory is a drill DR, the voltage of the power supply BT is converted into a voltage for the drill DR, and the converted voltage is supplied to the camera CR.
 記録ユニットMUは、ペイロードまたはアクセサリと接続した場合に、ペイロードまたはアクセサリが取得したデータの記録及び/または転送を実行する。記録ユニットMUは、例えば、資源探査センサSSが検出して得たセンサ信号をプロセッサPSへ転送する。このセンサ信号は、通信部CMからランダーまたは他の探査機へ送信される。また記録ユニットMUは、例えば、カメラCRが撮影して得た映像信号をプロセッサPSへ転送する。映像信号は、静止画または動画を表す。この映像信号は、通信部CMからランダーまたは他の探査機へ送信される。 When the recording unit MU is connected to the payload or accessory, the recording unit MU records and / or transfers data acquired by the payload or accessory. For example, the recording unit MU transfers the sensor signal obtained by the resource exploration sensor SS to the processor PS. This sensor signal is transmitted from the communication unit CM to a lander or another probe. In addition, the recording unit MU transfers, for example, a video signal obtained by the camera CR to the processor PS. The video signal represents a still image or a moving image. This video signal is transmitted from the communication unit CM to a lander or another probe.
 <第4の実施形態>
 続いて第4の実施形態について説明する。第4の実施形態に係る探査機の部品の製造方法は、地球以外の天体(例えば、惑星、衛星、小惑星、または彗星など)上に配置された3Dプリンタによって、探査機の部品を製造する工程を有する。探査機の部品には、車輪、筐体、アンテナ、太陽光パネル、計器、電気ハーネスなどが含まれる。これにより、探査機の部品が故障または破損した場合に、探査機の部品を地球以外の天体上において3Dプリンタで製造し、製造した部品と、故障した部品を交換することができる。
<Fourth Embodiment>
Next, a fourth embodiment will be described. A method of manufacturing a probe component according to the fourth embodiment is a process of manufacturing a probe component by a 3D printer arranged on a celestial body other than the earth (for example, a planet, a satellite, an asteroid, or a comet). Have The parts of the spacecraft include wheels, housings, antennas, solar panels, instruments, electrical harnesses, and the like. As a result, when a probe component fails or is damaged, the probe component can be manufactured on a celestial body other than the earth by a 3D printer, and the manufactured component can be replaced with the failed component.
 図33は、第4の実施形態の製造方法の一例について説明する模式図である。図33に示すように、月面に配置された3DプリンタPRは、車輪TY、太陽光パネルSPを製造する。そして、製造して得られた車輪TY、太陽光パネルSPをランダーL5に取り付ける。ここで取り付けは、月面の宇宙飛行士が手動で行ってもよいし、宇宙飛行士がロボットアームを操作して行ってもよいし、ロボットがそのロボットが有するロボットアームを動かして行ってもよい。 FIG. 33 is a schematic diagram for explaining an example of the manufacturing method according to the fourth embodiment. As shown in FIG. 33, the 3D printer PR arranged on the moon surface manufactures wheels TY and solar panels SP. And the wheel TY and solar panel SP obtained by manufacture are attached to the lander L5. The installation may be performed manually by an astronaut on the moon, by an astronaut operating a robot arm, or by moving a robot arm of the robot. Good.
 なお、探査機の部品が故障または破損した場合に、その故障または破損した探査機の部品を熔解し、熔解後の材料を原料として用いて、3Dプリンタで宇宙機の部品(例えば、同じ探査機の当該故障または破損した部品)を製造してもよい。これにより、探査機の部品が故障または破損した場合に、探査機の部品を再利用して、宇宙機の部品を製造することができる。特に、3Dプリンタで宇宙機の部品として例えば、同じ探査機の当該故障または破損した部品を製造した場合には、故障または破損した部品を再利用して、探査機の同じ部品を製造することができる。なお、同じ部品に限らず、探査機の別の部品、または他の宇宙機(例えば探査機またはランダー)の部品を製造してもよい。 In addition, when a part of the spacecraft breaks down or is damaged, the spacecraft part (for example, the same spacecraft) is melted with the 3D printer using the melted material as a raw material. Such faulty or damaged parts). Thereby, when the parts of the spacecraft are out of order or broken, the spacecraft parts can be manufactured by reusing the spacecraft parts. In particular, when a 3D printer, for example, manufactures the same or failed part of the same spacecraft as a spacecraft part, the same part of the spacecraft can be manufactured by reusing the failed or damaged part. it can. In addition, you may manufacture the part of another spacecraft (for example, a spacecraft or a lander), not only the same part, but another part of a spacecraft.
 以上によれば、地球以外の天体において探査機を製造する探査機製造方法は、故障または破損した探査機の部品を熔解する工程と、熔解後の材料を原料として用いて、地球以外の天体(例えば惑星、衛星、小惑星、または彗星)上において3Dプリンタで探査機の部品を製造する工程と、製造された探査機の部品を対象の探査機に取り付ける工程と、を有する。この構成により、探査機の部品が故障または破損しても、探査機の部品を再生して交換することにより、探査機を再生することができる。
 更に、当該部品を取り付けた後に、地球以外の天体(例えば惑星、衛星、小惑星、または彗星など)で採取された資源(例えば鉱物、レアメタルなどの天然資源)を対象のランダーに搭載し、対象のランダーが離陸する。これにより、資源を地球、宇宙ステーション、宇宙空間における宇宙機へ輸送することができる。
According to the above, a probe manufacturing method for manufacturing a probe in a celestial body other than the earth uses a step of melting a failed or damaged probe part and a material after melting as a raw material, For example, manufacturing a probe component with a 3D printer on a planet, a satellite, an asteroid, or a comet, and attaching the manufactured probe component to the target probe. With this configuration, even if a probe component fails or is damaged, the probe can be regenerated by regenerating and replacing the probe component.
In addition, after installing the parts, resources (such as planets, satellites, asteroids, or comets) collected from non-Earth objects (such as natural resources such as minerals and rare metals) are loaded on the target lander. Lander takes off. Thereby, resources can be transported to the spacecraft in the earth, space station and outer space.
 <第4の実施形態の変形例>
 続いて第4の実施形態の変形例について説明する。第4の実施形態の変形例において、探査機が天然資源(例えば鉱物)を月で採取し、3次元プリンタは、この月で採取された天然資源(例えば鉱物)を原料として用いて探査機の部品を製造する。ここで、太陽光パネルを製造する場合、鉱物は、例えば月面のレゴリス中に含まれるシリカである。この構成により、より安価に探査機の部品を製造することができる。そして、製造された探査機の部品を対象の探査機に取り付ける。これにより、安価に探査機を製造したり、破損または故障した探査機の部品を安価に交換したりすることができる。
<Modification of Fourth Embodiment>
Subsequently, a modification of the fourth embodiment will be described. In a modification of the fourth embodiment, the spacecraft collects natural resources (for example, minerals) on the moon, and the three-dimensional printer uses the natural resources (for example, minerals) collected on the moon as raw materials. Manufacture parts. Here, when manufacturing a solar panel, a mineral is the silica contained in the regolith of the lunar surface, for example. With this configuration, the parts of the spacecraft can be manufactured at a lower cost. Then, the manufactured probe parts are attached to the target probe. As a result, it is possible to manufacture the probe at a low cost, or to replace a damaged or broken probe component at a low cost.
 <第5の実施形態>
 続いて第5の実施形態について説明する。第5の実施形態に係る探査機は、太陽の位置に応じて、太陽光パネルの水平面からの傾きを変更する。これにより、太陽光パネルの発電量を増大させることができる。
<Fifth Embodiment>
Next, a fifth embodiment will be described. The spacecraft according to the fifth embodiment changes the inclination of the solar panel from the horizontal plane according to the position of the sun. Thereby, the electric power generation amount of a solar panel can be increased.
 図34は、第5の実施形態に係る探査機の概略を示す模式図である。図34に示すように、第5の実施形態の探査機RV4は、筐体HS4と、筐体HS4の側面に設けられた太陽光パネルSP1と、太陽光パネルSP1の傾きを変更する駆動機構DMと、駆動機構DMを制御するコントローラCONと、を備える。
 コントローラCONは例えば、時刻、太陽の位置(例えば、水平面を基準とする太陽の角度)、または太陽光パネルSP1の発電量に応じて、太陽光パネルSP1の水平面を基準とする傾きを変更するよう駆動機構DMを制御する。これにより、太陽光の照射角度に応じて太陽光パネルSP1の水平面を基準とする傾きを変更することができ、太陽光パネルSP1に当たる光の量を増やすことができるので、太陽光パネルSP1における発電量を増やすことができる。
FIG. 34 is a schematic diagram showing an outline of a spacecraft according to the fifth embodiment. As shown in FIG. 34, the spacecraft RV4 of the fifth embodiment includes a housing HS4, a solar panel SP1 provided on the side surface of the housing HS4, and a drive mechanism DM that changes the inclination of the solar panel SP1. And a controller CON that controls the drive mechanism DM.
For example, the controller CON changes the inclination with respect to the horizontal plane of the solar panel SP1 according to the time, the position of the sun (for example, the angle of the sun with respect to the horizontal plane), or the amount of power generated by the solar panel SP1. The drive mechanism DM is controlled. Thereby, the inclination based on the horizontal plane of the solar panel SP1 can be changed according to the irradiation angle of sunlight, and the amount of light hitting the solar panel SP1 can be increased. The amount can be increased.
 なお、太陽光パネルSP1の位置は、筐体HS2の側面に設けられたが、これに限らず、上面または下面であってもよい。また、太陽光パネルSP1が柔軟性を有する場合には、カーペットのように太陽光パネルSP1を巻いておき、発電したいときに、巻かれている太陽光パネルSP1を広げてもよい。 In addition, although the position of solar panel SP1 was provided in the side surface of housing | casing HS2, not only this but an upper surface or a lower surface may be sufficient. In addition, when the solar panel SP1 has flexibility, the solar panel SP1 may be wound like a carpet, and the wound solar panel SP1 may be expanded when it is desired to generate power.
 <第6の実施形態>
 続いて第6の実施形態について説明する。第6の実施形態に係る探査システムS5では、太陽光パネルを有する探査機が太陽の光が当たらない場所にいるときに、太陽の光が反射板によって反射されることによって、探査機に反射された光が照射され、探査機の太陽光パネルで発電される。
<Sixth Embodiment>
Next, a sixth embodiment will be described. In the exploration system S5 according to the sixth embodiment, when the explorer having the solar panel is in a place where the sunlight does not hit, the sunlight is reflected by the reflector, and is reflected by the explorer. Is generated by the solar panel of the spacecraft.
 図35は、第6の実施形態に係る探査システムの概略構成を示す模式図である。図35に示すように、探査システムS5は、反射板RL1が設けられているランダーL11と、反射板RL2が設けられている探査機R11と、太陽光パネル(図示せず)が自機の外面に設けられた探査機R12とを備える。図35に示すように、ランダーL11と探査機R11は、太陽光が当たる位置に配置されている。一方、探査機R12は、月の縦穴を探索しており、影の領域SAに位置しており、探査機R12が太陽の光が当たらない場所にいる。 FIG. 35 is a schematic diagram showing a schematic configuration of the exploration system according to the sixth embodiment. As shown in FIG. 35, the exploration system S5 includes a lander L11 provided with a reflector RL1, a explorer R11 provided with a reflector RL2, and a solar panel (not shown) on the outer surface of the own aircraft. And a spacecraft R12 provided on the surface. As shown in FIG. 35, the lander L11 and the spacecraft R11 are disposed at positions where the sunlight hits. On the other hand, the spacecraft R12 is searching for a vertical hole in the moon and is located in the shadow area SA, and the spacecraft R12 is in a location where the sun does not hit.
 ここで、光の経路SL1が示すように、太陽の光が反射板RL1によって反射されることによって、探査機R12に太陽の光が照射される。また、光の経路SL2が示すように、太陽の光が反射板RL2によって反射されることによって、探査機R12に太陽の光が照射される。これにより、探査機R12の太陽光パネルで発電され、探査機R12は発電された電力を用いて駆動する。例えば探査機R12は、発電された電力で動力源(図示せず、例えばモータ、またはエンジンなど)を駆動する。これにより、探査機R12に太陽の光が当たらない場所でも発電をすることができ、発電した電力を用いて探査を継続することができる。 Here, as shown by the light path SL1, the solar light is reflected by the reflector RL1, so that the spacecraft R12 is irradiated with the solar light. Further, as indicated by the light path SL2, the solar light is reflected by the reflector RL2, so that the spacecraft R12 is irradiated with the solar light. Thereby, electric power is generated by the solar panel of the probe R12, and the probe R12 is driven using the generated electric power. For example, the spacecraft R12 drives a power source (not shown, for example, a motor or an engine) with the generated electric power. Thereby, it is possible to generate power even in a place where the sun does not hit the probe R12, and the search can be continued using the generated power.
 探査機R11は、コントローラCONを備える。コントローラCONは、自機を基準とする太陽の位置、及び別の探査機R12の位置に応じて、別の探査機R12に反射光が照射されるように、反射板RL2の向き及び/または角度を変更するようにしてもよい。これにより、太陽の位置及び別の探査機R12の位置が変わっても、当該別の探査機R12に反射光が照射されるので、別の探査機R12の太陽光パネルは発電を継続することができ、発電した電力を用いて探査を継続することができる。 The spacecraft R11 includes a controller CON. The controller CON determines the direction and / or angle of the reflector RL2 so that the reflected light is irradiated to another probe R12 according to the position of the sun relative to the own aircraft and the position of the other probe R12. May be changed. Thereby, even if the position of the sun and the position of another spacecraft R12 change, the reflected light is irradiated to the spacecraft R12, so that the solar panel of another spacecraft R12 can continue to generate electricity. And the search can be continued using the generated power.
 同様に、ランダーL11は、コントローラCONを備える。コントローラCONは、自機を基準とする太陽の位置、及び探査機R12の位置に応じて、当該探査機R12に反射光が照射されるように、反射板RL1の向き及び/または角度を変更するようにしてもよい。これにより、太陽の位置及び探査機R12の位置が変わっても、当該探査機R12に反射光が照射されるので、当該探査機R12の太陽光パネルは発電を継続することができ、発電した電力を用いて探査を継続することができる。 Similarly, the lander L11 includes a controller CON. The controller CON changes the orientation and / or angle of the reflector RL1 so that the reflected light is irradiated to the spacecraft R12 according to the position of the sun relative to the spacecraft and the position of the spacecraft R12. You may do it. Thereby, even if the position of the sun and the position of the spacecraft R12 change, the reflected light is irradiated to the spacecraft R12, so that the solar panel of the spacecraft R12 can continue the power generation, and the generated power The exploration can be continued using.
 以上、第6の実施形態に係る探査システムS5は、反射板RL1、RL2と、太陽光パネルを有する探査機R12と、を備える。探査機R12が太陽の光が当たらない場所にいるときに、太陽の光が、ランダーL11に設けられた反射板RL1及び/または探査機R11に設けられた反射板RL2によって反射されることによって、探査機R12に太陽の光が照射され、探査機R12の太陽光パネルで発電される。この構成により、探査機R12に太陽の光が当たらない場所でも発電をすることができ、発電した電力を用いて探査を継続することができる。 As described above, the exploration system S5 according to the sixth embodiment includes the reflectors RL1 and RL2 and the explorer R12 having a solar panel. When the spacecraft R12 is in a place where it is not exposed to the sunlight, the sunlight is reflected by the reflector RL1 provided in the lander L11 and / or the reflector RL2 provided in the explorer R11. The spacecraft R12 is irradiated with solar light and is generated by the solar panel of the spacecraft R12. With this configuration, it is possible to generate power even in a place where the sun does not hit the probe R12, and the search can be continued using the generated power.
 また第6の実施形態に係る探査機R11は、光を反射する反射板RL2と、反射板RL2によって反射された太陽光が対象物の太陽光パネルに照射されるように、反射板RL2の向き及び/または角度を変更するよう制御するコントローラC1と、を備える。この構成により、対象物が影の中にいる場合であっても、対象物の太陽光パネルに反射光を照射できるので、対象物の太陽光パネルは発電することができる。特に対象物が別の探査機R12である場合、別の探査機R12が影の中にいる場合であっても、別の探査機R12の太陽光パネルに反射光を照射できるので、別の探査機R12の太陽光パネルは発電することができ、探査を継続することができる。 In addition, the spacecraft R11 according to the sixth embodiment is configured so that the reflector RL2 reflects light and the reflector RL2 is oriented so that sunlight reflected by the reflector RL2 is applied to the solar panel of the object. And / or a controller C1 that controls to change the angle. Even if it is a case where a target object is in a shadow by this structure, since the reflected light can be irradiated to the solar panel of a target object, the solar panel of a target object can generate electric power. In particular, when the object is another probe R12, even if another probe R12 is in the shadow, the reflected light can be applied to the solar panel of the other probe R12. The solar panel of machine R12 can generate electricity and can continue exploration.
 なお、反射された太陽光が照射される対象物は一例として探査機R12であると説明したが、ランダーL11であってもよい。例えば、ランダーL11が影の領域SAに位置する場合には、ランダーL11の太陽光パネルに、反射された太陽光が照射されることによって、ランダーL11は発電をすることができ、通信等を継続することができる。 In addition, although the target object irradiated with the reflected sunlight was described as the spacecraft R12 as an example, it may be the lander L11. For example, when the lander L11 is located in the shadow area SA, the lander L11 can generate power and continue communication and the like by irradiating the solar panel of the lander L11 with the reflected sunlight. can do.
 また、探査機R11は、別の探査機R12を撮像するカメラを備え、コントローラC1は、このカメラで撮像された画像を用いて、反射板RL2によって反射された太陽光が、別の探査機R12の太陽光パネルに追従して照射されるように、反射板RL2の向き及び/または角度を変更するよう制御してもよい。これにより、別の探査機R12が移動しても、追従して当該探査機R12の太陽光パネルに反射光を照射することができる。 The spacecraft R11 includes a camera that captures another spacecraft R12, and the controller C1 uses the image captured by the camera to convert the sunlight reflected by the reflector RL2 into another spacecraft R12. You may control to change the direction and / or angle of reflector RL2 so that it may follow and irradiate with the solar panel. Thereby, even if another probe R12 moves, reflected light can be irradiated to the solar panel of the probe R12.
 同様にして、ランダーL11は、探査機R12を撮像するカメラを備え、コントローラC2は、このカメラで撮像された画像を用いて、反射板RL1によって反射された太陽光が、探査機R12の太陽光パネルに追従して照射されるように、反射板RL1の向き及び/または角度を変更するよう制御してもよい。これにより、別の探査機R12が移動しても、追従して当該探査機R12の太陽光パネルに反射光を照射することができる。 Similarly, the lander L11 includes a camera that images the spacecraft R12, and the controller C2 uses the image captured by the camera to convert the sunlight reflected by the reflector RL1 into the sunlight of the spacecraft R12. You may control to change the direction and / or angle of reflecting plate RL1 so that it may irradiate following a panel. Thereby, even if another probe R12 moves, reflected light can be irradiated to the solar panel of the probe R12.
 <第7の実施形態>
 続いて第7の実施形態について説明する。第7の実施形態では、探査機は、探査機が進入することが困難な場所(ここでは一例として縦穴)にカメラを射出し、カメラが射出後に着地した地点においてカメラで撮影させ、撮影により得られた画像を取得する。
<Seventh Embodiment>
Next, a seventh embodiment will be described. In the seventh embodiment, the spacecraft emits a camera to a place where it is difficult for the spacecraft to enter (in this case, a vertical hole). Get the captured image.
 図36は、第7の実施形態に係る探査システムの概略構成を示す模式図である。図36に示すように、探査システムS8は、月面に配置された探査機R41を備える。探査機R41は、探査機本体B41と、配線WRと、配線WRを介して探査機本体B41に接続されたカメラCRと、カメラCRを射出する射出機構IJとを有する。図36は、射出機構IJによって、カメラCRが射出されて、射出後に着地した状態が示されている。この状態で、カメラCRが撮影し、撮影により得られた画像を配線WRを介して探査機R41へ送信する。 FIG. 36 is a schematic diagram showing a schematic configuration of the exploration system according to the seventh embodiment. As shown in FIG. 36, the exploration system S8 includes a probe R41 arranged on the moon surface. The probe R41 includes a probe main body B41, a wiring WR, a camera CR connected to the probe main body B41 via the wiring WR, and an injection mechanism IJ for injecting the camera CR. FIG. 36 shows a state in which the camera CR is ejected by the ejection mechanism IJ and landed after the ejection. In this state, the camera CR captures an image and transmits an image obtained by the capture to the probe R41 via the wiring WR.
 以上、第7の実施形態に係る探査機R41は、カメラCRと、カメラCRを射出可能な射出機構IJと、カメラCRと射出機構IJとを制御するコントローラCONと、を備える。コントローラCONは、カメラCRが射出後に着地した地点においてカメラCRで撮影するよう制御し、撮影により得られた画像をカメラから取得する。これにより、カメラCRを探査機が進入することが困難な場所における画像が得られるため、探査機R41が進入することが困難な場所(ここでは一例として縦穴)を観察することができる。 As described above, the probe R41 according to the seventh embodiment includes the camera CR, the injection mechanism IJ that can inject the camera CR, and the controller CON that controls the camera CR and the injection mechanism IJ. The controller CON controls the camera CR to take a picture at a point where the camera CR has landed after injection, and acquires an image obtained by the photography from the camera. As a result, an image at a location where it is difficult for the spacecraft to enter the camera CR is obtained, and thus a location where the spacecraft R41 is difficult to enter (here, a vertical hole) can be observed.
 また、第7の実施形態に係る探査方法は、射出機構IJを有する探査機R41からカメラCRを射出する工程と、カメラCRが、射出後に着地した地点において撮影する工程と、カメラCRが、撮影により得られた画像を配線WRを介して探査機R41へ送信する工程と、を有する。これにより、カメラCRを探査機が進入することが困難な場所における画像が得られるため、探査機R41が進入することが困難な場所(ここでは一例として縦穴)を観察することができる。 In addition, the exploration method according to the seventh embodiment includes a step of ejecting the camera CR from the probe R41 having the ejection mechanism IJ, a step of photographing at the point where the camera CR has landed after the ejection, and the camera CR And a step of transmitting the image obtained by the above to the probe R41 via the wiring WR. As a result, an image at a location where it is difficult for the spacecraft to enter the camera CR is obtained, and thus a location where the spacecraft R41 is difficult to enter (here, a vertical hole) can be observed.
 なお、探査機R41は更に配線WRを巻き取る巻取機構を有していてもよい。この巻取機構が配線WRを巻き取ることにより、カメラCRを射出機構IJに射出可能に収納するようにしてもよい。これにより、何度も射出することができ、異なる場所で撮影することができる。 The spacecraft R41 may further have a winding mechanism for winding the wiring WR. The take-up mechanism may take up the wiring WR so that the camera CR can be stored in the injection mechanism IJ in an injectable manner. Thereby, it can inject | emitted many times and can image | photograph in a different place.
 また、カメラCR及び探査機本体B41はそれぞれ無線通信機能を有してもよく、その場合には、カメラCRから画像を探査機本体B41へ無線で送信してもよい。 Further, the camera CR and the probe main body B41 may each have a wireless communication function, and in that case, an image may be wirelessly transmitted from the camera CR to the probe main body B41.
 <第8の実施形態>
 続いて第8の実施形態について説明する。第8の実施形態に係る探査機は、筐体と、筐体内の熱を開放する開放状態と前記筐体内の熱を遮断する遮断状態とを切り替える切替機構と、筐体の外部の温度を計測する温度センサと、プロセッサと、を備え、温度センサが計測した温度に応じて、プロセッサは、開放状態と遮断状態とを切り替えるように切替機構を制御する。この構成により、筐体の外部の温度が上昇した場合は、遮断状態に切り替えて、筐体の内部への熱の流入を抑制し、筐体の外部の温度が低下した場合は、開放状態に切り替えて、筐体の内部への熱を排出することにより、筐体の内部の温度の変化を抑制することができる。
<Eighth Embodiment>
Next, an eighth embodiment will be described. The spacecraft according to the eighth embodiment measures a case, a switching mechanism that switches between an open state that releases heat in the case and a blocking state that blocks heat in the case, and a temperature outside the case. And a processor, and the processor controls the switching mechanism to switch between the open state and the shut-off state according to the temperature measured by the temperature sensor. With this configuration, when the temperature outside the housing rises, it is switched to the shut-off state, suppressing the inflow of heat into the housing, and when the temperature outside the housing is lowered, it is opened. By switching and discharging the heat to the inside of the housing, a change in the temperature inside the housing can be suppressed.
 図37は、第8の実施形態に係る探査機の概略構成を示す模式図である。図37に示すように、探査機RV5は、筐体HS5と、プロセッサPSと、温度センサTSと、切替機構SWとを備える。
 温度センサTSは、筐体HS5の外部の温度を計測する。
 切替機構SWは、筐体HS5内の熱を開放する開放状態と筐体HS5内の熱を遮断する遮断状態とを切り替える。
 プロセッサPSは、温度センサTSが計測した温度に応じて、開放状態と遮断状態とを切り替えるように切替機構SWを制御する。
FIG. 37 is a schematic diagram showing a schematic configuration of the spacecraft according to the eighth embodiment. As shown in FIG. 37, the probe RV5 includes a housing HS5, a processor PS, a temperature sensor TS, and a switching mechanism SW.
The temperature sensor TS measures the temperature outside the housing HS5.
The switching mechanism SW switches between an open state in which the heat in the housing HS5 is released and a blocking state in which the heat in the housing HS5 is cut off.
The processor PS controls the switching mechanism SW so as to switch between the open state and the shut-off state according to the temperature measured by the temperature sensor TS.
 図38Aは、遮断状態の切替機構SWの一例を表す概略斜視図である。図38Bは、開放状態の切替機構SWの一例を表す概略斜視図である。
 図38Aに示すように、切替機構SWは、第1枠HMと、第1枠の上に積層された第2枠IMと、第2枠IMの上に設けられたシャッターフレームSFと、シャッターフレームSFに対して長手方向にスライド可能なシャッターSHとを備える。
FIG. 38A is a schematic perspective view illustrating an example of the switching mechanism SW in the cutoff state. FIG. 38B is a schematic perspective view illustrating an example of the switching mechanism SW in the open state.
As shown in FIG. 38A, the switching mechanism SW includes a first frame HM, a second frame IM stacked on the first frame, a shutter frame SF provided on the second frame IM, and a shutter frame. The shutter SH is slidable in the longitudinal direction with respect to the SF.
 シャッターSHには、長方形の第1の貫通孔が間隔を空けて複数形成されている。同様に、シャッターフレームSFにも、長方形の第2の貫通孔が間隔を空けて複数形成されている。第2の貫通孔は例えば、第1の貫通孔と略同じ大きさである。 A plurality of rectangular first through holes are formed in the shutter SH at intervals. Similarly, in the shutter frame SF, a plurality of rectangular second through holes are formed at intervals. The second through hole is, for example, approximately the same size as the first through hole.
 切替機構SWが遮断状態の場合、図38Aに示すように、シャッターフレームSFは、シャッターSHの第1の貫通孔の下に、シャッターフレームSFの本体部分(第2の貫通孔が空けられていない部分)が配置される。これにより、探査機RV5に太陽が当たる場合において、外部からの熱がシャッターフレームSFの本体部分によって遮られるので断熱効果が得られ、筐体HS5内部の温度上昇を抑制することができる。ここでシャッターフレームSFは、断熱性の高い材料から構成されていることが好ましい。これにより、切替機構SWが遮断状態の場合に、断熱効果を向上させることできる。また、図38Aの矢印のように内部の気体がシャッターSHの本体部分(第1の貫通孔が空けられていない部分)の裏面によって遮られて外部に逃げない。 When the switching mechanism SW is in the shut-off state, as shown in FIG. 38A, the shutter frame SF has a main body portion (the second through hole is not opened) below the first through hole of the shutter SH. Part) is arranged. Thereby, when the sun hits the spacecraft RV5, heat from the outside is blocked by the main body portion of the shutter frame SF, so that a heat insulating effect can be obtained, and a temperature rise inside the housing HS5 can be suppressed. Here, the shutter frame SF is preferably made of a highly heat-insulating material. Thereby, when the switching mechanism SW is in the cut-off state, the heat insulation effect can be improved. Also, as shown by the arrows in FIG. 38A, the internal gas is blocked by the back surface of the main body portion of the shutter SH (the portion where the first through hole is not opened) and does not escape to the outside.
 一方、切替機構SWが開放状態の場合、図38Bに示すように、シャッターフレームSFは、シャッターSHの第1の貫通孔の下に、シャッターフレームSFの第2の貫通孔が配置される。これにより、筐体HS5の内部の熱がシャッターSHの第1の貫通孔及びシャッターフレームSFの第2の貫通孔を介して筐体HS5の外部に排出される。 On the other hand, when the switching mechanism SW is in the open state, as shown in FIG. 38B, in the shutter frame SF, the second through hole of the shutter frame SF is disposed below the first through hole of the shutter SH. Thereby, the heat inside the housing HS5 is discharged to the outside of the housing HS5 through the first through hole of the shutter SH and the second through hole of the shutter frame SF.
 プロセッサPSは例えば、筐体HS5の外部の温度が上昇した場合は、図38Aに示すように遮断状態に切り替えるよう制御してもよい。これにより、筐体HS5の内部への熱の流入を抑制することができる。一方、プロセッサPSは、筐体HS5の外部の温度が低下した場合は、図38Bに示すように開放状態に切り替えるよう制御してもよい。これにより、図38Bの矢印に示すように筐体HS5の内部の熱を排出することができる。このようにして、太陽が当たるなどして暑いときはシャッターSHを閉め、太陽が当たらないなどして寒いときはシャッターSHを開けるので、筐体HS5の内部の温度の変化を抑制することができる。 For example, when the temperature outside the housing HS5 rises, the processor PS may control to switch to the shut-off state as shown in FIG. 38A. Thereby, inflow of the heat | fever to the inside of housing | casing HS5 can be suppressed. On the other hand, when the temperature outside the housing HS5 decreases, the processor PS may control to switch to the open state as shown in FIG. 38B. Thereby, the heat inside the housing HS5 can be discharged as shown by the arrow in FIG. 38B. In this way, the shutter SH is closed when it is hot such as when the sun hits it, and the shutter SH is opened when it is cold such as when the sun does not hit it, so that a change in the temperature inside the housing HS5 can be suppressed. .
 なお、温度センサTSは、筐体HS5の内部の温度を計測してもよい。これにより、プロセッサPSは、筐体HS5の内部の温度に応じて、開放状態と遮断状態とを切り替えるように切替機構SWを制御することができる。 Note that the temperature sensor TS may measure the temperature inside the housing HS5. Accordingly, the processor PS can control the switching mechanism SW so as to switch between the open state and the shut-off state according to the temperature inside the housing HS5.
 また、プロセッサPSは、予め設定された月の周期に応じて、開放状態と遮断状態とを切り替えるように切替機構SWを制御してもよい。例えば、プロセッサPSは、月に太陽光があたる期間は遮断状態に切り替えるように切替機構SWを制御し、月に太陽光があたらない期間は開放状態に切り替えるように切替機構SWを制御してもよい。 Further, the processor PS may control the switching mechanism SW so as to switch between an open state and a shut-off state according to a preset month cycle. For example, the processor PS may control the switching mechanism SW so as to switch to the cut-off state during a period when sunlight falls on the moon, and may control the switching mechanism SW so as to switch to an open state when the moon does not receive sunlight. Good.
 <第9の実施形態>
 続いて第9の実施形態について説明する。第9の実施形態に係る探査機は、車輪を支持する脚部を畳む。この構成により、重心が低くなるので輸送時などの振動が大きな場合に、振動による探査機の揺れを低減し、揺れによる破損を抑制することができる。また探査機をペイロードとして宇宙機またはランダーに積載する場合に脚部を畳むことで高さを低くすることができるので、積載されたときに探査機が占める空間を小さくすることができる。
<Ninth Embodiment>
Next, a ninth embodiment will be described. The spacecraft according to the ninth embodiment folds the legs that support the wheels. With this configuration, the center of gravity is lowered, so that when the vibration during transportation or the like is large, the vibration of the spacecraft due to the vibration can be reduced and the damage due to the vibration can be suppressed. Further, when the spacecraft or the lander is loaded with the spacecraft as a payload, the height can be reduced by folding the legs, so that the space occupied by the spacecraft when loaded is reduced.
 図39Aは、脚部を折り畳んでいないときの探査機の概略側面図である。図39Bは、脚部を折り畳んだときの探査機の概略側面図である。図39Cは、脚部と支柱の概略斜視図である。図39A~39Cに示すように、筐体HSと、筐体HSに連結された支柱PLと、一端が支柱PLに連結された2対の脚部LG1、LG2と、脚部LG1、LG2それぞれの他端に連結された車輪TY1、TY2と、を有する。 FIG. 39A is a schematic side view of the spacecraft when the legs are not folded. FIG. 39B is a schematic side view of the spacecraft when the legs are folded. FIG. 39C is a schematic perspective view of a leg portion and a support column. As shown in FIGS. 39A to 39C, the housing HS, the support column PL connected to the housing HS, the two pairs of legs LG1 and LG2 whose one ends are connected to the support PL, and the legs LG1 and LG2, respectively. And wheels TY1, TY2 connected to the other end.
 図39Aに示すように、脚部を折り畳んでいないとき、脚部LG1、LG2が保持構造体HDによって支持されている。2対の脚部LG1、LG2の間の角度が可変になるように、支柱PLに対して2対の脚部LG1、LG2が回動可能に構成されている。これにより、図39Bに示すように、2対の脚部LG1、LG2を筐体HSの下面付近まで回動させて、2対の脚部LG1、LG2の間の角度を開くことにより、脚部LG1、LG2を畳むことができる。脚部LG1、LG2は、例えば、柔軟な炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)によって構成されていてもよい。 As shown in FIG. 39A, when the legs are not folded, the legs LG1 and LG2 are supported by the holding structure HD. The two pairs of legs LG1 and LG2 are configured to be rotatable with respect to the support column PL so that the angle between the two pairs of legs LG1 and LG2 is variable. Thus, as shown in FIG. 39B, the two pairs of legs LG1, LG2 are rotated to the vicinity of the lower surface of the housing HS to open the angle between the two pairs of legs LG1, LG2. LG1 and LG2 can be folded. The legs LG1 and LG2 may be made of, for example, flexible carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastic: CFRP).
 以上、第9の実施形態に係る探査機は、筐体と、筐体に連結された支柱と、一端が支柱に連結された2対の脚部と、脚部それぞれの他端に連結された車輪と、を有し、2対の脚部の間の角度が可変になるように、支柱に対して2対の脚部が回動可能に構成されている。この構成により、重心が低くなるので輸送時などの振動が大きな場合に、振動による探査機の揺れを低減し、揺れによる破損を抑制することができる。また探査機をペイロードとして宇宙機またはランダーに積載する場合に脚部を畳むことで高さを低くすることができるので、積載されたときに探査機が占める空間を小さくすることができる。 As described above, the spacecraft according to the ninth embodiment is connected to the housing, the support column connected to the housing, the two pairs of legs connected at one end to the support column, and the other ends of the legs. And the two pairs of legs are configured to be rotatable with respect to the support so that the angle between the two pairs of legs is variable. With this configuration, the center of gravity is lowered, so that when the vibration during transportation or the like is large, the vibration of the spacecraft due to the vibration can be reduced and the damage due to the vibration can be suppressed. Further, when the spacecraft or the lander is loaded with the spacecraft as a payload, the height can be reduced by folding the legs, so that the space occupied by the spacecraft when loaded is reduced.
 なお、各実施形態にかかる探査機の筐体は、グラフェンまたはグラフェンファイバーを素材として含んでもよい。筐体の素材の一部使われていてもよいし、全部使われていてもよい。これにより、筐体の断熱性を向上させることができる。 In addition, the casing of the spacecraft according to each embodiment may include graphene or graphene fiber as a material. Part of the material of the housing may be used, or all of the material may be used. Thereby, the heat insulation of a housing | casing can be improved.
 以上、本開示は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 As described above, the present disclosure is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 AD1、AD2、AD3、AD4 A/D変換器
 AT アンテナ
 AT1 第1アンテナ
 AT2 第2アンテナ
 B1、B2 ボルト
 B41 探査機本体
 BAT バッテリ
 BB バッテリボード
 BC 後方カメラ
 BHP ベアリングホールドプレート
 BP 後板
 BR1、BR2 ベアリング
 BS ベアリングスペーサ
 BT 電源
 C1、C2、CON コントローラ
 CB カメラ用ボード
 CC1 第1通信コントローラ
 CC2 第2通信コントローラ
 CDC 充放電回路
 CM 通信部
 CMC1 第1カメラコントローラ
 CMC2 第2カメラコントローラ
 CO 切り欠き
 CR カメラ
 CU 通信ユニット
 D1 ダイオード
 DCU DCコンバータユニット
 DM 駆動機構
 DP 底板
 DR ドリル
 DS 距離センサ
 E 地上局
 ET 地球
 FC 前方カメラ
 FP 前板
 FW1、FW2、RW1、RW2 車輪
 GB ギアボックス
 H1 貫通孔
 HB ハブ
 HD 保持構造体
 HC クランプ
 HE1 穴
 HI 断熱材
 HL 第1の穴
 HL2 第2の穴
 HM 第1枠
 HS、HS2、HS4 筐体
 IF インタフェース
 IM 第2枠
 L 着陸船
 L5、L11 ランダー
 LC 左側方カメラ
 LG1、LG2 脚部
 LP 左側板
 LSF、RSF シャフト
 M1-1~M1-4、M2-1~M2-5、M3-1~M3-5、M4-1~M4-4、M5-1~M5-5、M6-1~M6-5、M7-1~M7-4、M8~M8-5、M9-1~M9-5、M10-1~M10-4、M11-1~M11-5、M12-1~M12-5 太陽電池
 MC モータコントローラ
 MCB モータ用ボード
 MH モータハウジング
 MT モータ
 MU 記録ユニット
 P1-1、P1-2、P2-1、P2-2、P3-1、P3-2、P4-1、P4-2、P4-3、P4-4、P5-1、P5-2 支柱
 PC1 第1プロセッサ
 PC2 第2プロセッサ
 PI1、PI2 パラレルインタフェース
 PJ 凸部
 PL 支柱
 PL1、PL2、PL3、PL4 プレート
 PS プロセッサ
 PU 電源コントローラ
 PUB 電源ボード
 R、R11、R41、RV1、RV2、RV5 探査機
 RB 通信用ボード
 RC 右側方カメラ
 RL1、RL2 反射板
 RP 右側板
 S、S5、S8 探査システム
 SP、SP1 太陽光パネル
 SF シャッターフレーム
 SH シャッター
 SI1、SI2 シリアルインタフェース
 SS 資源探査センサ
 SW 切替機構
 SV モータスレーブ
 TP 天板
 TS 温度センサ
 TT 断熱シート
 TY、TY1、TY2 車輪
 WL2 ホイール
 WR 配線

 
AD1, AD2, AD3, AD4 A / D converter AT antenna AT1 first antenna AT2 second antenna B1, B2 bolt B41 probe body BAT battery BB battery board BC rear camera BHP bearing hold plate BP rear plate BR1, BR2 bearing BS Bearing spacer BT Power source C1, C2, CON Controller CB Camera board CC1 First communication controller CC2 Second communication controller CDC Charge / discharge circuit CM communication unit CMC1 First camera controller CMC2 Second camera controller CO Notch CR Camera CU Communication unit D1 Diode DCU DC converter unit DM Drive mechanism DP Bottom plate DR Drill DS Distance sensor E Ground station ET Earth FC Front camera FP Front plate FW1, F W2, RW1, RW2 Wheel GB Gearbox H1 Through-hole HB Hub HD Holding structure HC Clamp HE1 Hole HI Thermal insulation HL First hole HL2 Second hole HM First frame HS, HS2, HS4 Housing IF interface IM First 2 frames L Lander L5, L11 Lander LC Left side camera LG1, LG2 Leg LP Left side plate LSF, RSF Shaft M1-1 ~ M1-4, M2-1 ~ M2-5, M3-1 ~ M3-5, M4 -1 to M4-4, M5-1 to M5-5, M6-1 to M6-5, M7-1 to M7-4, M8 to M8-5, M9-1 to M9-5, M10-1 to M10 -4, M11-1 to M11-5, M12-1 to M12-5 Solar cells MC Motor controller MCB Motor board MH Motor housing MT Motor MU Recording unit P1- 1, P1-2, P2-1, P2-2, P3-1, P3-2, P4-1, P4-2, P4-3, P4-4, P5-1, P5-2 Prop PC1 First processor PC2 2nd processor PI1, PI2 Parallel interface PJ Convex part PL Column PL1, PL2, PL3, PL4 Plate PS processor PU Power supply controller PUB Power supply board R, R11, R41, RV1, RV2, RV5 Explorer RB Communication board RC Right side Camera RL1, RL2 Reflector RP Right side plate S, S5, S8 Exploration system SP, SP1 Solar panel SF Shutter frame SH Shutter SI1, SI2 Serial interface SS Resource exploration sensor SW switching mechanism SV Motor slave TP Top plate TS Temperature sensor TT Thermal insulation Sheet TY, TY1, TY2 Wheel WL2 Wheel WR Wiring

Claims (27)

  1.  走行可能な探査機であって、
     車輪と、
     当該探査機が進行可能な方向に向けて配置された第1のカメラと、
     当該探査機が進行可能な方向以外の方向に向けて配置された第2のカメラと、
     を備え、
     前記第1のカメラ及び/または前記第2のカメラのレンズの向きが水平よりも下方に向けられており、
     前記第1のカメラの視野内及び/または前記第2のカメラの視野内に、車輪が含まれている
     探査機。
    A spacecraft that can travel,
    Wheels,
    A first camera arranged in a direction in which the spacecraft can travel;
    A second camera arranged in a direction other than the direction in which the probe can travel;
    With
    The direction of the lens of the first camera and / or the second camera is directed downward from the horizontal,
    Wheels are included in the field of view of the first camera and / or in the field of view of the second camera.
  2.  前記第1のカメラの解像度は、前記第2のカメラの解像度より高い
     請求項1に記載の探査機。
    The spacecraft according to claim 1, wherein the resolution of the first camera is higher than the resolution of the second camera.
  3.  プロセッサを複数備え、
     当該探査機は、前後どちらにも走行可能であり、
     前記第1のカメラとして、前方に向けて配置された前方カメラと、後方に向けて配置された後方カメラとを有し、
     前記前方カメラと、前記後方カメラはそれぞれ別々のプロセッサに接続されている
     請求項1または2に記載の探査機。
    With multiple processors,
    The spacecraft can travel both forward and backward,
    As the first camera, it has a front camera disposed toward the front and a rear camera disposed toward the rear,
    The spacecraft according to claim 1 or 2, wherein the front camera and the rear camera are respectively connected to separate processors.
  4.  前記第1のカメラまたは前記第2のカメラと、シリアルあるいはパラレルインタフェースで接続されているカメラコントローラと、
     通信するための通信コントローラと、
     を備え、
     前記カメラコントローラは、所定のフレームレートで前記カメラに動画データを要求して取得し、取得した動画データをハードウェアエンコーディングで圧縮し、
     前記通信コントローラは、圧縮後のデータを送信する
     請求項1から3のいずれか一項に記載の探査機。
    A camera controller connected to the first camera or the second camera via a serial or parallel interface;
    A communication controller for communication;
    With
    The camera controller requests and acquires video data from the camera at a predetermined frame rate, compresses the acquired video data by hardware encoding,
    The spacecraft according to any one of claims 1 to 3, wherein the communication controller transmits the compressed data.
  5.  筐体を備え、
     前記筐体は、基板と、テフロン(登録商標)層あるいは石英ガラス層と、前記基板と前記テフロン(登録商標)層あるいは石英ガラス層との間に設けられた金属膜と、を有する
     請求項1から4のいずれか一項に記載の探査機。
    With a housing,
    The casing includes a substrate, a Teflon (registered trademark) layer or a quartz glass layer, and a metal film provided between the substrate and the Teflon (registered trademark) layer or the quartz glass layer. 5. The spacecraft according to any one of items 1 to 4.
  6.  前記テフロン(登録商標)層あるいは前記石英ガラス層の上に、酸化インジウム錫層が設けられている
     請求項5に記載の探査機。
    The spacecraft according to claim 5, wherein an indium tin oxide layer is provided on the Teflon (registered trademark) layer or the quartz glass layer.
  7.  筐体と、
     電子機器と、
     を備え、
     前記筐体は、側板と、前記電子機器が固定された天板とを有し、
     前記側板と前記天板との間に断熱材が設けられている
     請求項1から6のいずれか一項に記載の探査機。
    A housing,
    Electronic equipment,
    With
    The housing includes a side plate and a top plate to which the electronic device is fixed.
    The spacecraft according to any one of claims 1 to 6, wherein a heat insulating material is provided between the side plate and the top plate.
  8.  前記電子機器は、前記天板の裏に設けられている
     請求項7に記載の探査機。
    The spacecraft according to claim 7, wherein the electronic device is provided behind the top plate.
  9.  筐体と、
     前記筐体の天板から露出された状態で当該天板に固定されているプレートと、
     前記プレートの裏面側に固定されている電子機器と、
     を備え、
     前記プレートは断面が凸状の形状を有し、前記筐体の天板に設けられた開口に嵌まっている
     請求項1から8のいずれか一項に記載の探査機。
    A housing,
    A plate fixed to the top plate in a state exposed from the top plate of the housing;
    An electronic device fixed to the back side of the plate;
    With
    The spacecraft according to any one of claims 1 to 8, wherein the plate has a convex cross section and is fitted in an opening provided in a top plate of the housing.
  10.  筐体を備え、
     前記筐体の前板及び/または後板は、底板から天板にかけて当該探査機の内側に傾いている
     請求項1から9のいずれか一項に記載の探査機。
    With a housing,
    The probe according to any one of claims 1 to 9, wherein the front plate and / or the rear plate of the housing is inclined inward from the bottom plate to the top plate.
  11.  筐体と、
     前記筐体の側板の底面との間の輪郭線に対して当該筐体の側板に沿った垂線を仮定したときに、当該垂線に対して斜めに配列されている太陽電池と、
     を備える請求項1から10のいずれか一項に記載の探査機。
    A housing,
    When assuming a vertical line along the side plate of the casing with respect to the contour line between the bottom surface of the side plate of the casing, solar cells arranged obliquely with respect to the vertical line,
    The spacecraft according to claim 1, comprising:
  12.  前記太陽電池で発電された電力が供給される充放電回路を更に備え、
     前記筐体には貫通孔が設けられており、
     前記太陽電池からの配線は、前記筐体に設けられた貫通孔を通して前記筐体内の充放電回路に接続されている
     請求項11に記載の探査機。
    A charge / discharge circuit to which power generated by the solar cell is supplied;
    The housing is provided with a through hole,
    The spacecraft according to claim 11, wherein the wiring from the solar cell is connected to a charge / discharge circuit in the casing through a through hole provided in the casing.
  13.  前記筐体の上に配置された太陽電池を更に備え、
     前記太陽電池が配置された筐体の面は、底板から天板にかけて当該探査機の内側に傾いている
     請求項1から12のいずれか一項に記載の探査機。
    Further comprising a solar cell disposed on the housing;
    The spacecraft according to any one of claims 1 to 12, wherein a surface of the housing in which the solar cell is disposed is inclined inward from the bottom plate to the top plate.
  14.  前記太陽電池が配置された筐体の面の傾きは、当該探査機が配置される予定の緯度に応じて決定されている
     請求項13に記載の探査機。
    The spacecraft according to claim 13, wherein the inclination of the surface of the housing in which the solar cell is disposed is determined according to a latitude at which the spacecraft is to be disposed.
  15.  前記車輪に設けられたモータと、
     コーン状の凸部を中央付近に有し、当該凸部に前記モータの回転軸が嵌っている第1の穴と当該第1の穴に連通する切り欠きを有するハブと、
     裏面から表面に向けて徐々に直径が小さくなる第2の穴を有するクランプと、
     を備え、
     前記クランプの当該裏面と前記ハブとが対向状態で前記第2の穴に前記凸部が嵌まっている
    請求項1から14のいずれか一項に記載の探査機。
    A motor provided on the wheel;
    A hub having a cone-shaped convex portion near the center, a first hole into which the rotational shaft of the motor is fitted, and a notch communicating with the first hole;
    A clamp having a second hole that gradually decreases in diameter from the back surface to the front surface;
    With
    The probe according to any one of claims 1 to 14, wherein the convex portion is fitted in the second hole in a state where the back surface of the clamp and the hub are opposed to each other.
  16.  探査機であって、
     折り畳まれて収納されており、折り畳まれた状態から広げることが可能な断熱シートを備え、
     前記断熱シートは、広げると当該探査機の外側を覆うように構成されている
     探査機。
    A spacecraft,
    Folded and stored, equipped with a heat insulating sheet that can be expanded from the folded state,
    The thermal insulation sheet is configured to cover the outside of the probe when spread.
  17.  ペイロードまたはアクセサリと接続するインタフェースを備え、
     前記インタフェースは、
     ペイロードまたはアクセサリと接続した場合に、当該ペイロードまたはアクセサリに対して電圧を変換して電力を供給するためのコンバータユニットと、
     前記ペイロードまたはアクセサリと接続した場合に、当該ペイロードまたはアクセサリとの間で電気信号を交換するための通信ユニットと、
     を有する探査機。
    With interface to connect with payload or accessories,
    The interface is
    A converter unit for supplying power by converting a voltage to the payload or accessory when connected to the payload or accessory;
    A communication unit for exchanging electrical signals with the payload or accessory when connected to the payload or accessory;
    With spacecraft.
  18.  地球以外の天体上に配置された3Dプリンタによって、探査機の部品を製造する工程を有する探査機の部品の製造方法。 A method of manufacturing a probe component having a process of manufacturing a probe component by a 3D printer arranged on a celestial body other than the earth.
  19.  故障または破損した前記探査機の部品を熔解する工程と、
     前記製造する工程において、前記熔解後の材料を原料として用いて、3Dプリンタで宇宙機の部品を製造する
     請求項18に記載の探査機の部品の製造方法。
    Melting the failed or damaged parts of the spacecraft;
    The spacecraft component manufacturing method according to claim 18, wherein, in the manufacturing step, a spacecraft component is manufactured by a 3D printer using the material after melting as a raw material.
  20.  地球以外の天体において天然資源を採取する工程と、
     前記製造する工程において、前記採取された天然資源を原料として用いて3Dプリンタで探査機の部品を製造する
     請求項18に記載の探査機の部品の製造方法。
    Collecting natural resources in celestial bodies other than the Earth;
    The method of manufacturing a probe component according to claim 18, wherein, in the manufacturing step, a probe component is manufactured by a 3D printer using the collected natural resource as a raw material.
  21.  地球以外の天体において探査機を製造する探査機製造方法であって、
     地球以外の天体において天然資源を採取するか、故障または破損した探査機の部品を熔解する工程と、
     前記採取された天然資源または前記熔解後の材料を原料として用いて、3Dプリンタで探査機の部品を製造する工程と、
     前記製造された探査機の部品を対象の探査機に取り付ける工程と、
     を有する探査機製造方法。
    A probe manufacturing method for manufacturing a probe in a celestial body other than the earth,
    Collecting natural resources in celestial bodies other than the Earth, or melting failed or damaged probe parts;
    Using the collected natural resources or the material after melting as a raw material, and manufacturing a probe part with a 3D printer;
    Attaching the manufactured probe parts to the target probe;
    A method for manufacturing a spacecraft.
  22.  太陽光パネルと、
     前記太陽光パネルの水平面からの傾きを変更する駆動機構と、
     時刻、太陽の高さ、または前記太陽光パネルの発電量に応じて、前記太陽光パネルの水平面を基準とする傾きを変更するよう前記駆動機構を制御するコントローラと、
     を備える探査機。
    Solar panels,
    A drive mechanism for changing the inclination of the solar panel from a horizontal plane;
    A controller that controls the drive mechanism to change the inclination with respect to the horizontal plane of the solar panel according to the time, the height of the sun, or the amount of power generated by the solar panel;
    A spacecraft equipped with.
  23.  光を反射する反射板と、
     前記反射板によって反射された太陽光が対象物の太陽光パネルに照射されるように、前記反射板の向き及び/または角度を変更するよう制御するコントローラと、
     を備える探査機。
    A reflector that reflects light;
    A controller that controls to change the orientation and / or angle of the reflector so that the sunlight reflected by the reflector is irradiated to the solar panel of the object;
    A spacecraft equipped with.
  24.  カメラと、
     前記カメラを射出可能な射出機構と、
     前記カメラと射出機構とを制御するコントローラと、
     を備え、
     前記コントローラは、前記カメラが射出後に着地した地点において前記カメラで撮影するよう制御し、撮影により得られた画像を前記カメラから取得する
     探査機。
    A camera,
    An injection mechanism capable of injecting the camera;
    A controller for controlling the camera and the injection mechanism;
    With
    The controller controls an image to be captured by the camera at a point where the camera has landed after injection, and acquires an image obtained by the imaging from the camera.
  25.  筐体と、
     前記筐体内の熱を開放する開放状態と前記筐体内の熱を遮断する遮断状態とを切り替える切替機構と、
     前記筐体の外部または内部の温度を計測する温度センサと、
     前記温度センサが計測した温度に応じて、開放状態と遮断状態とを切り替えるように前記切替機構を制御するプロセッサと、
     を備える探査機。
    A housing,
    A switching mechanism that switches between an open state that releases heat in the housing and a shut-off state that blocks heat in the housing;
    A temperature sensor for measuring the temperature inside or outside the housing;
    A processor that controls the switching mechanism to switch between an open state and a shut-off state according to the temperature measured by the temperature sensor;
    A spacecraft equipped with.
  26.  筐体と、
     前記筐体に連結された支柱と、
     一端が前記支柱に連結された2対の脚部と、
     前記脚部それぞれの他端に連結された車輪と、
     を有し、
     前記2対の脚部の間の角度が可変になるように、前記支柱に対して前記2対の脚部が回動可能に構成されている
     探査機。
    A housing,
    A strut connected to the housing;
    Two pairs of legs connected at one end to the support;
    A wheel connected to the other end of each leg,
    Have
    The spacecraft is configured such that the two pairs of legs are rotatable with respect to the support so that an angle between the two pairs of legs is variable.
  27.  グラフェンまたはグラフェンファイバーを素材として含む筐体を備える探査機。 A spacecraft equipped with a case containing graphene or graphene fiber as a material.
PCT/JP2017/028682 2016-08-10 2017-08-08 Probe, method for manufacturing probe component, and probe manufacturing method WO2018030368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/073673 2016-08-10
PCT/JP2016/073673 WO2018029840A1 (en) 2016-08-10 2016-08-10 Probe

Publications (1)

Publication Number Publication Date
WO2018030368A1 true WO2018030368A1 (en) 2018-02-15

Family

ID=61162010

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/073673 WO2018029840A1 (en) 2016-08-10 2016-08-10 Probe
PCT/JP2017/028682 WO2018030368A1 (en) 2016-08-10 2017-08-08 Probe, method for manufacturing probe component, and probe manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073673 WO2018029840A1 (en) 2016-08-10 2016-08-10 Probe

Country Status (1)

Country Link
WO (2) WO2018029840A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108725845A (en) * 2018-08-16 2018-11-02 重庆大学 Landing buffer suspension integrated with vibration isolation
CN109484673A (en) * 2018-12-24 2019-03-19 深圳航天东方红海特卫星有限公司 A kind of payload platform separate type remote sensing micro satellite configuration and its assembly method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110626523A (en) * 2019-10-18 2019-12-31 中国矿业大学(北京) Moon region observation and communication system and bouncing device
CN112249367B (en) * 2020-10-13 2022-04-05 哈尔滨工业大学 Minor planet probe maneuvering inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466725Y1 (en) * 1966-11-18 1971-03-09
JPH04321498A (en) * 1991-04-19 1992-11-11 Nec Corp Heat insulative structural member
JP2008221875A (en) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp Ventilation duct for spacecraft
JP2015063118A (en) * 2013-08-28 2015-04-09 三菱重工業株式会社 Flexible heat control material
JP2015211560A (en) * 2014-04-28 2015-11-24 株式会社メセナ Low-floor sunlight tracking device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466725Y1 (en) * 1966-11-18 1971-03-09
JPH04321498A (en) * 1991-04-19 1992-11-11 Nec Corp Heat insulative structural member
JP2008221875A (en) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp Ventilation duct for spacecraft
JP2015063118A (en) * 2013-08-28 2015-04-09 三菱重工業株式会社 Flexible heat control material
JP2015211560A (en) * 2014-04-28 2015-11-24 株式会社メセナ Low-floor sunlight tracking device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The rover's ''eyes'' and other ''senses", SPACECRAFT: SURFACE OPERATIONS: ROVER, Retrieved from the Internet <URL:http://mars.nasa.gov/mer/mission/spacecraftrovereyes.html> [retrieved on 20161020] *
VERTESI JANET: "Seeing like a Rover; Visualization, embodiment, and interaction on the Mars Exploration Rover Mission", SOCIAL STUDIES OF SCIENCE, vol. 42, no. 3, June 2012 (2012-06-01), pages 393 - 414, XP055463451 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108725845A (en) * 2018-08-16 2018-11-02 重庆大学 Landing buffer suspension integrated with vibration isolation
CN108725845B (en) * 2018-08-16 2020-11-24 重庆大学 Landing buffering and vibration isolation integrated suspension
CN109484673A (en) * 2018-12-24 2019-03-19 深圳航天东方红海特卫星有限公司 A kind of payload platform separate type remote sensing micro satellite configuration and its assembly method

Also Published As

Publication number Publication date
WO2018029840A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2018030368A1 (en) Probe, method for manufacturing probe component, and probe manufacturing method
CA3070389C (en) Interlocking, reconfigurable, reconstitutable, reformable cell-based system with nested ring structures
JP4308478B2 (en) Deployable spacecraft radiator
CN110536789A (en) Increasing material manufacturing system for in-orbit manufacture structure
US20120205492A1 (en) Satellite Having Multiple Aspect Ratios
US9650160B2 (en) Satellite with deployable payload modules
US10207824B2 (en) Radiator deployable for a satellite stabilized on three axes
JP6342590B2 (en) Methods for thermal stabilization of communication satellites.
Tsuruda et al. Demonstration of innovative system design for twin micro-satellite: Hodoyoshi-3 and-4
Schimmerohn et al. ERNST: Demonstrating Advanced Infrared Detection from a 12U CubeSat
Eyer et al. ALINA-2: Innovations on Planetary Transportation Systems GmbH’s Commercial Lunar Lander
Bretschneider et al. X-Sat mission progress
Clark et al. Design and Fabrication of DebriSat-A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models
Katragadda et al. Technology and demonstrations for a lunar rover expedition
Shivakumar Advanced spacecraft system technologies
CA3189648A1 (en) Sealing of multi-layer insulation blankets for spacecraft
Ogawa et al. BepiColombo Mercury magnetospheric orbiter proto-flight model thermal balance/thermal vacuum test
Burtz Update on the Qualification of the Hakuto Micro-Rover for the Google Lunar X-Prize
Peabody et al. Early Operations Flight Correlation of the Lunar Laser Communications Demonstration (LLCD) on the Lunar Atmosphere and Dust Environment Explorer (LADEE)
Han Mobile Mini-Robots For Space Application
Höfner LISA Thermal Control Analysis in Context of the BayernSat Mission
Blott et al. The strv family of spacecraft
Allouis et al. THE MOONNEXT ROVER
WU Advanced Technologies of Satellites
Balint et al. Extreme environment technologies for in-situ Lunar exploration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17839439

Country of ref document: EP

Kind code of ref document: A1