JP2008221361A - Temperature controller of machine tool - Google Patents

Temperature controller of machine tool Download PDF

Info

Publication number
JP2008221361A
JP2008221361A JP2007059823A JP2007059823A JP2008221361A JP 2008221361 A JP2008221361 A JP 2008221361A JP 2007059823 A JP2007059823 A JP 2007059823A JP 2007059823 A JP2007059823 A JP 2007059823A JP 2008221361 A JP2008221361 A JP 2008221361A
Authority
JP
Japan
Prior art keywords
temperature
machine tool
temperature control
opening
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059823A
Other languages
Japanese (ja)
Other versions
JP5020664B2 (en
Inventor
恭一 ▲えび▼澤
Kiyouichi Ebisawa
Koichi Urano
好市 浦野
Masahiko Hagiwara
雅彦 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Kanto Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Seiki Co Ltd filed Critical Kanto Seiki Co Ltd
Priority to JP2007059823A priority Critical patent/JP5020664B2/en
Publication of JP2008221361A publication Critical patent/JP2008221361A/en
Application granted granted Critical
Publication of JP5020664B2 publication Critical patent/JP5020664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Temperature (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the responsiveness and accuracy of temperature control while eliminating the inverter control of a refrigerating machine to reduce the cost and size of the temperature controller of a machine tool. <P>SOLUTION: This temperature controller of a machine tool comprises: a cooling circuit 2 for circulating a heat medium liquid to the machine tool; the refrigerator 5 driven at a specified rotational speed; a condenser 6 for liquefying the refrigerant gas compressed by the refrigerator; an expansion valve 7 for restricting and expanding the liquefied refrigerant gas; a heat exchanger 8 for cooling the heat medium liquid by the restricted and expanded refrigerant gas; a bypass passage 4 for introducing the refrigerant gas immediately after leaving the refrigerator into the heat exchanger while bypassing the condenser; a bypass valve 9 installed in the bypass passage; reference temperature set means 10, 13, a temperature sensor 21 for detecting a return liquid temperature; and a temperature control means 10 for controlling, by feedback, the openings of the expansion valve and the bypass valve so that the temperature difference between the return liquid temperature and a reference temperature is constant. The temperature control means operably connects the opening of the expansion valve to the opening of the bypass valve at a value corresponding one-to-one for simultaneous control. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、工作機械に循環させる熱媒体液の温度を制御して熱変形を抑制する工作機械の温度制御装置に関する。詳しくは、冷凍機のインバータ制御を行う必要をなくして温度制御装置のコスト低減と小型化を可能とし、かつ、温度制御の応答性と精度を向上させることができる工作機械の温度制御装置に関する。   The present invention relates to a temperature control device for a machine tool that controls the temperature of a heat medium liquid to be circulated in a machine tool and suppresses thermal deformation. More specifically, the present invention relates to a temperature control device for a machine tool that eliminates the need for inverter control of a refrigerator, enables cost reduction and size reduction of the temperature control device, and improves responsiveness and accuracy of temperature control.

工作機械の機体は、環境温度、発熱部からの熱などにより変形する。機体の変形は、加工精度に影響を及ぼすので、従来から機体各部の温度を一定温度に制御することが行われている。この温度制御の方法は、種々提案されているが、通常温度制御された一定流量の冷却油を工作機械の発熱部に常時流して発熱部を冷却している。この冷却油は熱交換器を介して冷媒により冷却されるものである。   The machine tool body deforms due to environmental temperature, heat from the heat generating part, and the like. Since the deformation of the airframe affects the processing accuracy, conventionally, the temperature of each part of the airframe has been controlled to a constant temperature. Various methods of temperature control have been proposed, but a constant flow-controlled cooling oil that is normally temperature-controlled is always supplied to the heat generating part of the machine tool to cool the heat generating part. This cooling oil is cooled by the refrigerant through the heat exchanger.

このような工作機械の温度制御の精度を向上させるものとして、本発明の発明者等により、下記の特許文献1のような技術が既に提案されている。特許文献1には、フィードフォーワード制御によって過渡偏差および定常偏差を減少させるようにした工作機械の温度制御方法が記載されており、また、冷凍機を出た直後の冷媒ガスをバイパスするバイパス路を設け、バイパス路中に設けた電磁弁を開くことにより低負荷領域での冷却能力の可変範囲を拡大することが記載されている。   As a technique for improving the accuracy of temperature control of such a machine tool, a technique such as the following Patent Document 1 has already been proposed by the inventors of the present invention. Patent Document 1 describes a temperature control method for a machine tool in which a transient deviation and a steady deviation are reduced by feedforward control, and a bypass path for bypassing refrigerant gas immediately after leaving the refrigerator. And expanding the variable range of the cooling capacity in the low load region by opening the solenoid valve provided in the bypass.

ただ、特許文献1の技術においても以下のような問題点があった。まず、フィードフォーワード制御によって制御を行うために、工作機械の主軸の回転速度指令の情報を温度制御装置に送るインターフェース回路が必要になり、さらに回転速度指令の情報を送出するためのソフトウェアも必要となるため、工作機械側のシステム変更を伴い、システム開発に時間がかかるとともにシステム全体のコストが上昇してしまうという問題点があった。また、フィードフォーワード制御を行うために、工作機械の主軸の回転速度と冷凍機の冷却能力との関係をデータベースとして記憶する制御テーブルを作成しておく必要があり、この制御テーブルの作成によっても、システム開発の時間とコストが増大していた。   However, the technique of Patent Document 1 also has the following problems. First, in order to perform control by feedforward control, an interface circuit is required to send the rotation speed command information of the spindle of the machine tool to the temperature control device, and software is also required to send the rotation speed command information As a result, the system change on the machine tool side takes time to develop the system and increases the cost of the entire system. In addition, in order to perform feedforward control, it is necessary to create a control table that stores the relationship between the rotation speed of the spindle of the machine tool and the cooling capacity of the refrigerator as a database. The system development time and cost were increasing.

そこで、本発明の発明者等により、下記の特許文献2のような技術が提案されている。特許文献2には、フィードバック制御のみによって温度制御の応答特性や精度を向上させることのできる工作機械の温度制御方法および装置が記載されている。すなわち、特許文献2の温度制御方法によれば、工作機械の発熱源の発熱量が変化した場合でも、設定温度と冷却液温度との過渡的な偏差を減少させことができ、また、冷却液温度が安定するまでの時間(整定時間)を短縮することができる。
特許第2529905号公報 特開2007−038329号公報
Therefore, the inventors of the present invention have proposed a technique as described in Patent Document 2 below. Patent Document 2 describes a temperature control method and apparatus for a machine tool that can improve response characteristics and accuracy of temperature control only by feedback control. That is, according to the temperature control method of Patent Document 2, even when the amount of heat generated by the heat source of the machine tool changes, the transient deviation between the set temperature and the coolant temperature can be reduced. The time until the temperature becomes stable (settling time) can be shortened.
Japanese Patent No. 2529905 JP 2007-038329 A

前述の特許文献1や特許文献2の温度制御装置は、冷凍機をインバータ制御によって駆動し回転速度を変更制御しているので、インバータ制御駆動装置が必要となり、温度制御装置のコストが増大するとともに、温度制御装置の大型化を招いてしまうという問題点があった。また、特許文献1の温度制御技術では、前述のように、フィードフォーワード制御を行うためにシステム全体のコストが上昇してしまうという問題点があった。   Since the temperature control devices of Patent Document 1 and Patent Document 2 described above drive the refrigerator by inverter control to change and control the rotation speed, an inverter control drive device is required, and the cost of the temperature control device increases. However, there is a problem that the temperature control device is increased in size. In addition, as described above, the temperature control technique of Patent Document 1 has a problem in that the cost of the entire system increases because feedforward control is performed.

そこで、本発明は、冷凍機のインバータ制御を行う必要をなくして温度制御装置のコスト低減と小型化を可能とし、かつ、温度制御の応答性と精度を向上させることができる工作機械の温度制御装置を提供することを目的とする。   Therefore, the present invention eliminates the need for inverter control of the refrigerator, enables cost reduction and downsizing of the temperature control device, and improves temperature control responsiveness and accuracy. An object is to provide an apparatus.

上記目的を達成するために、本発明の工作機械の温度制御装置は、工作機械に熱媒体液を循環させる冷却回路と、冷媒ガスを圧縮するために一定の回転速度で駆動される冷凍機と、前記冷凍機で圧縮された前記冷媒ガスの熱を放熱して液化するための凝縮器と、液化された前記冷媒ガスを絞り膨脹させるための膨脹弁と、絞り膨脹された低圧低温の気液混合状態の前記冷媒ガスにより前記熱媒体液を冷却するための熱交換器と、前記冷凍機を出た直後の前記冷媒ガスを、前記凝縮器をバイパスして前記熱交換器に導入するためのバイパス路と、前記バイパス路の途中に設けたバイパス弁と、基準温度を設定するための基準温度設定手段と、前記主軸頭を冷却した後の前記熱媒体液の温度である戻り液温を検知するための温度センサと、前記温度センサが検出した前記戻り液温と前記基準温度との温度差が一定になるように、前記膨脹弁の開度および前記バイパス弁の開度をフィードバック制御する温度制御手段とを有する。そして、前記温度制御手段は、前記膨脹弁の開度と前記バイパス弁の開度とを一対一に対応する値に連動させて同時に制御して、前記膨脹弁の開度が制御範囲の最大値となるときには前記バイパス弁の開度が制御範囲の最小値となり、前記膨脹弁の開度が制御範囲の最小値となるときには前記バイパス弁の開度が制御範囲の最大値となるようにするものである。   In order to achieve the above object, a temperature control device for a machine tool according to the present invention includes a cooling circuit that circulates a heat medium liquid in a machine tool, and a refrigerator that is driven at a constant rotational speed to compress refrigerant gas. A condenser for radiating and liquefying the heat of the refrigerant gas compressed by the refrigerator; an expansion valve for constricting and expanding the liquefied refrigerant gas; and a low-pressure low-temperature gas-liquid that is constricted and expanded A heat exchanger for cooling the heat medium liquid with the refrigerant gas in a mixed state, and the refrigerant gas immediately after exiting the refrigerator is introduced into the heat exchanger by bypassing the condenser A bypass path, a bypass valve provided in the middle of the bypass path, a reference temperature setting means for setting a reference temperature, and a return liquid temperature that is a temperature of the heating medium liquid after cooling the spindle head is detected. A temperature sensor for performing As the temperature difference sensor and the return liquid temperature detected with said reference temperature becomes constant, and a temperature control means for feedback controlling the opening of the opening and the bypass valve of the expansion valve. The temperature control means simultaneously controls the opening degree of the expansion valve and the opening degree of the bypass valve in a one-to-one correspondence with each other so that the opening degree of the expansion valve is a maximum value in a control range. When the opening of the bypass valve becomes the minimum value of the control range, the opening of the bypass valve becomes the maximum value of the control range when the opening of the expansion valve becomes the minimum value of the control range. It is.

また、上記の工作機械の温度制御装置において、前記膨脹弁の開度と前記バイパス弁の開度は、一次関数の関係にあるものであることが好ましい。   In the temperature control device for a machine tool, it is preferable that the opening degree of the expansion valve and the opening degree of the bypass valve have a linear function relationship.

また、上記の工作機械の温度制御装置において、前記温度制御手段は、前記膨脹弁の開度および前記バイパス弁の開度をPID制御によって制御するものであることが好ましい。   In the temperature control device for a machine tool, it is preferable that the temperature control means controls the opening degree of the expansion valve and the opening degree of the bypass valve by PID control.

また、上記の工作機械の温度制御装置において、前記膨脹弁および前記バイパス弁は、デジタル値によって開度を制御可能なものであることが好ましい。   In the temperature control device for a machine tool, it is preferable that the expansion valve and the bypass valve are capable of controlling the opening degree by a digital value.

本発明は、以上のように構成されているので、以下のような効果を奏する。   Since this invention is comprised as mentioned above, there exist the following effects.

膨張弁の開度およびバイパス弁の開度を連動制御するようにしているので、温度制御装置の冷却能力を最小値から最大値まで連続的かつ高精度に変更制御することができる。これにより、冷凍機のインバータ制御を行うことなく、広範囲にわたる円滑で高精度の温度制御が可能となり、温度制御の応答性も向上させることができる。特に熱負荷の小さい領域での温度制御の精度を大幅に向上させることができる。また、インバータ制御駆動装置が不要となり、温度制御装置のコスト低減と小型化が可能となる。   Since the opening degree of the expansion valve and the opening degree of the bypass valve are linked and controlled, the cooling capacity of the temperature control device can be changed and controlled continuously and accurately from the minimum value to the maximum value. Thus, smooth and highly accurate temperature control over a wide range is possible without performing inverter control of the refrigerator, and responsiveness of temperature control can be improved. In particular, the accuracy of temperature control in a region with a small heat load can be greatly improved. Further, the inverter control drive device is unnecessary, and the temperature control device can be reduced in cost and size.

膨張弁の開度およびバイパス弁の開度を一次関数の関係により連動制御するようにしているので、温度制御手段の演算内容が簡素化され、温度制御装置のコスト低減と温度制御の応答性向上が可能となる。   The expansion valve opening and bypass valve opening are linked and controlled by the relationship of the linear function, which simplifies the calculation contents of the temperature control means, reduces the cost of the temperature control device, and improves the responsiveness of the temperature control. Is possible.

温度制御手段が膨脹弁の開度およびバイパス弁の開度をPID制御によって制御するものであるから、高精度、高速応答かつ高安定な制御が可能となる。   Since the temperature control means controls the opening degree of the expansion valve and the opening degree of the bypass valve by PID control, high-accuracy, high-speed response and high-stable control becomes possible.

膨脹弁およびバイパス弁がデジタル値によって開度を制御可能なものであるから、高精度の開度制御が可能となる。   Since the opening degree of the expansion valve and the bypass valve can be controlled by digital values, the opening degree can be controlled with high accuracy.

本発明の実施の形態について図面を参照して説明する。図1は、本発明の温度制御装置1の構成を示す図である。ここでは、工作機械の典型的な発熱源として主軸頭を例にして説明する。主軸頭には回転可能に主軸が支持されており、主軸には工具または工作物が取り付けられて回転駆動される。工作機械の主軸の回転速度は、停止状態から毎分数千回転以上にまで変動するので、主軸を支持する主軸頭を冷却して温度制御を行い、主軸頭の温度が基準温度に対して常に一定の温度差を保つようにされる。すなわち、主軸頭の温度を基準温度に対して常に一定の温度差に保つことが制御目標である。ただし、この場合の一定の温度差とは温度が等しい(温度差0)場合も含むものである。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a temperature control device 1 of the present invention. Here, a spindle head will be described as an example of a typical heat source of a machine tool. A spindle is rotatably supported on the spindle head, and a tool or a workpiece is attached to the spindle and is driven to rotate. Since the rotation speed of the spindle of the machine tool fluctuates from a stopped state to several thousand revolutions per minute, the spindle head supporting the spindle is cooled and temperature control is performed. A certain temperature difference is maintained. That is, the control target is to keep the temperature of the spindle head at a constant temperature difference with respect to the reference temperature. However, the constant temperature difference in this case includes the case where the temperatures are equal (temperature difference 0).

基準温度は、一般的に室温または工作機械の構成要素中の時定数が大きい(熱容量が大きい)部材(例えば、ベッドやコラム等)の温度に設定される。基準温度センサ13によって測定された基準部位の温度が、基準温度として設定される。なお、基準温度としては、複数位置の温度を測定してその中から選択したり、複数の測定値の平均値を基準温度としてもよい。また、測定値に適宜の演算を施して基準温度としてもよい。   The reference temperature is generally set to a room temperature or a temperature of a member (for example, a bed or a column) having a large time constant (a large heat capacity) in a component of the machine tool. The temperature of the reference part measured by the reference temperature sensor 13 is set as the reference temperature. The reference temperature may be selected from among the temperatures measured at a plurality of positions, or an average value of a plurality of measured values may be used as the reference temperature. Moreover, it is good also as a reference temperature by giving an appropriate calculation to a measured value.

図1において、冷却回路2は工作機械の主軸頭を冷却するように設けられており、冷却回路2の中には熱媒体液として冷却油が循環している。冷却回路2に設けられた冷却ポンプ22は駆動モータ23によって駆動され、冷却回路2中の冷却油を一定流量で循環させる。冷却油は熱交換器8によって冷却された後、主軸頭に流入して主軸頭を冷却する。主軸頭を冷却した後の冷却油は冷却回路2を循環して冷却ポンプ22に戻ってくる。主軸頭を冷却後の冷却油の温度(戻り油温)を温度センサ21によって検出し、その戻り油温が設定温度となるようにフィードバック制御を行う。設定温度は基準温度と一定の温度差を有する値に設定される。温度差は0でもよく、その場合、設定温度は基準温度と等しくなる。なお、温度センサ21は、図1の位置に限定されず、戻り油温を検出できる位置であればどの位置に配置してもよい。例えば、冷却ポンプ22の流入側に配置してもよい。   In FIG. 1, a cooling circuit 2 is provided to cool a spindle head of a machine tool, and cooling oil circulates in the cooling circuit 2 as a heat medium liquid. A cooling pump 22 provided in the cooling circuit 2 is driven by a drive motor 23 to circulate the cooling oil in the cooling circuit 2 at a constant flow rate. The cooling oil is cooled by the heat exchanger 8, and then flows into the spindle head to cool the spindle head. The cooling oil after cooling the spindle head returns to the cooling pump 22 through the cooling circuit 2. The temperature (return oil temperature) of the cooling oil after cooling the spindle head is detected by the temperature sensor 21, and feedback control is performed so that the return oil temperature becomes the set temperature. The set temperature is set to a value having a certain temperature difference from the reference temperature. The temperature difference may be 0. In this case, the set temperature is equal to the reference temperature. The temperature sensor 21 is not limited to the position shown in FIG. 1 and may be disposed at any position as long as the return oil temperature can be detected. For example, it may be arranged on the inflow side of the cooling pump 22.

一方、熱交換器8に流入する冷媒に関しては、まず、冷媒ガスが冷凍機5によって圧縮されて凝縮器6に送られる。凝縮器6では、圧縮されて温度上昇した冷媒ガスの熱が放熱されて液化される。凝縮器6は冷却ファン61によって空冷により冷却されている。液化された冷媒ガスは、さらに膨張弁7を通る際に絞り膨張されて低温低圧の気液混合状態となる。この低温低圧の気液混合の冷媒ガスが熱交換器8に流入して、冷却油を冷却するのである。冷媒ガスは熱交換器8中で冷却油の熱を奪って気化し、気化熱により効率よく冷却油を冷却する。熱交換器8から流出した冷媒ガスは冷凍機5に戻り、循環回路3を循環する。   On the other hand, with respect to the refrigerant flowing into the heat exchanger 8, first, the refrigerant gas is compressed by the refrigerator 5 and sent to the condenser 6. In the condenser 6, the heat of the refrigerant gas that has been compressed and has risen in temperature is radiated and liquefied. The condenser 6 is cooled by air cooling by a cooling fan 61. The liquefied refrigerant gas is further squeezed and expanded when passing through the expansion valve 7 to enter a low-temperature and low-pressure gas-liquid mixed state. This low-temperature and low-pressure gas-liquid mixed refrigerant gas flows into the heat exchanger 8 to cool the cooling oil. The refrigerant gas takes the heat of the cooling oil in the heat exchanger 8 and vaporizes, and efficiently cools the cooling oil by the heat of vaporization. The refrigerant gas flowing out of the heat exchanger 8 returns to the refrigerator 5 and circulates in the circulation circuit 3.

冷凍機5は、通常の交流電源によって駆動されており、一定の回転速度で駆動されている。本発明では、冷凍機5の駆動にインバータ制御駆動装置を使用せず、冷凍機5は一定の回転速度で駆動するようにしている。これにより、インバータ制御駆動装置が不要となり、温度制御装置1のコストが低減させるとともに温度制御装置1の小型化が可能となる。   The refrigerator 5 is driven by a normal AC power source and is driven at a constant rotational speed. In the present invention, the inverter 5 is not used for driving the refrigerator 5, and the refrigerator 5 is driven at a constant rotational speed. Thereby, an inverter control drive device becomes unnecessary, the cost of the temperature control device 1 can be reduced, and the temperature control device 1 can be downsized.

冷凍機5からの冷媒ガスが循環する循環回路3には、圧縮されて温度上昇した冷媒ガスの一部を冷却せずに熱交換器8に流入させるバイパス路4が付加されている。バイパス路4には流量調整弁であるバイパス弁9が設けられている。バイパス路4は、冷却油を冷却する冷却能力を低減調整するために設けられている。バイパス弁9が開状態では低温の冷媒ガスに高温ガスが混合して熱交換器8に流入するため、冷却能力は低下する。バイパス弁9の開度を変更制御することにより、冷却能力を変更制御することができる。バイパス弁9が全閉状態では、高温ガスが混合せず、冷凍機5の冷却能力が最大となる。   In the circulation circuit 3 in which the refrigerant gas from the refrigerator 5 circulates, a bypass path 4 is provided for allowing a part of the refrigerant gas that has been compressed to rise in temperature to flow into the heat exchanger 8 without being cooled. The bypass passage 4 is provided with a bypass valve 9 which is a flow rate adjusting valve. The bypass 4 is provided to reduce and adjust the cooling capacity for cooling the cooling oil. When the bypass valve 9 is in the open state, the high temperature gas is mixed with the low temperature refrigerant gas and flows into the heat exchanger 8, so that the cooling capacity is reduced. By changing and controlling the opening degree of the bypass valve 9, the cooling capacity can be changed and controlled. When the bypass valve 9 is fully closed, the high temperature gas is not mixed, and the cooling capacity of the refrigerator 5 is maximized.

温度制御部10は、膨張弁7の開度およびバイパス弁9の開度を制御して、工作機械の主軸頭の温度制御を行う。また、温度制御部10には表示部11および入力部12が接続されている。表示部11によって温度制御に関する種々のパラメータ等を確認することができ、入力部12によってこれらのパラメータ等を入力することができる。主軸頭の温度は、主軸頭を冷却して戻ってきた冷却油の温度(戻り油温)を温度センサ21によって検出し、その検出値を主軸頭の温度代表値とする。その戻り油温が設定温度となるようにフィードバック制御を行う。   The temperature controller 10 controls the opening of the expansion valve 7 and the opening of the bypass valve 9 to control the temperature of the spindle head of the machine tool. In addition, a display unit 11 and an input unit 12 are connected to the temperature control unit 10. Various parameters relating to temperature control can be confirmed by the display unit 11, and these parameters can be input by the input unit 12. As for the temperature of the spindle head, the temperature of the cooling oil that has returned after cooling the spindle head (return oil temperature) is detected by the temperature sensor 21, and the detected value is used as the representative temperature value of the spindle head. Feedback control is performed so that the return oil temperature becomes the set temperature.

フィードバック制御はPID制御により、高精度、高速応答かつ高安定な制御を行っている。すなわち、PID制御により膨張弁7の開度とバイパス弁9の開度を変更制御してフィードバック制御を行う。膨張弁7の開度とバイパス弁9の開度は、一対一に対応する関係となるように連動して同時に制御される。   Feedback control is performed with high accuracy, high speed response and high stability by PID control. That is, feedback control is performed by changing and controlling the opening degree of the expansion valve 7 and the opening degree of the bypass valve 9 by PID control. The opening of the expansion valve 7 and the opening of the bypass valve 9 are simultaneously controlled in conjunction so as to have a one-to-one relationship.

図2は、膨張弁7の開度とバイパス弁9の開度との連動関係を示すグラフである。膨張弁7の開度をXとし、バイパス弁9の開度をYとする。図2の横軸が開度Xを表し、縦軸が開度Yを表している。また、膨張弁7の開度Xの制御範囲の最小値をx1とし、最大値をx2とする。そして、バイパス弁9の開度Yの制御範囲の最小値をy1とし、最大値をy2とする。膨張弁7の開度Xを最小値x1から最大値x2まで変化させる場合、それと連動させてバイパス弁9の開度Yを最大値y2から最小値y1まで変化させる。   FIG. 2 is a graph showing an interlocking relationship between the opening degree of the expansion valve 7 and the opening degree of the bypass valve 9. The opening degree of the expansion valve 7 is X, and the opening degree of the bypass valve 9 is Y. The horizontal axis in FIG. 2 represents the opening degree X, and the vertical axis represents the opening degree Y. Further, the minimum value of the control range of the opening degree X of the expansion valve 7 is x1, and the maximum value is x2. And let the minimum value of the control range of the opening degree Y of the bypass valve 9 be y1, and let the maximum value be y2. When the opening degree X of the expansion valve 7 is changed from the minimum value x1 to the maximum value x2, the opening degree Y of the bypass valve 9 is changed from the maximum value y2 to the minimum value y1 in conjunction therewith.

すなわち、膨張弁7の開度Xが最小値x1のときにバイパス弁9の開度Yを最大値y2とし、膨張弁7の開度Xが最大値x2のときにバイパス弁9の開度Yを最小値y1とする。開度Xと開度Yの連動関係は点A(x1,y2)と点B(x2,y1)とを結ぶ直線で表される。すなわち、開度Xと開度Yは一次関数の関係にある。この直線の方程式は、次の式1で表される。   That is, when the opening degree X of the expansion valve 7 is the minimum value x1, the opening degree Y of the bypass valve 9 is set to the maximum value y2, and when the opening degree X of the expansion valve 7 is the maximum value x2, the opening degree Y of the bypass valve 9 is set. Is the minimum value y1. The interlocking relationship between the opening degree X and the opening degree Y is represented by a straight line connecting the point A (x1, y2) and the point B (x2, y1). That is, the opening degree X and the opening degree Y have a linear function relationship. This linear equation is expressed by the following equation 1.

(y2−y1)(X−x1)+(x2−x1)(Y−y2)=0 ・・・ 式1
なお、膨張弁7およびバイパス弁9はステッピングモータ駆動により弁体を移動させ、弁の開度を調整するものである。このため、デジタル値の開度指令によりそれぞれの弁の開度を正確に調整することができる。
(y2−y1) (X−x1) + (x2−x1) (Y−y2) = 0 Equation 1
In addition, the expansion valve 7 and the bypass valve 9 move a valve body by driving a stepping motor, and adjust the opening degree of the valve. For this reason, the opening degree of each valve can be accurately adjusted by the opening degree command of a digital value.

図3は、温度制御装置1の冷却能力Qの調整範囲を示すグラフである。膨張弁7の開度Xおよびバイパス弁9の開度Yを連動制御することにより、温度制御装置1の冷却能力Qを広範囲にわたって円滑に制御することができる。図示のように、膨張弁7の開度Xを最小値x1から最大値x2まで変化させることにより、冷却能力Qを最小値0から最大値Qmax まで連続的かつ高精度に変更制御することができる。このとき、膨張弁7の開度Xに連動させてバイパス弁9の開度Yを図2に示すように制御している。 FIG. 3 is a graph showing the adjustment range of the cooling capacity Q of the temperature control device 1. By controlling the opening X of the expansion valve 7 and the opening Y of the bypass valve 9 together, the cooling capacity Q of the temperature control device 1 can be smoothly controlled over a wide range. As shown in the figure, by changing the opening X of the expansion valve 7 from the minimum value x1 to the maximum value x2, the cooling capacity Q can be changed and controlled continuously and accurately from the minimum value 0 to the maximum value Qmax. it can. At this time, the opening degree Y of the bypass valve 9 is controlled in conjunction with the opening degree X of the expansion valve 7 as shown in FIG.

なお、図1の温度制御装置1において、膨張弁7に換えて固定絞りのキャピラリ(毛細管)などを設けるようにした構成も考えられる。この場合は、バイパス弁9の開度の変更制御だけで冷却能力Qを調整することになるが、図3のような広範囲の連続的な変更制御はできない。特に、冷却能力Qの最小値を図3のように0にすることができず、それ以下の冷却能力とする場合には、最小値Qmin においてオン・オフ制御を行う必要がある。このため、熱負荷の小さい領域での温度制御の精度が大幅に悪化してしまう。 In the temperature control device 1 of FIG. 1, a configuration in which a fixed throttle capillary (capillary tube) or the like is provided instead of the expansion valve 7 is also conceivable. In this case, the cooling capacity Q is adjusted only by the change control of the opening degree of the bypass valve 9, but a wide range of continuous change control as shown in FIG. 3 cannot be performed. In particular, when the minimum value of the cooling capacity Q cannot be set to 0 as shown in FIG. 3 and the cooling capacity is less than that, it is necessary to perform on / off control at the minimum value Q min . For this reason, the accuracy of temperature control in a region with a small heat load is greatly deteriorated.

実験の結果、固定絞りのキャピラリを使用した場合、低温の冷媒ガスの熱交換器8への流入量を広範囲に変更制御することができず、敏速な応答性に欠けることが分かった。このため、主軸の出力変動時等に戻り油温が安定するまでの時間(安定時間)が長くなる。また、熱負荷の小さい領域での温度制御がオン・オフ制御になり、高精度の温度制御が困難である。オン・オフ制御時には、戻り油温と設定温度との定常偏差も発生する。   As a result of experiments, it has been found that when a capillary with a fixed throttle is used, the amount of low-temperature refrigerant gas flowing into the heat exchanger 8 cannot be controlled in a wide range and lacks quick response. For this reason, the time (stable time) until the oil temperature is stabilized when the output of the spindle is changed becomes longer. In addition, temperature control in a region with a small heat load is on / off control, and high-precision temperature control is difficult. During the on / off control, a steady deviation between the return oil temperature and the set temperature also occurs.

これに対して、本発明では膨張弁7の開度Xおよびバイパス弁9の開度Yを連動制御するようにしているので、温度制御装置1の冷却能力Qを最小値0から最大値Qmax まで連続的かつ高精度に変更制御することができる。これにより、冷凍機5のインバータ制御を行うことなく、広範囲にわたる円滑で高精度の温度制御が可能となり、温度制御の応答性も向上させることができる。特に熱負荷の小さい領域での温度制御の精度を大幅に向上させることができる。また、インバータ制御駆動装置が不要となり、温度制御装置1のコスト低減と小型化が可能となる。 In contrast, in the present invention, since the opening degree X of the expansion valve 7 and the opening degree Y of the bypass valve 9 are controlled in conjunction with each other, the cooling capacity Q of the temperature control device 1 is changed from the minimum value 0 to the maximum value Q max. Can be controlled continuously and with high accuracy. Thereby, smooth and highly accurate temperature control over a wide range is possible without performing inverter control of the refrigerator 5, and the responsiveness of temperature control can be improved. In particular, the accuracy of temperature control in a region with a small heat load can be greatly improved. Further, the inverter control drive device is not necessary, and the temperature control device 1 can be reduced in cost and size.

本発明によれば、広範囲にわたる円滑で高精度の温度制御が可能となり、温度制御の応答性も向上させることができる。特に熱負荷の小さい領域での温度制御の精度を大幅に向上させることができる。また、インバータ制御駆動装置が不要となり、温度制御装置のコスト低減と小型化が可能となる。   According to the present invention, smooth and highly accurate temperature control over a wide range is possible, and responsiveness of temperature control can be improved. In particular, the accuracy of temperature control in a region with a small heat load can be greatly improved. Further, the inverter control drive device is unnecessary, and the temperature control device can be reduced in cost and size.

本発明の工作機械の温度制御装置1の構成を示す図である。It is a figure which shows the structure of the temperature control apparatus 1 of the machine tool of this invention. 膨張弁7の開度とバイパス弁9の開度との連動関係を示すグラフである。4 is a graph showing an interlocking relationship between the opening degree of the expansion valve 7 and the opening degree of the bypass valve 9. 温度制御装置1の冷却能力の調整範囲を示すグラフである。4 is a graph showing an adjustment range of a cooling capacity of the temperature control device 1.

符号の説明Explanation of symbols

1 温度制御装置
2 冷却回路
3 循環回路
4 バイパス路
5 冷凍機
6 凝縮器
7 膨張弁
8 熱交換器
9 バイパス弁
10 温度制御部
11 表示部
12 入力部
13 基準温度センサ
21 温度センサ
22 冷却ポンプ
23 駆動モータ
61 冷却ファン
DESCRIPTION OF SYMBOLS 1 Temperature control apparatus 2 Cooling circuit 3 Circulation circuit 4 Bypass path 5 Refrigerator 6 Condenser 7 Expansion valve 8 Heat exchanger 9 Bypass valve 10 Temperature control part 11 Display part 12 Input part 13 Reference temperature sensor 21 Temperature sensor 22 Cooling pump 23 Drive motor 61 Cooling fan

Claims (4)

工作機械に熱媒体液を循環させる冷却回路(2)と、
冷媒ガスを圧縮するために一定の回転速度で駆動される冷凍機(5)と、
前記冷凍機(5)で圧縮された前記冷媒ガスの熱を放熱して液化するための凝縮器(6)と、
液化された前記冷媒ガスを絞り膨脹させるための膨脹弁(7)と、
絞り膨脹された低圧低温の気液混合状態の前記冷媒ガスにより前記熱媒体液を冷却するための熱交換器(8)と、
前記冷凍機(5)を出た直後の前記冷媒ガスを、前記凝縮器(6)をバイパスして前記熱交換器(8)に導入するためのバイパス路(4)と、
前記バイパス路(4)の途中に設けたバイパス弁(9)と、
基準温度を設定するための基準温度設定手段(10,13)と、
前記主軸頭を冷却した後の前記熱媒体液の温度である戻り液温を検知するための温度センサ(21)と、
前記温度センサ(21)が検出した前記戻り液温と前記基準温度との温度差が一定になるように、前記膨脹弁(7)の開度(X)および前記バイパス弁(9)の開度(Y)をフィードバック制御する温度制御手段(10)とを有し、
前記温度制御手段(10)は、前記膨脹弁(7)の開度(X)と前記バイパス弁(9)の開度(Y)とを一対一に対応する値に連動させて同時に制御して、前記膨脹弁(7)の開度(X)が制御範囲の最大値(x2)となるときには前記バイパス弁(9)の開度(Y)が制御範囲の最小値(y1)となり、前記膨脹弁(7)の開度(X)が制御範囲の最小値(x1)となるときには前記バイパス弁(9)の開度(Y)が制御範囲の最大値(y2)となるようにするものである工作機械の温度制御装置。
A cooling circuit (2) for circulating the heat transfer fluid to the machine tool;
A refrigerator (5) driven at a constant rotational speed to compress the refrigerant gas;
A condenser (6) for radiating and liquefying the heat of the refrigerant gas compressed by the refrigerator (5);
An expansion valve (7) for constricting and expanding the liquefied refrigerant gas;
A heat exchanger (8) for cooling the heat medium liquid by the refrigerant gas in a gas-liquid mixed state of low pressure and low temperature that has been swelled and expanded;
A bypass path (4) for introducing the refrigerant gas immediately after leaving the refrigerator (5) into the heat exchanger (8), bypassing the condenser (6);
A bypass valve (9) provided in the middle of the bypass path (4);
Reference temperature setting means (10, 13) for setting the reference temperature;
A temperature sensor (21) for detecting a return liquid temperature which is the temperature of the heat medium liquid after cooling the spindle head;
The opening (X) of the expansion valve (7) and the opening of the bypass valve (9) so that the temperature difference between the return liquid temperature detected by the temperature sensor (21) and the reference temperature is constant. Temperature control means (10) for feedback control of (Y),
The temperature control means (10) controls the opening degree (X) of the expansion valve (7) and the opening degree (Y) of the bypass valve (9) simultaneously in conjunction with a value corresponding to one-to-one. When the opening (X) of the expansion valve (7) reaches the maximum value (x2) of the control range, the opening (Y) of the bypass valve (9) becomes the minimum value (y1) of the control range, and the expansion When the opening (X) of the valve (7) becomes the minimum value (x1) of the control range, the opening (Y) of the bypass valve (9) becomes the maximum value (y2) of the control range. A temperature control device for a machine tool.
請求項1に記載した工作機械の温度制御装置であって、
前記膨脹弁(7)の開度(X)と前記バイパス弁(9)の開度(Y)は、一次関数の関係にあるものである工作機械の温度制御装置。
A temperature control device for a machine tool according to claim 1,
A temperature control device for a machine tool, wherein the opening (X) of the expansion valve (7) and the opening (Y) of the bypass valve (9) have a linear function relationship.
請求項1,2のいずれか1項に記載した工作機械の温度制御装置であって、
前記温度制御手段(10)は、前記膨脹弁(7)の開度(X)および前記バイパス弁(9)の開度(Y)をPID制御によって制御するものである工作機械の温度制御装置。
A temperature control device for a machine tool according to any one of claims 1 and 2,
A temperature control device for a machine tool, wherein the temperature control means (10) controls the opening degree (X) of the expansion valve (7) and the opening degree (Y) of the bypass valve (9) by PID control.
請求項1〜3のいずれか1項に記載した工作機械の温度制御装置であって、
前記膨脹弁(7)および前記バイパス弁(9)は、デジタル値によって開度を制御可能なものである工作機械の温度制御装置。
A temperature control device for a machine tool according to any one of claims 1 to 3,
The expansion valve (7) and the bypass valve (9) are temperature control devices for machine tools, the opening degree of which can be controlled by digital values.
JP2007059823A 2007-03-09 2007-03-09 Temperature control device for machine tools Active JP5020664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059823A JP5020664B2 (en) 2007-03-09 2007-03-09 Temperature control device for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059823A JP5020664B2 (en) 2007-03-09 2007-03-09 Temperature control device for machine tools

Publications (2)

Publication Number Publication Date
JP2008221361A true JP2008221361A (en) 2008-09-25
JP5020664B2 JP5020664B2 (en) 2012-09-05

Family

ID=39840551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059823A Active JP5020664B2 (en) 2007-03-09 2007-03-09 Temperature control device for machine tools

Country Status (1)

Country Link
JP (1) JP5020664B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112264A (en) * 2009-11-25 2011-06-09 Daikin Industries Ltd Refrigeration unit for container
JP2016084972A (en) * 2014-10-24 2016-05-19 株式会社ラスコ Temperature control method
CN110822750A (en) * 2019-12-11 2020-02-21 郑州长城科工贸有限公司 Fluid temperature control system and control method based on cascade closed-loop PID regulation
CN110822751A (en) * 2019-12-11 2020-02-21 郑州长城科工贸有限公司 Throttling and hot gas bypass coupled refrigerating capacity adjusting system and control method
CN112720018A (en) * 2020-12-25 2021-04-30 浙江赫科智能装备有限公司 Numerical control machine tool and machining method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124451U (en) * 1986-01-31 1987-08-07
JPS63123962A (en) * 1986-11-11 1988-05-27 三菱電機株式会社 Heat pump device
JP2003083621A (en) * 2001-09-12 2003-03-19 Mitsubishi Heavy Ind Ltd Marine refrigerating unit
WO2005121657A2 (en) * 2004-06-02 2005-12-22 Advanced Thermal Sciences Corp. Thermal control system and method
JP2007038329A (en) * 2005-08-02 2007-02-15 Kanto Seiki Kk Temperature control method and device of machine tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124451U (en) * 1986-01-31 1987-08-07
JPS63123962A (en) * 1986-11-11 1988-05-27 三菱電機株式会社 Heat pump device
JP2003083621A (en) * 2001-09-12 2003-03-19 Mitsubishi Heavy Ind Ltd Marine refrigerating unit
WO2005121657A2 (en) * 2004-06-02 2005-12-22 Advanced Thermal Sciences Corp. Thermal control system and method
JP2007038329A (en) * 2005-08-02 2007-02-15 Kanto Seiki Kk Temperature control method and device of machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112264A (en) * 2009-11-25 2011-06-09 Daikin Industries Ltd Refrigeration unit for container
JP2016084972A (en) * 2014-10-24 2016-05-19 株式会社ラスコ Temperature control method
CN110822750A (en) * 2019-12-11 2020-02-21 郑州长城科工贸有限公司 Fluid temperature control system and control method based on cascade closed-loop PID regulation
CN110822751A (en) * 2019-12-11 2020-02-21 郑州长城科工贸有限公司 Throttling and hot gas bypass coupled refrigerating capacity adjusting system and control method
CN112720018A (en) * 2020-12-25 2021-04-30 浙江赫科智能装备有限公司 Numerical control machine tool and machining method thereof

Also Published As

Publication number Publication date
JP5020664B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4786960B2 (en) Machine tool temperature control method and apparatus
JP5886463B1 (en) Air conditioner and operation method thereof
JP2006194518A (en) Refrigerating device
JP5020664B2 (en) Temperature control device for machine tools
JP2006153418A (en) Refrigeration system
EP3306216B1 (en) Control device for heat-pump-using system, and heat-pump-using system provided with same
JP2009031866A (en) Flow control valve and flow control method
WO2019087882A1 (en) Liquid temperature adjustment apparatus and temperature adjustment method using same
JP6375175B2 (en) Oil cooler and control method of motor operated valve in oil cooler
JP2001300834A (en) Temperature control method and device of machine tool
KR101132186B1 (en) Temparature control system for the industrial cooler
JP2529905B2 (en) Machine tool temperature control method
JP5063711B2 (en) Liquid temperature control device
JPH024166A (en) Temperature control device for liquid cooler
JP2007100967A (en) Refrigerating device
JP5048999B2 (en) Temperature control system for machine tools
JP2000284832A (en) Temperature controller and valve control part of the same
JP5286324B2 (en) Heating / cooling temperature controller
JP2006200814A (en) Freezer
JPH0457651A (en) Method and apparatus for controlling spindle temperature of machine tool
JP6795840B2 (en) A method for controlling the temperature of the heat medium for temperature control, and a device for supplying the heat medium for temperature control using the method.
JP2006224238A (en) Cooling device of machine tool
JP5307529B2 (en) Fluid temperature adjusting method and fluid temperature adjusting device for driving system performance test of internal combustion engine
JP4773326B2 (en) Pressure control supply system for pressure fluid
JP6690036B1 (en) Cooling device control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5020664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250