JP2008220106A - Pwm controller - Google Patents

Pwm controller Download PDF

Info

Publication number
JP2008220106A
JP2008220106A JP2007056479A JP2007056479A JP2008220106A JP 2008220106 A JP2008220106 A JP 2008220106A JP 2007056479 A JP2007056479 A JP 2007056479A JP 2007056479 A JP2007056479 A JP 2007056479A JP 2008220106 A JP2008220106 A JP 2008220106A
Authority
JP
Japan
Prior art keywords
command
modulation rate
carrier frequency
voltage
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007056479A
Other languages
Japanese (ja)
Other versions
JP4999500B2 (en
Inventor
Shingo Makishima
信吾 牧島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2007056479A priority Critical patent/JP4999500B2/en
Publication of JP2008220106A publication Critical patent/JP2008220106A/en
Application granted granted Critical
Publication of JP4999500B2 publication Critical patent/JP4999500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PWM controller which is free from control instability and induction failure at a transient voltage fluctuation and has an excellent control response characteristic in the whole speed areas and causes no grating noise. <P>SOLUTION: A PWM inverter, including a non-synchronous mode having a carrier not synchronous with a voltage command and a synchronous mode having the carrier synchronous with the voltage command and capable of carrying out one pulse operation saturated in a PWM waveform, is operated in the non-synchronous mode at a speed operated at a variable voltage to limit the voltage modulation rate so that the PWM waveform is not transiently saturated. While, at a speed when the voltage is at the maximum, the inverter is operated in the synchronous mode, without limiting the voltage modulation rate. When switched from the non-synchronous mode to the synchronous mode, the limit of the modulation rate is gradually increased up to the maximum value after being switched to the synchronous mode. When switched from the synchronous mode to the non-synchronous mode, the synchronous mode is switched to the non-synchronous mode after the limit of the modulation rate is gradually decreased down to the value where the PWM waveform is not saturated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、交流電動機を制御するPWMインバータに関するものであり、特に過渡的な制御不安定や誘導障害及び耳障りな雑音を抑制するためのものである。   The present invention relates to a PWM inverter that controls an AC motor, and particularly to suppress transient control instability, inductive failure, and annoying noise.

図2に一例として従来の技術によるPWM制御装置のブロック図を示し、この図に基づいて従来の技術を説明する。   FIG. 2 shows a block diagram of a conventional PWM control apparatus as an example, and the conventional technique will be described based on this figure.

電圧指令生成器3は、トルク指令T*、電流検出器2により検出した電動機1の一次電流、電動機1の角速度である電動機角速度ωを入力とし、ベクトル制御等を用いて変調率指令α0電圧位相指令θを出力する。なお、変調率指令α0の最大値は1とする。 The voltage command generator 3 receives the torque command T *, the primary current of the motor 1 detected by the current detector 2, and the motor angular velocity ω, which is the angular velocity of the motor 1, and inputs a modulation factor command α 0 voltage using vector control or the like. Outputs phase command θ. The maximum value of the modulation factor command α 0 is 1.

変調率補正器5は、変調率指令α0が0.9以下のときは変調率指令α0を変調率補正値αnとして出力し、変調率指令α0が0.9以上のときは、ある関数に基づき変調率指令α0より大きい値を変調率補正値αnとして出力する。 Modulation factor corrector 5, when the modulation ratio command alpha 0 is 0.9 or less and outputs a modulation rate instruction alpha 0 as the modulation index correction value alpha n, when the modulation ratio command alpha 0 is more than 0.9, based on a function A value larger than the modulation rate command α 0 is output as a modulation rate correction value α n .

電圧指令演算器6は、変調率補正値αnと電圧位相指令θを入力とし、(1)〜(3)により3相の電圧指令Vu*,Vv*,Vw*を出力する。 The voltage command calculator 6 receives the modulation factor correction value α n and the voltage phase command θ, and outputs three-phase voltage commands Vu *, Vv *, Vw * according to (1) to (3).

Figure 2008220106
Figure 2008220106

非同期キャリア周波数生成器7は、一定もしくは可変の非同期キャリア周波数fca_aを生成する。同期キャリア周波数生成器8は、電圧位相指令θを入力とし、電圧位相指令θと同期した(4)式により演算されるキャリア周波数fca_sを出力する。   The asynchronous carrier frequency generator 7 generates a constant or variable asynchronous carrier frequency fca_a. The synchronous carrier frequency generator 8 receives the voltage phase command θ and outputs the carrier frequency fca_s calculated by the equation (4) synchronized with the voltage phase command θ.

Figure 2008220106
Figure 2008220106

なお、ここでNは同期パルス数であり、3と奇数の積となるような値を用いる。   Here, N is the number of synchronization pulses, and a value that is an odd product of 3 is used.

キャリアモード切替器14は、電動機角速度ωが切り替え角速度ωp以下のときはキャリアモード信号Scaを0として出力し、電動機角速度ωが切り替え角速度ωp以上のときはキャリアモード信号Sca を1として出力する。スイッチ10は、キャリアモード信号Scaが0のときには非同期キャリア周波数fca_aをキャリア周波数fcaとして出力し、キャリアモード信号Scaが1のときには、同期キャリア周波数fca_sをキャリア周波数fcaとして出力する。   The carrier mode switch 14 outputs the carrier mode signal Sca as 0 when the motor angular speed ω is equal to or lower than the switching angular speed ωp, and outputs the carrier mode signal Sca as 1 when the motor angular speed ω is equal to or higher than the switching angular speed ωp. The switch 10 outputs the asynchronous carrier frequency fca_a as the carrier frequency fca when the carrier mode signal Sca is 0, and outputs the synchronous carrier frequency fca_s as the carrier frequency fca when the carrier mode signal Sca is 1.

キャリア生成器11は、キャリア周波数fcaを周波数とし1から−1までの大きさの三角波をキャリアcarとして出力する。キャリア比較器12は、電圧指令Vu*,Vv*,Vw*と、キャリアcarを比較し三相のスイッチング指令su,sv,swを出力する。なお、スイッチング指令は下記の演算により求める。   The carrier generator 11 outputs a triangular wave with a carrier frequency fca as a frequency and a magnitude of 1 to −1 as a carrier car. The carrier comparator 12 compares the voltage commands Vu *, Vv *, Vw * and the carrier car and outputs three-phase switching commands su, sv, sw. The switching command is obtained by the following calculation.

Figure 2008220106
Figure 2008220106

電力変換器は13スイッチング指令su,sv,swに基づき3相の出力電圧Vu,Vv,Vwを電動機1に印加する。   The power converter applies three-phase output voltages Vu, Vv, Vw to the motor 1 based on 13 switching commands su, sv, sw.

ここで、変調率指令α0が0.9を超えた場合に変調率を補正する理由について説明する。変調率指令α0が0.9を超えるとPWM波形が徐々に飽和する過変調運転状態となり、変調率指令α0と出力電圧Vu,Vv,Vwの基本波成分の振幅が比例しなくなる。そのため、変調率指令α0が0.9を超えた際に、変調率指令α0と出力電圧Vu,Vv,Vwの基本波成分の振幅が比例関係となるように補正を行い、変調率指令α0が1となった際に、PWM電圧波形が完全に飽和し矩形波となる1パルス運転となるようにする。 Here, the reason for correcting the modulation factor when the modulation factor command α 0 exceeds 0.9 will be described. When the modulation factor command α 0 exceeds 0.9, the PWM waveform is gradually oversaturated, and the modulation factor command α 0 and the amplitude of the fundamental component of the output voltages Vu, Vv, Vw are not proportional. Therefore, when the modulation rate command α 0 exceeds 0.9, correction is performed so that the amplitude of the fundamental component of the modulation rate command α 0 and the output voltages Vu, Vv, and Vw is proportional, and the modulation rate command α 0 When the value becomes 1, the PWM voltage waveform is completely saturated so that a one-pulse operation that becomes a rectangular wave is performed.

以上の構成により、電動機角速度ωが切り替え角速度ωpより低い角速度では、キャリアと電圧指令が同期していない非同期モードとなり、電動機角速度ωが切り替え角速度ωpより高い角速度ではキャリアと電圧指令が同期した同期モードとなる。   With the above configuration, when the motor angular speed ω is lower than the switching angular speed ωp, the carrier and the voltage command are not synchronized, and when the motor angular speed ω is higher than the switching angular speed ωp, the carrier and the voltage command are synchronized. It becomes.

非同期モードで1パルス運転を試みると、キャリアと電圧指令が同期していないため、図3に示すように必ずしも完全な1パルス波形とならず、制御不安定や誘導障害の要因となる。一方、同期モードで1パルス運転を行うと、変調率補正器5を適切に設定することにより、図4のように完全な1パルス波形が得られ、制御不安定や誘導障害を防ぐことが可能である。   When one-pulse operation is attempted in the asynchronous mode, the carrier and the voltage command are not synchronized. Therefore, the complete one-pulse waveform is not necessarily obtained as shown in FIG. 3, which causes control instability and induction failure. On the other hand, when one-pulse operation is performed in the synchronous mode, by setting the modulation factor corrector 5 appropriately, a complete one-pulse waveform can be obtained as shown in FIG. 4, and control instability and induction failure can be prevented. It is.

車両用の電動機制御では、低速域では電圧が速度にほぼ比例するために、低速域では可変電圧で運転し、電圧が最大値に達する速度を超過すると電圧の最大値での運転となる。よって切り替え角速度ωpを電圧が最大電圧に達する角速度より低い角速度とすることにより、電圧が最大値となる速度域で自動的に完全な1パルス運転が可能となり安定した制御が可能となる。   In the motor control for a vehicle, since the voltage is approximately proportional to the speed in the low speed range, the operation is performed with the variable voltage in the low speed range, and when the voltage reaches the maximum value, the operation is performed with the maximum voltage value. Therefore, by setting the switching angular speed ωp to an angular speed lower than the angular speed at which the voltage reaches the maximum voltage, complete one-pulse operation can be automatically performed in the speed range where the voltage reaches the maximum value, and stable control becomes possible.

電圧が最大値となる速度であっても、過渡的に変調率指令が低下する場合がある。同期モードのキャリアを用いて1パルス運転を行うことにより、過渡的に変調率が低下した際、自動的にPWM電圧波形となるため、高い応答が得られる。   Even at a speed at which the voltage reaches the maximum value, the modulation rate command may decrease transiently. By performing one-pulse operation using a carrier in the synchronous mode, a high response can be obtained because a PWM voltage waveform is automatically obtained when the modulation rate is transiently lowered.

特開2000―14200公報JP 2000-14200 A

定常的には電圧が最大値に達しない速度であっても、トルク指令変動等により過渡的に電圧が最大値に達し飽和することがある。過渡的に電圧が飽和した際、非同期モードでは完全な1パルス波形とならないために制御不安定や誘導障害の要因となる。よって、電圧が最大値に達する速度よりもはるかに低い速度で同期モードに切り替える必要がある。しかしながら、同期モードでは、速度によりキャリア周波数が大きく変化し制御応答特性が大きく変化する。制御演算処理時間や電力変換器の性能によりキャリア周波数の上限が存在することから、同期モードの中でも速度の低いところでは非同期モードに比べキャリア周波数がはるかに低くなり制御応答特性が悪化する。   Even at a speed at which the voltage does not reach the maximum value in a steady state, the voltage may reach the maximum value and become saturated due to a torque command variation or the like. When the voltage is transiently saturated, the asynchronous mode does not become a complete one-pulse waveform, which causes control instability and induction failure. Therefore, it is necessary to switch to the synchronous mode at a speed much lower than the speed at which the voltage reaches the maximum value. However, in the synchronous mode, the carrier frequency changes greatly depending on the speed, and the control response characteristic changes greatly. Since there is an upper limit of the carrier frequency depending on the control processing time and the performance of the power converter, the carrier frequency is much lower in the synchronous mode at a lower speed than in the asynchronous mode, and the control response characteristic is deteriorated.

特に、電動機1にインダクタンスの大きい交流電動機を用いる場合、過渡的な電圧の飽和が生じ易く、またキャリア周波数低下による制御応答特性の劣化が顕著であるため、前記問題が生じ易い。   In particular, when an AC motor having a large inductance is used as the motor 1, the above problem is likely to occur because transient voltage saturation is likely to occur and control response characteristics are significantly degraded due to a decrease in carrier frequency.

キャリア周波数の変化を抑えるために、キャリア周波数がある範囲に収まるように同期モードにおいて同期パルス数Nを変化させる手法がある。しかしながら、パルスモードが変化する際には騒音が不連続に変化し耳障りであることから望ましくない。   In order to suppress the change of the carrier frequency, there is a method of changing the number N of synchronization pulses in the synchronization mode so that the carrier frequency is within a certain range. However, when the pulse mode changes, the noise changes discontinuously, which is undesirable.

請求項1の発明によれば、電動機角速度と一次電流とトルク指令を入力とし変調率指令と電圧位相指令を出力する電圧指令生成器と、該変調率指令が0.9以下のときは前記変調率指令を出力し前記変調率指令が0.9以上のときはある関数に基づき前記変調率指令より大きい値を出力する変調率補正器と、該変調率補正器出力と該電圧位相指令を入力とし3相の電圧指令を出力する電圧指令演算器と、非同期キャリア周波数を出力する非同期キャリア周波数生成器と、該電圧位相指令を入力とし同期キャリア周波数を出力とする同期キャリア周波数生成器と、キャリアモード信号により該非同期キャリア周波数と該同期キャリア周波数のどちらかを選択しキャリア周波数として出力するスイッチと、該キャリア周波数を周波数とする三角波をキャリアとして生成するキャリア生成器と、前記電圧指令と前記キャリアを比較し3相のスイッチング指令を出力するキャリア比較器と、前記スイッチング指令に基づき前記電動機に3相の電圧を印加する電力変換器から構成されるPWM制御装置において、前記変調率補正器の入力である前記変調率指令を変調率制限値にて制限する変調率制限器と、該電動機角速度が所定値を超えると前記スイッチの出力を同期キャリア周波数とするキャリアモード信号を出力した後に該変調率制限値を最大値まで所定時間で増加させ、前記電動機角速度が所定値を下回ると前記変調率制限値を所定値まで所定時間で低下させた後に前記スイッチの出力を前記非同期キャリア周波数とするキャリアモード信号を出力する変調率制限値演算器を具備することを特徴する。   According to the first aspect of the present invention, the voltage command generator for inputting the motor angular velocity, the primary current, and the torque command and outputting the modulation rate command and the voltage phase command, and when the modulation rate command is 0.9 or less, the modulation rate command When the modulation rate command is 0.9 or more, a modulation rate corrector that outputs a value larger than the modulation rate command based on a certain function, the output of the modulation rate correction unit and the voltage phase command, and a three-phase A voltage command computing unit that outputs a voltage command, an asynchronous carrier frequency generator that outputs an asynchronous carrier frequency, a synchronous carrier frequency generator that receives the voltage phase command and outputs a synchronous carrier frequency, and a carrier mode signal A switch that selects either the asynchronous carrier frequency or the synchronous carrier frequency and outputs it as a carrier frequency, and a triangular wave having the carrier frequency as a frequency. A carrier generator that generates a carrier comparator that compares the voltage command with the carrier and outputs a three-phase switching command, and a power converter that applies a three-phase voltage to the motor based on the switching command. A modulation rate limiter that limits the modulation rate command, which is an input of the modulation rate corrector, with a modulation rate limit value, and synchronizes the output of the switch when the motor angular velocity exceeds a predetermined value. After outputting a carrier mode signal having a carrier frequency, the modulation factor limit value is increased to a maximum value over a predetermined time, and when the motor angular velocity falls below a predetermined value, the modulation factor limit value is decreased to a predetermined value over a predetermined time. It further comprises a modulation rate limit value calculator for outputting a carrier mode signal whose output is the asynchronous carrier frequency later.

請求項2の発明によれば、前記請求項1のPWM制御装置において、前記変調率指令値を変化させる所定時間を十分に短い時間とすることを特徴する。   According to a second aspect of the present invention, in the PWM control device of the first aspect, the predetermined time for changing the modulation factor command value is set to a sufficiently short time.

請求項3の発明によれば、前記請求項1のPWM制御装置において、切り替え速度における同期キャリア周波数と非同期キャリア周波数が一致することを特徴する。   According to a third aspect of the invention, in the PWM control device of the first aspect, the synchronous carrier frequency and the asynchronous carrier frequency at the switching speed coincide with each other.

さらに、非同期モードの変調率をPWM波形が飽和しない値に制限する。非同期モードから同期モードへ遷移する際は、同期モードに切り替えた後に変調率の制限を所定時間で最大値まで引き上げる。同期モードから非同期モードへ遷移する際は、変調率の制限を所定時間でPWMが飽和しない値まで引き下げた後に非同期モードに切り替える。   Furthermore, the modulation rate in the asynchronous mode is limited to a value that does not saturate the PWM waveform. When transitioning from the asynchronous mode to the synchronous mode, the modulation rate limit is raised to the maximum value in a predetermined time after switching to the synchronous mode. When transitioning from the synchronous mode to the asynchronous mode, the modulation rate limit is lowered to a value that does not saturate the PWM for a predetermined time, and then the mode is switched to the asynchronous mode.

本発明により、切り替え角速度ωpを電圧が最大値に達する角速度と一致させることが可能となる。そのため、可変電圧で運転する速度域では非同期モードとなることから、制御応答特性の変化や不連続な騒音が生じない。また、非同期モードでは変調率をPWM波形が飽和しない値に制限することから、過渡的に電圧が飽和した際、制御不安定や誘導障害の要因とならない。一方、電圧が最大値に達する速度域では、同期モードによる1パルス運転となる。   According to the present invention, the switching angular velocity ωp can be matched with the angular velocity at which the voltage reaches the maximum value. For this reason, since the asynchronous mode is set in the speed range where the variable voltage is operated, no change in control response characteristics or discontinuous noise occurs. In addition, in the asynchronous mode, the modulation rate is limited to a value that does not saturate the PWM waveform. Therefore, when the voltage is transiently saturated, it does not cause control instability or induction failure. On the other hand, in the speed range where the voltage reaches the maximum value, one-pulse operation is performed in the synchronous mode.

低速域では変調率を0.9に制限した非同期モードとし、電圧が最大値となる領域では変調率を1.0に制限した同期モードとする。非同期モードから同期モードに切り替える際は、同期モードに切り替えた後、変調率の制限を徐々に0.9から1まで引き上げる。同期モードから非同期モードに切り替える際は、変調率の制限を1から0.9まで徐々に引き下げた後非同期モードに切り替える。   Asynchronous mode with a modulation rate limited to 0.9 is used in the low speed region, and synchronous mode with the modulation rate limited to 1.0 in the region where the voltage is maximum. When switching from the asynchronous mode to the synchronous mode, the modulation rate limit is gradually increased from 0.9 to 1 after switching to the synchronous mode. When switching from the synchronous mode to the asynchronous mode, the modulation rate limit is gradually lowered from 1 to 0.9, and then the asynchronous mode is switched.

図1は請求項1を表す本発明の一実施例を示すブロック図であり、この図に基づいて説明するが、従来技術と同一部分は説明を省略する。   FIG. 1 is a block diagram showing an embodiment of the present invention representing claim 1 and will be described based on this figure, but the description of the same parts as those of the prior art will be omitted.

変調率制限値演算器9は、電動機角速度ωが切り替え角速度ωp以下のときには、変調率制限値αlmtを0.9とし、キャリアモード信号Scaを0として出力し、電動機角速度ωが切り替え角速度ωpを超えると、キャリアモード信号Scaを1に変化させた後、変調率制限値αlmtを所定時間Tαかけて1まで引き上げる。また、電動機角速度ωが切り替え角速度ωpを超えた状態から切り替え角速度ωpより低い状態へ変化した場合は、変調率制限値αlmtを所定時間Tαかけて0.9まで引き下げた後、キャリアモード信号Scaを0に変化する。 When the motor angular velocity ω is equal to or lower than the switching angular velocity ωp, the modulation factor limiting value calculator 9 outputs the modulation factor limiting value α lmt as 0.9 and the carrier mode signal Sca as 0, and when the motor angular velocity ω exceeds the switching angular velocity ωp. Then, after changing the carrier mode signal Sca to 1, the modulation factor limit value α lmt is raised to 1 over a predetermined time Tα. When the motor angular velocity ω changes from a state where the motor angular velocity ω exceeds the switching angular velocity ωp to a state lower than the switching angular velocity ωp, the carrier mode signal Sca is set to 0 after the modulation factor limit value α lmt is lowered to 0.9 over a predetermined time Tα. To change.

変調率制限器4は、変調率指令α0が変調率制限値αlmtを超えた場合変調率制限値αlmtに制限する。 Modulation rate limiter 4, the modulation ratio command alpha 0 is limited to the case exceeds the modulation rate limit value alpha lmt modulation rate limit value alpha lmt.

非同期モードでは、変調率が0.9に制限されているために、過渡的に電圧が飽和してもPWM波形が飽和することがないため、制御不安定や誘導障害の要因とならない。そのため、切り替え角速度ωpを電圧が最大値に達する角速度と一致させても問題ない。   In the asynchronous mode, since the modulation rate is limited to 0.9, the PWM waveform does not saturate even if the voltage is transiently saturated. Therefore, there is no problem even if the switching angular velocity ωp is matched with the angular velocity at which the voltage reaches the maximum value.

同期モードは電圧が最大値に達する速度域でのみ用いるために、変調率制限αlmtが1となった定常状態では1パルス運転となる。1パルス運転時は同期パルス数Nが変化しても出力波形が変化しないため、たとえキャリア周波数がある範囲に収まるようにパルス数を変化させても、耳障りな騒音が生じないため、パルス数Nを変化させることにより制御応答特性の確保が可能となる。 Since the synchronous mode is used only in the speed range where the voltage reaches the maximum value, one-pulse operation is performed in the steady state where the modulation factor limit α lmt is 1. During one-pulse operation, the output waveform does not change even if the synchronization pulse number N changes. Therefore, even if the pulse number is changed so that the carrier frequency is within a certain range, no harsh noise is generated. It is possible to ensure control response characteristics by changing.

請求項2の発明の一実施例を説明するが、実施例1と同一部分は省略する。   An embodiment of the invention of claim 2 will be described, but the same parts as those of Embodiment 1 are omitted.

実施例1のPWM制御装置において、所定時間Tαを十分に短い時間とする。   In the PWM control apparatus of the first embodiment, the predetermined time Tα is set to a sufficiently short time.

変調率αが1に達していない状態ではキャリア周波数成分の騒音が生じ、変調率αが1に達した1パルス運転状態ではキャリア周波数成分の騒音が生じない。すなわち、変調率αを制限した非同期モードでは非同期キャリア周波数fca_aの成分の騒音が生じ、同期モードで変調率αlmtが1に達する前は同期キャリア周波数fca_sの成分の騒音が生じ、同期モードで変調率制限αlmtが1に達し変調率αが1の状態ではキャリア周波数成分の騒音が生じない。そのため、実施例1の構成では、非同期キャリア周波数fca_aの成分の騒音が生じる状態と、キャリア周波数成分の騒音が生じない状態との間に、同期キャリア周波数fca_sを成分とする騒音が生じるため、非同期モードと同期モードの切り替え時に不連続な騒音が生じる。 When the modulation factor α does not reach 1, carrier frequency component noise occurs, and when the modulation factor α reaches one pulse, no carrier frequency component noise occurs. That is, in the asynchronous mode in which the modulation factor α is limited, the noise of the component of the asynchronous carrier frequency fca_a is generated. Before the modulation factor α lmt reaches 1 in the synchronous mode, the noise of the component of the synchronous carrier frequency fca_s is generated and modulated in the synchronous mode. When the rate limit α lmt reaches 1 and the modulation rate α is 1, no noise of the carrier frequency component occurs. Therefore, in the configuration of the first embodiment, since the noise having the synchronous carrier frequency fca_s is generated between the state where the noise of the asynchronous carrier frequency fca_a is generated and the state where the noise of the carrier frequency component is not generated, the asynchronous carrier frequency fca_s is generated. Discontinuous noise occurs when switching between mode and synchronous mode.

所定時間Tαを十分に短い時間とすることにより、あたかも非同期キャリア周波数成分fca_aの騒音が生じている状態からキャリア周波数成分の騒音が生じていない状態へと遷移しているような騒音となるため、耳障りとなる不連続な騒音が認識されず問題とならない。なお、所定時間Tαがあまりにも短いとトルク不安定が生じるため、トルク不安定が生じない程度の時間とする。   By setting the predetermined time Tα to a sufficiently short time, it becomes a noise as if transitioning from a state where the noise of the asynchronous carrier frequency component fca_a is generated to a state where the noise of the carrier frequency component is not generated, Discontinuous noise that is annoying is not recognized and does not cause a problem. Note that if the predetermined time Tα is too short, torque instability occurs, so the time is such that torque instability does not occur.

請求項3の発明の一実施例を説明するが、実施例1と同一部分は省略する。   An embodiment of the invention of claim 3 will be described, but the same parts as those of the embodiment 1 are omitted.

実施例1のPWM制御装置において、切り替え角速度ωpを非同期キャリアfca_a及び同期パルス数Nを用いて(5)式により決定する。   In the PWM control apparatus of the first embodiment, the switching angular velocity ωp is determined by the equation (5) using the asynchronous carrier fca_a and the number of synchronization pulses N.

Figure 2008220106
Figure 2008220106

(5)式にて切り替え角速度ωpを決定することにより、同期モードと非同期モードとを切り替える際、非同期キャリア周波数fca_aと同期キャリア周波数fca_sが一致するため、不連続な騒音が生じない。   By determining the switching angular velocity ωp by the equation (5), when switching between the synchronous mode and the asynchronous mode, the asynchronous carrier frequency fca_a and the synchronous carrier frequency fca_s coincide with each other, so that discontinuous noise does not occur.

本発明は、電気鉄道、電気自動車、ハイブリッド自動車、燃料電池車等のあらゆる車両用モータに利用可能である。また、電動機1には、誘導電動機、永久磁石型同期電動機、シンクロナスリラクタンスモータ等の様々な交流電動機に適用可能であり、幅広く利用可能である。   The present invention is applicable to all vehicle motors such as electric railways, electric vehicles, hybrid vehicles, and fuel cell vehicles. Further, the electric motor 1 can be applied to various AC motors such as an induction motor, a permanent magnet type synchronous motor, and a synchronous reluctance motor, and can be widely used.

請求項1の一実施例を表したブロック図である。It is a block diagram showing one Example of Claim 1. FIG. 従来の技術によるPWM制御装置のブロック図である。It is a block diagram of the PWM control apparatus by a prior art. 非同期モードでの1パルス波形である。It is a one-pulse waveform in the asynchronous mode. 同期モードでの1パルス波形である。It is one pulse waveform in synchronous mode.

符号の説明Explanation of symbols

1 電動機
2 電流検出器
3 電圧指令生成器
4 変調率制限器
5 変調率補正器
6 電圧指令演算器
7 非同期キャリア周波数生成器
8 同期キャリア周波数生成器
9 変調率制限値演算器
10 スイッチ
11 キャリア生成器
12 キャリア比較器
13 電力変換器
14 キャリアモード切替器
DESCRIPTION OF SYMBOLS 1 Electric motor 2 Current detector 3 Voltage command generator 4 Modulation rate limiter 5 Modulation rate corrector 6 Voltage command calculator 7 Asynchronous carrier frequency generator 8 Synchronous carrier frequency generator 9 Modulation rate limit value calculator 10 Switch 11 Carrier generation 12 Carrier comparator 13 Power converter 14 Carrier mode switch

Claims (3)

電動機角速度と一次電流とトルク指令を入力とし変調率指令と電圧位相指令を出力する電圧指令生成器と、該変調率指令が0.9以下のときは前記変調率指令を出力し前記変調率指令が0.9以上のときはある関数に基づき前記変調率指令より大きい値を出力する変調率補正器と、該変調率補正器出力と該電圧位相指令を入力とし3相の電圧指令を出力する電圧指令演算器と、非同期キャリア周波数を出力する非同期キャリア周波数生成器と、該電圧位相指令を入力とし同期キャリア周波数を出力とする同期キャリア周波数生成器と、キャリアモード信号により該非同期キャリア周波数と該同期キャリア周波数のどちらかを選択しキャリア周波数として出力するスイッチと、該キャリア周波数を周波数とする三角波をキャリアとして生成するキャリア生成器と、前記電圧指令と前記キャリアを比較し3相のスイッチング指令を出力するキャリア比較器と、前記スイッチング指令に基づき前記電動機に3相の電圧を印加する電力変換器から構成されるPWM制御装置において、前記変調率補正器の入力である前記変調率指令を変調率制限値にて制限する変調率制限器と、該電動機角速度が所定値を超えると前記スイッチの出力を同期キャリア周波数とするキャリアモード信号を出力した後に該変調率制限値を最大値まで所定時間で増加させ、前記電動機角速度が所定値を下回ると前記変調率制限値を所定値まで所定時間で低下させた後に前記スイッチの出力を前記非同期キャリア周波数とするキャリアモード信号を出力する変調率制限値演算器を具備することを特徴するPWM制御装置。 A voltage command generator for inputting a motor angular velocity, a primary current, and a torque command and outputting a modulation rate command and a voltage phase command; and when the modulation rate command is 0.9 or less, the modulation rate command is output and the modulation rate command is 0.9 A modulation rate corrector that outputs a value larger than the modulation rate command based on a certain function, and a voltage command computing unit that outputs the modulation rate corrector output and the voltage phase command as inputs and outputs a three-phase voltage command. An asynchronous carrier frequency generator that outputs an asynchronous carrier frequency, a synchronous carrier frequency generator that receives the voltage phase command and outputs a synchronous carrier frequency, and outputs the asynchronous carrier frequency and the synchronous carrier frequency by a carrier mode signal. A switch that selects either of them and outputs it as a carrier frequency, and a carrier generation that generates a triangular wave having the carrier frequency as a carrier. PWM control comprising a generator, a carrier comparator that compares the voltage command with the carrier and outputs a three-phase switching command, and a power converter that applies a three-phase voltage to the motor based on the switching command In the apparatus, a modulation rate limiter for limiting the modulation rate command, which is an input of the modulation rate correction unit, with a modulation rate limit value, and when the motor angular velocity exceeds a predetermined value, the output of the switch is set as a synchronous carrier frequency. After the carrier mode signal is output, the modulation factor limit value is increased to a maximum value in a predetermined time, and when the motor angular velocity falls below a predetermined value, the modulation factor limit value is decreased to a predetermined value in a predetermined time. A PWM control device comprising a modulation rate limit value calculator that outputs a carrier mode signal whose output is the asynchronous carrier frequency. 前記請求項1のPWM制御装置において、前記変調率指令値を変化させる所定時間を十分に短い時間とすることを特徴するPWM制御装置。   2. The PWM control device according to claim 1, wherein the predetermined time for changing the modulation factor command value is a sufficiently short time. 前記請求項1のPWM制御装置において、切り替え速度における同期キャリア周波数と非同期キャリア周波数が一致することを特徴するPWM制御装置

2. The PWM control device according to claim 1, wherein the synchronous carrier frequency and the asynchronous carrier frequency at the switching speed coincide with each other.

JP2007056479A 2007-03-07 2007-03-07 PWM controller Expired - Fee Related JP4999500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007056479A JP4999500B2 (en) 2007-03-07 2007-03-07 PWM controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056479A JP4999500B2 (en) 2007-03-07 2007-03-07 PWM controller

Publications (2)

Publication Number Publication Date
JP2008220106A true JP2008220106A (en) 2008-09-18
JP4999500B2 JP4999500B2 (en) 2012-08-15

Family

ID=39839454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056479A Expired - Fee Related JP4999500B2 (en) 2007-03-07 2007-03-07 PWM controller

Country Status (1)

Country Link
JP (1) JP4999500B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166633A (en) * 2009-01-13 2010-07-29 Denso Corp Controller and control system of rotating machine
JP2011188609A (en) * 2010-03-08 2011-09-22 Toyota Motor Corp Control device of motor drive system
CN103490682A (en) * 2013-10-11 2014-01-01 重庆理工大学 System and method for detecting location of rotor of alternating current servo motor
KR20140038841A (en) * 2012-09-21 2014-03-31 현대자동차주식회사 Inverter control method of eco-friendly vehicle for reducing noise
JP2015089193A (en) * 2013-10-29 2015-05-07 東洋電機製造株式会社 Inverter control device
JP2017070073A (en) * 2015-09-29 2017-04-06 日産自動車株式会社 Power control method and power control apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856055B (en) 2014-02-28 2016-06-29 台达电子企业管理(上海)有限公司 DC/DC transducer and control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189240A (en) * 1997-09-08 1999-03-30 Hitachi Ltd Controller of pwm inverter
JP2000014200A (en) * 1998-06-26 2000-01-14 Toyo Electric Mfg Co Ltd Pwm inverter
JP2002084761A (en) * 2001-08-02 2002-03-22 Hitachi Ltd Power inverter device
JP2003125597A (en) * 1993-12-17 2003-04-25 Hitachi Ltd Controller for electric vehicle
JP2003209990A (en) * 2002-01-11 2003-07-25 Hitachi Ltd Motor speed controller
JP2004072906A (en) * 2002-08-06 2004-03-04 Toshiba Corp Vector control inverter arrangement
WO2005088822A1 (en) * 2004-03-17 2005-09-22 Kabushiki Kaisha Yaskawa Denki Motor control device and modulating wave instruction creation method for pwm inverter thereof
JP2006230079A (en) * 2005-02-16 2006-08-31 Denso Corp Inverter control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125597A (en) * 1993-12-17 2003-04-25 Hitachi Ltd Controller for electric vehicle
JPH1189240A (en) * 1997-09-08 1999-03-30 Hitachi Ltd Controller of pwm inverter
JP2000014200A (en) * 1998-06-26 2000-01-14 Toyo Electric Mfg Co Ltd Pwm inverter
JP2002084761A (en) * 2001-08-02 2002-03-22 Hitachi Ltd Power inverter device
JP2003209990A (en) * 2002-01-11 2003-07-25 Hitachi Ltd Motor speed controller
JP2004072906A (en) * 2002-08-06 2004-03-04 Toshiba Corp Vector control inverter arrangement
WO2005088822A1 (en) * 2004-03-17 2005-09-22 Kabushiki Kaisha Yaskawa Denki Motor control device and modulating wave instruction creation method for pwm inverter thereof
JP2006230079A (en) * 2005-02-16 2006-08-31 Denso Corp Inverter control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166633A (en) * 2009-01-13 2010-07-29 Denso Corp Controller and control system of rotating machine
JP2011188609A (en) * 2010-03-08 2011-09-22 Toyota Motor Corp Control device of motor drive system
KR20140038841A (en) * 2012-09-21 2014-03-31 현대자동차주식회사 Inverter control method of eco-friendly vehicle for reducing noise
KR101865954B1 (en) * 2012-09-21 2018-06-08 현대자동차주식회사 Inverter control method of eco-friendly vehicle for reducing noise
CN103490682A (en) * 2013-10-11 2014-01-01 重庆理工大学 System and method for detecting location of rotor of alternating current servo motor
CN103490682B (en) * 2013-10-11 2016-01-20 重庆理工大学 A kind of AC servo motor rotor position detecting system and detection method
JP2015089193A (en) * 2013-10-29 2015-05-07 東洋電機製造株式会社 Inverter control device
JP2017070073A (en) * 2015-09-29 2017-04-06 日産自動車株式会社 Power control method and power control apparatus

Also Published As

Publication number Publication date
JP4999500B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US8278865B2 (en) Control device
EP2159909B1 (en) Ac motor drive controller
US8232753B2 (en) Control device for electric motor drive apparatus
EP2393200B1 (en) Controller for ac motor
JP4999500B2 (en) PWM controller
EP2733844B1 (en) Vehicle and method for controlling vehicle
JP5794274B2 (en) Matrix converter
JP2017204918A (en) Controller for ac motor
US9543868B2 (en) Apparatus for controlling rotary electric machine
JPH05227796A (en) Controller for power converter
JP5825945B2 (en) Inverter control device, inverter device, and air conditioner
EP2690775A2 (en) Drive system for alternating current motors and electric motorized vehicles
JPWO2016017304A1 (en) Power converter
US7426122B2 (en) Power-converter control apparatus employing pulse width modulation and adjusting duration of a zero-voltage vector
JP6961096B2 (en) Inverter device
JP2009303346A (en) Device and system for controlling rotary machine
JP2000050529A (en) Method for limiting current of power converter
JP5510444B2 (en) Rotating machine control device
JP2005137052A (en) Apparatus and method for controlling motor
JP2008109790A (en) Power conversion apparatus
WO2015097533A1 (en) Motor control system, motor control device, and motor control method
JP2009195059A (en) Power conversion method and power conversion apparatus
JP2006081322A (en) Ac motor control unit
JP2019161854A (en) Motor control method and motor control apparatus
KR102254559B1 (en) Method for improving the dc input voltage utilization of an inverter for the enhanced output torque of ac motors and three-phase inverter voltage compensation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees