JP2008218268A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008218268A
JP2008218268A JP2007055590A JP2007055590A JP2008218268A JP 2008218268 A JP2008218268 A JP 2008218268A JP 2007055590 A JP2007055590 A JP 2007055590A JP 2007055590 A JP2007055590 A JP 2007055590A JP 2008218268 A JP2008218268 A JP 2008218268A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
secondary battery
resin layer
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055590A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuno
博 松野
Akihiro Maeda
明宏 前田
Takamoto Morikawa
敬元 森川
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007055590A priority Critical patent/JP2008218268A/en
Publication of JP2008218268A publication Critical patent/JP2008218268A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of reducing the amount of carbon dioxide generated from a positive electrode plate even when charging and discharging cycles are repeated in high temperature storage or under high temperature. <P>SOLUTION: The nonaqueous electrolyte secondary battery includes: an electrode plate group 4 formed by laminating or winding around a belt-like positive electrode plate 5 and negative electrode plate 6 through a separator 7; and a nonaqueous electrolyte. On a surface of the positive electrode plate 5 opposite to the separator 7, a fluorine-containing resin layer is provided which suppresses generation of carbon dioxide from the positive electrode plate 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は非水電解液二次電池の高温保存特性や高温下の充放電サイクル特性を改善する技術に関し、更に詳しくは高温保存した場合の正極板からのガス発生を抑制する技術に関する。   The present invention relates to a technique for improving high-temperature storage characteristics and charge / discharge cycle characteristics under high temperature of a non-aqueous electrolyte secondary battery, and more particularly to a technique for suppressing gas generation from a positive electrode plate when stored at a high temperature.

近年、電子機器のポータブル化、コードレス化が進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要望が強まっている。そのため、高電圧、高エネルギー密度を有する非水電解液二次電池、とりわけリチウム二次電池に対する期待が大きくなっている。   In recent years, electronic devices have become portable and cordless, and there is an increasing demand for secondary batteries that are small, lightweight, and have high energy density as power sources for driving these devices. Therefore, expectation for non-aqueous electrolyte secondary batteries having high voltage and high energy density, particularly lithium secondary batteries, is increasing.

その中でも非水電解液二次電池の需要が伸びており、小型、軽量化の要求が進む一方で、非水電解液二次電池を高温保存した場合の正極板からのガス発生(炭酸ガス)が従来からの課題となっていた。このガス発生により、電流遮断弁を備えた円筒形非水電解液二次電池では電池内の内圧が上昇し電流遮断弁が誤作動を起こす恐れがあった。また、角形非水電解液二次電池ではガス発生により電池ケースが膨れるという問題があった。   Among them, demand for non-aqueous electrolyte secondary batteries is growing, and demands for smaller and lighter weight are increasing. On the other hand, gas generation from the positive electrode plate when carbon dioxide is stored at high temperature (carbon dioxide gas) Has been a traditional problem. Due to this gas generation, in the cylindrical non-aqueous electrolyte secondary battery equipped with a current cutoff valve, the internal pressure in the battery may increase, and the current cutoff valve may malfunction. In addition, the prismatic nonaqueous electrolyte secondary battery has a problem that the battery case expands due to gas generation.

高温保存時のガス発生は非水電解液と正極活物質との酸化反応により引き起こされているため、これを防止する手段として非水電解液の溶媒組成を酸化反応に強い組成へと適正化する方法などが提案されている(例えば、特許文献1参照)。   Since gas generation during high-temperature storage is caused by an oxidation reaction between the non-aqueous electrolyte and the positive electrode active material, the solvent composition of the non-aqueous electrolyte is optimized to a composition resistant to the oxidation reaction as a means to prevent this. A method has been proposed (see, for example, Patent Document 1).

また、セパレータの材質変更や表面改質などにより、非水電解液の酸化分解を促進し触媒として作用する正極活物質からの金属溶出量を低減し、非水電解液の酸化分解を抑制する方法などが提案されている(例えば、特許文献2参照)。
特開2002−83632号公報 特許第3838492号公報
In addition, the method of suppressing the oxidative decomposition of the non-aqueous electrolyte by reducing the amount of metal elution from the positive electrode active material that acts as a catalyst by promoting the oxidative decomposition of the non-aqueous electrolyte by changing the material of the separator or modifying the surface Etc. have been proposed (see, for example, Patent Document 2).
JP 2002-83632 A Japanese Patent No. 3838492

前述した特許文献1、2は、非水電解液の酸化分解に伴う炭酸ガスの発生を抑制する方法である。しかしながらこれらの方法では、非水電解液二次電池を高温下で長時間保存した場合や高温下で充放電サイクルを繰り返した場合において炭酸ガスが発生し、角形非水電解液二次電池の電池ケースが膨れるという問題や円筒形非水電解液二次電池の電流遮断弁が誤作動を起こす恐れがあるという問題を解決できていなかった。そこで炭酸ガスの発生メカニズムの究明に取り組んだ結果、非水電解液の酸化分解以外にも正極活物質中に残存している炭酸リチウム(LiCO)が電気化学的に酸化分解されて炭酸ガスが発生していることを突き止めた(化学式1を参照)。 Patent Documents 1 and 2 described above are methods for suppressing the generation of carbon dioxide gas accompanying oxidative decomposition of a nonaqueous electrolytic solution. However, in these methods, carbon dioxide gas is generated when the nonaqueous electrolyte secondary battery is stored at a high temperature for a long time or when the charge / discharge cycle is repeated at a high temperature, and the battery of the rectangular nonaqueous electrolyte secondary battery is produced. The problem that the case swells and the problem that the current cutoff valve of the cylindrical non-aqueous electrolyte secondary battery may malfunction could not be solved. Therefore, as a result of investigating the mechanism of carbon dioxide generation, lithium carbonate (Li 2 CO 3 ) remaining in the positive electrode active material is electrochemically oxidized and decomposed in addition to the oxidative decomposition of the non-aqueous electrolyte. It was determined that gas was generated (see Chemical Formula 1).

(化学式1)
LiCO → LiO + CO
また、この炭酸リチウムは、正極活物質を合成した際にはほとんど正極活物質中に存在せず、正極板を作製する過程で正極活物質中のLi源と空気中の水分や炭酸ガスと反応し、経時的に生成されていることを突き止めた(化学式2を参照)。
(Chemical formula 1)
Li 2 CO 3 → Li 2 O + CO 2
Further, this lithium carbonate is hardly present in the positive electrode active material when the positive electrode active material is synthesized, and reacts with the Li source in the positive electrode active material, moisture in the air and carbon dioxide gas in the process of producing the positive electrode plate. It was found that it was produced over time (see Chemical Formula 2).

(化学式2)
LiO + HO → 2LiOH
2LiOH + CO → LiCO + H
本発明はこのような課題を解決するものであり、高温下で長時間保存した場合や高温下で充放電サイクルを繰り返した場合において炭酸ガスの発生を抑制した非水電解液二次電池を提供するものである。
(Chemical formula 2)
Li 2 O + H 2 O → 2LiOH
2LiOH + CO 2 → Li 2 CO 3 + H 2 O
The present invention solves such a problem, and provides a non-aqueous electrolyte secondary battery that suppresses the generation of carbon dioxide gas when stored at high temperature for a long time or when charging and discharging cycles are repeated at high temperature. To do.

前述した課題を解決するために本発明の非水電解液二次電池は、帯状の正極板と負極板とをセパレータを介して積層または捲回してなる極板群と、非水電解液を備えた非水電解液二次電池であって、前記セパレータに対向する正極板の表面に正極板からの炭酸ガスの発生を抑制する含フッ素系樹脂層を設けたことを特徴とする。   In order to solve the above-described problems, a non-aqueous electrolyte secondary battery of the present invention includes an electrode plate group formed by laminating or winding a strip-like positive electrode plate and a negative electrode plate with a separator interposed therebetween, and a non-aqueous electrolyte solution. The nonaqueous electrolyte secondary battery is characterized in that a fluorine-containing resin layer that suppresses the generation of carbon dioxide from the positive electrode plate is provided on the surface of the positive electrode plate facing the separator.

本発明の含フッ素系樹脂層を設けた正極板は、正極活物質と空気中の水分や炭酸ガスとの接触を遮断することができるため、正極活物質と空気中の水分や炭酸ガスとの反応によって生成する炭酸リチウムを抑制することができる。また、セパレータの成分(ポリエチレンやポリプロピレン等の高分子材料)が正極活物質により酸化(劣化)されると高温保存特性や充放電サイクル特性が低下することが知られているが、本発明は正極活物質とセパレータが直接接触しないため、セパレータが正極活物質により酸化されることを抑制することができる。よって、本発明の正極板を用いることにより、高温下で長時間保存した場合や高温下で充放電サイクルを繰り返した場合において炭酸ガスの発生を抑制することができる。   Since the positive electrode plate provided with the fluorine-containing resin layer of the present invention can block contact between the positive electrode active material and moisture or carbon dioxide in the air, the positive electrode active material and moisture or carbon dioxide in the air Lithium carbonate produced by the reaction can be suppressed. In addition, it is known that when the separator component (polymer material such as polyethylene or polypropylene) is oxidized (deteriorated) by the positive electrode active material, the high-temperature storage characteristics and charge / discharge cycle characteristics deteriorate. Since the active material and the separator are not in direct contact, it is possible to suppress the separator from being oxidized by the positive electrode active material. Therefore, by using the positive electrode plate of the present invention, it is possible to suppress the generation of carbon dioxide gas when stored for a long time at a high temperature or when a charge / discharge cycle is repeated at a high temperature.

本発明によれば正極板の表面に含フッ素系樹脂層を設けることにより、正極活物質と空気中の水分や炭酸ガスとの接触を遮断することができるため、正極活物質と空気中の水分や炭酸ガスとの反応によって生成する炭酸リチウムを抑制することができる。この炭酸リチウムの生成を抑制することにより、(化学式1)に示したように炭酸リチウムが電気化学的に酸化分解されて炭酸ガスが発生するという問題を解決することができる。   According to the present invention, the provision of the fluorine-containing resin layer on the surface of the positive electrode plate can block the contact between the positive electrode active material and moisture in the air or carbon dioxide gas. And lithium carbonate produced by the reaction with carbon dioxide can be suppressed. By suppressing the production of this lithium carbonate, the problem that lithium carbonate is electrochemically oxidized and decomposed to generate carbon dioxide as shown in (Chemical Formula 1) can be solved.

また、このような含フッ素系樹脂層を設けた正極板を用いて極板群を構成すれば、セパレータと正極活物質が直接接触しないため、セパレータが正極活物質により酸化されることを抑制することができる。   Further, if the electrode plate group is formed using the positive electrode plate provided with such a fluorine-containing resin layer, the separator and the positive electrode active material are not in direct contact with each other, so that the separator is prevented from being oxidized by the positive electrode active material. be able to.

以上より、高温下で長時間保存した場合や高温下で充放電サイクルを繰り返した場合において炭酸ガスの発生を抑制した、高温保存特性および高温下の充放電サイクル特性に優れた非水電解液二次電池を提供することができる。   Based on the above, non-aqueous electrolytes with excellent high-temperature storage characteristics and high-temperature charge-discharge cycle characteristics that suppress the generation of carbon dioxide gas when stored for a long time at high temperatures or when repeated charge-discharge cycles are performed at high temperatures. A secondary battery can be provided.

本発明においては、帯状の正極板と負極板とをセパレータを介して積層または捲回してなる極板群と、非水電解液を備えた非水電解液二次電池であって、前記セパレータに対向する正極板の表面に正極板からの炭酸ガスの発生を抑制する含フッ素系樹脂層を設けたものである。   In the present invention, a non-aqueous electrolyte secondary battery comprising a group of electrode plates formed by laminating or winding a strip-like positive electrode plate and a negative electrode plate with a separator interposed therebetween, and a non-aqueous electrolyte solution, A fluorine-containing resin layer that suppresses the generation of carbon dioxide from the positive electrode plate is provided on the surface of the opposing positive electrode plate.

この構成によれば、正極板の表面に含フッ素系樹脂層を設けることにより、正極板を作製する過程で正極活物質中のLi源と空気中の水分や炭酸ガスとの接触を遮断し、炭酸リチウムの生成を抑制することができるため、炭酸リチウムの酸化分解による炭酸ガスの発生を抑制することができる。また、含フッ素系樹脂層を設けた正極板を用いて極板群を構成すれば、正極活物質とセパレータが直接接触しないため、セパレータが正極活物質により酸化されることを抑制することができる。以上より、高温下で長時間保存した場合や高温下で充放電サイクルを繰り返した場合において炭酸ガスの発生を抑制した、高温保存特性および高温下の充放電サイクル特性に優れた非水電解液二次電池を提供することができる。   According to this configuration, by providing the fluorine-containing resin layer on the surface of the positive electrode plate, the contact between the Li source in the positive electrode active material and the moisture or carbon dioxide in the air in the process of producing the positive electrode plate, Since generation of lithium carbonate can be suppressed, generation of carbon dioxide gas due to oxidative decomposition of lithium carbonate can be suppressed. Further, if the electrode plate group is configured using the positive electrode plate provided with the fluorine-containing resin layer, the positive electrode active material and the separator are not in direct contact with each other, so that the separator is prevented from being oxidized by the positive electrode active material. . Based on the above, non-aqueous electrolytes with excellent high-temperature storage characteristics and high-temperature charge-discharge cycle characteristics that suppress the generation of carbon dioxide gas when stored for a long time at high temperatures or when repeated charge-discharge cycles are performed at high temperatures. A secondary battery can be provided.

また、前記フッ素系樹脂を含む層の厚みは0.1μmから1.0μmが好ましい。   In addition, the thickness of the layer containing the fluororesin is preferably 0.1 μm to 1.0 μm.

この含フッ素系樹脂層の厚みを0.1μm以上とすれば極板群を構成する際に帯状の正極板を積層または捲回しても正極板の表面に設けた含フッ素樹脂層にクラック等が生じることがない。また、含フッ素系樹脂層の厚みを1.0μmより大きくした場合は極板群の抵抗が大きくなり放電特性が低下することから含フッ素系樹脂層の厚みは0.1μmから1.0μmが良いと言える。   If the thickness of the fluorine-containing resin layer is 0.1 μm or more, cracks or the like may occur in the fluorine-containing resin layer provided on the surface of the positive electrode plate even if the belt-like positive electrode plate is laminated or wound when forming the electrode plate group. It does not occur. In addition, when the thickness of the fluorine-containing resin layer is larger than 1.0 μm, the resistance of the electrode plate group is increased and the discharge characteristics are deteriorated. It can be said.

また、前記正極板の正極活物質として、一般式LiNi1−y(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、及びAlから選ばれる少なくとも1種類を含む、y:0≦y≦1.0)で表されるリチウム複合酸化物としても良い。 Further, as a positive electrode active material of the positive electrode plate, the general formula Li x Ni y M 1-y O 2 (x: 0.95 ≦ x ≦ 1.10, M is Co, Mn, Cr, Fe, Mg, and Al) It is good also as a lithium complex oxide represented by y: 0 <= y <= 1.0) including at least 1 type chosen from these.

また、含フッ素系樹脂の材質としてはPTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)から選ばれる少なくとも1種類が好ましく、粒子の形状としては大きさが0.01μmから0.5μm程度のマイクロビーズ形状が好ましい。   The material of the fluorine-containing resin is at least selected from PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), and FEP (tetrafluoroethylene / hexafluoropropylene copolymer). One type is preferable, and the shape of the particles is preferably a microbead shape having a size of about 0.01 μm to 0.5 μm.

また、正極板の表面を被覆する樹脂層は、含フッ素系樹脂以外の高分子樹脂でも同様の効果が認められたが、耐電圧特性や耐薬品性、撥水性の面から含フッ素系樹脂が最も好ましい。   In addition, the resin layer covering the surface of the positive electrode plate was found to have the same effect with a polymer resin other than the fluorine-containing resin, but the fluorine-containing resin was used in terms of voltage resistance, chemical resistance, and water repellency. Most preferred.

以下に本発明の非水電解液二次電池として円筒形リチウム二次電池について詳細に述べる。   The cylindrical lithium secondary battery will be described in detail below as the nonaqueous electrolyte secondary battery of the present invention.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の実施例における円筒形リチウム二次電池の概略縦断面図を示す。   FIG. 1 shows a schematic longitudinal sectional view of a cylindrical lithium secondary battery in an embodiment of the present invention.

図1において、正極板5と負極板6とをセパレータ7としてポリプロピレン樹脂製の多孔膜を介して渦巻き状に捲回し、極板群4を構成した。極板群4は直径13.8mm、高さ50mmのステンレス鋼板からなる電池ケース1に挿入した。正極板5から引き出された正極リード5aを封口板2の下部に溶接し、負極板6から引き出された負極リード6aを電池ケース1の底部に溶接した。また、絶縁リング8は極板群4の上下にそれぞれ配置した。非水電解液を電池ケース1内に注液した後、電池ケース1の開口部には絶縁パッキング3を介して封口板2を配置し、電池ケース1の開口部を内方にかしめて密閉した。   In FIG. 1, the positive electrode plate 5 and the negative electrode plate 6 are wound as a separator 7 in a spiral shape through a porous film made of polypropylene resin, and the electrode plate group 4 is configured. The electrode plate group 4 was inserted into a battery case 1 made of a stainless steel plate having a diameter of 13.8 mm and a height of 50 mm. The positive electrode lead 5 a drawn from the positive electrode plate 5 was welded to the lower part of the sealing plate 2, and the negative electrode lead 6 a drawn from the negative electrode plate 6 was welded to the bottom of the battery case 1. Insulating rings 8 were arranged above and below the electrode plate group 4, respectively. After injecting the non-aqueous electrolyte into the battery case 1, the sealing plate 2 is disposed in the opening of the battery case 1 through the insulating packing 3, and the opening of the battery case 1 is caulked inward and sealed. .

以下、正極板5、負極板6、非水電解液について詳しく説明する。   Hereinafter, the positive electrode plate 5, the negative electrode plate 6, and the non-aqueous electrolyte will be described in detail.

正極板5は、正極活物質であるコバルト酸リチウム(LiCoO)の粉末100重量部と、導電材としてアセチレンブラックを5重量部と、結着剤としてポリフッ化ビニリデン(PVDF)を5重量部とを、適量のN−メチルピロリドン(NMP)の有機溶剤に添加して、ペースト状の正極合剤を調整し、この正極合剤を厚さ0.010mmのアルミニウム箔の表面に塗着、乾燥して作製した。更にこの正極板5に含フッ素系樹脂としてポリテトラフルオロエチレン(PTFE)を分散させた溶液を用いて正極板5の両面に塗着、乾燥した。これをロールプレス機によって厚さ0.17mmに圧延し、幅35mm、長さ250mmの大きさに切り出し、含フッ素系樹脂層を設けた正極板5とした。 The positive electrode plate 5 includes 100 parts by weight of a powder of lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, 5 parts by weight of acetylene black as a conductive material, and 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder. Is added to an appropriate amount of N-methylpyrrolidone (NMP) organic solvent to prepare a paste-like positive electrode mixture, and this positive electrode mixture is applied to the surface of an aluminum foil having a thickness of 0.010 mm and dried. Made. Furthermore, the positive electrode plate 5 was coated on both surfaces of the positive electrode plate 5 using a solution in which polytetrafluoroethylene (PTFE) was dispersed as a fluorine-containing resin, and dried. This was rolled to a thickness of 0.17 mm by a roll press machine, cut into a size of 35 mm in width and 250 mm in length, and a positive electrode plate 5 provided with a fluorine-containing resin layer was obtained.

負極板6は、負極活物質であるコークスを加熱処理して得た炭素粉末100重量部に、結着剤としてスチレン系結着剤を10重量部混合し、これをカルボキシメチルセルロース(CMC)の水溶液に懸濁させてペースト状の負極合剤を調整し、この負極合剤を厚さ0.015mmの銅箔の表面に塗着、乾燥して作製した。乾燥後、ロールプレス機によって厚さ0.2mmに圧延し、幅37mm、長さ280mmの大きさに切り出し、負極板6とした。   The negative electrode plate 6 is obtained by mixing 10 parts by weight of a styrene-based binder as a binder with 100 parts by weight of carbon powder obtained by heat-treating coke, which is a negative electrode active material, and mixing this with an aqueous solution of carboxymethyl cellulose (CMC). A paste-like negative electrode mixture was prepared by suspending in an aqueous solution, and this negative electrode mixture was applied to the surface of a copper foil having a thickness of 0.015 mm and dried. After drying, it was rolled to a thickness of 0.2 mm by a roll press machine, cut into a size of 37 mm width and 280 mm length, and used as negative electrode plate 6.

非水電解液は、炭酸エチレン(EC)と炭酸ジエチル(DEC)の等容積混合溶媒に、電解質塩として六フッ化燐酸リチウム(LiPF)1.0mol/Lを溶解した。この非水電解液の所定量を、極板群4を収納した電池ケース1内に注入した。
このようにして定格容量が500mAh、サイズが直径14mm、高さ50mmのいわゆる14500サイズの円筒形リチウム二次電池を作製した。
The nonaqueous electrolytic solution was obtained by dissolving 1.0 mol / L of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in an equal volume mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC). A predetermined amount of this non-aqueous electrolyte was injected into the battery case 1 in which the electrode plate group 4 was housed.
Thus, a so-called 14500 size cylindrical lithium secondary battery having a rated capacity of 500 mAh, a size of 14 mm in diameter, and a height of 50 mm was produced.

(実施例1)
含フッ素系樹脂層として正極板5の両面に厚み0.1μmのPTFE樹脂層を設けた。この正極板5を用いて作製した円筒形リチウム二次電池を実施例1とした。
(Example 1)
As the fluorine-containing resin layer, a PTFE resin layer having a thickness of 0.1 μm was provided on both surfaces of the positive electrode plate 5. A cylindrical lithium secondary battery produced using this positive electrode plate 5 was taken as Example 1.

(実施例2)
含フッ素系樹脂層として正極板5の両面に厚み1.0μmのPTFE樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例2とした。
(Example 2)
A PTFE resin layer having a thickness of 1.0 μm was provided on both surfaces of the positive electrode plate 5 as a fluorine-containing resin layer. A cylindrical lithium secondary battery produced using this positive electrode plate 5 in the same manner as in Example 1 was designated as Example 2.

(実施例3)
含フッ素系樹脂層として正極板5の両面に厚み0.05μmのPTFE樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例3とした。
(Example 3)
As a fluorine-containing resin layer, a PTFE resin layer having a thickness of 0.05 μm was provided on both surfaces of the positive electrode plate 5. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 3.

(実施例4)
含フッ素系樹脂層として正極板5の両面に厚み1.2μmのPTFE樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例4とした。
Example 4
As a fluorine-containing resin layer, a PTFE resin layer having a thickness of 1.2 μm was provided on both surfaces of the positive electrode plate 5. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 4.

(実施例5)
含フッ素系樹脂層として正極板5の両面に厚み0.1μmのFEP樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例5とした。
(Example 5)
An FEP resin layer having a thickness of 0.1 μm was provided on both surfaces of the positive electrode plate 5 as a fluorine-containing resin layer. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 5.

(実施例6)
含フッ素系樹脂層として正極板5の両面に厚み1.0μmのFEP樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例6とした。
(Example 6)
As the fluorine-containing resin layer, an FEP resin layer having a thickness of 1.0 μm was provided on both surfaces of the positive electrode plate 5. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 6.

(実施例7)
含フッ素系樹脂層として正極板5の両面に厚み0.05μmのFEP樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例7とした。
(Example 7)
As the fluorine-containing resin layer, FEP resin layers having a thickness of 0.05 μm were provided on both surfaces of the positive electrode plate 5. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 7.

(実施例8)
含フッ素系樹脂層として正極板5の両面に厚み1.2μmのFEP樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例8と
した。
(Example 8)
As the fluorine-containing resin layer, a 1.2 μm thick FEP resin layer was provided on both surfaces of the positive electrode plate 5. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 8.

(比較例1)
含フッ素系樹脂層を正極板5に設けなかった以外は実施例1と同じように作製した円筒形リチウム二次電池を比較例1とした。
(Comparative Example 1)
A cylindrical lithium secondary battery produced in the same manner as in Example 1 except that the fluorine-containing resin layer was not provided on the positive electrode plate 5 was used as Comparative Example 1.

(実施例9)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層として正極板5の両面に厚み0.1μmのPTFE樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例9とした。
Example 9
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and a PTFE resin layer having a thickness of 0.1 μm was provided on both surfaces of the positive electrode plate 5 as a fluorine-containing resin layer. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 9.

(実施例10)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層として正極板5の両面に厚み1.0μmのPTFE樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例10とした。
(Example 10)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and a PTFE resin layer having a thickness of 1.0 μm was provided on both surfaces of the positive electrode plate 5 as a fluorine-containing resin layer. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 10.

(実施例11)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層として正極板5の両面に厚み0.05μmのPTFE樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例11とした。
(Example 11)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and a PTFE resin layer having a thickness of 0.05 μm was provided on both surfaces of the positive electrode plate 5 as a fluorine-containing resin layer. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 11.

(実施例12)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層として正極板5の両面に厚み1.2μmのPTFE樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例12とした。
(Example 12)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and a PTFE resin layer having a thickness of 1.2 μm was provided on both surfaces of the positive electrode plate 5 as a fluorine-containing resin layer. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 12.

(実施例13)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層として正極板5の両面に厚み0.1μmのFEP樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例13とした。
(Example 13)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and a 0.1 μm thick FEP resin layer was provided on both surfaces of the positive electrode plate 5 as a fluorine-containing resin layer. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 13.

(実施例14)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層として正極板5の両面に厚み1.0μmのFEP樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例14とした。
(Example 14)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and FEP resin layers having a thickness of 1.0 μm were provided on both surfaces of the positive electrode plate 5 as fluorine-containing resin layers. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 14.

(実施例15)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層として正極板5の両面に厚み0.05μmのFEP樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例15とした。
(Example 15)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as a positive electrode active material, and FEP resin layers having a thickness of 0.05 μm were provided on both surfaces of the positive electrode plate 5 as fluorine-containing resin layers. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 15.

(実施例16)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層として正極板5の両面に厚み1.2μmのFEP樹脂層を設けた。この正極板5を用いて実施例1と同じように作製した円筒形リチウム二次電池を実施例16とした。
(Example 16)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material, and a 1.2 μm thick FEP resin layer was provided on both surfaces of the positive electrode plate 5 as a fluorine-containing resin layer. A cylindrical lithium secondary battery produced in the same manner as in Example 1 using this positive electrode plate 5 was designated as Example 16.

(比較例2)
正極活物質にLiNi1/3Co1/3Mn1/3を用い、含フッ素系樹脂層を正極板5に設けなかった以外は実施例1と同じように作製した円筒形リチウム二次電池を比較例2とした。
(Comparative Example 2)
Cylindrical lithium secondary produced in the same manner as in Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material and the fluorine-containing resin layer was not provided on the positive electrode plate 5. The battery was referred to as Comparative Example 2.

以上の実施例1〜16及び比較例1、比較例2の円筒形リチウム二次電池について、以下のような評価を行った。   The cylindrical lithium secondary batteries of Examples 1 to 16 and Comparative Examples 1 and 2 were evaluated as follows.

<高温保存時におけるガス発生量の測定>
それぞれの円筒形リチウム二次電池を環境温度20℃において、定電流500mAで電圧4.20Vまで充電し、電圧4.20Vに到達した後、充電時間の総計が2時間になるように定電圧4.20Vで充電を行った。その後、環境温度60℃において充電状態の円筒形リチウム二次電池を3日間保存し、冷却後電池ケースの底部に穴をあけ、ガス発生量を測定した。
<Measurement of gas generation during high temperature storage>
Each cylindrical lithium secondary battery is charged to a voltage of 4.20 V at a constant current of 500 mA at an environmental temperature of 20 ° C. After reaching the voltage of 4.20 V, the constant voltage 4 is set so that the total charging time is 2 hours. The battery was charged at 20V. Thereafter, the charged cylindrical lithium secondary battery at an environmental temperature of 60 ° C. was stored for 3 days. After cooling, a hole was made in the bottom of the battery case, and the amount of gas generated was measured.

<充放電サイクル特性>
それぞれの円筒形リチウム二次電池を環境温度45℃において、充放電を以下の条件で行った。
<Charge / discharge cycle characteristics>
Each cylindrical lithium secondary battery was charged and discharged under the following conditions at an environmental temperature of 45 ° C.

充電条件は定電流500mAで電池電圧4.2Vまで充電し、電池電圧が4.2Vに到達した後、充電時間の総計が2時間になるように定電圧4.2Vで充電した。   The charging conditions were a constant current of 500 mA and a battery voltage of 4.2 V. After the battery voltage reached 4.2 V, the battery was charged at a constant voltage of 4.2 V so that the total charging time was 2 hours.

放電条件は定電流1000mAで電池の放電終始電圧が3.0Vになるまで放電した。   The discharge was performed at a constant current of 1000 mA until the battery discharge starting voltage reached 3.0V.

これら充電と放電を1サイクルとし、100サイクル繰り返した。1サイクル目の放電容量と100サイクル目の放電容量から、次式により放電容量維持率を計算した。   These charge and discharge were made into 1 cycle, and 100 cycles were repeated. From the discharge capacity at the first cycle and the discharge capacity at the 100th cycle, the discharge capacity retention ratio was calculated by the following formula.

放電容量維持率(%)=100サイクル目の放電容量(mAh)/1サイクル目の放電容量(mAh)×100
高温保存時におけるガス発生量の測定及び充放電サイクル特性の結果を(表1)に示す。
Discharge capacity retention rate (%) = 100th cycle discharge capacity (mAh) / 1st cycle discharge capacity (mAh) × 100
The measurement of the amount of gas generated during high temperature storage and the results of charge / discharge cycle characteristics are shown in Table 1.

Figure 2008218268
Figure 2008218268

(表1)の結果から実施例1と実施例2は、比較例1に比べ60℃保存時でのガス発生量が大幅に減少していることがわかった。これは実施例1と実施例2が、正極板の表面を含フッ素系樹脂層として設けたPTFE樹脂層の作用により、正極活物質中のLi源と空気中の水分や炭酸ガスと反応して生成する炭酸リチウムを抑制できたため、60℃保存時
のガス発生量を低減できたと考えられる。
From the results of (Table 1), it was found that Example 1 and Example 2 significantly reduced the amount of gas generated when stored at 60 ° C. compared to Comparative Example 1. This is because Example 1 and Example 2 reacted with the Li source in the positive electrode active material and moisture or carbon dioxide in the air by the action of the PTFE resin layer provided with the surface of the positive electrode plate as a fluorine-containing resin layer. It is considered that the amount of gas generated during storage at 60 ° C. could be reduced because the generated lithium carbonate could be suppressed.

実施例3は実施例1、実施例2と比べて60℃保存時のガス発生量が多くなっているが、これは正極板の表面に設けたPTFE樹脂層が薄いため、正極活物質と空気中の水分や炭酸ガスとの反応を十分抑制できななかったためと考えられる。特に捲回して構成した極板群の捲き始め部分の正極板は曲率半径が小さいため正極板の表面に薄く設けたPTFE樹脂層にクラックが生じて炭酸ガスと反応したと考えられる。   In Example 3, the amount of gas generated during storage at 60 ° C. is larger than that in Examples 1 and 2, but this is because the PTFE resin layer provided on the surface of the positive electrode plate is thin, so that the positive electrode active material and air This is thought to be because the reaction with moisture and carbon dioxide in the interior could not be sufficiently suppressed. In particular, it is considered that the positive electrode plate at the beginning of rolling of the electrode plate group formed by winding has a small radius of curvature, so that a thin PTFE resin layer provided on the surface of the positive electrode plate cracked and reacted with carbon dioxide.

実施例4は実施例1〜3と比べて充放電サイクル特性が低下することがわかった。また、実施例4の電池抵抗を交流測定法(1kHz)により測定すると実施例1〜3と比べて4〜6mΩ高くなっていた。これは正極板の表面に設けたPTFE樹脂層が厚いため正極板の抵抗が大きくなり、充放電サイクル特性の低下につながったと考えられる。   Example 4 was found to have lower charge / discharge cycle characteristics than Examples 1-3. Moreover, when the battery resistance of Example 4 was measured by the alternating current measurement method (1 kHz), it was 4 to 6 mΩ higher than that of Examples 1 to 3. This is presumably because the PTFE resin layer provided on the surface of the positive electrode plate is thick, so that the resistance of the positive electrode plate is increased, leading to deterioration of charge / discharge cycle characteristics.

なお、比較例1は実施例1〜3および実施例4と比べて充放電サイクル特性が大きく低下しているが、これは正極活物質がセパレータと直接接しているため、セパレータの成分であるポリプロピレンが酸化劣化したためと考えられる。   In Comparative Example 1, the charge / discharge cycle characteristics are greatly deteriorated as compared with Examples 1 to 3 and Example 4. This is because the positive electrode active material is in direct contact with the separator, so that polypropylene which is a component of the separator is used. This is thought to be due to oxidative degradation.

また、実施例5〜8によれば含フッ素系樹脂層としてFEP樹脂層を設けてもPTFE樹脂層と同様の効果が得られることがわかった。   Moreover, according to Examples 5-8, even if it provided the FEP resin layer as a fluorine-containing resin layer, it turned out that the effect similar to a PTFE resin layer is acquired.

また、実施例9〜16によれば正極活物質にLiNi1/3Co1/3Mn1/3を用いてもLiCoOを用いた場合と同様の効果が得られることがわかった。 Further, it was found that the same effect as when using the even LiCoO 2 using LiNi 1/3 Co 1/3 Mn 1/3 O 2 in the positive electrode active material according to Examples 9 to 16 is obtained.

以上の結果から、帯状の正極板と負極板とをセパレータを介して積層または捲回してなる極板群と、非水電解液を備えた非水電解液二次電池であって、セパレータに対向する正極板の表面に含フッ素系樹脂層を設けることにより、高温下で長時間保存した場合や高温下で充放電サイクルを繰り返した場合において炭酸ガスの発生を抑制し、高温保存特性および高温下の充放電サイクル特性に優れた非水電解液二次電池が得られることがわかった。   From the above results, a non-aqueous electrolyte secondary battery comprising a group of electrode plates formed by laminating or winding a strip-like positive electrode plate and a negative electrode plate via a separator, and a non-aqueous electrolyte solution, facing the separator By providing a fluorine-containing resin layer on the surface of the positive electrode plate, the generation of carbon dioxide gas is suppressed when stored for a long time at high temperatures or when charge / discharge cycles are repeated at high temperatures. It was found that a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics was obtained.

なお、本実施例において、円筒形リチウム二次電池を用いて評価を行った結果について説明したが、角形、コイン形、ボタン形、及びラミネート形など電池形状が異なっても同様の効果が得られる。   In this example, the results of evaluation using a cylindrical lithium secondary battery were described. However, the same effect can be obtained even if the battery shape is different, such as a square shape, a coin shape, a button shape, and a laminate shape. .

また、本実施例において、定格容量が500mAhの円筒形リチウム二次電池について説明したが、500mAh以外の容量の非水電解液二次電池を用いても良い。   In this embodiment, the cylindrical lithium secondary battery having a rated capacity of 500 mAh has been described. However, a nonaqueous electrolyte secondary battery having a capacity other than 500 mAh may be used.

また、本実施例において、正極活物質としてLiCoO及びLiNi1/3Co1/3Mn1/3について説明したが、これらの正極活物質に限定されるものではない。 In this example, LiCoO 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 have been described as the positive electrode active material. However, the present invention is not limited to these positive electrode active materials.

また、本実施例において、リチウムと可逆的に反応する負極材料として、コークスを用いたが、黒鉛系、非晶質系等の炭素材料あるいはその混合体、シリサイドなどの金属酸化物あるいはその混合体を用いても良い。   In this example, coke was used as a negative electrode material that reversibly reacts with lithium. However, carbon materials such as graphite and amorphous materials or mixtures thereof, metal oxides such as silicide, or mixtures thereof were used. May be used.

また、本実施例において、セパレータとしてポリプロピレン樹脂製の多孔膜を用いて評価を行ったが、ポリエチレンなどの有機微多孔膜あるいは、無機微多孔膜を用いても良い。   In this example, evaluation was performed using a porous film made of polypropylene resin as a separator, but an organic microporous film such as polyethylene or an inorganic microporous film may be used.

また、本実施例において、非水電解液としてECとDECの1:1(容積比)混合溶媒を用いたが、他の非水溶媒として、例えば、プロピレンカーボネート(PC)などの環状
エステル、テトラヒドロフラン(THF)などの環状エーテル、ジメトキシエタン(DME)などの鎖状エーテル、プロピオン酸メチル(MP)などの鎖状エステルなどの非水溶媒や、これら多元系混合溶媒を用いても良い。
Further, in this example, a 1: 1 (volume ratio) mixed solvent of EC and DEC was used as the non-aqueous electrolyte, but as other non-aqueous solvents, for example, cyclic esters such as propylene carbonate (PC), tetrahydrofuran, etc. Nonaqueous solvents such as cyclic ethers such as (THF), chain ethers such as dimethoxyethane (DME), chain esters such as methyl propionate (MP), and these multicomponent mixed solvents may be used.

また、本実施例において、電解質塩としてLiPFを用いたが、他のリチウム塩として、例えば、過塩素酸リチウム(LiClO)、四フッ化ホウ酸リチウム(LiBF)等でも良い。また、電解質塩の濃度を1.0mol/Lとしたが、塩濃度を0.5〜2.0mol/Lのものを用いても良い。 In this example, LiPF 6 was used as the electrolyte salt, but other lithium salts may be lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), or the like. Moreover, although the density | concentration of electrolyte salt was 1.0 mol / L, you may use a salt density | concentration of 0.5-2.0 mol / L.

また、非水電解液二次電池として、リチウム二次電池について説明したが、リチウム二次電池以外のマグネシウム二次電池などの非水電解液二次電池においても、同様の効果が得られるものである。   Moreover, although the lithium secondary battery has been described as the nonaqueous electrolyte secondary battery, the same effect can be obtained in a nonaqueous electrolyte secondary battery such as a magnesium secondary battery other than the lithium secondary battery. is there.

本発明による非水電解液二次電池は、高温保存特性や高温下の充放電サイクル特性に優れたポータブル電気機器用電源等として有用であり、自動車用の駆動電源やエレベータ等の住宅設備などの駆動用電源としても有用である。   The non-aqueous electrolyte secondary battery according to the present invention is useful as a power source for portable electric equipment having excellent high-temperature storage characteristics and charge / discharge cycle characteristics at high temperatures, and is used as a driving power source for automobiles and residential equipment such as elevators. It is also useful as a driving power source.

本発明の実施例における円筒形リチウム二次電池の概略縦断面図Schematic longitudinal sectional view of a cylindrical lithium secondary battery in an embodiment of the present invention

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a 正極リード
6 負極板
6a 負極リード
7 セパレータ
8 絶縁リング
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulation ring

Claims (3)

帯状の正極板と負極板とをセパレータを介して積層または捲回してなる極板群と、非水電解液を備えた非水電解液二次電池であって、前記セパレータに対向する正極板の表面に正極板からの炭酸ガスの発生を抑制する含フッ素系樹脂層を設けたことを特徴とする非水電解液二次電池。   A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution comprising a group of electrode plates formed by laminating or winding a strip-shaped positive electrode plate and a negative electrode plate with a separator interposed therebetween, and a positive electrode plate facing the separator A non-aqueous electrolyte secondary battery comprising a fluorine-containing resin layer for suppressing generation of carbon dioxide gas from a positive electrode plate on a surface. 前記含フッ素系樹脂層の厚みを0.1μmから1.0μmとしたことを特徴とする請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the thickness of the fluorine-containing resin layer is 0.1 μm to 1.0 μm. 前記正極板の正極活物質として、一般式LiNi1−y(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、及びAlから選ばれる少なくとも1種類を含む、y:0≦y≦1.0)で表されるリチウム複合酸化物としたことを特徴とする請求項1に記載の非水電解液二次電池。 As a positive electrode active material of the positive electrode plate, a general formula Li x Ni y M 1-y O 2 (x: 0.95 ≦ x ≦ 1.10, M is selected from Co, Mn, Cr, Fe, Mg, and Al) 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a lithium composite oxide represented by y: 0 ≦ y ≦ 1.0) is included.
JP2007055590A 2007-03-06 2007-03-06 Nonaqueous electrolyte secondary battery Pending JP2008218268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055590A JP2008218268A (en) 2007-03-06 2007-03-06 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055590A JP2008218268A (en) 2007-03-06 2007-03-06 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008218268A true JP2008218268A (en) 2008-09-18

Family

ID=39838058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055590A Pending JP2008218268A (en) 2007-03-06 2007-03-06 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008218268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015060803A (en) * 2013-09-20 2015-03-30 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015060803A (en) * 2013-09-20 2015-03-30 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4637592B2 (en) Cathode active material for lithium secondary battery and lithium secondary battery using the same
JP4245532B2 (en) Nonaqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2005100770A (en) Nonaqueous electrolytic solution battery
JP2006286599A (en) Anode for nonaqueous secondary battery
JP5622525B2 (en) Lithium ion secondary battery
JP2008243810A (en) Nonaqueous electrolyte secondary battery
JP2007265731A (en) Lithium ion secondary battery
JP2008084705A (en) Nonaqueous electrolyte secondary battery
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
JP2008234855A (en) Nonaqueous electrolyte secondary battery
KR20180044285A (en) POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
JP6697377B2 (en) Lithium ion secondary battery
JP2013114848A (en) Lithium ion secondary battery and method for manufacturing the same
JP2013191390A (en) Lithium ion secondary battery
JP2014022335A (en) Electrolyte for nonaqueous electricity storage device
JP2007335318A (en) Nonaqueous electrolyte secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery
JP2013114847A (en) Lithium ion secondary batty and method for manufacturing the same
JP4857608B2 (en) Lithium secondary battery and manufacturing method thereof
JP2007220455A (en) Nonaqueous electrolyte secondary battery
JP5036204B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
WO2016171276A1 (en) Lithium ion cell
US20220006069A1 (en) Secondary battery
JP2010135115A (en) Nonaqueous electrolyte secondary battery