JP2008216184A - Crack progress prediction method - Google Patents

Crack progress prediction method Download PDF

Info

Publication number
JP2008216184A
JP2008216184A JP2007057202A JP2007057202A JP2008216184A JP 2008216184 A JP2008216184 A JP 2008216184A JP 2007057202 A JP2007057202 A JP 2007057202A JP 2007057202 A JP2007057202 A JP 2007057202A JP 2008216184 A JP2008216184 A JP 2008216184A
Authority
JP
Japan
Prior art keywords
crack
stress
progress
virtual
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057202A
Other languages
Japanese (ja)
Other versions
JP4830916B2 (en
Inventor
Yoichi Yamashita
洋一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007057202A priority Critical patent/JP4830916B2/en
Publication of JP2008216184A publication Critical patent/JP2008216184A/en
Application granted granted Critical
Publication of JP4830916B2 publication Critical patent/JP4830916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a crack progress prediction method for accurately predicting progress of cracks generated in a structure, and reducing the processing time. <P>SOLUTION: The method for predicting the progress in the crack C generated in a plate structure M(A) under a predetermined load condition includes a first process of obtaining a stress state under the predetermined load condition, while the crack C is not present in the plate structure M(A); a second process of obtaining stress intensity factors in an opening mode and an in-plane shearing mode at a leading end C1 based on the stress state obtained in the first process, while a virtual crack D for linearly connecting a tail end C0 and the leading end C1 of the crack C is present in the plate structure M(A); and a third process of obtaining the direction for maximizing a circumferential stress at the leading end C1, based on the stress intensity factors obtained in the second process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、構造物に発生した亀裂の進展を予想することが可能な亀裂進展予想方法に関する。   The present invention relates to a crack growth prediction method capable of predicting the growth of a crack generated in a structure.

例えば、ボイラ設備等の配管に亀裂が検出された場合には、被害発生を防止するために、この亀裂の進展を予想して最適な措置を施すようにしている。亀裂の進展を予想する方法としては、コンピュータにより有限要素法解析(FEM解析)を繰り返し行う方法が提案されている。
具体的には、非特許文献1に開示されるように、亀裂を有する構造物を3次元モデル化して有限要素法解析により応力拡大係数KI,KIIを求めて、亀裂進展方向を予想する。そして、その結果に基づいて、亀裂が進展した新たな3次元モデルを設定し、再度有限要素法解析により新たな応力拡大係数KI,KIIを求めて、亀裂進展方向を予想する。
なお、応力拡大係数KI,KIIは、それぞれ、開口モードの破壊力学パラメータ、面内せん断モードの破壊力学パラメータを意味する。
そして、このような解析作業を繰り返し行うことで、亀裂の進展(進展経路)を段階的に求める。
混合モード疲労き裂の評価に関する研究、菊池・片桐、日本機械学会、材料力学部門講演会講演論文集、No.01-16(20010719) pp.451-452
For example, when a crack is detected in a pipe of a boiler facility or the like, an optimal measure is taken in anticipation of the progress of the crack in order to prevent the occurrence of damage. As a method for predicting the progress of a crack, a method in which a finite element method analysis (FEM analysis) is repeatedly performed by a computer has been proposed.
Specifically, as disclosed in Non-Patent Document 1, a structure having a crack is three-dimensionally modeled, stress intensity factors KI and KII are obtained by finite element analysis, and the crack propagation direction is predicted. Then, based on the result, a new three-dimensional model in which the crack has progressed is set, and new stress intensity factors KI and KII are obtained again by the finite element method analysis to predict the crack propagation direction.
The stress intensity factors KI and KII mean opening mode fracture mechanics parameters and in-plane shear mode fracture mechanics parameters, respectively.
Then, by repeating such analysis work, the progress (cracking path) of the crack is obtained step by step.
Study on evaluation of mixed mode fatigue cracks, Kikuchi and Katagiri, Proceedings of the Japan Society of Mechanical Engineers, Materials Mechanics Division, No.01-16 (20010719) pp.451-452

従来の技術では、亀裂の進展を予想するまでに、3次元モデルの作成、メッシュ生成、演算(有限要素解析)処理を、複数回繰り返す必要がある。しかし、これらの処理には、多くの労力と作業時間を要するという問題がある。
このため、有限要素法解析を用いた亀裂進展予想の効率化、すなわち、作業労力・作業時間の短縮化が要請されている。
In the conventional technique, it is necessary to repeat the creation of a three-dimensional model, generation of a mesh, and calculation (finite element analysis) a plurality of times before the progress of a crack is predicted. However, these processes have a problem that much labor and work time are required.
For this reason, there is a demand for efficient crack propagation prediction using finite element analysis, that is, shortening work labor and time.

本発明は、上述した事情に鑑みてなされたもので、構造物に発生した亀裂の進展を高い精度で予想でき、また、処理時間の短縮化を図ることができる亀裂進展予想方法を提案することを目的とする。   The present invention has been made in view of the above-described circumstances, and proposes a crack progress prediction method that can predict the progress of a crack generated in a structure with high accuracy and that can shorten the processing time. With the goal.

本発明に係る亀裂進展予想方法では、上記課題を解決するために以下の手段を採用した。
第一の発明は、所定負荷条件下における平板形構造体に発生した亀裂の進展を予想する方法であって、前記平板形構造体に前記亀裂が存在しない状態において、前記所定負荷条件下の応力状態を求める第一工程と、前記平板形構造体に前記亀裂の末端位置と先端位置を直線で結んだ仮想亀裂が存在する状態において、第一工程で求めた応力状態に基づいて前記先端位置における開口モード及び面内せん断モードの応力拡大係数を求める第二工程と、第二工程で求めた応力拡大係数に基づいて前記先端位置における周方向応力が最大となる方向を求める第三工程と、を有することを特徴とする。
The crack propagation prediction method according to the present invention employs the following means in order to solve the above problems.
A first invention is a method for predicting the progress of a crack generated in a flat plate structure under a predetermined load condition, and in a state where the crack does not exist in the flat plate structure, the stress under the predetermined load condition is In a state where a first step for obtaining a state and a virtual crack in which the end position and the tip position of the crack are connected by a straight line exist in the flat plate structure, the tip position is determined based on the stress state obtained in the first step. A second step for obtaining a stress intensity factor for the opening mode and the in-plane shear mode; and a third step for obtaining a direction in which the circumferential stress at the tip position is maximized based on the stress intensity factor obtained in the second step. It is characterized by having.

また、前記平板形構造体に前記末端位置と第三工程で求めた方向にある第二先端位置とを直線で結んだ第二仮想亀裂が存在する状態において、第一工程で求めた応力状態に基づいて前記第二先端位置における開口モード及び面内せん断モードの応力拡大係数を求める第四工程と、第四工程で求めた応力拡大係数に基づいて前記第二先端位置における周方向応力が最大となる方向を求める第五工程と、を有することを特徴とする。   Further, in the state where there is a second virtual crack connecting the end position and the second tip position in the direction obtained in the third step with a straight line in the flat plate structure, the stress state obtained in the first step is obtained. Based on the fourth step for obtaining the stress intensity factors of the opening mode and the in-plane shear mode at the second tip position, and based on the stress intensity factor obtained in the fourth step, the circumferential stress at the second tip position is maximum. And a fifth step for obtaining a direction.

また、第一工程においてのみ有限要素解析法を用いることを特徴とする。   Further, the finite element analysis method is used only in the first step.

第二の発明は、三次元形状の構造体に発生した亀裂の進展を予想する方法であって、前記亀裂の近傍を二次元モデル化し、該二次元化モデルに対して第一の発明に係る亀裂進展予想方法を適用することを特徴とする。   A second invention is a method for predicting the progress of a crack generated in a three-dimensionally shaped structure, wherein the vicinity of the crack is two-dimensionally modeled, and the two-dimensional model is related to the first invention. It is characterized by applying a crack growth prediction method.

本発明によれば以下の効果を得ることができる。
最初に一度だけFEM解析を行うのみで、その後は比較的簡単な計算のみにより亀裂Cの進展を予想することができる。しかも、FEM解析は、亀裂の存在しない単純な二次元モデルにおける応力解析であるので、時間と労力はあまり必要としない。
また、このような演算処理を繰り返し行うことで、容易かつ高精度に、亀裂Cの進展経路を予想することもできる。
したがって、例えば、配管等の三次元形状の構造体に発生した亀裂の進展を容易かつ高精度に予想することができる。
According to the present invention, the following effects can be obtained.
The FEM analysis is performed only once at the beginning, and thereafter, the progress of the crack C can be predicted only by relatively simple calculation. In addition, since the FEM analysis is a stress analysis in a simple two-dimensional model in which no crack exists, it does not require much time and labor.
In addition, by repeatedly performing such calculation processing, the propagation path of the crack C can be predicted easily and with high accuracy.
Therefore, for example, the progress of a crack generated in a three-dimensional structure such as a pipe can be predicted easily and with high accuracy.

図1は、構造体Aに発生した亀裂Cを示す図であって、(a)は全体図、(b)亀裂先端の拡大図である。
以下、本発明に係る亀裂進展予想方法の実施形態について図面を参照して説明する。
例えば、ボイラ設備の配管等のような三次元形状を有する構造体Aの一部に、亀裂Cが発生した場合には、この亀裂Cの進展(進展経路)を予想して、構造体Aの損傷拡大(配管からの液体の漏れ)等が生じないように、亀裂Cが進展する前に最適な対策を講ずる必要がある。
そこで、構造体Aにおける亀裂Cの発生箇所近傍の応力状態(応力分布)を、有限要素法(FEM:Finite Element Method)を用いて解析して、亀裂Cの進展(進展経路)を予想する。
1A and 1B are diagrams showing a crack C generated in a structure A, where FIG. 1A is an overall view and FIG. 1B is an enlarged view of a crack tip.
Hereinafter, an embodiment of a crack growth prediction method according to the present invention will be described with reference to the drawings.
For example, when a crack C occurs in a part of the structure A having a three-dimensional shape such as piping of a boiler facility, the progress (progress path) of the crack C is predicted and the structure A It is necessary to take an optimum measure before the crack C progresses so that damage expansion (liquid leakage from the pipe) does not occur.
Therefore, the stress state (stress distribution) in the vicinity of the occurrence of the crack C in the structure A is analyzed using a finite element method (FEM) to predict the progress (progress path) of the crack C.

〔第一工程〕
まず、汎用FEM解析ソフトにおいて、亀裂Cが存在しない状態の構造体Aの二次元モデルMを作成する。つまり、亀裂Cのない平板形モデルを作成する。
そして、この二次元モデルMに対してFEM解析を行って、応力状態(応力分布)を求める。この際の負荷条件は、構造体Aの亀裂Cの近傍に、実際に作用している負荷と同一の条件である。
なお、汎用FEM解析ソフトとしては、例えば、ANSYS(登録商標)、ABAQUS(登録商標)等を用いることができる。
[First step]
First, in the general-purpose FEM analysis software, a two-dimensional model M of the structure A in a state where no crack C exists is created. That is, a flat plate model without cracks C is created.
Then, an FEM analysis is performed on the two-dimensional model M to obtain a stress state (stress distribution). The load condition at this time is the same condition as the load actually acting in the vicinity of the crack C of the structure A.
As general-purpose FEM analysis software, for example, ANSYS (registered trademark), ABAQUS (registered trademark), or the like can be used.

〔第二工程〕
次に、亀裂Cの先端C1における応力拡大係数KI,KIIを、下記式(1)〜式(3)を用いて求める。
この際、実際に発生した亀裂Cではなく、亀裂Cの末端C0と先端C1を直線で結んだ形状の仮想亀裂Dについて、応力拡大係数KI,KIIを求める。
[Second step]
Next, the stress intensity factors KI and KII at the tip C1 of the crack C are obtained using the following formulas (1) to (3).
At this time, the stress intensity factors KI and KII are obtained for the virtual crack D having a shape in which the end C0 and the tip C1 of the crack C are connected by a straight line, not the actually generated crack C.

Figure 2008216184
Figure 2008216184

亀裂Cの場合には、その形状が複雑であるため、応力拡大係数KI,KIIを求めるには、FEM解析を行う必要がある。
一方、直線形の仮想亀裂Dの場合には、上記式(1)〜式(2)により、応力拡大係数KI(σ1),KII(τ1)を容易に求めることができる。
なお、仮想亀裂Dの先端C1に作用する応力(σ、τ)としては、第一工程で求めた応力状態(応力分布)からモールの応力円により仮想亀裂Dに垂直な応力σ(Iモード)と、仮想亀裂Dに沿ったせん断力τ(IIモード)を求めて、これを使用する。
In the case of the crack C, since the shape thereof is complicated, it is necessary to perform FEM analysis to obtain the stress intensity factors KI and KII.
On the other hand, in the case of the linear virtual crack D, the stress intensity factors KI (σ1) and KII (τ1) can be easily obtained by the above formulas (1) to (2).
The stress (σ, τ) acting on the tip C1 of the virtual crack D is a stress σ (I mode) perpendicular to the virtual crack D by the Mole's stress circle from the stress state (stress distribution) obtained in the first step. Then, the shearing force τ (II mode) along the virtual crack D is obtained and used.

〔第三工程〕
次に、応力拡大係数KI,KIIを下記式(4),式(5)に入力して、仮想亀裂Dの先端C1に作用する周方向応力(σθ)が最大となる方向(θmax)を求める。
[Third step]
Next, the stress intensity factors KI and KII are input to the following formulas (4) and (5), and the direction (θmax) in which the circumferential stress (σθ) acting on the tip C1 of the virtual crack D is maximized is obtained. .

Figure 2008216184
Figure 2008216184

そして、上記式(5)により求めた方向(角度:θmax)が、仮想亀裂Dの進展方向と推定される(非特許文献1参照)。そして、後述するが、実際に発生した亀裂Cの進展方向(進展経路)は、仮想亀裂Dの進展方向と略一致する。
このように、実際に発生した亀裂Cではなく、亀裂Cの末端C0と先端C1を直線で結んだ形状の仮想亀裂Dを用いることで、時間と労力を要するFEM解析を行うことなく、応力拡大係数KI,KIIを簡単かつ迅速に求めることができる。
And the direction (angle: (theta) max) calculated | required by the said Formula (5) is estimated as the propagation direction of the virtual crack D (refer nonpatent literature 1). As will be described later, the progress direction (development path) of the actually generated crack C substantially coincides with the progress direction of the virtual crack D.
In this way, by using the virtual crack D in which the end C0 and the tip C1 of the crack C are connected by a straight line instead of the actually generated crack C, stress expansion can be performed without performing time-consuming and labor-intensive FEM analysis. The coefficients KI and KII can be obtained easily and quickly.

〔第四工程〕
図2は、仮想亀裂D,D2を示す図である。
次に、仮想亀裂D(実際に発生した亀裂C)の進展方向であって先端C1から任意の距離だけ離れた位置を新たな先端C2と想定して新たな仮想亀裂D2を設定する。すなわち、亀裂Cの末端C0と、新たな先端C2を直線で結んだ形状の亀裂を仮想亀裂D2とする。
そして、この仮想亀裂D2について、再び、応力拡大係数KI,KIIを求める。この際、任意の距離を小さい値に設定するほど一般的には解析精度が高まるが、解析結果に誤差が生じない程度であれば、計算負荷や演算時間に及ぼす影響を最小限に抑えるために、必要以上の小さな値を設定しなくてもよい。
[Fourth process]
FIG. 2 is a diagram showing virtual cracks D and D2.
Next, a new virtual crack D2 is set assuming that the virtual crack D (actually generated crack C) is in the progressing direction and separated from the tip C1 by an arbitrary distance as a new tip C2. That is, a crack having a shape obtained by connecting the end C0 of the crack C and a new tip C2 with a straight line is defined as a virtual crack D2.
Then, the stress intensity factors KI and KII are obtained again for the virtual crack D2. At this time, analysis accuracy generally increases as an arbitrary distance is set to a smaller value. However, if there is no error in the analysis result, in order to minimize the influence on the calculation load and operation time. It is not necessary to set a smaller value than necessary.

応力拡大係数KI,KIIは、上述した式(1)〜式(3)を用いて求める。
この際、仮想亀裂D2の先端C2に作用する応力(σ、τ)は、第一工程で求めた応力状態(応力分布)からモールの応力円により仮想亀裂D2に垂直な応力(Iモード)と、仮想亀裂Dに沿ったせん断力τ(IIモード)を求めて、これを使用する。
The stress intensity factors KI and KII are obtained using the above-described equations (1) to (3).
At this time, the stress (σ, τ) acting on the tip C2 of the virtual crack D2 is the stress (I mode) perpendicular to the virtual crack D2 by the Mole's stress circle from the stress state (stress distribution) obtained in the first step. The shearing force τ (II mode) along the virtual crack D is obtained and used.

〔第五工程〕
そして、第四工程において求めた応力拡大係数KI,KIIを、上述した式(4),式(5)に入力して、仮想亀裂D2の先端C2に作用する周方向応力(σθ)が最大となる方向(θmax)、すなわち、仮想亀裂D2(実際に発生した亀裂C)の進展方向を求める。
[Fifth process]
Then, the stress intensity factors KI and KII obtained in the fourth step are input to the above-described equations (4) and (5), and the circumferential stress (σθ) acting on the tip C2 of the virtual crack D2 is maximized. Direction (θmax), that is, the propagation direction of the virtual crack D2 (the crack C actually generated) is obtained.

このように、上記式(1)〜式(5)に対して、第一工程で求めた応力状態(応力分布)の結果を入力するだけで、簡単かつ迅速に新たに想定した仮想亀裂D2の進展方向を求めることができる。   Thus, simply inputting the result of the stress state (stress distribution) obtained in the first step to the above formulas (1) to (5), the virtual crack D2 newly newly assumed simply and quickly. The direction of progress can be determined.

〔第六工程〕
そして、上述した第四工程及び第五工程を、複数回繰り返す。すなわち、仮想亀裂D2の進展方向であって先端C2から任意の距離だけ離れた位置を新たな先端C3とし、亀裂Cの末端C0と新たな先端C3を直線で結んだ形状の仮想亀裂D3を想定する。次いで、仮想亀裂D3について、応力拡大係数KI,KII、更には、仮想亀裂D3(実際に発生した亀裂C)の進展方向(θmax)を求める。
更に、仮想亀裂D4,D5,…Dnについて、その進展方向(θmax)を求める。
[Sixth step]
And the 4th process and the 5th process which were mentioned above are repeated in multiple times. That is, a virtual crack D3 having a shape in which the virtual crack D2 is in the direction of progress and is located at an arbitrary distance from the tip C2 as a new tip C3 and the end C0 of the crack C and the new tip C3 are connected by a straight line is assumed. To do. Next, regarding the virtual crack D3, the stress intensity factors KI and KII, and further the propagation direction (θmax) of the virtual crack D3 (actually generated crack C) are obtained.
Further, the propagation direction (θmax) of the virtual cracks D4, D5,.

図3は、仮想亀裂Dnを示す図である。
以上のようにして、仮想亀裂D〜Dnの進展方向(θmax)を順次求めていく。そして、仮想亀裂D〜Dnの先端C1〜Cnを順々に結んだ線L(図3の破線)が、実際に発生した亀裂Cの進展経路の予想線となる。
このように、時間と労力を要するFEM解析は、最初に一度だけ(しかも、亀裂の存在しない単純な二次元モデルの応力解析)行うのみで、その後は、比較的簡単な計算のみにより亀裂Cの進展経路を予想することができる。
FIG. 3 is a diagram showing a virtual crack Dn.
As described above, the propagation directions (θmax) of the virtual cracks D to Dn are sequentially obtained. And the line L (dashed line of FIG. 3) which connected the front-end | tips C1-Cn of the virtual cracks D-Dn in order becomes an expected line of the propagation path | route of the crack C which generate | occur | produced actually.
In this way, time-consuming and labor-intensive FEM analysis is performed only once (and stress analysis of a simple two-dimensional model having no cracks), and thereafter, the crack C is analyzed only by relatively simple calculations. The path of progress can be predicted.

次に、上述した亀裂進展予想方法の精度を検証した結果について説明する。
図4〜図7は、代表的な応力状態における亀裂進展予想の検証結果を示す図である。なお、図4(a)は亀裂CがX方向に対して15°傾いている場合、図4(b)は30°傾いている場合、図(c)は45°傾いている場合の検証結果を示す。
図4に示すように、二軸応力場(σx=2σ、σy=σ)の場合には、上述した方法により求めた亀裂Cの進展経路予想線Lは、従来から使用されている簡易法による進展経路予想線Pよりも、高精度に予想することができる。また、FEMを繰り返し行う方法による進展経路予想線Qと比べると、略同一精度で亀裂Cの進展経路を予想することができる(なお、簡易法及びFEMを繰り返し行う方法については、非特許文献1参照)。
Next, the result of verifying the accuracy of the crack growth prediction method described above will be described.
4-7 is a figure which shows the verification result of the crack growth prediction in a typical stress state. 4A shows a verification result when the crack C is inclined by 15 ° with respect to the X direction, FIG. 4B shows a verification result when the inclination is 30 °, and FIG. 4C shows a verification result when the crack C is inclined by 45 °. Indicates.
As shown in FIG. 4, in the case of a biaxial stress field (σx = 2σ, σy = σ), the predicted path L of the crack C obtained by the above-described method is based on the conventional simple method. It can be predicted with higher accuracy than the progress path prediction line P. In addition, compared with the predicted propagation path Q by the method of repeatedly performing FEM, the propagation path of the crack C can be predicted with substantially the same accuracy (Note that the non-patent document 1 describes the simplified method and the method of repeatedly performing FEM. reference).

図5は、一軸応力場(σx=σ、σy=0)の場合であって、図5(a)は亀裂CがX方向に対して30°傾いている場合、図(b)は60°傾いている場合の検証結果を示す。
図5(a),(b)のいずれの場合にも、上述した亀裂進展予想方法は、簡易法よりも高い精度で、また、FEMを繰り返し行う方法と略同一精度で、亀裂Cの進展を求めることができる。
FIG. 5 shows a case of a uniaxial stress field (σx = σ, σy = 0). FIG. 5A shows a case where the crack C is inclined by 30 ° with respect to the X direction, and FIG. The verification result when tilted is shown.
In both cases of FIGS. 5A and 5B, the above-described crack growth prediction method is more accurate than the simple method, and the crack C is propagated with substantially the same accuracy as the method of repeatedly performing FEM. Can be sought.

図6は、せん断応力場の場合であって、(a)はσ1=σ、σ2=−σ、τxy=σの場合、(b)はσ1=−σ、σ2=σ、τxy=−σの場合である。
また、図7は、一軸応力場において亀裂CがX方向に対して45°又は135°傾いている場合であって、(a)はσx=σ、σy=0、45°斜め亀裂の場合、(b)はσx=0、σy=σ、45°斜め亀裂の場合、(c)はσx=σ、σy=0、135°斜め亀裂の場合、(d)はσx=0、σy=σ、135°斜め亀裂の場合を示す。
このように、せん断応力場(τxy=σ)の場合にも、上述した亀裂進展予想方法によれば、従来の方法に比べて少ない労力と処理時間で、亀裂Cの進展経路を予想することができる。同様に、一軸応力場においても、上述した亀裂進展予想方法によれば、従来の方法に比べて少ない労力と処理時間で、亀裂Cの進展経路を予想することができる。
FIG. 6 shows a case of a shear stress field, where (a) is σ1 = σ, σ2 = −σ, τxy = σ, and (b) is σ1 = −σ, σ2 = σ, τxy = −σ. Is the case.
FIG. 7 shows a case where the crack C is inclined 45 ° or 135 ° with respect to the X direction in a uniaxial stress field, and (a) is a case where σx = σ, σy = 0, 45 ° oblique crack, (B) is σx = 0, σy = σ, 45 ° oblique crack, (c) is σx = σ, σy = 0, 135 ° oblique crack, (d) is σx = 0, σy = σ, The case of a 135 ° oblique crack is shown.
As described above, even in the case of the shear stress field (τxy = σ), according to the crack propagation prediction method described above, the propagation path of the crack C can be predicted with less labor and processing time compared with the conventional method. it can. Similarly, even in a uniaxial stress field, according to the crack propagation prediction method described above, the propagation path of the crack C can be predicted with less labor and processing time compared to the conventional method.

図8は、ボイラ設備の過熱器の配管に亀裂が発生した場合を示す図である。
ボイラ設備の過熱器の配管Bは、その内部に蒸気が流れている。この配管Bには、曲げや捻りが繰り返し加わっている。
配管Bのフィン溶接部に亀裂Cが発生した場合には、この亀裂Cの進展経路を上述の進展経路予想方法により求めることができる。
FIG. 8 is a diagram illustrating a case where a crack occurs in the piping of the superheater of the boiler facility.
Steam is flowing through the pipe B of the superheater of the boiler facility. This pipe B is repeatedly subjected to bending and twisting.
When a crack C occurs in the fin welded portion of the pipe B, the progress path of the crack C can be obtained by the above-described progress path prediction method.

図9は、配管Bのフィン溶接部の上下の面にそれぞれ2つの亀裂Cが発生した場合であって、配管Bには曲げのみが作用しているとして計算を行った。なお、図9(a)は亀裂Cの初期長さが2.0mmの場合であり、図9(b)は亀裂Cの初期長さが0.3mmの場合である。
いずれの場合にも、全ての亀裂Cが配管Bの内部に向かって進展することが予想される。そして、亀裂Cが管内部に達する(貫通する)と、配管B内を流れる蒸気が噴出する危険があるので、早急に対策を講じる必要があると判断することが可能となる。
FIG. 9 shows a case where two cracks C are generated on the upper and lower surfaces of the fin welded portion of the pipe B, and the calculation is performed assuming that only bending acts on the pipe B. 9A shows the case where the initial length of the crack C is 2.0 mm, and FIG. 9B shows the case where the initial length of the crack C is 0.3 mm.
In any case, it is expected that all the cracks C progress toward the inside of the pipe B. When the crack C reaches the inside of the pipe (penetrates), there is a risk that the steam flowing in the pipe B is ejected, so that it is possible to determine that it is necessary to take measures immediately.

図10は、配管Bのフィン溶接部の上下の面にそれぞれ2つの亀裂Cが発生した場合であって、配管Bには捻りのみが作用しているとして計算した。なお、図10(a)は亀裂Cの初期長さが2.0mmの場合であり、図10(b)は亀裂Cの初期長さが0.3mmの場合である。
この場合には、配管Bの上面側に発生した亀裂Cのみが進展する。その一方で、下面側に発生した亀裂Cは殆ど進展せず、管内部に達する(貫通する)虞は殆どない。したがって、上面側に発生した亀裂Cに対してのみ、対策を講じる必要があると判断することが可能となる。
FIG. 10 shows a case where two cracks C are generated on the upper and lower surfaces of the fin welded portion of the pipe B, and the calculation is performed assuming that only the twist acts on the pipe B. 10A shows the case where the initial length of the crack C is 2.0 mm, and FIG. 10B shows the case where the initial length of the crack C is 0.3 mm.
In this case, only the crack C generated on the upper surface side of the pipe B develops. On the other hand, the crack C generated on the lower surface side hardly progresses and there is almost no possibility of reaching (penetrating) the inside of the pipe. Therefore, it is possible to determine that it is necessary to take measures only for the crack C generated on the upper surface side.

以上、本発明に係る亀裂進展予想方法によれば、最初に一度だけFEM解析を行うのみで、その後は比較的簡単な計算のみにより亀裂Cの進展方向を予想することができる。しかも、FEM解析は、亀裂の存在しない単純な二次元モデルにおける応力解析であるので、時間と労力はあまり必要としない。
そして、このような演算処理を繰り返し行うことで、容易かつ高精度に、亀裂Cの進展経路を予想することもできる。
したがって、例えば、配管等の三次元形状の構造体に発生した亀裂の進展方向・進展経路を容易かつ高精度に予想することができる。
As described above, according to the crack propagation prediction method according to the present invention, it is possible to predict the progress direction of the crack C only by performing FEM analysis only once at a first time and then performing relatively simple calculations. In addition, since the FEM analysis is a stress analysis in a simple two-dimensional model in which no crack exists, it does not require much time and labor.
Then, by repeatedly performing such arithmetic processing, it is possible to predict the propagation path of the crack C easily and with high accuracy.
Therefore, for example, it is possible to easily and accurately predict the progress direction and progress path of a crack generated in a three-dimensional structure such as a pipe.

なお、上述した実施の形態において示した演算手順は、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   It should be noted that the calculation procedures shown in the above-described embodiments, or the shapes and combinations of the constituent members are examples, and can be variously changed based on design requirements and the like without departing from the gist of the present invention.

構造体Aに発生した亀裂Cを示す図である。3 is a diagram showing a crack C generated in a structure A. FIG. 仮想亀裂D,D2を示す図である。It is a figure which shows the virtual cracks D and D2. 仮想亀裂Dnを示す図である。It is a figure which shows the virtual crack Dn. 代表的な応力状態における亀裂進展予想の検証結果を示す図である。It is a figure which shows the verification result of the crack growth prediction in a typical stress state. 代表的な応力状態における亀裂進展予想の検証結果を示す図である。It is a figure which shows the verification result of the crack growth prediction in a typical stress state. 代表的な応力状態における亀裂進展予想の検証結果を示す図である。It is a figure which shows the verification result of the crack growth prediction in a typical stress state. 代表的な応力状態における亀裂進展予想の検証結果を示す図である。It is a figure which shows the verification result of the crack growth prediction in a typical stress state. ボイラ設備の過熱器の配管Bに亀裂Cが発生した場合を示す図である。It is a figure which shows the case where the crack C has generate | occur | produced in the piping B of the superheater of boiler equipment. 配管Bのフィン溶接部の上下の面にそれぞれ2つの亀裂Cが発生した場合である。This is a case where two cracks C occur on the upper and lower surfaces of the fin welded portion of the pipe B, respectively. 配管Bのフィン溶接部の上下の面にそれぞれ2つの亀裂Cが発生した場合である。This is a case where two cracks C occur on the upper and lower surfaces of the fin welded portion of the pipe B, respectively.

符号の説明Explanation of symbols

A…構造体
B…配管(構造体)
M…二次元モデル(平板形構造体)
C…亀裂
C0…末端(末端位置)
C1〜Cn…先端(先端位置)
D〜Dn…仮想亀裂
L…進展経路予想線
A ... Structure B ... Piping (structure)
M ... Two-dimensional model (flat plate structure)
C: Crack C0 ... Terminal (terminal position)
C1 to Cn ... tip (tip position)
D to Dn ... virtual crack L ... progress path prediction line

Claims (4)

所定負荷条件下における平板形構造体に発生した亀裂の進展を予想する方法であって、
前記平板形構造体に前記亀裂が存在しない状態において、前記所定負荷条件下の応力状態を求める第一工程と、
前記平板形構造体に前記亀裂の末端位置と先端位置を直線で結んだ仮想亀裂が存在する状態において、第一工程で求めた応力状態に基づいて前記先端位置における開口モード及び面内せん断モードの応力拡大係数を求める第二工程と、
第二工程で求めた応力拡大係数に基づいて前記先端位置における周方向応力が最大となる方向を求める第三工程と、
を有することを特徴とする亀裂進展予想方法。
A method for predicting the progress of a crack generated in a flat plate structure under a predetermined load condition,
In the state where the crack does not exist in the flat plate structure, a first step for obtaining a stress state under the predetermined load condition;
In a state where a virtual crack in which the end position and the tip position of the crack are connected by a straight line exists in the flat plate structure, the opening mode and the in-plane shear mode at the tip position are based on the stress state obtained in the first step. A second step for obtaining a stress intensity factor;
A third step for obtaining a direction in which the circumferential stress at the tip position is maximized based on the stress intensity factor obtained in the second step;
A crack propagation prediction method characterized by comprising:
前記平板形構造体に前記末端位置と第三工程で求めた方向にある第二先端位置とを直線で結んだ第二仮想亀裂が存在する状態において、第一工程で求めた応力状態に基づいて前記第二先端位置における開口モード及び面内せん断モードの応力拡大係数を求める第四工程と、
第四工程で求めた応力拡大係数に基づいて前記第二先端位置における周方向応力が最大となる方向を求める第五工程と、
を有することを特徴とする請求項1に記載の亀裂進展予想方法。
Based on the stress state obtained in the first step, in the state where the flat virtual structure has the second virtual crack connecting the end position and the second tip position in the direction obtained in the third step with a straight line. A fourth step of obtaining a stress intensity factor of an opening mode and an in-plane shear mode at the second tip position;
A fifth step for obtaining a direction in which the circumferential stress at the second tip position is maximized based on the stress intensity factor obtained in the fourth step;
The crack growth prediction method according to claim 1, wherein:
第一工程においてのみ有限要素解析法を用いることを特徴とする請求項1又は請求項2に記載の亀裂進展予想方法。   The crack growth prediction method according to claim 1 or 2, wherein the finite element analysis method is used only in the first step. 三次元形状の構造体に発生した亀裂の進展を予想する方法であって、
前記亀裂の近傍を二次元モデル化し、該二次元化モデルに対して請求項1から請求項3のうちいずれか一項に記載の方法を適用することを特徴とする亀裂進展予想方法。
A method for predicting the progress of a crack generated in a three-dimensional structure,
The crack growth prediction method characterized by making the neighborhood of the crack into a two-dimensional model, and applying the method according to any one of claims 1 to 3 to the two-dimensional model.
JP2007057202A 2007-03-07 2007-03-07 Crack growth prediction method Expired - Fee Related JP4830916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057202A JP4830916B2 (en) 2007-03-07 2007-03-07 Crack growth prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057202A JP4830916B2 (en) 2007-03-07 2007-03-07 Crack growth prediction method

Publications (2)

Publication Number Publication Date
JP2008216184A true JP2008216184A (en) 2008-09-18
JP4830916B2 JP4830916B2 (en) 2011-12-07

Family

ID=39836381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057202A Expired - Fee Related JP4830916B2 (en) 2007-03-07 2007-03-07 Crack growth prediction method

Country Status (1)

Country Link
JP (1) JP4830916B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095178A (en) * 2009-10-30 2011-05-12 Itochu Techno-Solutions Corp Method and program for analyzing crack development
JP2020201596A (en) * 2019-06-06 2020-12-17 日本製鉄株式会社 Calculation device, calculation method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442173B (en) * 2016-11-16 2019-01-15 西南石油大学 A kind of closure stress acts on the prediction technique of lower shearing crack aperture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571497A (en) * 1991-09-10 1993-03-23 Mitsubishi Electric Corp Impeller for multiblade fan
JP2001272318A (en) * 2000-03-28 2001-10-05 Nkk Corp Analysis system for three-dimensional automatic crack development
JP2004069638A (en) * 2002-08-09 2004-03-04 Kawasaki Heavy Ind Ltd Method for predicting crack development of elasto-plastic body and deformation predicting method
JP2006017602A (en) * 2004-07-02 2006-01-19 Topy Ind Ltd Prediction method for fatigue strength of structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571497A (en) * 1991-09-10 1993-03-23 Mitsubishi Electric Corp Impeller for multiblade fan
JP2001272318A (en) * 2000-03-28 2001-10-05 Nkk Corp Analysis system for three-dimensional automatic crack development
JP2004069638A (en) * 2002-08-09 2004-03-04 Kawasaki Heavy Ind Ltd Method for predicting crack development of elasto-plastic body and deformation predicting method
JP2006017602A (en) * 2004-07-02 2006-01-19 Topy Ind Ltd Prediction method for fatigue strength of structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095178A (en) * 2009-10-30 2011-05-12 Itochu Techno-Solutions Corp Method and program for analyzing crack development
JP2020201596A (en) * 2019-06-06 2020-12-17 日本製鉄株式会社 Calculation device, calculation method and program
JP7248895B2 (en) 2019-06-06 2023-03-30 日本製鉄株式会社 Calculation device, calculation method and program

Also Published As

Publication number Publication date
JP4830916B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
Branco et al. A review on 3D-FE adaptive remeshing techniques for crack growth modelling
Leonel et al. Multiple random crack propagation using a boundary element formulation
Yagi et al. Evaluation of crack propagation behaviors in a T-shaped tubular joint employing tetrahedral FE modeling
Dirik et al. Fatigue crack growth under variable amplitude loading through XFEM
JP4830916B2 (en) Crack growth prediction method
JP2008292206A (en) Crack propagation prediction method
Rombach et al. Numerical analysis of shear crack propagation in a concrete beam without transverse reinforcement
JP5099637B2 (en) Crack growth analysis method
US20050192784A1 (en) Method for analysis of cell structure, and cell structure
Lam et al. Finite element study of cracked steel circular tube repaired by FRP patching
Al-Mukhtar et al. A finite element calculation of stress intensity factors of cruciform and butt welded joints for some geometrical parameters
JP2008256474A (en) Method and system for estimating internal residual stress
JP2011027493A (en) Apparatus, method and program for destructive evaluation of piping
JP2012032333A (en) Method for evaluating generation of ductile crack and device for the same
Likeb et al. Stress intensity factor and limit load solutions for new pipe-ring specimen with axial cracks
CN111259575A (en) Finite element analysis design method for complex steel pipe node integral model
Grbović et al. Fatigue life assessment of the structure with widespread damage exposed to high temperature
Xiao et al. Correlation between fracture toughness and constraint of bi‐material interfaces with different mechanical mismatches
Lee et al. Application of XFEM to model stationary crack and crack propagation for pressure containing subsea equipment
Gallo et al. V-notched components under non-localized creeping condition: numerical evaluation of stresses and strains
JP2009121882A (en) Soundness verifying method of welded structure
Zhao et al. Assessment of creep interaction of double elliptical cracks at elevated temperatures using numerical analysis
JP2017151611A (en) Interfacial peeling/crack analysis device and interfacial peeling/crack analysis method
JP5409193B2 (en) Method for producing stress corrosion cracking specimen having residual stress and stress corrosion cracking testing method
Al-Mukhtar Fracture simulation of welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees