JP2008216122A - Surface property measuring device - Google Patents

Surface property measuring device Download PDF

Info

Publication number
JP2008216122A
JP2008216122A JP2007055712A JP2007055712A JP2008216122A JP 2008216122 A JP2008216122 A JP 2008216122A JP 2007055712 A JP2007055712 A JP 2007055712A JP 2007055712 A JP2007055712 A JP 2007055712A JP 2008216122 A JP2008216122 A JP 2008216122A
Authority
JP
Japan
Prior art keywords
axis
displacement
correction
correction data
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055712A
Other languages
Japanese (ja)
Inventor
Takeshi Yamamoto
武 山本
Kentaro Nemoto
賢太郎 根本
Masayoshi Yamagata
正意 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2007055712A priority Critical patent/JP2008216122A/en
Publication of JP2008216122A publication Critical patent/JP2008216122A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface property measuring device capable of avoiding reduction in straightness of a linear guide mechanism of a following probe and measuring accuracy caused by an installation error, without requiring highly accurate processing and assembling accuracy. <P>SOLUTION: This surface property measuring device has X, Y, Z axis driving mechanisms 3, 4 and 7, X, Y, Z axis displacement detectors 42, 43 and 44, the following probe 8, a straightness correction data storage part 33, and a correction arithmetic processing part 34. The following probe includes a sensor part 12, a driving actuator for displacing the sensor part in the Z axis direction, and a sensor part displacement detector 19 detecting a displacement quantity of the sensor part. The correction date storage part divides a moving range of the driving actuator into a plurality of sections, and stores a dislocation quantity in the respective axial directions in these respective divided sections as correction data. The correction arithmetic processing part determines to which divided sections a detecting value of the sensor part displacement detector belongs, and calculates a correction value by using the correction data on the corresponding divided section, and adds this value to the detecting value of respective axis displacement detectors. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面性状測定装置に関する。詳しくは、倣いプローブを用いて被測定物の形状や表面粗さなどの表面性状を測定する表面性状測定装置に関する。   The present invention relates to a surface texture measuring device. More specifically, the present invention relates to a surface property measuring apparatus that measures surface properties such as the shape and surface roughness of an object to be measured using a scanning probe.

倣いプローブを用いて被測定物の形状や表面粗さなどの表面性状を測定する表面性状測定装置として、粗さ測定機、輪郭測定機、三次元倣い測定機などが知られている。
例えば、三次元倣い測定機では、上下方向(Z軸方向)へ移動可能なZ軸スライダに、測定子がZ軸方向へ微小変位可能な倣いプローブを取り付け、この倣いプローブの測定子を被測定物に接触させ、このときの押し込み量(測定子のZ軸方向の押し込み量)が一定になるようにZ軸スライダを上下方向へ移動させながら、倣い測定を行う。
As surface texture measuring devices for measuring surface texture such as the shape and surface roughness of an object to be measured using a scanning probe, a roughness measuring machine, a contour measuring machine, a three-dimensional scanning measuring machine, and the like are known.
For example, in a three-dimensional scanning measuring machine, a scanning probe whose probe can be displaced in the Z-axis direction is attached to a Z-axis slider that can move in the vertical direction (Z-axis direction), and the measuring probe of this scanning probe is measured. The contact measurement is performed while moving the Z-axis slider in the vertical direction so that the pressing amount at this time (the pressing amount of the measuring element in the Z-axis direction) becomes constant.

従来、倣い測定機に取り付けられる倣いプローブは、例えば、特許文献1に記載の表面形状測定用トレーサなどのように、測定子のZ軸方向への変位が微小で、かつ、押し込み量も一定であるため、測定子をZ軸方向へ移動させる直線案内機構の真直度や、倣いプローブの取り付け誤差、つまり、測定子の移動方向とZ軸との傾き誤差が、測定精度に大きな影響を与えることは少ない。
最近では、低測定力で高速な測定を実現するために、倣いプローブ自体の測定範囲を広くし、かつ、測定力をアクティブに制御して低測定力で高速な倣い測定を、倣いプローブ自体で行うシステムも提案されている。
Conventionally, a scanning probe attached to a scanning measuring machine, for example, a surface shape measuring tracer described in Patent Document 1, has a very small displacement in the Z-axis direction and a constant pushing amount. Therefore, the straightness of the linear guide mechanism that moves the probe in the Z-axis direction and the error in mounting the scanning probe, that is, the tilt error between the moving direction of the probe and the Z-axis has a large effect on the measurement accuracy. There are few.
Recently, in order to achieve high-speed measurement with low measurement force, the scanning probe itself has a wide measuring range, and the measurement force is actively controlled to perform high-speed scanning measurement with low measurement force. A system to do this has also been proposed.

特開昭64−53109号公報JP-A 64-53109

従来の倣い測定において、測定範囲を広くした倣いプローブを用いると、測定子をZ軸方向へ移動させる直線案内機構の真直度や、倣いプローブの取り付け誤差、つまり、測定子の移動方向とZ軸との傾き誤差が、測定精度に大きな影響を与える。
例えば、図8に示すように、直線案内機構の真直度や、倣いプローブの取り付け誤差などによっては、倣いプローブ8の測定子8AがZ軸方向へΔz変位したとき、X軸およびY軸方向に対してずれ(Δx,Δy)が生じる。すると、X軸およびY軸における変位を検出している検出値と、測定子8Aの測定点とが異なってしまうため、測定誤差が生じる。
In a conventional scanning measurement, when a scanning probe with a wide measurement range is used, the straightness of the linear guide mechanism that moves the probe in the Z-axis direction, the mounting error of the scanning probe, that is, the moving direction of the probe and the Z-axis The tilt error greatly affects the measurement accuracy.
For example, as shown in FIG. 8, depending on the straightness of the linear guide mechanism, the scanning probe mounting error, etc., when the probe 8A of the scanning probe 8 is displaced by Δz in the Z-axis direction, the X-axis and Y-axis directions are On the other hand, a deviation (Δx, Δy) occurs. Then, the detection value for detecting the displacement in the X-axis and the Y-axis is different from the measurement point of the measuring element 8A, so that a measurement error occurs.

そこで、この測定誤差の発生を少なくするために、直線案内機構の真直度を高精度に組立、加工したり、あるいは、倣いプローブの取り付け精度を高精度に組み付けることが要求される。しかし、このような高精度な加工、組立には、限界があるうえ、作業者に対する負担も大きい。   Therefore, in order to reduce the occurrence of this measurement error, it is required to assemble and process the straightness of the linear guide mechanism with high accuracy or to assemble the scanning probe with high accuracy. However, there is a limit to such high-precision processing and assembly, and the burden on the operator is large.

本発明の目的は、高精度な加工、組立精度を必要とすることなく、倣いプローブの直線案内機構の真直度や、倣いプローブの取り付け誤差などに起因する測定精度の低下を回避できる表面性状測定装置を提供することにある。   The object of the present invention is to measure the surface properties that can avoid the deterioration of the measurement accuracy due to the straightness of the linear guide mechanism of the scanning probe, the mounting error of the scanning probe, etc. without requiring high-precision processing and assembly accuracy To provide an apparatus.

本発明の表面性状測定装置は、被測定物を載置するテーブルと可動部材とを、水平面内の互いに直交するXおよびY軸方向へ相対変位させるX軸駆動機構およびY軸駆動機構と、前記テーブルと前記可動部材とのXおよびY軸方向への相対変位量を検出するX軸変位検出手段およびY軸変位検出手段と、前記可動部材を前記XおよびY軸方向に対して直交するZ軸方向へ変位させるZ軸駆動機構と、前記可動部材のZ軸方向への変位量を検出するZ軸変位検出手段と、前記可動部材に設けられた倣いプローブと、補正データテーブルと、制御装置とを備え、前記倣いプローブは、前記可動部材に取り付けられた筐体と、この筐体に設けられ被測定物の表面に接触される測定子を有するセンサ部と、このセンサ部を前記Z軸方向へ変位させるZ軸微動機構と、前記筐体に対する前記センサ部の変位量を検出するセンサ部変位検出手段とを含んで構成され、前記補正データテーブルは、前記倣いプローブのZ軸微動機構のZ軸方向の移動範囲を複数の区間に分割し、この各分割区間において各軸方向のずれ量を補正データとして記憶し、前記制御装置は、前記センサ部変位検出手段からの検出値が前記補正データテーブルに記憶されたいずれの分割区間に属するかを判断し、該当する分割区間の補正データを用いて前記Z軸微動機構による前記各軸方向の補正値を算出する補正値算出手段と、この補正値算出手段によって得られた補正値を前記各軸変位検出手段の検出値に加算して前記測定子の座標値を算出する座標値算出手段とを含む、ことを特徴とする。   The surface texture measuring apparatus according to the present invention includes an X-axis drive mechanism and a Y-axis drive mechanism that relatively displace a table on which an object is measured and a movable member in the X and Y axis directions orthogonal to each other in a horizontal plane, X-axis displacement detection means and Y-axis displacement detection means for detecting relative displacement amounts of the table and the movable member in the X and Y axis directions, and the Z axis perpendicular to the X and Y axis directions. A Z-axis drive mechanism for displacing in the direction, Z-axis displacement detection means for detecting the amount of displacement of the movable member in the Z-axis direction, a scanning probe provided on the movable member, a correction data table, and a control device, The scanning probe includes a housing attached to the movable member, a sensor unit provided on the housing and in contact with the surface of the object to be measured, and the sensor unit in the Z-axis direction. Z displaced to The correction data table is configured to include a fine movement mechanism and a sensor part displacement detection unit that detects a displacement amount of the sensor part with respect to the housing, and the correction data table includes a movement range of the scanning probe in the Z-axis direction of the Z-axis fine movement mechanism. Is divided into a plurality of sections, and the amount of deviation in each axial direction is stored as correction data in each of the divided sections, and the control device stores the detection value from the sensor unit displacement detection means in the correction data table. A correction value calculation unit that determines which division section belongs, calculates correction values in the respective axis directions by the Z-axis fine movement mechanism using correction data of the corresponding division sections, and obtained by the correction value calculation means. Coordinate value calculating means for calculating the coordinate value of the measuring element by adding the corrected value to the detection value of each axis displacement detecting means.

このような構成によれば、X軸駆動機構、Y軸駆動機構を駆動させて、テーブルと可動部材とをXおよびY軸方向へ相対変位させるとともに、Z軸駆動機構を駆動させて、倣いプローブをZ軸方向へ変位させながら、倣いプローブの測定子を被測定物の表面に接触させる。倣いプローブの測定子の押し込み量が一定になるように、Z軸微動機構を駆動させながら、X軸駆動機構およびY軸駆動機構を駆動させて、テーブルと可動部材とをX軸方向およびY軸方向へ相対移動させる。
この相対移動において、例えば、一定時間毎に、X軸変位検出手段、Y軸変位検出手段、Z軸変位検出手段およびセンサ部変位検出手段からの検出値を取り込んで、測定子が接触している被測定物の測定点座標値を求めれば、測定力一定状態で被測定物表面の形状や粗さなどを倣い測定することができる。
According to such a configuration, the scanning probe is driven by driving the X-axis drive mechanism and the Y-axis drive mechanism to relatively displace the table and the movable member in the X and Y-axis directions and driving the Z-axis drive mechanism. The probe of the scanning probe is brought into contact with the surface of the object to be measured while displacing in the Z-axis direction. The X-axis drive mechanism and the Y-axis drive mechanism are driven while driving the Z-axis fine movement mechanism so that the pushing amount of the probe of the scanning probe is constant, and the table and the movable member are moved in the X-axis direction and the Y-axis. Move relative to the direction.
In this relative movement, for example, at a certain time interval, the probe is in contact with the detection value from the X-axis displacement detection means, the Y-axis displacement detection means, the Z-axis displacement detection means, and the sensor part displacement detection means. When the measurement point coordinate value of the object to be measured is obtained, the shape, roughness, etc. of the surface of the object to be measured can be measured with a constant measuring force.

本発明では、この倣い測定において、倣いプローブの測定子の測定力が一定になるように、Z軸微動機構を駆動させながら、倣い測定を行う。その際、予め、倣いプローブのZ軸微動機構のZ軸方向の移動範囲が複数の区間に分割され、この各分割区間において各軸方向のずれ量が補正データとして補正データテーブルに記憶されている。
倣い測定時において、センサ部変位検出手段からの検出値が、補正データテーブルに記憶されたいずれの分割区間に属するかが判断され、該当する分割区間の補正データを用いて、Z軸微動機構による倣いプローブの各軸方向の補正値(変位量)が算出される。こののち、得られた補正値が各軸変位検出手段(X、Y、Z軸変位検出手段)の検出値に加算され、測定子の座標値、つまり、測定子が接触している被測定物の測定点が算出される。
従って、Z軸微動機構を駆動させながら、倣い測定を行う際に問題となる、倣いプローブの直線案内機構の真直度や、倣いプローブの取り付け誤差などに起因する測定精度の低下を回避できる。このことは、測定誤差の発生を少なくするために、直線案内機構の真直度を高精度に組立、加工したり、あるいは、倣いプローブの取り付け精度を高精度に組み付けたりする必要もないので、組立や加工作業、あるいは、作業者への負担を軽減できる。
In the present invention, in the scanning measurement, the scanning measurement is performed while driving the Z-axis fine movement mechanism so that the measuring force of the probe of the scanning probe is constant. At that time, the movement range of the Z-axis fine movement mechanism of the scanning probe in the Z-axis direction is divided into a plurality of sections, and the deviation amount in each axis direction is stored in the correction data table as correction data in each of the divided sections. .
At the time of scanning measurement, it is determined which divided section stored in the correction data table the detection value from the sensor unit displacement detection means belongs to, and the Z-axis fine movement mechanism uses the correction data of the corresponding divided section. A correction value (amount of displacement) in each axial direction of the scanning probe is calculated. After that, the obtained correction value is added to the detection value of each axis displacement detection means (X, Y, Z axis displacement detection means), and the coordinate value of the measuring element, that is, the measurement object in contact with the measuring element. The measurement points are calculated.
Accordingly, it is possible to avoid a decrease in measurement accuracy due to straightness of the linear guide mechanism of the scanning probe, mounting error of the scanning probe, and the like, which are problems when performing scanning measurement while driving the Z-axis fine movement mechanism. This is because it is not necessary to assemble and process the straightness of the linear guide mechanism with high accuracy or to assemble the scanning probe with high accuracy in order to reduce the occurrence of measurement errors. And processing work, or the burden on the operator can be reduced.

本発明の表面性状測定装置において、前記制御装置の補正値算出手段は、前記センサ部変位検出手段からの検出値が前記補正データテーブルに記憶されたいずれの分割区間に属するかを判断し、該当する分割区間の補正データを直線補間して前記Z軸微動機構による前記各軸方向の補正値を算出することが好ましい。
このような構成によれば、各分割区間の補正データを直線補間してZ軸微動機構による各軸方向の補正値を算出するので、補正データ数が少なくて済み、Z軸微動機構による各軸方向の補正値(変位量)を簡単な手法で算出できる。
In the surface texture measuring device of the present invention, the correction value calculation means of the control device determines which divided section the detection value from the sensor part displacement detection means belongs to and stored in the correction data table, and It is preferable to calculate the correction values in the respective axis directions by the Z-axis fine movement mechanism by linearly interpolating the correction data of the divided sections to be performed.
According to such a configuration, the correction data of each divided section is linearly interpolated to calculate the correction value in each axis direction by the Z-axis fine movement mechanism, so that the number of correction data is small, and each axis by the Z-axis fine movement mechanism is reduced. A direction correction value (displacement amount) can be calculated by a simple method.

本発明の表面性状測定装置において、前記倣いプローブは、前記筐体に設けられたベースと、このベースに設けられ先端に接触針を有する測定子と、この測定子を振動させる加振素子と、前記測定子の振動状態を検出し検出信号として出力する検出素子とを含んで構成されていることが好ましい。
このような構成によれば、加振要素によって測定子を振動させ、この状態において、測定子を被測定物の表面に接触させる。測定子が被測定物の表面に接触すると、測定子の振動が拘束されるため、検出素子からの検出信号が減衰される。従って、検出素子からの検出信号の減衰量が常に一定になるように、Z軸微動機構を制御しなら倣い測定を行うことにより、高精度な倣い測定を実現できる。
In the surface texture measuring apparatus of the present invention, the scanning probe includes a base provided in the housing, a measuring element provided on the base and having a contact needle at a tip, and a vibration element that vibrates the measuring element, It is preferable to include a detection element that detects a vibration state of the probe and outputs a detection signal.
According to such a configuration, the measuring element is vibrated by the vibration element, and in this state, the measuring element is brought into contact with the surface of the object to be measured. When the probe contacts the surface of the object to be measured, the vibration of the probe is restrained, so that the detection signal from the detection element is attenuated. Therefore, high-precision scanning measurement can be realized by performing scanning measurement by controlling the Z-axis fine movement mechanism so that the attenuation amount of the detection signal from the detection element is always constant.

<全体構成の説明(図1および図2参照)>
図1は、本実施形態に係る表面性状測定装置を示す正面図、図2は、同表面性状測定装置の側面図である。
本実施形態に係る表面性状測定装置は、ベース1と、被測定物を載置するテーブルとしてのXYステージ2と、このXYステージ2を水平面内の互いに直交するXおよびY軸方向へ変位させるX軸駆動機構3およびY軸駆動機構4と、ベース1の上面に跨って設けられた門形フレーム5と、この門形フレーム5のクロスレール5Aに設けられた可動部材としてのZ軸スライダ6と、このZ軸スライダ6をXおよびY軸方向に対して直交するZ軸方向へ変位させるZ軸駆動機構7と、Z軸スライダ6に取り付けられた倣いプローブ8とを含んで構成されている。
<Description of overall configuration (see FIGS. 1 and 2)>
FIG. 1 is a front view showing a surface texture measuring apparatus according to the present embodiment, and FIG. 2 is a side view of the surface texture measuring apparatus.
The surface texture measuring apparatus according to the present embodiment includes a base 1, an XY stage 2 as a table on which an object to be measured is placed, and an X and Y axis directions that displace the XY stage 2 in the X and Y axis directions orthogonal to each other in a horizontal plane. The shaft drive mechanism 3 and the Y-axis drive mechanism 4, the portal frame 5 provided over the upper surface of the base 1, and the Z-axis slider 6 as a movable member provided on the cross rail 5A of the portal frame 5 The Z-axis slider 6 includes a Z-axis driving mechanism 7 that displaces the Z-axis slider 6 in the Z-axis direction orthogonal to the X- and Y-axis directions, and a scanning probe 8 attached to the Z-axis slider 6.

X軸駆動機構3およびY軸駆動機構4は、例えば、ボールねじ軸と、このボールねじ軸に螺合されたナット部材とを有する送りねじ機構によって構成されている。
Z軸駆動機構7も、X軸駆動機構3やY軸駆動機構4と同様に、例えば、ボールねじ軸と、このボールねじ軸に螺合されたナット部材とを有する送りねじ機構によって構成されている。
The X-axis drive mechanism 3 and the Y-axis drive mechanism 4 are constituted by, for example, a feed screw mechanism having a ball screw shaft and a nut member screwed to the ball screw shaft.
Similarly to the X-axis drive mechanism 3 and the Y-axis drive mechanism 4, the Z-axis drive mechanism 7 is also configured by, for example, a feed screw mechanism having a ball screw shaft and a nut member screwed to the ball screw shaft. Yes.

<倣いプローブの説明(図3参照)>
倣いプローブ8は、Z軸スライダ6に取り付けられた筐体11と、この筐体11に設けられたセンサ部12と、このセンサ部12をZ軸方向へ変位させるZ軸微動機構としての駆動用アクチュエータ17と、この駆動用アクチュエータ17によるセンサ部12の変位量(つまり、筐体11に対するセンサ部12の変位量)を検出するセンサ部変位検出手段としてのセンサ部変位検出器18(スケールと検出ヘッドからなる)とを含んで構成されている。
<Description of scanning probe (see FIG. 3)>
The scanning probe 8 is for driving as a housing 11 attached to the Z-axis slider 6, a sensor unit 12 provided on the housing 11, and a Z-axis fine movement mechanism for displacing the sensor unit 12 in the Z-axis direction. Actuator 17 and sensor part displacement detector 18 (scale and detection) as sensor part displacement detection means for detecting the amount of displacement of sensor part 12 by drive actuator 17 (that is, the amount of displacement of sensor part 12 with respect to housing 11). Comprising a head).

センサ部12は、金属製のベース13と、このベース13に設けられ被測定物の表面に接触される測定子としてのスタイラス14と、このスタイラス14を振動(軸方向へ振動)させる加振素子15と、スタイラス14の振動状態を検出し検出信号として出力する検出素子16とから構成されている。スタイラス14の先端には、ダイヤモンドチップやルビーなどで構成された接触部としての触針14Aが接着固定されている。加振素子15および検出素子16は、1枚の圧電素子によって構成され、ベース13にそれぞれ1枚ずつ接着固定されている。   The sensor unit 12 includes a metal base 13, a stylus 14 that is provided on the base 13 and is in contact with the surface of the object to be measured, and a vibration element that vibrates (vibrates in the axial direction) the stylus 14. 15 and a detection element 16 that detects the vibration state of the stylus 14 and outputs it as a detection signal. At the tip of the stylus 14, a stylus 14A as a contact portion composed of a diamond tip or a ruby is bonded and fixed. The vibration element 15 and the detection element 16 are constituted by a single piezoelectric element, and are bonded and fixed to the base 13 one by one.

いま、センサ部12の加振素子15に対して、特定の周波数と振幅をもつ入力信号を与えると、検出素子16では、特定の周波数と振幅の出力信号が得られる。
スタイラス14が被測定物と非接触状態にあるとき、スタイラス14の共振周波数で一定の振幅をもつ入力信号を加振素子15に加えると、スタイラス14が共振し、検出素子16に振幅Poの出力信号が得られる。スタイラス14が被測定物に接触すると、出力信号の振幅がPoからPxに減衰する。
従って、センサ部12を被測定物に接触させる際、減衰率(Px/Po)が常に一定となるように、駆動用アクチュエータ17でセンサ部12と被測定物との距離を制御すれば、測定力一定状態で被測定物の形状や粗さを測定することができる。
Now, when an input signal having a specific frequency and amplitude is given to the vibration element 15 of the sensor unit 12, the detection element 16 obtains an output signal having a specific frequency and amplitude.
When an input signal having a constant amplitude at the resonance frequency of the stylus 14 is applied to the vibration element 15 when the stylus 14 is not in contact with the object to be measured, the stylus 14 resonates and the detection element 16 outputs an amplitude Po. A signal is obtained. When the stylus 14 contacts the object to be measured, the amplitude of the output signal attenuates from Po to Px.
Therefore, when the sensor unit 12 is brought into contact with the object to be measured, the distance between the sensor unit 12 and the object to be measured is controlled by the driving actuator 17 so that the attenuation rate (Px / Po) is always constant. The shape and roughness of the object to be measured can be measured with a constant force.

<制御システムの説明(図4参照)>
本制御システムは、制御装置31と、倣いプローブ8と、駆動・変位検出装置41と、表示部51と、入力部61とを含んで構成されている。
駆動・変位検出装置41は、X軸駆動機構3、Y軸駆動機構4およびZ軸駆動機構7のほかに、XYステージ2のXおよびY軸方向への変位量を検出するX軸変位検出器42およびY軸変位検出器43、Z軸スライダ6のZ軸方向への変位量を検出するZ軸変位検出器44を備えている。
<Description of control system (see FIG. 4)>
The present control system includes a control device 31, a scanning probe 8, a drive / displacement detection device 41, a display unit 51, and an input unit 61.
The drive / displacement detector 41 is an X-axis displacement detector that detects the amount of displacement of the XY stage 2 in the X- and Y-axis directions in addition to the X-axis drive mechanism 3, the Y-axis drive mechanism 4, and the Z-axis drive mechanism 7. 42, a Y-axis displacement detector 43, and a Z-axis displacement detector 44 for detecting the amount of displacement of the Z-axis slider 6 in the Z-axis direction.

制御装置31は、倣いプローブ8のセンサ部12およびセンサ部変位検出器18からの出力信号を入力として駆動用アクチュエータ17を駆動する倣い制御部32と、真直度補正データ記憶部33と、計数及び補正演算処理部34と、この計数及び補正演算処理部34からの出力に基づいて各軸駆動機構3,4,7を制御する制御処理部35と、計数及び補正演算処理部34からの出力を表示部51に表示する測定データ処理部36とを含んで構成されている。   The control device 31 includes a scanning control unit 32 that drives the driving actuator 17 by using output signals from the sensor unit 12 and the sensor unit displacement detector 18 of the scanning probe 8, a straightness correction data storage unit 33, a count and The correction calculation processing unit 34, the control processing unit 35 that controls the shaft drive mechanisms 3, 4, and 7 based on the output from the counting and correction calculation processing unit 34, and the output from the counting and correction calculation processing unit 34 A measurement data processing unit 36 displayed on the display unit 51 is included.

真直度補正データ記憶部33には、倣いプローブ8の駆動用アクチュエータ17のZ軸方向の移動範囲を複数の区間に分割し、この各分割区間において各軸方向のずれ量が補正データとして記憶されている。つまり、図5に示す真直度補正データテーブルが記憶されている。
計数及び補正演算処理部34は、センサ部変位検出器18からの検出値が真直度補正データ記憶部33に記憶されたいずれの分割区間に属するかを判断し、該当する分割区間の補正データを用いて駆動用アクチュエータ17によるセンサ部12の各軸方向の補正値(変位量)を算出する補正値算出手段と、この補正値算出手段によって得られた補正値を各軸変位検出器、つまり、X,Y,Z軸変位検出器42,43,44の検出値に加算して、スタイラス14の座標値を算出する座標値算出手段とを含んで構成されている。
The straightness correction data storage unit 33 divides the movement range in the Z-axis direction of the driving actuator 17 of the scanning probe 8 into a plurality of sections, and the deviation amount in each axis direction is stored as correction data in each of the divided sections. ing. That is, the straightness correction data table shown in FIG. 5 is stored.
The count and correction calculation processing unit 34 determines which divided section the detection value from the sensor unit displacement detector 18 belongs to and stored in the straightness correction data storage unit 33, and sets the correction data of the corresponding divided section. Correction value calculation means for calculating the correction value (displacement amount) of the sensor unit 12 in each axial direction by the driving actuator 17 and the correction value obtained by the correction value calculation means are used for each axis displacement detector, that is, Coordinate value calculation means for calculating the coordinate value of the stylus 14 by adding to the detection values of the X, Y, and Z axis displacement detectors 42, 43, and 44 is configured.

<真直度補正データの説明(図5および図6参照)>
図5は、真直度補正データテーブルを示している。この真直度補正データテーブルは、次の手順で取得され、真直度補正データ記憶部33に記憶される。
図6に示すように、倣いプローブ8の駆動用アクチュエータ17を駆動させ、センサ部12をZ軸方向へ変位させる。センサ部12がZ軸方向へ測定間隔dづつ変位した各測定ポイント(P0〜PN、ただしN:測定ポイント数)において、真直度を測定するため、予め設置したZ軸駆動機構7と平行な基準面(図示せず)との距離を測定し、X軸およびY軸方向の座標値(PNx,PNy)を取得する。全ての測定ポイントにおいて、各軸の座標値を読み取ったのち、これらの座標値から、各分割区間(Z>d、d≦Z<2d、2d≦Z<3d……(N-1)・d≦Z)において、各線分の方程式の表(図5)を作成する。
なお、図5において、
Px,Py,Pz:点Pの座標、
Lx,Ly,Lz:方向余弦、
Z :原点からの距離
を示す。
<Description of Straightness Correction Data (see FIGS. 5 and 6)>
FIG. 5 shows a straightness correction data table. The straightness correction data table is acquired by the following procedure and stored in the straightness correction data storage unit 33.
As shown in FIG. 6, the driving actuator 17 of the scanning probe 8 is driven to displace the sensor unit 12 in the Z-axis direction. In order to measure straightness at each measurement point (P0 to PN, where N is the number of measurement points) where the sensor unit 12 is displaced by the measurement interval d in the Z-axis direction, the reference is parallel to the Z-axis drive mechanism 7 installed in advance. A distance from a surface (not shown) is measured, and coordinate values (PNx, PNy) in the X-axis and Y-axis directions are obtained. After reading the coordinate values of each axis at all measurement points, each of the divided sections (Z> d, d ≦ Z <2d, 2d ≦ Z <3d... (N−1) · d is determined from these coordinate values. ≦ Z), a table of equations for each line segment (FIG. 5) is created.
In FIG.
Px, Py, Pz: coordinates of point P,
Lx, Ly, Lz: direction cosine,
Z: Indicates the distance from the origin.

<倣い測定の説明(図7参照)>
倣い測定にあたっては、X軸駆動機構3およびY軸駆動機構4を駆動させて、XYステージ2をX軸方向およびY軸方向へ変位させるとともに、Z軸駆動機構7を駆動させて、倣いプローブ8をZ軸方向へ変位させながら、倣いプローブ8のスタイラス14を被測定物の表面に接触させる。
倣いプローブ8の検出素子16からの出力信号が一定の減衰率になるように、駆動用アクチュエータ17を駆動させながら、X軸駆動機構3およびY軸駆動機構4を駆動させて、XYステージ2をX軸方向およびY軸方向へ移動させる。
<Description of scanning measurement (see FIG. 7)>
In the scanning measurement, the X-axis driving mechanism 3 and the Y-axis driving mechanism 4 are driven to displace the XY stage 2 in the X-axis direction and the Y-axis direction, and the Z-axis driving mechanism 7 is driven to scan the scanning probe 8. Is moved in the Z-axis direction, and the stylus 14 of the scanning probe 8 is brought into contact with the surface of the object to be measured.
The X-axis drive mechanism 3 and the Y-axis drive mechanism 4 are driven while the drive actuator 17 is driven so that the output signal from the detection element 16 of the scanning probe 8 has a constant attenuation rate, and the XY stage 2 is moved. Move in the X-axis direction and the Y-axis direction.

この測定時において、一定時間毎に、図7に示すフローチャートの処理を実行する。
ST1(ステップ1)において、センサ部変位検出器18からの検出値Zを読み込む。
ST2において、読み取ったセンサ部変位検出器18からの検出値Zが真直度補正データテール(図5)のどの分割区間に属するかを調べる。
ST3において、該当分割区間の補正データを用いて、駆動用アクチュエータ17によるセンサ部12の補正値(変位量)を求める。つまり、補正値(Δx,Δy,Δz)を次の式から求める。
Δx=Px+Lx×(Z−Pz)
Δy=Py+Ly×(Z−Pz)
Δz=Pz+Lz×(Z−Pz)=Z
ST4において、補正値(Δx,Δy,Δz)をX,Y,Z軸変位検出器42,43,44の検出値(NX,NY,NZ)に加算して、スタイラス14の座標値(NX’, NY’, NZ’)を算出する。すなわち、
NX’=NX+Δx
NY’=NY+Δy
NZ’=NZ+Δz
から求める。
これにより、倣いプローブ8の駆動用アクチュエータ17(直線案内機構)の真直度や、倣いプローブ8の取り付け誤差などに起因する測定精度の低下を回避できるから、高精度な倣い測定を実現できる。
At the time of this measurement, the process of the flowchart shown in FIG.
In ST1 (step 1), the detection value Z from the sensor unit displacement detector 18 is read.
In ST2, it is checked which divided section of the straightness correction data tail (FIG. 5) the detected value Z from the sensor unit displacement detector 18 that has been read belongs.
In ST3, the correction value (displacement amount) of the sensor unit 12 by the driving actuator 17 is obtained using the correction data of the corresponding divided section. That is, the correction values (Δx, Δy, Δz) are obtained from the following equations.
Δx = Px + Lx × (Z−Pz)
Δy = Py + Ly × (Z−Pz)
Δz = Pz + Lz × (Z−Pz) = Z
In ST4, the correction values (Δx, Δy, Δz) are added to the detection values (NX, NY, NZ) of the X, Y, Z axis displacement detectors 42, 43, 44, and the coordinate value (NX ′) of the stylus 14 is added. , NY ′, NZ ′). That is,
NX ′ = NX + Δx
NY ′ = NY + Δy
NZ '= NZ + Δz
Ask from.
Accordingly, it is possible to avoid a decrease in measurement accuracy due to the straightness of the driving actuator 17 (linear guide mechanism) of the scanning probe 8 or an attachment error of the scanning probe 8, so that highly accurate scanning measurement can be realized.

<実施形態の効果>
本実施形態によれば、予め、倣いプローブの駆動用アクチュエータ17のZ軸方向の移動範囲を複数の区間に分割し、この各分割区間において駆動用アクチュエータ17によるセンサ部12の各軸方向のずれ量を補正データとして補正データテーブルに記憶しておき、倣い測定時において、センサ部変位検出器18からの検出値が、補正データテーブルに記憶されたいずれの分割区間に属するかを判断し、該当する分割区間の補正データを用いて、駆動用アクチュエータ17によるセンサ部12の各軸方向の補正値を算出したのち、この補正値をX,Y,Z軸変位検出手段42,43,44の検出値に加算して、スタイラス14の座標値を算出するようにしたから、倣いプローブの直線案内機構の真直度や、倣いプローブの取り付け誤差などに起因する測定精度の低下を回避できる。
このことは、測定誤差の発生を少なくするために、直線案内機構の真直度を高精度に組立、加工したり、あるいは、倣いプローブの取り付け精度を高精度に組み付けたりする必要もないので、加工や組立作業、あるいは、作業者の負担を軽減できる。
<Effect of embodiment>
According to the present embodiment, the movement range of the scanning probe drive actuator 17 in the Z-axis direction is divided into a plurality of sections in advance, and the axial displacement of the sensor unit 12 by the drive actuator 17 in each divided section. The amount is stored in the correction data table as correction data, and at the time of scanning measurement, it is determined to which divided section the detection value from the sensor unit displacement detector 18 is stored in the correction data table. After calculating the correction values in the respective axial directions of the sensor unit 12 by the driving actuator 17 using the correction data of the divided sections to be detected, the correction values are detected by the X, Y, Z axis displacement detection means 42, 43, 44. Since the coordinate value of the stylus 14 is calculated by adding to the value, the straightness of the linear guide mechanism of the scanning probe, the mounting error of the scanning probe, etc. You can avoid a decrease in measurement accuracy due to.
This means that it is not necessary to assemble and process the straightness of the linear guide mechanism with high accuracy or to assemble the scanning probe with high accuracy in order to reduce the occurrence of measurement errors. And assembly work or the burden on the operator can be reduced.

<変形例>
本発明は、前述の実施形態に限定されるものでなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれる。
前記実施形態では、XYステージ2をX軸方向およびY軸方向へ移動可能に構成したが、XYステージ2と可動部材であるZ軸スライダ6とを、水平面内の互いに直交するXおよびY軸方向へ相対変位可能に構成してもよい。例えば、ステージ2をY軸方向へ変位可能に構成するとともに、Z軸スライダ6をX軸およびZ軸方向へ移動可能に構成するようにしてもよい。
<Modification>
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In the above-described embodiment, the XY stage 2 is configured to be movable in the X-axis direction and the Y-axis direction. However, the XY stage 2 and the Z-axis slider 6 that is a movable member are orthogonal to each other in the X and Y axis directions in the horizontal plane. You may comprise so that relative displacement is possible. For example, the stage 2 may be configured to be displaceable in the Y-axis direction, and the Z-axis slider 6 may be configured to be movable in the X-axis and Z-axis directions.

前記実施形態では、振動式の倣いプローブ8を用いたが、これに限られない。例えば、スタイラス14が被測定物に接触したときに発生するスタイラスの変位を検出する構造、あるいは、スタイラス14が被測定物に接触したときに発生するスタイラス14の撓みを検出するなどの構造であってもよい。   In the above embodiment, the vibration type scanning probe 8 is used, but the present invention is not limited to this. For example, a structure for detecting the displacement of the stylus that occurs when the stylus 14 contacts the object to be measured, or a structure for detecting the bending of the stylus 14 that occurs when the stylus 14 contacts the object to be measured. May be.

本発明は、被測定物の表面粗さを測定する表面粗さ測定機、形状測定機、三次元倣い測定機などに適用可能である。とくに、微細形状の測定に好適である。   The present invention can be applied to a surface roughness measuring machine, a shape measuring machine, a three-dimensional scanning measuring machine, and the like that measure the surface roughness of an object to be measured. In particular, it is suitable for measuring fine shapes.

本発明に係る表面性状測定装置の一実施形態を示す正面図。The front view which shows one Embodiment of the surface texture measuring apparatus which concerns on this invention. 同上実施形態の側面図。The side view of embodiment same as the above. 同上実施形態の倣いプローブを示す図。The figure which shows the copying probe of embodiment same as the above. 同上実施形態の測定システムを示す図。The figure which shows the measurement system of embodiment same as the above. 同上実施形態の真直度補正データを示す図。The figure which shows the straightness correction data of embodiment same as the above. 同上実施形態において、真直度補正データの取得手順を示す図。The figure which shows the acquisition procedure of straightness correction data in embodiment same as the above. 同上実施形態において、倣い測定時のフローチャート。5 is a flowchart at the time of scanning measurement in the embodiment. 倣いプローブのZ軸方向の誤差を示す図。The figure which shows the error of the Z-axis direction of a scanning probe.

符号の説明Explanation of symbols

2…XYステージ(テーブル)、
3…X軸駆動機構、
4…Y軸駆動機構、
6…Z軸スライダ(可動部材)、
7…Z軸駆動機構、
8…倣いプローブ、
11…筐体、
12…センサ部、
13…ベース、
14…スタイラス(測定子)、
15…加振要素、
16…検出要素、
17…駆動用アクチュエータ(Z軸微動機構)、
18…センサ部変位検出器(センサ部変位検出手段)、
31…制御装置、
33…真直度補正データ記憶部(補正データテーブル)、
34…計数及び補正演算処理部(補正値算出手段、座標値算出手段)
42…X軸変位検出器(X軸変位検出手段)、
43…Y軸変位検出器(Y軸変位検出手段)、
44…Z軸変位検出器(Z軸変位検出手段)。
2 ... XY stage (table),
3 ... X axis drive mechanism,
4 ... Y-axis drive mechanism,
6 ... Z-axis slider (movable member),
7 ... Z-axis drive mechanism,
8 ... Copy probe,
11 ... Case,
12 ... sensor part,
13 ... Base,
14 ... Stylus (measuring element)
15 ... Excitation element,
16 ... detection element,
17 ... Actuator for driving (Z-axis fine movement mechanism),
18 ... sensor unit displacement detector (sensor unit displacement detection means),
31 ... Control device,
33 ... Straightness correction data storage unit (correction data table),
34... Counting and correction calculation processing unit (correction value calculation means, coordinate value calculation means)
42 ... X-axis displacement detector (X-axis displacement detector),
43 ... Y-axis displacement detector (Y-axis displacement detector),
44... Z-axis displacement detector (Z-axis displacement detector).

Claims (3)

被測定物を載置するテーブルと可動部材とを、水平面内の互いに直交するXおよびY軸方向へ相対変位させるX軸駆動機構およびY軸駆動機構と、前記テーブルと前記可動部材とのXおよびY軸方向への相対変位量を検出するX軸変位検出手段およびY軸変位検出手段と、前記可動部材を前記XおよびY軸方向に対して直交するZ軸方向へ変位させるZ軸駆動機構と、前記可動部材のZ軸方向への変位量を検出するZ軸変位検出手段と、前記可動部材に設けられた倣いプローブと、補正データテーブルと、制御装置とを備え、
前記倣いプローブは、前記可動部材に取り付けられた筐体と、この筐体に設けられ被測定物の表面に接触される測定子を有するセンサ部と、このセンサ部を前記Z軸方向へ変位させるZ軸微動機構と、前記筐体に対する前記センサ部の変位量を検出するセンサ部変位検出手段とを含んで構成され、
前記補正データテーブルは、前記倣いプローブのZ軸微動機構のZ軸方向の移動範囲を複数の区間に分割し、この各分割区間において各軸方向のずれ量を補正データとして記憶し、
前記制御装置は、前記センサ部変位検出手段からの検出値が前記補正データテーブルに記憶されたいずれの分割区間に属するかを判断し、該当する分割区間の補正データを用いて前記Z軸微動機構による前記各軸方向の補正値を算出する補正値算出手段と、この補正値算出手段によって得られた補正値を前記各軸変位検出手段の検出値に加算して前記測定子の座標値を算出する座標値算出手段とを含む、ことを特徴とする表面性状測定装置。
An X-axis drive mechanism and a Y-axis drive mechanism for relatively displacing a table on which a measurement object is placed and a movable member in X and Y axis directions orthogonal to each other in a horizontal plane, and X and X of the table and the movable member X-axis displacement detection means and Y-axis displacement detection means for detecting a relative displacement amount in the Y-axis direction, and a Z-axis drive mechanism for displacing the movable member in the Z-axis direction orthogonal to the X and Y-axis directions A Z-axis displacement detection means for detecting a displacement amount of the movable member in the Z-axis direction, a scanning probe provided on the movable member, a correction data table, and a control device,
The scanning probe includes a housing attached to the movable member, a sensor unit provided on the housing and contacting a surface of the object to be measured, and the sensor unit is displaced in the Z-axis direction. Comprising a Z-axis fine movement mechanism, and a sensor part displacement detecting means for detecting a displacement amount of the sensor part relative to the housing;
The correction data table divides the movement range in the Z-axis direction of the Z-axis fine movement mechanism of the scanning probe into a plurality of sections, and stores a deviation amount in each axis direction as correction data in each of the divided sections.
The control device determines which divided section the detection value from the sensor unit displacement detection means belongs to and stored in the correction data table, and uses the correction data of the corresponding divided section to perform the Z-axis fine movement mechanism. The correction value calculation means for calculating the correction value in each axis direction by means of, and the correction value obtained by this correction value calculation means is added to the detection value of each axis displacement detection means to calculate the coordinate value of the measuring element And a coordinate value calculating means for performing surface texture measurement.
請求項1に記載の表面性状測定装置において、
前記制御装置の補正値算出手段は、前記センサ部変位検出手段からの検出値が前記補正データテーブルに記憶されたいずれの分割区間に属するかを判断し、該当する分割区間の補正データを直線補間して前記Z軸微動機構による前記各軸方向の補正値を算出することを特徴とする表面性状測定装置。
In the surface texture measuring apparatus according to claim 1,
The correction value calculation means of the control device determines which divided section the detection value from the sensor unit displacement detection means belongs to, and linearly interpolates the correction data of the corresponding divided section Then, the surface property measuring apparatus is characterized in that the correction value in each axial direction by the Z-axis fine movement mechanism is calculated.
請求項1または請求項2に記載の表面性状測定装置において、
前記倣いプローブは、前記筐体に設けられたベースと、このベースに設けられ先端に接触針を有する測定子と、この測定子を振動させる加振素子と、前記測定子の振動状態を検出し検出信号として出力する検出素子とを含んで構成されていることを特徴とする表面性状測定装置。
In the surface texture measuring device according to claim 1 or 2,
The scanning probe detects a vibration state of a base provided on the casing, a measuring element provided on the base and having a contact needle at a tip, a vibration element that vibrates the measuring element, and the measuring element. A surface texture measuring apparatus comprising a detection element that outputs a detection signal.
JP2007055712A 2007-03-06 2007-03-06 Surface property measuring device Pending JP2008216122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055712A JP2008216122A (en) 2007-03-06 2007-03-06 Surface property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055712A JP2008216122A (en) 2007-03-06 2007-03-06 Surface property measuring device

Publications (1)

Publication Number Publication Date
JP2008216122A true JP2008216122A (en) 2008-09-18

Family

ID=39836328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055712A Pending JP2008216122A (en) 2007-03-06 2007-03-06 Surface property measuring device

Country Status (1)

Country Link
JP (1) JP2008216122A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046184A1 (en) 2008-10-31 2010-05-06 Mitutoyo Corp., Kawasaki Industrial device e.g. surface aspect ratio measuring device, has correction device calculating error in position of movable parts and correcting error by movement of recess based on position of movable parts in preset axial direction
KR101169575B1 (en) 2008-10-29 2012-07-31 스미도모쥬기가이고교 가부시키가이샤 Straight measuring method and apparatus
CN105486495A (en) * 2015-12-22 2016-04-13 雄邦压铸(南通)有限公司 Rear-side boundary beam profiling integrated detection special machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560542A (en) * 1991-09-04 1993-03-09 Canon Inc Probe
JPH11118473A (en) * 1997-10-17 1999-04-30 Tokyo Seimitsu Co Ltd Data processing device of surface roughness shape measuring instrument
JP2000304529A (en) * 1999-04-22 2000-11-02 Ricoh Co Ltd Probe device and shape measuring device
JP2005043177A (en) * 2003-07-28 2005-02-17 Mitsutoyo Corp Copying probe
JP2006313120A (en) * 2005-05-09 2006-11-16 Mitsutoyo Corp Approach direction setting method for probe, shape measuring apparatus program, and storage medium
JP2007040822A (en) * 2005-08-03 2007-02-15 Mitsutoyo Corp Workpiece measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560542A (en) * 1991-09-04 1993-03-09 Canon Inc Probe
JPH11118473A (en) * 1997-10-17 1999-04-30 Tokyo Seimitsu Co Ltd Data processing device of surface roughness shape measuring instrument
JP2000304529A (en) * 1999-04-22 2000-11-02 Ricoh Co Ltd Probe device and shape measuring device
JP2005043177A (en) * 2003-07-28 2005-02-17 Mitsutoyo Corp Copying probe
JP2006313120A (en) * 2005-05-09 2006-11-16 Mitsutoyo Corp Approach direction setting method for probe, shape measuring apparatus program, and storage medium
JP2007040822A (en) * 2005-08-03 2007-02-15 Mitsutoyo Corp Workpiece measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169575B1 (en) 2008-10-29 2012-07-31 스미도모쥬기가이고교 가부시키가이샤 Straight measuring method and apparatus
DE102009046184A1 (en) 2008-10-31 2010-05-06 Mitutoyo Corp., Kawasaki Industrial device e.g. surface aspect ratio measuring device, has correction device calculating error in position of movable parts and correcting error by movement of recess based on position of movable parts in preset axial direction
JP2010107438A (en) * 2008-10-31 2010-05-13 Mitsutoyo Corp Industrial machine
CN105486495A (en) * 2015-12-22 2016-04-13 雄邦压铸(南通)有限公司 Rear-side boundary beam profiling integrated detection special machine

Similar Documents

Publication Publication Date Title
US9091522B2 (en) Shape measuring machine and method of correcting shape measurement error
JP5236962B2 (en) Measuring method for front and back of measured object
JP5221004B2 (en) Measuring device, surface texture measuring method, and surface texture measuring program
US6412329B1 (en) Method of and apparatus for reducing vibrations on probes carried by coordinate measuring machines
JP6030339B2 (en) Shape measuring device
US9097504B2 (en) Shape measuring machine and method of correcting shape measurement error
EP1792139B2 (en) The use of surface measurement probes
JP4474443B2 (en) Shape measuring apparatus and method
JP5091702B2 (en) Probe straightness measurement method
CN106802141B (en) Control method of shape measuring apparatus
JP2008216122A (en) Surface property measuring device
JP4931867B2 (en) Variable terminal
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
JP5064725B2 (en) Shape measurement method
CN112444229B (en) Shape measuring device, reference device and calibration method of detector
JP2019158385A (en) measuring device
JP2013029404A (en) Position measurement device, method of manufacturing workpiece using the same, and molding
JP2020159795A (en) Three-dimensional coordinate measurement device
JPH09113254A (en) Method and device for detecting center position

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Effective date: 20120210

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612