JP2008213258A - Near-infrared shielding laminate - Google Patents

Near-infrared shielding laminate Download PDF

Info

Publication number
JP2008213258A
JP2008213258A JP2007052542A JP2007052542A JP2008213258A JP 2008213258 A JP2008213258 A JP 2008213258A JP 2007052542 A JP2007052542 A JP 2007052542A JP 2007052542 A JP2007052542 A JP 2007052542A JP 2008213258 A JP2008213258 A JP 2008213258A
Authority
JP
Japan
Prior art keywords
infrared shielding
infrared
shielding layer
absorbing dye
fine solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007052542A
Other languages
Japanese (ja)
Inventor
Kazumichi Mori
一倫 森
Kei Kato
圭 加藤
Tomokazu Nagaoka
智一 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2007052542A priority Critical patent/JP2008213258A/en
Publication of JP2008213258A publication Critical patent/JP2008213258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near-infrared shielding laminate which has a near-infrared shielding layer free from the generation of breaks or cracks even when the layer is cleaned with alcohol, in manufacturing the near-infrared shielding laminate. <P>SOLUTION: The near-infrared shielding layer formed on one surface of a transparent resin substrate, contains a near-infrared absorption coloring matter, a binder resin and a microsolid particle which has not less than 1 μm average primary particle diameter and a smaller particle diameter than the coat thickness of the near-infrared shielding layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プラズマディスプレイなど近赤外線を放出するディスプレイの表示面に配設される光学フィルターに好適に用いられる近赤外線遮蔽性積層体に関するものであって、更に詳しく述べるならば、本発明の近赤外線遮蔽性積層体は、その近赤外線遮蔽層の表面をアルコールなどの薬剤によりクリーニングするときに、近赤外線遮蔽層に割れやクラックが発生することがない高品質の近赤外線遮蔽性積層体に関するものである。   The present invention relates to a near-infrared shielding laminate suitably used for an optical filter disposed on the display surface of a display that emits near-infrared rays, such as a plasma display. The infrared shielding laminate relates to a high-quality near-infrared shielding laminate in which no cracks or cracks are generated in the near-infrared shielding layer when the surface of the near-infrared shielding layer is cleaned with a chemical such as alcohol. It is.

近年、プラズマディスプレイパネル及び液晶ディスプレイパネルなどに代表される大画面ディスプレイが、ブラウン管に替わり急速に普及している。これらのプラズマディスプレイや液晶ディスプレイでは、カラー表示に必要な可視光発光の他に、不要な近赤外線光が放出され、それによって、近赤外線を利用するリモコン装置等の周辺電子機器の誤動作を生ずるという問題があった。そのため、例えば下記特許文献1〜3に記載されているように、これらディスプレイの表示面に、近赤外線吸収色素を含む近赤外線吸収層をガラス基板などの透明な基板上に貼合して、近赤外線遮蔽フィルターを形成し、これを、ディスプレイ表示面上に配設することが行われている。   In recent years, large screen displays represented by plasma display panels and liquid crystal display panels have been rapidly spread in place of cathode ray tubes. In these plasma displays and liquid crystal displays, in addition to visible light emission necessary for color display, unnecessary near infrared light is emitted, thereby causing malfunction of peripheral electronic devices such as remote control devices using near infrared light. There was a problem. Therefore, for example, as described in Patent Documents 1 to 3 below, a near-infrared absorbing layer containing a near-infrared absorbing pigment is bonded to a display surface of these displays on a transparent substrate such as a glass substrate. An infrared shielding filter is formed and disposed on the display surface.

しかし、前記近赤外線遮蔽フィルターの製造時には、例えば作業員の接触などにより、前記近赤外線遮蔽層の表面が汚染されるため、アルコール等の薬剤による近赤外線遮蔽層表面のクリーニングが行われている。しかしながら、近赤外線吸収色素を含む樹脂組成物を塗布・乾燥して形成された近赤外線遮蔽層は、基本的に樹脂組成物を塗布し、この塗布層中に含まれる有機溶剤等の溶媒を蒸発乾燥させることにより形成されているため、得られる近赤外線遮蔽層の耐溶剤性は一般に低く、そのため、近赤外線遮蔽層がアルコール等の薬剤により膨潤し、乾燥する際に近赤外線遮蔽層に割れやクラックが発生しやすく、このため近赤外線吸収フィルターの製造効率が低いという問題点があった。
特開2001−133624号公報 特開2002−138203号公報 WO2005/037940国際公開パンフレット
However, when the near-infrared shielding filter is manufactured, the surface of the near-infrared shielding layer is contaminated by, for example, contact with an operator, and therefore the near-infrared shielding layer surface is cleaned with a chemical such as alcohol. However, the near-infrared shielding layer formed by applying and drying a resin composition containing a near-infrared absorbing dye basically applies the resin composition and evaporates the solvent such as an organic solvent contained in the applied layer. Since it is formed by drying, the solvent resistance of the obtained near-infrared shielding layer is generally low. Therefore, the near-infrared shielding layer swells with a chemical such as alcohol, and when the near-infrared shielding layer is dried, There is a problem that cracks are likely to occur, and thus the production efficiency of the near infrared absorption filter is low.
JP 2001-133624 A JP 2002-138203 A WO2005 / 037940 International Publication Pamphlet

本発明は、従来の技術における前記問題点を解決するためになされたものであり、すなわち、近赤外線吸収フィルター用近赤外線遮蔽性積層体を製造する際に、その近赤外線遮蔽層の表面を、アルコールなどの薬剤を用いてクリーニングしても、クリーニングされた近赤外線遮蔽層に割れ及び/又はクラックを発生することのない近赤外線遮蔽性積層体を提供することを課題とするものである。   The present invention was made to solve the above-mentioned problems in the prior art, that is, when manufacturing a near-infrared shielding laminate for a near-infrared absorbing filter, the surface of the near-infrared shielding layer, An object of the present invention is to provide a near-infrared shielding laminate that does not generate cracks and / or cracks in the cleaned near-infrared shielding layer even if it is cleaned using a chemical such as alcohol.

本発明者は、前記の課題を解決するため鋭意検討した結果、近赤外線遮蔽層内に特定の微小固体粒子を含有させることにより前記課題を効果的に解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be effectively solved by including specific fine solid particles in the near-infrared shielding layer, and the present invention has been completed. It came to do.

本発明の近赤外線遮蔽性積層体は、透明基材と、前記透明基材の一面側に積層された近赤外線遮蔽層を含み、
前記近赤外線遮蔽層が、近赤外線吸収色素と、バインダー樹脂と、平均1次粒子径が1μm以上であって、かつ、前記近赤外線遮蔽層の膜厚よりも小さい微小固体粒子とを含有することを特徴とするものである。
本発明の近赤外線遮蔽性積層体において、前記バインダー樹脂の屈折率と前記微小固体粒子の屈折率との差が0.03以下であることが好ましい。
本発明の近赤外線遮蔽性積層体において、前記近赤外線遮蔽層に含まれる近赤外線吸収色素は、下記一般式(1);

Figure 2008213258
〔但し式(I)中、n及びn′は1〜8の整数を表す〕
で表されるアニオンをカウンターアニオンとして有するジイモニウム系化合物を含み、かつバインダー樹脂は、ガラス転移温度が60℃〜120℃のアクリル系樹脂を含むことが好ましく、このようにすることによって、近赤外線遮蔽層の耐候性を向上させることができる。 The near-infrared shielding laminate of the present invention includes a transparent substrate and a near-infrared shielding layer laminated on one side of the transparent substrate,
The near-infrared shielding layer contains a near-infrared absorbing dye, a binder resin, and fine solid particles having an average primary particle diameter of 1 μm or more and smaller than the film thickness of the near-infrared shielding layer. It is characterized by.
In the near-infrared shielding laminate of the present invention, the difference between the refractive index of the binder resin and the refractive index of the fine solid particles is preferably 0.03 or less.
In the near-infrared shielding laminate of the present invention, the near-infrared absorbing dye contained in the near-infrared shielding layer has the following general formula (1):
Figure 2008213258
[In the formula (I), n and n ′ represent an integer of 1 to 8]
It is preferable that the binder resin contains an acrylic resin having a glass transition temperature of 60 ° C. to 120 ° C. The weather resistance of the layer can be improved.

本発明によれば、前記近赤外線遮蔽層内に特定粒径の微小固体粒子が含有されているので、近赤外線遮蔽層の表面をアルコールなどの薬剤によりクリーニングしたときに、当該近赤外線遮蔽層に割れやクラックが発生することがなく、従って、近赤外線遮蔽性積層体を、ガラス基板などの透明基板に貼合して、近赤外線フィルターを製造するときの効率を高めることができる。   According to the present invention, since the near-infrared shielding layer contains fine solid particles having a specific particle diameter, when the surface of the near-infrared shielding layer is cleaned with a chemical such as alcohol, the near-infrared shielding layer Therefore, cracks and cracks do not occur. Therefore, the near-infrared shielding laminate can be bonded to a transparent substrate such as a glass substrate to increase the efficiency when producing a near-infrared filter.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

「反射防止・近赤外線遮蔽性積層体」
本発明の近赤外線遮蔽性積層体は、透明基材と、前記透明基材の一面上に積層された近赤外線遮蔽層を含むものであって、前記近赤外線遮蔽層は、近赤外線吸収色素と、平均1次粒子径が1μm以上であり、かつ、前記近赤外線遮蔽層の膜厚よりも小さい微小固体粒子、好ましくは、平均1次粒子径が2μm〜10μmの微小固体粒子と、前記近赤外線吸収色素と前記微小固体粒子とを前記透明基材上に固定するバインダー樹脂とを含有している。
"Anti-reflection / Near-infrared shielding laminate"
The near-infrared shielding laminate of the present invention comprises a transparent substrate and a near-infrared shielding layer laminated on one surface of the transparent substrate, and the near-infrared shielding layer comprises a near-infrared absorbing dye and A fine solid particle having an average primary particle size of 1 μm or more and smaller than the film thickness of the near infrared shielding layer, preferably a fine solid particle having an average primary particle size of 2 μm to 10 μm, and the near infrared ray It contains a binder resin that fixes the absorbing dye and the fine solid particles on the transparent substrate.

前記のように構成された近赤外線遮蔽層において、アルコール等の薬剤を用いて近赤外線遮蔽層表面をクリーニングする際に、近赤外線遮蔽層に割れやクラックの発生がない理由は必ずしも明確ではないが、次のように考えられる。
即ち、前記微小固体粒子を添加することにより、近赤外線遮蔽層がアルコール等の溶剤により膨潤するのを抑制し、割れやクラックの発生を防止できると考えられる。
また、近赤外遮蔽層がアルコール等の溶剤により膨潤し、乾燥する際に割れやクラックが発生した場合でも、近赤外遮蔽層に含まれた前記微小固体粒子がストッパーの役割を果たし、割れやクラックが拡大するのを防止できると考えられる。
In the near-infrared shielding layer configured as described above, when the near-infrared shielding layer surface is cleaned using a chemical such as alcohol, the reason why the near-infrared shielding layer does not have cracks or cracks is not necessarily clear. It is considered as follows.
That is, by adding the fine solid particles, it is considered that the near-infrared shielding layer can be prevented from swelling with a solvent such as alcohol, and cracks and cracks can be prevented from occurring.
Even if the near-infrared shielding layer swells with a solvent such as alcohol and cracks or cracks occur when it is dried, the fine solid particles contained in the near-infrared shielding layer serve as a stopper and crack. It is thought that the expansion of cracks and cracks can be prevented.

前記の微小固体粒子は、溶剤ショックによる近赤外線遮蔽層の割れやクラックを防止するために添加されるものである。前記の近赤外線遮蔽層中における前記微小固体粒子の平均1次粒子径が前記近赤外線遮蔽層の膜厚を超えると、前記微小固体粒子が前記近赤外線遮蔽層から脱落しやすくなり、一方、前記微小固体粒子径の平均1次粒子径が、1μmを下回ると近赤外線遮蔽層に割れやクラックの発生を防止することができない。
このような微小固体粒子の材質としては、近赤外線遮蔽層の透明性を阻害しないものであれば特に制限はなく、例えば、シリカ、タルク等の無機微小固体粒子や、シリコーン系樹脂、アクリル系樹脂等の有機微小固体粒子を用いることができる。
The fine solid particles are added to prevent cracking or cracking of the near-infrared shielding layer due to solvent shock. When the average primary particle diameter of the fine solid particles in the near-infrared shielding layer exceeds the film thickness of the near-infrared shielding layer, the fine solid particles easily fall off from the near-infrared shielding layer, If the average primary particle size of the fine solid particles is less than 1 μm, it is impossible to prevent cracks and cracks from occurring in the near-infrared shielding layer.
The material of such fine solid particles is not particularly limited as long as it does not hinder the transparency of the near-infrared shielding layer. For example, inorganic fine solid particles such as silica and talc, silicone resin, acrylic resin Organic fine solid particles such as can be used.

近赤外線遮蔽層中における前記微小固体粒子の添加量は、用いるバインダー樹脂および微小固体粒子にもよるが、バインダー樹脂に対して、少なくとも0.01質量%以上、好ましくは0.05質量%以上である。また、添加できる上限は、形成される近赤外線遮蔽性積層体に許容されるヘイズ値にもよるが、一般的に1.5%以下程度のヘイズ値とするためには、5質量%以下であることが好ましく、更に好ましくは3質量%以下であり、また更に好ましくは1質量%以下である。   The addition amount of the fine solid particles in the near-infrared shielding layer depends on the binder resin and fine solid particles used, but is at least 0.01% by mass, preferably 0.05% by mass or more based on the binder resin. is there. Moreover, although the upper limit which can be added is based also on the haze value accept | permitted by the near-infrared shielding laminated body formed, in order to set it as the haze value of about 1.5% or less generally, it is 5 mass% or less. Preferably, it is 3% by mass or less, more preferably 1% by mass or less.

前記の近赤外線遮蔽性積層体において、前記バインダー樹脂の屈折率と前記微小固体粒子の屈折率の差は0.03以下であることが好ましく、より好ましくは0.02以下である。更に好ましくは0.01以下である。
前記バインダー樹脂の屈折率と前記微小固体粒子の屈折率とを上記のように調整することにより、前記近赤外線遮蔽層の透明性を向上させることができ、それによって近赤外線遮蔽性積層体を用いた近赤外線遮蔽フィルターの視認性が一層向上する。
In the near-infrared shielding laminate, the difference between the refractive index of the binder resin and the refractive index of the fine solid particles is preferably 0.03 or less, more preferably 0.02 or less. More preferably, it is 0.01 or less.
By adjusting the refractive index of the binder resin and the refractive index of the fine solid particles as described above, the transparency of the near-infrared shielding layer can be improved, thereby using the near-infrared shielding laminate. Visibility of the near-infrared shielding filter was further improved.

前記近赤外線吸収色素は、近赤外線(800nm〜1100nm)の波長帯域に極大吸収波長を有する色素である限り、その種類及び組成などに限定はないが、近赤外線の吸収性能に優れている、ジイモニウム系の近赤外線吸収色素(以下、第1の近赤外線吸収色素と記す)を用いることが好ましい。
ジイモニウム系の近赤外線吸収色素は、波長850〜1100nmの近赤外線領域にモル吸光係数が10万程度の強い吸収性を有し、波長400〜500nmの可視光領域に若干吸収があるため、黄褐色の透過色を呈するけれども、可視光透過性が他の近赤外線吸収色素よりも優れているため、可視光領域で高い透過率を得るためには重要な成分である。
As long as the near-infrared absorbing dye is a dye having a maximum absorption wavelength in the near-infrared (800 nm to 1100 nm) wavelength band, its type and composition are not limited, but dimonium is excellent in near-infrared absorption performance. It is preferable to use a near-infrared absorbing dye (hereinafter referred to as a first near-infrared absorbing dye).
The diimonium-based near-infrared absorbing dye has a strong absorption with a molar extinction coefficient of about 100,000 in the near-infrared region with a wavelength of 850 to 1100 nm and a slight absorption in the visible light region with a wavelength of 400 to 500 nm. However, it is an important component for obtaining a high transmittance in the visible light region because the visible light transmittance is superior to other near infrared absorbing dyes.

また、ジイモニウム系の近赤外線吸収色素のなかでも、下記の一般式(1):

Figure 2008213258
(式中、n及びn′は1〜8の整数を示す)
で表されるアニオンをカウンターアニオンとして有するジイモニウム系化合物からなる近赤外線吸収色素、特に、一般式(1)においてn=n′=1の場合に該当する、ビス(トリフルオロメタンスルホニル)イミド酸をカウンターアニオンとするジイモニウム系化合物は、従来用いられてきた過塩素酸イオン、弗化硼素酸イオン、ヘキサフルオロ砒酸イオン、ヘキサフルオロアンチモン酸塩等をカウンターアニオンとして有するジイモニウム系化合物と比べ、耐湿性と耐熱性が優れ、耐候性が格段に向上しているので、塗膜形成用の透明性樹脂成分として従来のものよりもガラス転移温度が低い透明性樹脂を使用することが可能となり、ハンドリングによる近赤外線遮蔽層の折れ、割れが防止された、即ち耐クラック性が良好な近赤外線遮蔽層を形成することが可能になり、また、得られる近赤外線遮蔽層の耐候性を向上させる効果がある。
このようなジイモニウム系化合物からなる近赤外線吸収色素としては、例えば、日本カーリット社製CIR−1085、CIR−RL等の市販のジイモニウム系化合物を利用することができる。 Among the diimonium-based near infrared absorbing dyes, the following general formula (1):
Figure 2008213258
(In the formula, n and n ′ represent an integer of 1 to 8)
A near-infrared absorbing dye comprising a diimonium-based compound having an anion represented by the following formula as a counter anion, in particular, bis (trifluoromethanesulfonyl) imidic acid corresponding to the case where n = n ′ = 1 in the general formula (1) The diimonium compounds used as anions are more resistant to moisture and heat than conventional diimonium compounds containing perchlorate ions, boron fluoride ions, hexafluoroarsenate ions, hexafluoroantimonate, etc. as counter anions. Excellent weatherability and markedly improved weather resistance, it is possible to use a transparent resin with a glass transition temperature lower than that of conventional ones as a transparent resin component for coating film formation. The near-infrared shield that prevents the shielding layer from being broken or cracked, that is, has good crack resistance. It is possible to form a layer, also has the effect of improving the weather resistance of the obtained near infrared ray shielding layer.
As a near-infrared absorbing dye composed of such a diimonium compound, for example, commercially available diimonium compounds such as CIR-1085 and CIR-RL manufactured by Nippon Carlit Co., Ltd. can be used.

前記第1の近赤外線吸収色素の前記近赤外線遮蔽層中への添加量は、前記近赤外線遮蔽層の厚さに依存するが、実用上充分な近赤外線遮蔽性を実現するためには、波長900〜1000nmの近赤外線領域における平均近赤外線透過率が2〜10%となるようコントロールされるのが好ましい。そのためには、前記近赤外線遮蔽層の厚さを5〜20μm程度に設計する場合、前記バインダー樹脂100質量部に対する前記第1の近赤外線吸収色素の配合量を0.5〜5質量部程度にコントロールするのが好ましい。前記第1の近赤外線吸収色素の配合量を0.5質量部よりも小さくすると、波長900〜1000nmの近赤外線領域における平均近赤外線透過率を10%以下にすることが困難になることがあり、またそれが5質量部を超えると、前記近赤外線遮蔽層中において近赤外線吸収色素の偏析を生じたり、或いは、前記近赤外線遮蔽層の可視光透明性が不充分になることがある。   The amount of the first near-infrared absorbing dye added to the near-infrared shielding layer depends on the thickness of the near-infrared shielding layer, but in order to achieve practically sufficient near-infrared shielding properties, It is preferable to control the average near infrared transmittance in the near infrared region of 900 to 1000 nm to be 2 to 10%. For this purpose, when the thickness of the near-infrared shielding layer is designed to be about 5 to 20 μm, the blending amount of the first near-infrared absorbing dye with respect to 100 parts by mass of the binder resin is about 0.5 to 5 parts by mass. It is preferable to control. If the blending amount of the first near-infrared absorbing dye is less than 0.5 parts by mass, it may be difficult to make the average near-infrared transmittance in the near-infrared region with a wavelength of 900 to 1000 nm 10% or less. If it exceeds 5 parts by mass, the near-infrared absorbing dye may segregate in the near-infrared shielding layer, or the near-infrared shielding layer may have insufficient visible light transparency.

前記近赤外線遮蔽層において、前記のジイモニウム系の近赤外線吸収色素に加えて、波長750〜950nmに吸収極大を有し、可視光領域における吸収のないフタロシアニン系色素、有機金属錯体系色素、シアニン系色素から選択される1種以上からなる近赤外線吸収色素(以下第2の近赤外線吸収色素と記す)を含有させることが好ましい。
ジイモニウム系の第1の近赤外線吸収色素のみを用いて近赤外線遮蔽層を形成した場合には、850nm〜900nmの波長領域で十分な近赤外線遮蔽性を得るためには、大量の添加が必要となり、その結果、近赤外線遮蔽層の耐候性が低下するので好ましくない。
In the near-infrared shielding layer, in addition to the above-mentioned diimonium-based near-infrared absorbing dye, a phthalocyanine-based dye, an organometallic complex-based dye, a cyanine-based dye having an absorption maximum at a wavelength of 750 to 950 nm and having no absorption in the visible light region It is preferable to contain a near-infrared absorbing dye (hereinafter referred to as a second near-infrared absorbing dye) comprising at least one selected from the dyes.
When a near-infrared shielding layer is formed using only the diimonium-based first near-infrared absorbing dye, it is necessary to add a large amount in order to obtain sufficient near-infrared shielding in the wavelength region of 850 nm to 900 nm. As a result, the weather resistance of the near-infrared shielding layer is lowered, which is not preferable.

前記第1及び第2の近赤外線吸収色素の合計質量の前記バインダー樹脂に対する質量比は1:99〜1:4の範囲内にあることが好ましく、より好ましくは1:49〜1:24である。この質量比が1/99未満であると、高度な近赤外線遮蔽率を得るためには前記近赤外線遮蔽層の膜厚を20μm以上に厚くする必要があるが、このような厚い近赤外線遮蔽層の形成は困難であることがあり、また前記質量比が1/4を超えると、近赤外線遮蔽層の形成過程において、近赤外線吸収色素の偏析による遮蔽性能の低下及びヘイズ値の上昇という不都合を生ずることがある。   The mass ratio of the total mass of the first and second near-infrared absorbing dyes to the binder resin is preferably in the range of 1:99 to 1: 4, more preferably 1:49 to 1:24. . If this mass ratio is less than 1/99, it is necessary to increase the film thickness of the near-infrared shielding layer to 20 μm or more in order to obtain a high near-infrared shielding rate. When the mass ratio exceeds 1/4, in the process of forming the near-infrared shielding layer, in the process of forming the near-infrared shielding layer, there is a disadvantage that the shielding performance is lowered due to segregation of the near-infrared absorbing dye and the haze value is increased. May occur.

また、第1の近赤外線吸収色素と第2の近赤外線吸収色素との配合質量比は、3:2〜29:1であることが好ましく、より好ましくは2:1〜9:1である。この配合比率が3/2未満であると、可視光領域の透過率が不充分になることがあり、またそれが29/1を超えると、近赤外線遮蔽層の色度の経時的変化が大きくなって耐候性が低下することがある。   Moreover, it is preferable that the compounding mass ratio of a 1st near-infrared absorption pigment | dye and a 2nd near-infrared absorption pigment | dye is 3: 2-29: 1, More preferably, it is 2: 1-9: 1. If this blending ratio is less than 3/2, the transmittance in the visible light region may be insufficient, and if it exceeds 29/1, the change in chromaticity of the near-infrared shielding layer over time is large. As a result, the weather resistance may decrease.

更に、前記近赤外線遮蔽層中に、波長590nmにおける可視透過率を波長450nm、525nm、620nmの可視光の透過率よりも10%以上低くする選択吸収性色材を添加することにより、プラズマディスプレイ等のディスプレイのコントラスト向上などの色調補正機能を付加することもできる。
波長590nmを選択的に吸収する選択吸収性色材としては、前記のジイモニウム系近赤外線吸収色素と前記第2の近赤外線吸収色素に悪影響を与えるものでなければ特に制限はないが、例えばキナクリドン顔料、アゾメチン系化合物やシアニン系化合物、ポルフィリン化合物等が好適に用いられる。
Furthermore, by adding a selective absorptive color material that makes the visible transmittance at a wavelength of 590 nm 10% or more lower than the visible light transmittance at wavelengths of 450 nm, 525 nm, and 620 nm in the near infrared shielding layer, a plasma display, etc. It is also possible to add a color correction function such as improving the contrast of the display.
The selective absorbing colorant that selectively absorbs a wavelength of 590 nm is not particularly limited as long as it does not adversely affect the diimonium-based near infrared absorbing dye and the second near infrared absorbing dye. For example, a quinacridone pigment Azomethine compounds, cyanine compounds, porphyrin compounds and the like are preferably used.

前記のバインダー樹脂は、前記近赤外線吸収色素と前記の微小固体粒子を前記の透明基材上に固定するものであり、前記近赤外線吸収色素と前記の微小固体粒子との濡れ性がよく、しかも可視光線に対して充分な透明性を有するものであればよく、例えばアクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂などを、単独に若しくは併用して使用することができる。これらのバインダー用樹脂のなかでも、アクリル系樹脂は、ジイモニウム系化合物の安定性を高める効果があるので好適に使用される。   The binder resin fixes the near-infrared absorbing dye and the fine solid particles on the transparent substrate, and has good wettability between the near-infrared absorbing dye and the fine solid particles. What is necessary is just to have sufficient transparency with respect to visible light, for example, acrylic resins, polyester resins, polyurethane resins, polyolefin resins, polystyrene resins, etc. can be used alone or in combination. it can. Among these binder resins, acrylic resins are preferably used because they have the effect of increasing the stability of the diimonium compounds.

前記のアクリル系樹脂の中でも、下記一般式(II)で表される単量体を重合してなる重合体、または一般式(II)で表される単量体を10重量%以上、好ましくは20重量%、より好ましくは30重量%含有する単量体混合物を共重合してなる共重合体を、バインダー樹脂として用いることが好ましい。

Figure 2008213258
(式中、Rは水素原子またはメチル基を表し、Xは6〜25個の炭素原子を有する環状炭化水素基を表す)
上記一般式(II)中のXで表される炭素原子数6〜25の環状炭化水素基としては、シクロヘキシル基、メチルシクロヘキシル基、シクロドデシル基、ボルニル基、イソボルニル基等が例示できる。 Among the acrylic resins, a polymer obtained by polymerizing a monomer represented by the following general formula (II), or a monomer represented by the general formula (II) is 10% by weight or more, preferably A copolymer obtained by copolymerizing a monomer mixture containing 20% by weight, more preferably 30% by weight, is preferably used as the binder resin.
Figure 2008213258
(Wherein R represents a hydrogen atom or a methyl group, and X represents a cyclic hydrocarbon group having 6 to 25 carbon atoms)
Examples of the cyclic hydrocarbon group having 6 to 25 carbon atoms represented by X in the general formula (II) include a cyclohexyl group, a methylcyclohexyl group, a cyclododecyl group, a bornyl group, and an isobornyl group.

一般的なアクリル系樹脂、例えばメチルメタアクリレート樹脂に近赤外線吸収色素、なかでもジイモニウム系の近赤外線吸収色素を分散した熱可塑性の塗膜では、高温高湿度下に長時間曝された場合、環境中の水分の影響により、バインダー樹脂の劣化が起こり、それに付随した近赤外線吸収色素、なかでもジイモニウム系近赤外線吸収色素の変質により、近赤外線遮蔽層の色度が大きく変化するという問題があるが、上記一般式(II)で表される単量体を必須成分として重合してなる重合体または共重合体を用いることにより、前記ジイモニウム系近赤外線吸収色素の高温高湿度下での耐久性が向上させ得ることができる。   A thermoplastic film in which a near-infrared-absorbing dye, especially a diimonium-based near-infrared absorbing dye, is dispersed in a general acrylic resin such as methyl methacrylate resin. There is a problem that the binder resin is deteriorated due to the influence of moisture in the inside, and the near-infrared absorbing dye accompanying it, particularly the dimonium-based near-infrared absorbing dye, changes the chromaticity of the near-infrared shielding layer greatly. By using a polymer or copolymer obtained by polymerizing the monomer represented by the general formula (II) as an essential component, the durability of the diimonium-based near infrared absorbing dye under high temperature and high humidity can be improved. Can be improved.

また、前記のバインダー樹脂のガラス転移点は、60℃以上120℃以下であることが好ましく、好ましくは60℃以上100℃以下である。
ガラス転移点が60℃未満であると、80℃以上の高温に長時間曝された場合、バインダー樹脂の軟化が著しくなると同時に近赤外線遮蔽層中の近赤外線吸収色素、なかでもジイモニウム系近赤外線吸収色素が変質を受け易く、近赤外線遮蔽層の色度が大きく変化したり、近赤外線の遮蔽性が低下する等、長期の耐熱性に影響を与えるので好ましくない。ガラス転移点が60℃以上であると、熱による近赤外線吸収色素、特にジイモニウム系近赤外線吸収色素の変質を抑制することができる。
一方、ガラス転移温度が120℃を超えると、近赤外線遮蔽層が硬くて脆いものとなり、耐屈曲性の低下やハンドリング等で容易に割れを生じる等、実用上の問題を生じるため好ましくない。
Moreover, it is preferable that the glass transition point of the said binder resin is 60 to 120 degreeC, Preferably it is 60 to 100 degreeC.
When the glass transition point is less than 60 ° C., when exposed to a high temperature of 80 ° C. or more for a long time, the binder resin becomes significantly softened, and at the same time, the near-infrared absorbing dye in the near-infrared shielding layer, especially the diimonium-based near infrared absorption. It is not preferable because the dye is susceptible to alteration and the long-term heat resistance is affected, such as the chromaticity of the near-infrared shielding layer is greatly changed or the near-infrared shielding property is lowered. When the glass transition point is 60 ° C. or higher, it is possible to suppress the deterioration of the near-infrared absorbing dye, particularly the diimonium-based near infrared absorbing dye, due to heat.
On the other hand, if the glass transition temperature exceeds 120 ° C., the near-infrared shielding layer becomes hard and brittle, and it is not preferable because it causes practical problems such as a decrease in bending resistance and easy cracking due to handling.

前記の透明基材としては、透明プラスティック板、透明プラスティックフィルム、ガラス板等種々のものを用いることができるが、透明基材として透明プラスティックフィルムを用いることが好ましい。特に、近赤外線遮蔽層が透明プラスティックフィルム上に形成されているのが好ましく、なかでも透明性ポリエステル系樹脂フィルム上に形成されていることが好ましい。透明ポリエステル系フィルムは、耐溶剤性、コスト、生産性等の点で優れている。
また、前記ポリエステル系樹脂フィルムは、前記第1及び第2の近赤外線吸収色素、前記の選択吸収性色材、前記の微小固体粒子、前記のバインダー樹脂を溶解又は分散可能な溶剤に従来公知の方法にて溶解分散して得られた近赤外線遮蔽用樹脂組成物を塗工した場合に、実用上の高い密着性を付与するために、有機樹脂成分よりなる密着性改良層を施したものが好ましい。密着性改良層を施さない場合は、ポリエステル系樹脂フィルムと近赤外線遮蔽層との界面で、近赤外線遮蔽層が容易に剥離することがある。
As the transparent substrate, various materials such as a transparent plastic plate, a transparent plastic film, and a glass plate can be used, and it is preferable to use a transparent plastic film as the transparent substrate. In particular, the near-infrared shielding layer is preferably formed on a transparent plastic film, and in particular, it is preferably formed on a transparent polyester resin film. The transparent polyester film is excellent in terms of solvent resistance, cost, productivity, and the like.
The polyester-based resin film is conventionally known in a solvent capable of dissolving or dispersing the first and second near-infrared absorbing dyes, the selective absorbing colorant, the fine solid particles, and the binder resin. When a near-infrared shielding resin composition obtained by dissolving and dispersing by the method is applied, in order to impart practically high adhesion, an adhesive improvement layer comprising an organic resin component is applied. preferable. When the adhesion improving layer is not applied, the near-infrared shielding layer may easily peel off at the interface between the polyester resin film and the near-infrared shielding layer.

前記の密着性改良層は、近赤外線遮蔽層の色度変化を抑制するため、反応性硬化剤を含まない有機樹脂成分を主成分とすることが望ましい。反応性硬化剤を含まない有機樹脂成分については、前記近赤外線遮蔽層とポリエステル系樹脂フィルムとの実用上の高い密着性が得られる限り特に限定はなく、例えば、アクリル系樹脂、アクリル−メラニン共重合樹脂、アクリル−ポリエステル共重合、ポリエステル系樹脂等の単体あるいはそれらの混合体が例示できる。前記密着性改良層中に、イソシアネート化合物、ブロックイソシアネート化合物等の反応性硬化剤が含まれる場合には、80℃以上の高温に長時間曝された場合、近赤外線遮蔽層中のジイモニウム系化合物が該反応性硬化剤と反応して変質を受け易く、近赤外線遮蔽層の色度が大きく変化したり、近赤外線の遮蔽性が低下する等、長期の耐候性に影響を与えるので好ましくない。
また、塗工工程におけるフィルムの巻取り性向上、ブロッキングおよびスクラッチの発生を防止するため、シリカ微粒子、タルク等の微粒子を適宜添加したものでも良い。
In order to suppress the chromaticity change of the near-infrared shielding layer, the adhesion improving layer is preferably composed mainly of an organic resin component that does not contain a reactive curing agent. The organic resin component that does not contain a reactive curing agent is not particularly limited as long as high practical adhesion between the near-infrared shielding layer and the polyester-based resin film is obtained. For example, an acrylic resin and an acrylic-melanin co-polymer Examples thereof include a simple substance such as a polymer resin, an acrylic-polyester copolymer, a polyester resin, or a mixture thereof. When a reactive curing agent such as an isocyanate compound or a blocked isocyanate compound is contained in the adhesion improving layer, the diimonium compound in the near infrared shielding layer is exposed to a high temperature of 80 ° C. or longer for a long time. This is not preferable because it reacts with the reactive curing agent and is susceptible to alteration, and the chromaticity of the near-infrared shielding layer is greatly changed, or the near-infrared shielding properties are affected.
Moreover, in order to prevent the film winding property improvement, blocking and scratching in the coating process, fine particles such as silica fine particles and talc may be appropriately added.

前記の近赤外線遮蔽性積層体は、前記の第1及び第2の近赤外線吸収色素、前記の選択吸収性色材、前記の微小固体粒子、前記のバインダー樹脂を溶解または分散可能な溶剤に従来公知の方法にて溶解分散して得られた近赤外線遮蔽性組成物を、バーコーター、グラビアリバースコーター、スリットダイコーター等の通常の塗工装置を用いて前記の透明基材上に塗工し、残留溶剤が5質量%以下、好ましくは1質量%以下となるよう乾燥蒸発させて形成される。   The near-infrared shielding laminate is a conventional solvent that can dissolve or disperse the first and second near-infrared absorbing dyes, the selective absorbing colorant, the fine solid particles, and the binder resin. A near-infrared shielding composition obtained by dissolving and dispersing by a known method is applied onto the transparent substrate using a normal coating apparatus such as a bar coater, a gravure reverse coater, or a slit die coater. The solvent is dried and evaporated so that the residual solvent is 5% by mass or less, preferably 1% by mass or less.

前記有機溶剤としては、近赤外線吸収色素を十分溶解させ得るものであり、前記バインダー樹脂と前記微小固体粒子との親和性が良いものであれば特に制限されるものはないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、トルエン、酢酸エチル、酢酸ブチル等が好適に用いられ、適宜単独あるいは混合して用いることができる。
また、前記の近赤外線遮蔽性組成物の調製にあたっては、前記微小固体粒子の形状が球状、好ましくは真球状であることが好ましく、このようにすると近赤外線遮蔽性組成物中に前記微小固体粒子を分散させやすいので好ましい。
The organic solvent is capable of sufficiently dissolving near-infrared absorbing dyes and is not particularly limited as long as the affinity between the binder resin and the fine solid particles is good. For example, acetone, A ketone solvent such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, toluene, ethyl acetate, butyl acetate and the like are preferably used, and can be used alone or in combination as appropriate.
In preparing the near-infrared shielding composition, the fine solid particles preferably have a spherical shape, preferably a true spherical shape. In this way, the fine solid-particle particles are contained in the near-infrared shielding composition. Is preferable because it can be easily dispersed.

このような構成を有し、前記のジイモニウム系近赤外線吸収色素として一般式(I)で表されるアニオンをカウンターアニオンとして有するジイモニウム化合物を用い、前記のバインダー樹脂としてガラス転移温度が60℃〜120℃のアクリル系樹脂を用いた近赤外線遮蔽性積層体は、前記近赤外線遮蔽層中に前記微小固体粒子が含有されているので、アルコール等の薬剤を用いて近赤外線遮蔽層表面をクリーニングする際に割れやクラックの発生がなく、更に、特定のバインダー樹脂中に特定の近赤外線吸収色素を含有しているので、波長850〜1000nmにおける平均透過率が10%以下という可視光領域の高い透過率と、波長850〜1000nmにおける平均透過率が10%以下という高い近赤外線遮蔽性を兼備し、また耐候性にも優れており、例えば、60℃−相対湿度90%雰囲気下に500時間の保管した場合の保管前後の色度xおよびyの変化量がいずれも±0.010以下、かつ、80℃−乾燥雰囲気下に500時間の保管した場合の保管前後の色度xおよびyの変化量がいずれも±0.010以下であるという、高温高湿環境下および高温環境下においても色度変化の少ない安定な光学特性を有して優れた耐候性を備えている。   A diimonium compound having such a structure and having an anion represented by the general formula (I) as a counter anion as the diimonium-based near infrared absorbing dye has a glass transition temperature of 60 ° C. to 120 ° C. as the binder resin. When the near-infrared shielding laminate using an acrylic resin at 0 ° C. contains the fine solid particles in the near-infrared shielding layer, the near-infrared shielding layer surface is cleaned using a chemical such as alcohol. No cracks or cracks are generated, and since a specific near-infrared absorbing dye is contained in a specific binder resin, the average transmittance at a wavelength of 850 to 1000 nm is 10% or less, and a high transmittance in the visible light region. And has a high near-infrared shielding property with an average transmittance of 10% or less at a wavelength of 850 to 1000 nm, and also has good weather resistance. For example, when stored for 500 hours in an atmosphere of 60 ° C.-90% relative humidity, the amount of change in chromaticity x and y before and after storage is both ± 0.010 or less, and 80 ° C.-dry atmosphere The amount of change in chromaticity x and y before and after storage for 500 hours below is ± 0.010 or less, and stable under little high-temperature and high-humidity environment and high-temperature environment. It has optical properties and excellent weather resistance.

また、この実施形態に係る近赤外線遮蔽用積層体は、プラズマディスプレイ用光学フィルターや光学製品の近赤外線遮蔽フィルター等として使用する場合は、ガラス板、透明性硬質樹脂基板等の透明性硬質基板に貼合して使用されるため、透明性粘着性組成物や透明性接着性組成物よりなる接着層を、前記の近赤外線遮蔽層上またはその裏面側の透明樹脂フィルム上に適宜形成したものであってよい。   Further, the near-infrared shielding laminate according to this embodiment is applied to a transparent hard substrate such as a glass plate or a transparent hard resin substrate when used as an optical filter for plasma display or a near-infrared shielding filter for optical products. In order to be used by pasting, an adhesive layer made of a transparent adhesive composition or a transparent adhesive composition is appropriately formed on the near-infrared shielding layer or on the transparent resin film on the back side thereof. It may be.

また、本発明の近赤外線遮蔽用積層体には、前記の近赤外線遮蔽層、接着層の他、ハードコート層や、反射防止機能を有する反射防止層、電磁波遮蔽機能を有する電磁波遮蔽層、紫外線遮蔽機能を有する紫外線遮蔽層などの機能性層を多層に、例えば前記近赤外線遮蔽層上、前記近赤外線遮蔽層と前記透明樹脂フィルムとの間、または前記透明樹脂フィルムの他の面(前記近赤外線遮蔽層が積層された面とは反対側の面)に積層することができる。   The near-infrared shielding laminate of the present invention includes a hard coat layer, an antireflection layer having an antireflection function, an electromagnetic wave shielding layer having an electromagnetic wave shielding function, an ultraviolet ray, in addition to the near infrared shielding layer and the adhesive layer. A functional layer such as an ultraviolet shielding layer having a shielding function is formed in multiple layers, for example, on the near infrared shielding layer, between the near infrared shielding layer and the transparent resin film, or on the other surface of the transparent resin film (the near It can be laminated on the surface opposite to the surface on which the infrared shielding layer is laminated.

以下、実施例および比較例を掲げ、本発明を具体的に説明する。なお、各実施例および比較例に係る近赤外線遮蔽用積層体の光学特性(分光透過率)の測定、耐候性試験、及び耐クニック性試験の概要は次の通りである。
「光学特性(分光透過率)の測定」
日本分光(株)製分光光度計V−570を用い、各試料の波長450nm、525nm、590nm、620nm、850nm、900nm、950nm、1000nmにおける透過率を、室内の空気の透過率を比較対照として測定した。また、日本分光(株)社製全自動ヘイズメーターNDH2000を用いて、積層体のヘイズ値を測定した。
「耐候性試験」
東京電色工業(株)製カラーアナライザーTOPSCAN TC−1800−Mk IIを用い(標準光;光源、2度視野)、以下の高温高湿試験及び耐熱性試験前後の各試料の色度x,yを測定した。
(高温高湿試験)
60℃−相対湿度90%に設定した恒温恒湿試験器に各試料を入れて500時間保持した。
(耐熱性試験)
80℃−乾燥雰囲気に設定した恒温器に各試料を入れ500時間保持した。
「耐アルコール試験」
各試料の耐アルコール性は、近赤外線遮蔽層を塗工した近赤外線遮蔽用積層体の裏面に、透明粘着層を施し、厚さ2mmのソーダライムガラスに貼合した試料を作製し、80℃に設定した乾燥器内に30分間保管し、室温で1時間放置した後、該近赤外線遮蔽層の表面に20μリットルのエタノールを滴下して、滴下跡に生じる塗膜の割れの本数を目視で評価した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, the outline | summary of the measurement of the optical characteristic (spectral transmittance) of the near-infrared shielding laminated body which concerns on each Example and a comparative example, a weather resistance test, and a knick-proof test is as follows.
"Measurement of optical characteristics (spectral transmittance)"
Using a spectrophotometer V-570 manufactured by JASCO Corporation, the transmittance of each sample at wavelengths of 450 nm, 525 nm, 590 nm, 620 nm, 850 nm, 900 nm, 950 nm, and 1000 nm was measured using the indoor air transmittance as a comparative control. did. Moreover, the haze value of the laminated body was measured using JASCO Corporation full automatic haze meter NDH2000.
"Weather resistance test"
Using a color analyzer TOPSCAN TC-1800-Mk II manufactured by Tokyo Denshoku Industries Co., Ltd. (standard light; light source, 2 degree field of view), the chromaticity x, y of each sample before and after the following high temperature and high humidity test and heat resistance test Was measured.
(High temperature and high humidity test)
Each sample was placed in a constant temperature and humidity tester set to 60 ° C. and a relative humidity of 90% and held for 500 hours.
(Heat resistance test)
Each sample was placed in a thermostat set to 80 ° C.-dry atmosphere and held for 500 hours.
"Alcohol resistance test"
Alcohol resistance of each sample was prepared by applying a transparent adhesive layer to the back side of the near-infrared shielding laminate coated with a near-infrared shielding layer, and pasting it on soda lime glass having a thickness of 2 mm. After storing for 30 minutes in a dryer set to 1 and leaving it to stand at room temperature for 1 hour, 20 μl of ethanol is dropped onto the surface of the near-infrared shielding layer, and the number of cracks in the coating film formed on the dropping mark is visually observed. evaluated.

実施例1
(近赤外線遮蔽性組成物の調製)
ジイモニウム系の色素として、化学式(1)で表されるアニオンの1種であるビス(トリフルオロメタンスルホニル)イミド酸をカウンターアニオンとするジイモニウム塩である日本カーリット(株)製CIR−1085 2質量部と、第2の近赤外線吸収色素としてフタロシアニン系色素である(株)日本触媒製イーエクスカラーIR−10A 1質量部と、アクリル系樹脂として(株)日本触媒製IR−G205(樹脂固形分30%、ガラス転移温度100℃)50質量部と、PMMAを主成分とする微小固体粒子として東亞合成化学(株)社製TM−X−1(平均1次粒子径:2μm、球状)0.1質量部とを、メチルエチルケトン46.9質量部に溶解混合し、近赤外線遮蔽性組成物を調製した。
Example 1
(Preparation of near-infrared shielding composition)
2 parts by mass of CIR-1085 manufactured by Nippon Carlit Co., Ltd., which is a diimonium salt having bis (trifluoromethanesulfonyl) imidic acid, which is one of anions represented by chemical formula (1), as a counter anion 1 part by mass of Exex IR-10A manufactured by Nippon Shokubai Co., Ltd., which is a phthalocyanine-based dye as the second near-infrared absorbing dye, and IR-G205 manufactured by Nippon Shokubai Co., Ltd. (resin solid content: 30%) TM-X-1 (average primary particle size: 2 μm, spherical) made by Toagosei Chemical Co., Ltd. as fine solid particles mainly composed of PMMA and glass transition temperature of 100 ° C. Part was dissolved and mixed in 46.9 parts by mass of methyl ethyl ketone to prepare a near-infrared shielding composition.

(近赤外線遮蔽性積層体の作製)
ポリエステル系樹脂フィルムとして三菱化学ポリエステルフィルム(株)製O−320E100を用い、その一面上に、上記近赤外線遮蔽用組成物を、乾燥後の膜厚が10μmとなるように塗工して、熱風乾燥炉で残留溶剤量が1質量%となるように蒸発させて近赤外線遮蔽層を形成して近赤外線遮蔽性積層体を作製した。
この近赤外線遮蔽性積層体の初期および各試験後の光学特性の測定結果、ならびに耐アルコール試験の結果を表1〜3に示す。
(Preparation of near-infrared shielding laminate)
Using O-320E100 manufactured by Mitsubishi Chemical Polyester Film Co., Ltd. as the polyester resin film, the near infrared shielding composition is applied on one side so that the film thickness after drying is 10 μm, The near-infrared shielding laminate was produced by evaporating in a drying oven so that the residual solvent amount was 1% by mass to form a near-infrared shielding layer.
Tables 1 to 3 show the measurement results of the optical properties of the near-infrared shielding laminate at the initial stage and after each test, and the results of the alcohol resistance test.

実施例2
実施例1の近赤外線遮蔽用組成物中に、590nmを選択的に吸収する色材として山田化学工業製TAP−2を0.5質量部追加配合し、メチルエチルケトンを46.4質量部に変更したこと以外は、実施例1と同様にして、近赤外線遮蔽性積層体を作製した。
この近赤外線遮蔽性積層体の初期および各試験後の光学特性の測定結果、ならびに耐アルコール試験の結果を表1〜3に示す。
Example 2
In the near-infrared shielding composition of Example 1, 0.5 part by mass of TAP-2 manufactured by Yamada Chemical Industry was added as a coloring material that selectively absorbs 590 nm, and methyl ethyl ketone was changed to 46.4 parts by mass. Except for this, a near-infrared shielding laminate was produced in the same manner as in Example 1.
Tables 1 to 3 show the measurement results of the optical properties of the near-infrared shielding laminate at the initial stage and after each test, and the results of the alcohol resistance test.

実施例3
ジイモニウム系の色素として、化学式(1)で表されるアニオンの1種であるビス(トリフルオロメタンスルホニル)イミド酸をカウンターアニオンとするジイモニウム塩である日本カーリット(株)製CIR−RL 2質量部と、第2の近赤外線吸収色素としてシアニン系色素である(株)林原生物化学研究所製NK−5060 0.1質量部と、アクリル系樹脂として(株)日本触媒製IR−G207(樹脂固形分30%、ガラス転移温度75℃)50質量部と、PMMAを主成分とする微小固体粒子として東亞合成化学(株)社製TM−X−1(平均1次粒子径:2μm、球状)0.01質量部とを、メチルエチルケトン47.89質量部に溶解混合して近赤外線遮蔽性樹脂組成物を調製し、ポリエステル系樹脂フィルムとして三菱化学ポリエステルフィルム(株)製O−320E100上を用いた以外は、実施例1と同様にして、近赤外線遮蔽性積層体を作製した。
この実施例3の近赤外線遮蔽性積層体の初期および各試験後の光学特性の測定結果、ならびに耐アルコール試験の結果を表1〜3に示す。
Example 3
2 parts by mass of CIR-RL manufactured by Nippon Carlit Co., Ltd., which is a diimonium salt having bis (trifluoromethanesulfonyl) imidic acid, which is one of anions represented by chemical formula (1), as a counter anion 0.1 part by mass of NK-5060 manufactured by Hayashibara Biochemical Laboratories Co., Ltd., which is a cyanine dye as the second near-infrared absorbing dye, and IR-G207 manufactured by Nippon Shokubai Co., Ltd. (resin solid content) 30%, glass transition temperature 75 ° C.) 50 parts by mass, TM-X-1 (average primary particle diameter: 2 μm, spherical) manufactured by Toagosei Chemical Co., Ltd. as fine solid particles mainly composed of PMMA 01 parts by mass is dissolved and mixed in 47.89 parts by mass of methyl ethyl ketone to prepare a near-infrared shielding resin composition. A near-infrared shielding laminate was produced in the same manner as in Example 1 except that O-320E100 manufactured by Reester Film Co., Ltd. was used.
The measurement results of the optical properties of the near-infrared shielding laminate of Example 3 at the initial stage and after each test, and the results of the alcohol resistance test are shown in Tables 1 to 3.

比較例1
PMMAを主成分とする微小固体粒子を添加しないこと以外は、実施例1と同様にして、比較例1の積層体を作製した。
この比較例1の近赤外線遮蔽性積層体の初期および各試験後の光学特性の測定結果、ならびに耐アルコール試験の結果を表1〜3に示す。
Comparative Example 1
A laminate of Comparative Example 1 was produced in the same manner as in Example 1 except that fine solid particles containing PMMA as a main component were not added.
Tables 1 to 3 show the measurement results of the optical properties of the near-infrared shielding laminate of Comparative Example 1 at the initial stage and after each test, and the results of the alcohol resistance test.

Figure 2008213258
Figure 2008213258

Figure 2008213258
Figure 2008213258

Figure 2008213258
Figure 2008213258

〔評価結果〕
実施例1〜3の近赤外線遮蔽用積層体は、耐アルコール試験において、近赤外線遮蔽層に割れやクラックを生ずることなく、優れた耐アルコール性を有していた。
また、耐候性試験前後において高い可視光領域の透過率と、850〜1000nm領域の高い近赤外線遮蔽性を有し、高温高湿試験、耐熱性試験のいずれの試験項目においても、色度、x,yの変化量が共に0.005ポイント以下であり、優れた耐久性を有していた。
これに対して、比較例1の近赤外線遮蔽用積層体は、実施例1〜3と同等の優れた耐久性を示したけれども、耐アルコール試験において、近赤外線吸収層に多数の割れやクラックを生じ、耐アルコール性に劣るものであった。
〔Evaluation results〕
The near-infrared shielding laminates of Examples 1 to 3 had excellent alcohol resistance without causing cracks or cracks in the near-infrared shielding layer in the alcohol resistance test.
Moreover, it has a high visible light region transmittance before and after the weather resistance test and a high near-infrared shielding property in the region of 850 to 1000 nm. In any of the test items of the high temperature and high humidity test and the heat resistance test, chromaticity, x , Y were both 0.005 points or less, and had excellent durability.
On the other hand, the near-infrared shielding laminate of Comparative Example 1 showed excellent durability equivalent to that of Examples 1 to 3, but in the alcohol resistance test, the near-infrared absorbing layer had many cracks and cracks. Produced and inferior in alcohol resistance.

本発明の近赤外線遮蔽性積層体は、これを用いて近赤外線吸収フィルターを製造する工程で生じる近赤外線遮蔽層上の汚れをアルコール等の薬剤によってクリーニングする際に生じる、近赤外線遮蔽層の割れやクラックの発生を防止し得て、近赤外線吸収フィルターを安定して効率よく製造することができ、高い実用性を有するものである。   The near-infrared shielding laminate of the present invention is a crack in the near-infrared shielding layer that occurs when a stain on the near-infrared shielding layer produced in the process of producing a near-infrared absorption filter using this is cleaned with a chemical such as alcohol. Generation of cracks and cracks can be prevented, and a near-infrared absorption filter can be produced stably and efficiently, and has high practicality.

Claims (3)

透明基材と、前記透明基材の一面側に積層された近赤外線遮蔽層を含み、
前記近赤外線遮蔽層が、近赤外線吸収色素と、バインダー樹脂と、平均1次粒子径が1μm以上であって、かつ、前記近赤外線遮蔽層の膜厚よりも小さい微小固体粒子とを含有することを特徴とする近赤外線遮蔽性積層体。
Including a transparent substrate and a near-infrared shielding layer laminated on one side of the transparent substrate,
The near-infrared shielding layer contains a near-infrared absorbing dye, a binder resin, and fine solid particles having an average primary particle diameter of 1 μm or more and smaller than the film thickness of the near-infrared shielding layer. A near infrared shielding laminate.
前記バインダー樹脂の屈折率と前記微小固体粒子の屈折率との差が0.03以下である、請求項1に記載の近赤外線遮蔽性積層体。   The near-infrared shielding laminated body of Claim 1 whose difference of the refractive index of the said binder resin and the refractive index of the said fine solid particle is 0.03 or less. 前記近赤外線遮蔽層に含まれる近赤外線吸収色素は、下記一般式(1);
Figure 2008213258
〔但し式(I)中、n及びn′は1〜8の整数を表す〕
で表されるアニオンをカウンターアニオンとして有するジイモニウム系化合物を含み、かつバインダー樹脂は、ガラス転移温度が60℃〜120℃のアクリル系樹脂を含む、請求項1又は2に記載の近赤外線遮蔽性積層体。
The near-infrared absorbing dye contained in the near-infrared shielding layer has the following general formula (1):
Figure 2008213258
[In the formula (I), n and n ′ represent an integer of 1 to 8]
The near-infrared shielding laminate according to claim 1, wherein the binder resin contains an acrylic resin having a glass transition temperature of 60 ° C. to 120 ° C. body.
JP2007052542A 2007-03-02 2007-03-02 Near-infrared shielding laminate Pending JP2008213258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052542A JP2008213258A (en) 2007-03-02 2007-03-02 Near-infrared shielding laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052542A JP2008213258A (en) 2007-03-02 2007-03-02 Near-infrared shielding laminate

Publications (1)

Publication Number Publication Date
JP2008213258A true JP2008213258A (en) 2008-09-18

Family

ID=39833890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052542A Pending JP2008213258A (en) 2007-03-02 2007-03-02 Near-infrared shielding laminate

Country Status (1)

Country Link
JP (1) JP2008213258A (en)

Similar Documents

Publication Publication Date Title
JP4463272B2 (en) Transparent laminate
TWI387790B (en) Infrared ray absorbing film
CN1703631A (en) Antireflection films for use with displays
KR101792253B1 (en) An anti-reflection film and a polarizing plate using the same
US20150024191A1 (en) Reflection-Resistant Glass Articles and Methods for Making and Using Same
JP5655660B2 (en) Near-infrared shielding film and near-infrared shielding body using the same
JP4632403B2 (en) Antireflection film
JP2006047504A (en) Antireflective stack
JP2019032524A (en) Antireflection film
JP2013205634A (en) Optical film and method for manufacturing the same
KR20160001688A (en) Polarizing plate protective film, polarizing plate, image display device and method of producing polarizing plate protective film
JP2002138203A (en) Resin composition for screening near infrared rays and laminate for screening near infrared rays
KR101251720B1 (en) Anti-glare film and anti-glare composition for preparing the same
CN107703568A (en) Optical reflection film and back light for liquid crystal display device unit
KR101285465B1 (en) Composition for manufacturing anti-glare film, and anti-glare film prepared by using the same
KR20160037117A (en) Optical film, polarizing plate equipped with the optical film, liquid crystal display device, and method for producing an optical film
JP5162813B2 (en) Antireflection material and method for producing the same
KR100709866B1 (en) Brightness-enhanced optical film of low reflectivity for display and display device using this
TW201525087A (en) Coating materials and low haze heat rejection composites
JP4698420B2 (en) Near-infrared shielding coating, near-infrared shielding laminate obtained therefrom, and method for producing the same
KR102313377B1 (en) Anti-glare film and display apparatus
JP2014126662A (en) Antireflection film, polarizing plate having antireflection film, and transmission-type liquid crystal display
JP2008213258A (en) Near-infrared shielding laminate
TW200916819A (en) Antireflection film and display front plate using the same
JP6736049B2 (en) Glass composite, transparent screen including the same, and image projection system including the same