JP2008212975A - Laser machining method and laser machining apparatus - Google Patents

Laser machining method and laser machining apparatus Download PDF

Info

Publication number
JP2008212975A
JP2008212975A JP2007053651A JP2007053651A JP2008212975A JP 2008212975 A JP2008212975 A JP 2008212975A JP 2007053651 A JP2007053651 A JP 2007053651A JP 2007053651 A JP2007053651 A JP 2007053651A JP 2008212975 A JP2008212975 A JP 2008212975A
Authority
JP
Japan
Prior art keywords
waveform
laser
temperature
workpiece
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007053651A
Other languages
Japanese (ja)
Inventor
Yoshimizu Takeno
祥瑞 竹野
Masaru Nakajima
優 中島
Ayumi Onoyama
歩 小野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007053651A priority Critical patent/JP2008212975A/en
Publication of JP2008212975A publication Critical patent/JP2008212975A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser machining apparatus capable of preventing a change in the waveform of a laser beam to perform stable machining even if a disturbance, such as existence of a reflected beam from a workpiece, occurs in machining. <P>SOLUTION: A laser machining apparatus is provided with a laser beam oscillator 1 for emitting a laser beam by using a nonlinear optical crystal 3, a temperature measuring element 5 for adjusting the temperature of the nonlinear optical crystal 3, a heater 4, and a temperature controller 6, and performs machining of a workpiece 9 by irradiating the workpiece 9 with the laser beam. Further, the laser machining apparatus is provided with: a partially transparent mirror 7 for measuring the waveform of the laser beam; a focusing lens 11; a photodetector 12; an AD converter 13; and a controller 14, which compares a reference waveform, as a reference for a measured laser beam, with a monitored waveform of the laser beam during machining of the workpiece 9, and controls the temperature controller 6 so that the monitored waveform approximates the reference waveform. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、非線形光学結晶を用いて波長変換するレーザ発振器を使用したレーザ加工方法およびレーザ加工装置に関し、特にレーザ光の波形の変化を防止し安定した加工を行うことができるものである。   The present invention relates to a laser processing method and a laser processing apparatus using a laser oscillator that converts a wavelength using a nonlinear optical crystal, and in particular, can prevent a change in the waveform of laser light and perform stable processing.

従来の非線形光学結晶を用いて波長変換するパルスレーザ発振器を搭載したレーザ加工装置では、波長変換効率が最大となるような温度、すなわち、レーザ出力が最大となるように、非線形光学結晶の温度をヒータ等で一定となるように制御することで、レーザ出力の安定性を確保している。しかし、レーザ光が発生した直後や加工部からの反射光が生じた直後には、非線形光学結晶自身にレーザ光の一部が吸収され、過渡的に結晶温度が変化するため、温度を一定に保つことが困難となり、レーザ出力が変動するという問題があった。これを解決するために、非線形光学結晶に2つの温調器を取り付け、結晶温度をそれぞれ異なる温度で維持し、レーザ光による結晶内部の過渡的な温度変化が生じてもレーザ出力の変動が生じないようにしていた(例えば、特許文献1参照)。   In a laser processing apparatus equipped with a conventional pulse laser oscillator that performs wavelength conversion using a nonlinear optical crystal, the temperature of the nonlinear optical crystal is set so that the wavelength conversion efficiency is maximized, that is, the laser output is maximized. The stability of the laser output is ensured by controlling to be constant with a heater or the like. However, immediately after the laser light is generated or immediately after the reflected light from the processed part is generated, a part of the laser light is absorbed by the nonlinear optical crystal itself, and the crystal temperature changes transiently. There is a problem that it becomes difficult to maintain and the laser output fluctuates. To solve this problem, two temperature controllers are attached to the nonlinear optical crystal, and the crystal temperatures are maintained at different temperatures. Even if a transient temperature change occurs inside the crystal due to laser light, the laser output fluctuates. (For example, refer to Patent Document 1).

特開2001−42371号公報(3頁44〜48行、図1)Japanese Patent Laid-Open No. 2001-42371 (page 3, lines 44 to 48, FIG. 1)

従来のレーザ加工装置は、レーザ光が発生した直後や被加工物からの反射光の有無などの影響で、非線形光学結晶内部の温度が変化してもレーザ出力は一定に保たれるが、レーザ光のパルス波形が変化し、熱処理などの加工部の最高到達温度や冷却速度が加工結果に大きく影響をおよぼして加工が不均一になるという問題点があった。   Conventional laser processing equipment keeps the laser output constant even if the temperature inside the nonlinear optical crystal changes due to the influence of the reflected light from the work piece immediately after the laser light is generated. There is a problem that the pulse waveform of light changes, and the maximum temperature and the cooling rate of the processing part such as heat treatment greatly affect the processing result, resulting in non-uniform processing.

この発明は、上記のような問題点を解決するためになされたものであり、被加工物からの反射光の有無など、加工中の外乱があっても、レーザ光の波形の変化を防止し、安定した加工を行うことができるレーザ加工方法およびレーザ加工装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and prevents changes in the waveform of the laser beam even when there is a disturbance during processing, such as the presence or absence of reflected light from the workpiece. An object of the present invention is to provide a laser processing method and a laser processing apparatus capable of performing stable processing.

この発明は、非線形光学結晶を用いてレーザ光を発振させ、レーザ光を被加工物に照射して被加工物の加工を行うレーザ加工方法において、レーザ光の基準となる基準波形を取得し、レーザ光の被加工物に加工中のモニタ波形をモニタし、モニタ波形と基準波形とを比較し、モニタ波形が基準波形に近似するよう非線形光学結晶の温度を制御して被加工物の加工を行うものである。   In the laser processing method for processing a workpiece by oscillating a laser beam using a nonlinear optical crystal and irradiating the workpiece with the laser beam, a reference waveform serving as a reference for the laser beam is acquired. Monitor the monitor waveform during processing of the laser beam workpiece, compare the monitor waveform with the reference waveform, and control the temperature of the nonlinear optical crystal so that the monitor waveform approximates the reference waveform. Is what you do.

また、この発明は、非線形光学結晶を用いてレーザ光を発振するレーザ発振手段と、非線形光学結晶の温度を調整する温度調整手段とを備え、レーザ光を被加工物に照射して被加工物の加工を行うレーザ加工装置において、レーザ光の波形を測定する測定手段と、測定手段にて測定したレーザ光の基準となる基準波形とレーザ光の被加工物に加工中のレーザ光のモニタ波形とを比較しモニタ波形が基準波形に近似するよう温度調整手段を制御する制御手段とを備えたものである。   The present invention also includes laser oscillation means for oscillating laser light using a nonlinear optical crystal and temperature adjusting means for adjusting the temperature of the nonlinear optical crystal, and irradiates the workpiece with the laser light. In the laser processing apparatus for processing the above, the measuring means for measuring the waveform of the laser light, the reference waveform that becomes the reference of the laser light measured by the measuring means, and the monitor waveform of the laser light being processed into the workpiece of the laser light And a control means for controlling the temperature adjusting means so that the monitor waveform approximates the reference waveform.

この発明のレーザ加工方法は、非線形光学結晶を用いてレーザ光を発振させ、レーザ光を被加工物に照射して被加工物の加工を行うレーザ加工方法において、レーザ光の基準となる基準波形を取得し、レーザ光の被加工物に加工中のモニタ波形をモニタし、モニタ波形と基準波形とを比較し、モニタ波形が基準波形に近似するよう非線形光学結晶の温度を制御して被加工物の加工を行うので、被加工物からの反射光に有無など、加工中の外乱があっても、レーザ光の波形の変化を防止し、安定した加工を行うことができる。   The laser processing method of the present invention is a laser processing method for processing a workpiece by oscillating a laser beam using a nonlinear optical crystal and irradiating the workpiece with the laser beam. And monitor the monitor waveform being processed on the workpiece of the laser beam, compare the monitor waveform with the reference waveform, and control the temperature of the nonlinear optical crystal so that the monitor waveform approximates the reference waveform Since the workpiece is processed, even if there is a disturbance during the processing such as the presence or absence of reflected light from the workpiece, a change in the waveform of the laser beam can be prevented and stable processing can be performed.

また、この発明のレーザ加工装置は、非線形光学結晶を用いてレーザ光を発振するレーザ発振手段と、非線形光学結晶の温度を調整する温度調整手段とを備え、レーザ光を被加工物に照射して被加工物の加工を行うレーザ加工装置において、レーザ光の波形を測定する測定手段と、測定手段にて測定したレーザ光の基準となる基準波形とレーザ光の被加工物に加工中のレーザ光のモニタ波形とを比較しモニタ波形が基準波形に近似するよう温度調整手段を制御する制御手段とを備えたので、被加工物からの反射光に有無など、加工中の外乱があっても、レーザ光の波形の変化を防止し、安定した加工を行うことができる。   The laser processing apparatus according to the present invention further includes laser oscillation means for oscillating laser light using a nonlinear optical crystal and temperature adjusting means for adjusting the temperature of the nonlinear optical crystal, and irradiates the workpiece with the laser light. In the laser processing apparatus for processing the workpiece, the measuring means for measuring the waveform of the laser beam, the reference waveform serving as the reference of the laser beam measured by the measuring means, and the laser being processed into the workpiece of the laser beam Control means that controls the temperature adjustment means so that the monitor waveform is compared with the reference waveform by comparing with the monitor waveform of light, so even if there is a disturbance during processing, such as the presence or absence of reflected light from the workpiece Thus, it is possible to prevent a change in the waveform of the laser beam and perform stable processing.

実施の形態1.
以下、本願発明の実施の形態について説明する。図1はこの発明の実施の形態1のレーザ加工装置の構成を示す図、図2は非線形光学結晶の温度変化に対する、平均出力、および、パルス幅、および、ピーク出力の関係をそれぞれ示す図、図3はこの発明の実施の形態1によるレーザ光の照射方法を示す図、図4はこの発明の実施の形態1によるレーザ加工方法におけるパルス波形の変化を示す図、図5は図1に示したレーザ加工装置を用いたレーザ加工方法を説明するためのフローチャートである。図において、レーザ加工装置は赤外レーザ光2を発振するレーザ発振手段としてのレーザ発振器1と、赤外レーザ光2を波長変換するための非線形光学結晶3と、非線形光学結晶3の温度を測定する温度測定素子5と、非線形光学結晶3を加熱するヒータ4と、温度測定素子5にて測定される非線形光学結晶3の温度に基づいてヒータ4のON、OFFにより非線形光学結晶3の温度を調整する温調器6とを備える。
Embodiment 1 FIG.
Embodiments of the present invention will be described below. FIG. 1 is a diagram showing a configuration of a laser processing apparatus according to Embodiment 1 of the present invention. FIG. 2 is a diagram showing a relationship between an average output, a pulse width, and a peak output with respect to a temperature change of a nonlinear optical crystal. FIG. 3 is a diagram showing a laser beam irradiation method according to Embodiment 1 of the present invention, FIG. 4 is a diagram showing changes in pulse waveforms in the laser processing method according to Embodiment 1 of the present invention, and FIG. 5 is shown in FIG. 6 is a flowchart for explaining a laser processing method using the laser processing apparatus. In the figure, a laser processing apparatus measures a laser oscillator 1 as a laser oscillation means for oscillating infrared laser light 2, a nonlinear optical crystal 3 for converting the wavelength of infrared laser light 2, and the temperature of the nonlinear optical crystal 3. The temperature measuring element 5 for heating, the heater 4 for heating the nonlinear optical crystal 3, and the temperature of the nonlinear optical crystal 3 by turning the heater 4 on and off based on the temperature of the nonlinear optical crystal 3 measured by the temperature measuring element 5. And a temperature controller 6 to be adjusted.

さらに、非線形光学結晶3によって波長変換された可視または紫外の照射用レーザ光15の一部を透過して大部分を反射させる部分透過ミラー7と、照射用レーザ光15を集光して被加工物9に照射させる照射側集光レンズ8と、被加工物9を動かすためのXYステージ10と、部分透過ミラー7を透過した測定用レーザ光16のパルス波形をモニタするフォトディテクタ12と、測定用レーザ光16をフォトディテクタ12に入射させる測定側集光レンズ11と、フォトディテクタ12の出力信号をアナログ−デジタル変化するAD変換装置13と、AD変換装置13の出力からレーザ光のパルス波形のピーク出力、パルス幅を算出し、算出結果の変化をもとに温調器6を制御する制御手段としての制御装置14とを備える。レーザ発振器1から出射された赤外レーザ光2は非線形光学結晶3を透過することにより、レーザ光としての照射用レーザ光15に波長変換される。そして、温度測定素子5、ヒータ4、および、温調器6にて温度調整手段が構成され、部分透過ミラー7、測定側集光レンズ11、フォトディテクタ12、および、AD変換装置13にて測定手段が構成されることとなる。   Furthermore, a part of the visible or ultraviolet irradiation laser beam 15 whose wavelength is converted by the nonlinear optical crystal 3 is transmitted, and the partial transmission mirror 7 that reflects most of the irradiation laser beam 15 and the irradiation laser beam 15 are collected and processed. An irradiation-side condenser lens 8 for irradiating the object 9, an XY stage 10 for moving the workpiece 9, a photodetector 12 for monitoring the pulse waveform of the measurement laser beam 16 transmitted through the partial transmission mirror 7, and a measurement A measuring-side condensing lens 11 for making the laser beam 16 incident on the photodetector 12, an AD converter 13 for changing the output signal of the photodetector 12 from analog to digital, and a peak output of the pulse waveform of the laser beam from the output of the AD converter 13; A control device 14 is provided as control means for calculating the pulse width and controlling the temperature controller 6 based on the change in the calculation result. The infrared laser light 2 emitted from the laser oscillator 1 passes through the nonlinear optical crystal 3 and is converted into a laser beam 15 for irradiation as laser light. The temperature measuring element 5, the heater 4, and the temperature controller 6 constitute a temperature adjusting means, and the partial transmission mirror 7, the measurement-side condensing lens 11, the photodetector 12, and the AD converter 13 measure the measuring means. Will be constructed.

次に上記のように構成された実施の形態1のレーザ加工装置のレーザ加工方法について説明する。まず、被加工物9のレーザ加工を行う前に、図中に示していないシャッター等で照射用レーザ光15を遮断して、レーザ光の発振のみを行い、被加工物9にレーザ光を照射しない際に、赤外レーザ光2から可視または紫外のレーザ光への変換効率が最も高くなる所定温度を決定する。そして、この所定温度となるように温調器6は、温度測定素子5にて非線形光学結晶3の温度を測定しながら、ヒータ4を調整する。この非線形光学結晶3の温度を変化させた場合、図2に示すように、照射用レーザ光15の平均出力、および、ピーク出力、および、パルス幅は変化する。図2から明らかなように、平均出力は比較的広い温度範囲でほぼ一定となるのに対し、パルス幅、および、ピーク出力は一定となる温度範囲はほとんど存在せず、非線形光学結晶3の温度がわずかでも変化すれば変化が発生する。   Next, a laser processing method of the laser processing apparatus according to the first embodiment configured as described above will be described. First, before performing laser processing on the workpiece 9, the irradiation laser beam 15 is blocked by a shutter or the like not shown in the figure, and only the laser beam is oscillated to irradiate the workpiece 9 with the laser beam. When not, a predetermined temperature at which the conversion efficiency from the infrared laser beam 2 to the visible or ultraviolet laser beam is highest is determined. Then, the temperature controller 6 adjusts the heater 4 while measuring the temperature of the nonlinear optical crystal 3 with the temperature measuring element 5 so that the predetermined temperature is obtained. When the temperature of the nonlinear optical crystal 3 is changed, as shown in FIG. 2, the average output, the peak output, and the pulse width of the irradiation laser light 15 change. As apparent from FIG. 2, the average output is almost constant over a relatively wide temperature range, whereas there is almost no temperature range in which the pulse width and peak output are constant, and the temperature of the nonlinear optical crystal 3 If a slight change occurs, a change occurs.

具体的なレーザ加工方法として、照射用レーザ光15として例えば波長537nmのNd:YLFレーザの第2高調波を用い、被加工物9として例えばリンやボロンなどの不純物元素をイオン注入した大きさが5インチ程度のシリコンのウエハ19を用い、図1に示したレーザ加工装置を用いて不純物元素の活性化熱処理を行った。ウエハ19上の照射用レーザ光15の照射は、例えば図3に示すようにウエハ19全体に照射用レーザ光15が照射されるよう照射用レーザ光15をスキャンして行う。このとき、ウエハ19に照射用レーザ光15が照射されている間、ウエハ19から反射光が非線形光学結晶3まで戻ってくる。   As a specific laser processing method, for example, a second harmonic of an Nd: YLF laser having a wavelength of 537 nm is used as the irradiation laser beam 15, and a size in which an impurity element such as phosphorus or boron is ion-implanted as the workpiece 9 is used. A silicon wafer 19 of about 5 inches was used, and an impurity element activation heat treatment was performed using the laser processing apparatus shown in FIG. The irradiation of the irradiation laser beam 15 on the wafer 19 is performed by scanning the irradiation laser beam 15 so that the irradiation laser beam 15 is irradiated to the entire wafer 19 as shown in FIG. At this time, the reflected light returns from the wafer 19 to the nonlinear optical crystal 3 while the irradiation laser beam 15 is irradiated on the wafer 19.

図4はフォトディテクタ12によってモニタされたモニタ波形18および基準波形17の例である。ウエハ19に照射用レーザ光15を照射する前の基準波形17はパルス幅W0、ピーク出力P0であるが、本発明のように温度調整を行わない場合、照射用レーザ光15をウエハ19に照射したところその反射光により非線形光学結晶3の温度が上昇し、モニタ波形18の面積に相当する平均出力は変化しないものの、パルス幅はW1、ピーク出力はP1と基準波形17から変化してしまう。この変化は反射光の発生する割合が大きいほど大きくなる。すなわち、図3において、ウエハ19の端部を照射しているときには変化は小さいが、ウエハ19中心部に行くにつれて変化が大きくなり、その後、また小さくなる。   FIG. 4 is an example of the monitor waveform 18 and the reference waveform 17 monitored by the photodetector 12. The reference waveform 17 before irradiating the wafer 19 with the irradiation laser beam 15 has a pulse width W0 and a peak output P0. When temperature adjustment is not performed as in the present invention, the irradiation laser beam 15 is irradiated onto the wafer 19. As a result, the temperature of the nonlinear optical crystal 3 rises due to the reflected light, and the average output corresponding to the area of the monitor waveform 18 does not change, but the pulse width changes from W1 and the peak output changes from P1 and the reference waveform 17. This change increases as the ratio of reflected light generation increases. That is, in FIG. 3, the change is small when the edge of the wafer 19 is irradiated, but the change increases as it goes to the center of the wafer 19 and then decreases again.

よって、本発明では、ウエハ19に照射用レーザ光15を照射する前の基準となる基準波形17を測定しておく。そして、照射用レーザ光15の加工中のモニタ波形をフォトディテクタ12で電気信号に変換し(図5のステップS1)、AD変換装置13にてA/D変換を行う(図5のステップS2)。次に、制御装置14にてモニタ波形のピーク出力とパルス幅とを算出する(図5のステップS3)。次に、基準波形とモニタ波形とのパルス幅およびピーク出力とを比較して近似しているか否かを判断する(図5のステップS4)。次に、近似していないすなわち、ピーク出力が上昇し、パルス幅が減少している場合には、予め定めておいた温度だけ非線形光学結晶の温度を下げて、ピーク出力の上昇、あるいは、パルス幅の減少を低減させ、モニタ波形を基準波形に近づける(図5のステップS5)。また、近似している場合には、非線形光学結晶の温度を所定温度に保つ(図5のステップS6)。そしてこのステップS1からステップS6までの動作を被加工物の加工処理が終了するまで繰り返し行う。   Therefore, in the present invention, the reference waveform 17 serving as a reference before irradiating the wafer 19 with the irradiation laser beam 15 is measured. The monitor waveform during processing of the irradiation laser beam 15 is converted into an electric signal by the photodetector 12 (step S1 in FIG. 5), and A / D conversion is performed by the AD converter 13 (step S2 in FIG. 5). Next, the control device 14 calculates the peak output and pulse width of the monitor waveform (step S3 in FIG. 5). Next, it is determined whether the reference waveform and the monitor waveform are approximated by comparing the pulse width and peak output (step S4 in FIG. 5). Next, if it is not approximate, that is, if the peak output increases and the pulse width decreases, the temperature of the nonlinear optical crystal is decreased by a predetermined temperature to increase the peak output or the pulse The decrease in width is reduced, and the monitor waveform is brought close to the reference waveform (step S5 in FIG. 5). If approximate, the temperature of the nonlinear optical crystal is kept at a predetermined temperature (step S6 in FIG. 5). The operations from step S1 to step S6 are repeated until the processing of the workpiece is completed.

ここで非線形光学結晶3の温度を変化させる適正値は、被加工物や照射条件などにより異なるが、上記に示したレーザ加工方法の具体例の場合には、所定温度より0.2℃温度を下げて制御を行った。すると、本発明のレーザ加工方法を用いない活性化熱処理では、被加工物からの反射光によりレーザ光のモニタ波形が変化するため活性化状態に大きなバラツキが生じたが、本発明のレーザ加工方法を用いた場合、本発明のレーザ加工方法を用いなかったときと比べて、活性化状態のバラツキが1/10程度にまで低減できた。   Here, the appropriate value for changing the temperature of the nonlinear optical crystal 3 varies depending on the workpiece and irradiation conditions, but in the case of the specific example of the laser processing method described above, the temperature is set to 0.2 ° C. from the predetermined temperature. Lowered and controlled. Then, in the activation heat treatment that does not use the laser processing method of the present invention, the monitor waveform of the laser light changes due to the reflected light from the workpiece, so that the activated state varies greatly. The laser processing method of the present invention As compared with the case where the laser processing method of the present invention was not used, the variation in the activated state could be reduced to about 1/10.

上記のように構成された実施の形態1におけるレーザ加工方法およびレーザ加工装置によれば、被加工物の加工中におけるレーザ光の反射光による波形の変化を防止することができるため、特に熱処理などの被加工物の最高到達温度や冷却速度が加工結果に大きく影響をおよぼす加工で波形が加工状態に大きな影響をおよぼす加工でも、反射光による加工バラツキを抑制可能であるため、安定した加工を行うことができる。また、その制御をモニタ波形と基準波形とのそれぞれのピーク出力およびパルス幅を比較することにより行っているため、波形のうち2点の比較のみにて行うことができるため、効率よく制御を行うことができる。また、モニタ波形と基準波形とが近似している場合は、予め設定されている効率よく加工可能な所定温度に設定するため効率よくレーザ加工を行うことが可能となる。   According to the laser processing method and the laser processing apparatus according to Embodiment 1 configured as described above, it is possible to prevent a change in waveform due to the reflected light of the laser beam during processing of the workpiece. Even if the maximum temperature and cooling rate of a workpiece greatly affect the processing result, even if the waveform has a large effect on the processing state, it is possible to suppress processing variations due to reflected light, so stable processing is performed. be able to. In addition, since the control is performed by comparing the peak output and the pulse width of the monitor waveform and the reference waveform, it can be performed only by comparing two points in the waveform, so that the control is performed efficiently. be able to. Further, when the monitor waveform and the reference waveform are approximate, the laser processing can be performed efficiently because the preset predetermined temperature at which the processing can be performed efficiently is set.

尚、上記実施の形態1においては、モニタ波形と基準波形との比較を、ピーク出力およびパルス幅の比較にて行っているが、モニタ波形と基準波形との全体を比較して行う方法や、さらに効率的に行うためにモニタ波形と基準波形との比較を、ピーク出力またはパルス幅の比較にて行ってもよいことは言うまでもなく、上記実施の形態と同様の効果を奏することが可能となる。また、上記実施の形態においては被加工物として反射光の発生しやすいウエハを例に説明したが、これに限られることはなく、例えば被加工物自体が反射光の発生しにくいものが使用されていたとしても被加工物を支持する治具などにて反射光が発生する場合がある。その場合も上記実施の形態1と同様にレーザ光のモニタ波形が変化する。よって、非線形光学結晶の温度を調整する必要があり、その場合は非線形光学結晶の温度を上げることにより対応することとなる。また、上記実施の形態1においては基準波形を被加工物の照射前に取得する例を示したが、これに限られることはなく、例えば被加工物に照射した直後のレーザ光の波形を基準波形として設定することも可能であることは言うまでもない。   In the first embodiment, the monitor waveform and the reference waveform are compared by comparing the peak output and the pulse width, but the method of comparing the monitor waveform and the reference waveform as a whole, Needless to say, the comparison between the monitor waveform and the reference waveform may be made by comparing the peak output or the pulse width in order to perform more efficiently, and the same effects as in the above embodiment can be obtained. . In the above-described embodiment, a wafer that easily generates reflected light has been described as an example of the workpiece. However, the present invention is not limited to this, and for example, a workpiece that does not easily generate reflected light is used. Even if it is, reflected light may be generated by a jig or the like that supports the workpiece. Also in that case, the monitor waveform of the laser light changes as in the first embodiment. Therefore, it is necessary to adjust the temperature of the nonlinear optical crystal. In this case, the temperature of the nonlinear optical crystal is raised. In the first embodiment, an example is shown in which the reference waveform is acquired before the workpiece is irradiated. However, the present invention is not limited to this. For example, the waveform of the laser beam immediately after irradiation of the workpiece is used as a reference. Needless to say, it can also be set as a waveform.

この発明の実施の形態1のレーザ加工装置の構成を示す図である。It is a figure which shows the structure of the laser processing apparatus of Embodiment 1 of this invention. 非線形光学結晶の温度変化に対する、平均出力、および、パルス幅、および、ピーク出力の関係をそれぞれ示す図である。It is a figure which shows the relationship of an average output, a pulse width, and a peak output with respect to the temperature change of a nonlinear optical crystal, respectively. この発明の実施の形態1によるレーザ光の照射方法を示す模式図である。It is a schematic diagram which shows the irradiation method of the laser beam by Embodiment 1 of this invention. この発明の実施の形態1によるレーザ加工方法におけるパルス波形の変化を示す図である。It is a figure which shows the change of the pulse waveform in the laser processing method by Embodiment 1 of this invention. 図1に示したレーザ加工装置を用いたレーザ加工方法を説明するためのフローチャートである。It is a flowchart for demonstrating the laser processing method using the laser processing apparatus shown in FIG.

符号の説明Explanation of symbols

1 レーザ発振器、3 非線形光学結晶、4 ヒータ、5 温度測定素子、
6 温調器、9 被加工物、11 測定側集光レンズ、12 フォトディテクタ、
13 AD変換装置、14 制御装置、15 照射用レーザ光、16 測定用レーザ光、19 ウエハ。
1 laser oscillator, 3 nonlinear optical crystal, 4 heater, 5 temperature measuring element,
6 Temperature controller, 9 Work piece, 11 Measuring side condenser lens, 12 Photo detector,
13 AD converter, 14 controller, 15 laser beam for irradiation, 16 laser beam for measurement, 19 wafer.

Claims (6)

非線形光学結晶を用いてレーザ光を発振させ、上記レーザ光を被加工物に照射して上記被加工物の加工を行うレーザ加工方法において、上記レーザ光の基準となる基準波形を取得し、上記レーザ光の被加工物に加工中のモニタ波形をモニタし、上記モニタ波形と上記基準波形とを比較し、上記モニタ波形が上記基準波形に近似するよう上記非線形光学結晶の温度を制御して上記被加工物の加工を行うことを特徴とするレーザ加工方法。 In a laser processing method for processing a workpiece by oscillating a laser beam using a nonlinear optical crystal and irradiating the workpiece with the laser beam, obtaining a reference waveform serving as a reference for the laser beam, Monitor the monitor waveform during processing on the workpiece of the laser light, compare the monitor waveform with the reference waveform, and control the temperature of the nonlinear optical crystal so that the monitor waveform approximates the reference waveform. A laser processing method characterized by processing a workpiece. 上記モニタ波形と上記基準波形との比較は、上記モニタ波形と上記基準波形とのそれぞれのピーク出力またはパルス幅の少なくとも一方を比較し、上記非線形光学結晶の温度を制御は、上記モニタ波形のピーク出力またはパルス幅の少なくとも一方が上記基準波形のピーク出力またはパルス幅の少なくとも一方に近似するよう行うことを特徴とする請求項1に記載のレーザ加工方法。 The comparison between the monitor waveform and the reference waveform is performed by comparing at least one of the peak output or the pulse width of each of the monitor waveform and the reference waveform, and the temperature of the nonlinear optical crystal is controlled by the peak of the monitor waveform. 2. The laser processing method according to claim 1, wherein at least one of output and pulse width is approximated to at least one of peak output and pulse width of the reference waveform. 上記モニタ波形と上記基準波形とを比較し、上記モニタ波形が上記基準波形に近似していると上記非線形光学結晶の温度を所定温度に保つように制御することを特徴とする請求項1または請求項2に記載のレーザ加工方法。 2. The monitor waveform and the reference waveform are compared, and if the monitor waveform approximates the reference waveform, control is performed to keep the temperature of the nonlinear optical crystal at a predetermined temperature. Item 3. The laser processing method according to Item 2. 非線形光学結晶を用いてレーザ光を発振するレーザ発振手段と、上記非線形光学結晶の温度を調整する温度調整手段とを備え、上記レーザ光を被加工物に照射して上記被加工物の加工を行うレーザ加工装置において、上記レーザ光の波形を測定する測定手段と、上記測定手段にて測定した上記レーザ光の基準となる基準波形と上記レーザ光の被加工物に加工中の上記レーザ光のモニタ波形とを比較し上記モニタ波形が上記基準波形に近似するよう上記温度調整手段を制御する制御手段とを備えたことを特徴とするレーザ加工装置。 Laser oscillating means for oscillating laser light using a nonlinear optical crystal and temperature adjusting means for adjusting the temperature of the nonlinear optical crystal are provided, and the workpiece is irradiated with the laser light to process the workpiece. In the laser processing apparatus to be performed, a measuring means for measuring the waveform of the laser light, a reference waveform serving as a reference of the laser light measured by the measuring means, and the laser light being processed on the workpiece of the laser light A laser processing apparatus comprising: a control means for comparing the monitor waveform and controlling the temperature adjusting means so that the monitor waveform approximates the reference waveform. 上記制御手段は、上記モニタ波形および上記基準波形のそれぞれのピーク出力またはパルス幅の少なくとも一方を比較し上記モニタ波形のピーク出力またはパルス幅の少なくとも一方が上記基準波形のピーク出力またはパルス幅の少なくとも一方に近似するよう上記温度調整手段を制御することを特徴とする請求項4に記載のレーザ加工装置。 The control means compares at least one of the peak output or pulse width of each of the monitor waveform and the reference waveform, and at least one of the peak output or pulse width of the monitor waveform is at least the peak output or pulse width of the reference waveform. The laser processing apparatus according to claim 4, wherein the temperature adjusting unit is controlled to approximate one. 上記制御手段は、上記モニタ波形と上記基準波形とを比較して上記モニタ波形が上記基準波形に近似していると上記非線形光学結晶の温度を所定温度に保つように上記温度調整手段を制御することを特徴とする請求項4または請求項5に記載のレーザ加工装置。 The control means compares the monitor waveform with the reference waveform, and controls the temperature adjusting means to keep the temperature of the nonlinear optical crystal at a predetermined temperature when the monitor waveform approximates the reference waveform. The laser processing apparatus according to claim 4 or 5, wherein
JP2007053651A 2007-03-05 2007-03-05 Laser machining method and laser machining apparatus Pending JP2008212975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053651A JP2008212975A (en) 2007-03-05 2007-03-05 Laser machining method and laser machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007053651A JP2008212975A (en) 2007-03-05 2007-03-05 Laser machining method and laser machining apparatus

Publications (1)

Publication Number Publication Date
JP2008212975A true JP2008212975A (en) 2008-09-18

Family

ID=39833644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053651A Pending JP2008212975A (en) 2007-03-05 2007-03-05 Laser machining method and laser machining apparatus

Country Status (1)

Country Link
JP (1) JP2008212975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196665A (en) * 2016-04-26 2017-11-02 エーピー システムズ インコーポレイテッド Laser processing apparatus and laser processing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141390A (en) * 1983-01-31 1984-08-14 Nec Corp Monitoring device for laser energy
JPH1076379A (en) * 1996-09-03 1998-03-24 Nikon Corp Laser beam machine
JPH11221685A (en) * 1998-02-02 1999-08-17 Nikon Corp Laser beam machine
JP2003075877A (en) * 2001-09-06 2003-03-12 Sumitomo Heavy Ind Ltd Laser light source and temperature control method for nonlinear optical element
JP2006015373A (en) * 2004-07-01 2006-01-19 Ricoh Co Ltd Laser beam machining apparatus
JP2006330518A (en) * 2005-05-27 2006-12-07 Laserfront Technologies Inc Harmonic generator
JP2007294498A (en) * 2006-04-21 2007-11-08 Sumitomo Heavy Ind Ltd Pulse laser apparatus and method for generating pulse laser beam

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141390A (en) * 1983-01-31 1984-08-14 Nec Corp Monitoring device for laser energy
JPH1076379A (en) * 1996-09-03 1998-03-24 Nikon Corp Laser beam machine
JPH11221685A (en) * 1998-02-02 1999-08-17 Nikon Corp Laser beam machine
JP2003075877A (en) * 2001-09-06 2003-03-12 Sumitomo Heavy Ind Ltd Laser light source and temperature control method for nonlinear optical element
JP2006015373A (en) * 2004-07-01 2006-01-19 Ricoh Co Ltd Laser beam machining apparatus
JP2006330518A (en) * 2005-05-27 2006-12-07 Laserfront Technologies Inc Harmonic generator
JP2007294498A (en) * 2006-04-21 2007-11-08 Sumitomo Heavy Ind Ltd Pulse laser apparatus and method for generating pulse laser beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196665A (en) * 2016-04-26 2017-11-02 エーピー システムズ インコーポレイテッド Laser processing apparatus and laser processing method

Similar Documents

Publication Publication Date Title
US8691598B1 (en) Dual-loop control for laser annealing of semiconductor wafers
TWI778205B (en) Laser power control device, laser processing device, and laser power control method
JP2010256784A (en) Wavelength converting device, wavelength converting method, and method of manufacturing semiconductor device
US20140166632A1 (en) Dual-loop control for laser annealing of semiconductor wafers
JP2011003630A (en) Laser irradiator and method for irradiating laser
JP2012129500A (en) System and method for forming time averaged line image
US11097375B2 (en) Laser processing apparatus and laser processing method
JP4531323B2 (en) Laser device, laser irradiation method, and semiconductor device manufacturing method
JP2010251448A (en) Solid-state pulsed laser apparatus for output of third harmonic waves
JP2006330518A (en) Harmonic generator
CN117238801B (en) Temperature control method applied to laser annealing system and laser annealing system
JP2010177609A (en) Method of laser-annealing semiconductor film and annealing device
US10312659B1 (en) Controlling laser beam parameters by crystal shifting
JP2008212975A (en) Laser machining method and laser machining apparatus
JP2018158361A (en) Laser processing apparatus
JPWO2004086121A1 (en) Optical element, optical system, laser device, exposure device, mask inspection device, and polymer crystal processing device
JP2005116729A (en) Laser processing apparatus and method therefor
JP2005101202A (en) Laser annealing apparatus and method for monitoring laser beam intensity thereof
JP2001025888A (en) Laser beam device for machining
JP5026186B2 (en) Laser damage resistance estimation method and laser damage resistance estimation apparatus for optical material
KR101309807B1 (en) Laser annealing apparatus and laser annealing method
JP4225121B2 (en) Laser annealing method and apparatus
JP2013089930A (en) Laser annealing method and laser annealing apparatus
JP2006305620A (en) Laser beam machining device and method
JP6843657B2 (en) Laser processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214