JP2008211487A - Antenna apparatus - Google Patents

Antenna apparatus Download PDF

Info

Publication number
JP2008211487A
JP2008211487A JP2007045842A JP2007045842A JP2008211487A JP 2008211487 A JP2008211487 A JP 2008211487A JP 2007045842 A JP2007045842 A JP 2007045842A JP 2007045842 A JP2007045842 A JP 2007045842A JP 2008211487 A JP2008211487 A JP 2008211487A
Authority
JP
Japan
Prior art keywords
angle
axis
error
antenna
gantry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045842A
Other languages
Japanese (ja)
Inventor
Satoshi Sofuku
諭 惣福
Noboru Ito
昇 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007045842A priority Critical patent/JP2008211487A/en
Publication of JP2008211487A publication Critical patent/JP2008211487A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna on an altazimuth mount which maintains a directivity accuracy by correcting a directivity error due to deformation of a frame caused by wind power and sun heat by means of a constitution having one EL angle detector and a correction algorithm. <P>SOLUTION: The antenna on the altazimuth mount is provided with an EL angle difference calculating means which has the EL angle detectors at both ends of the frame supporting an EL axis and calculates an angle difference of an elevation angle detected by each EL angle detector when the EL axis is distorted by the deformation of the frame due to wind power and sun heat, an EL distortion amount correcting means which corrects an EL command value based on the calculated angle difference of the elevation angle, an AZ error calculating means which calculates an azimuth angle error based on the calculated angle difference of the elevation angle, a height of the frame and a length between both ends of the frame, and an AZ distortion amount correcting means which corrects an AZ command value based on the calculated azimuth angle error. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、大型パラボラアンテナの指向性を改善するアンテナ装置に関するものである。   The present invention relates to an antenna device that improves the directivity of a large parabolic antenna.

パラボラアンテナは、周知のように、天体観測用の電波望遠鏡、衛星対地上局間通信、レーダなどのアンテナとして用いられているが、近年、分解能の向上を図り、より精密な観測を行えるようするため、その主反射鏡(以下、主鏡と呼ぶ)が大型化される傾向にある。また、主鏡の大型化に伴ってそれを支持するための架台も当然大型化される。大型パラボラアンテナの多くは外気にさらされるため、風力による影響を受けやすい。特に、主鏡が大きくなると風を受ける面積が大きくなるため、主鏡を支える架台に対しても大きな力がかかるようになり、架台が弾性変形するという現象が起こる。また、大型パラボラアンテナは日射や外気温の影響も受けやすく、温度分布により熱変形という現象も起こる。そのため、主鏡の指向方向を決めるために駆動するAZ(Azimuth;方位角)軸、EL(Elevation;仰角)軸の角度情報をエンコーダによって検出し、フィードバックすることにより方位角、仰角を補正する技術が適用されている(例えば特許文献1参照)。
また、AZ角度検出器、EL角度検出器の上にそれぞれ2セットの光ビーム発生器と光位置検出器を設け、AZ用光位置検出器の出力の差からAZ軸のねじれ成分を求めるとともに、EL用光位置検出器の出力の和とAZ用光位置検出器の出力の和との差からEL軸のねじれ成分を求め、これらの成分によって各々の軸に直結された角度検出器からの角度信号を補正してアンテナ指向角度を検出するようにする技術が提案されている(例えば特許文献2参照)。
As is well known, parabolic antennas are used as antennas for radio telescopes for astronomical observation, satellite-to-ground station communications, radars, etc. In recent years, the resolution has been improved to enable more precise observation. Therefore, the main reflecting mirror (hereinafter referred to as the main mirror) tends to be enlarged. In addition, as the primary mirror increases in size, the gantry for supporting it will naturally increase in size. Many large parabolic antennas are exposed to the open air and are therefore susceptible to wind. In particular, the larger the primary mirror, the larger the area that receives the wind, so that a large force is applied to the gantry that supports the primary mirror, causing a phenomenon that the gantry is elastically deformed. Large parabolic antennas are also susceptible to solar radiation and outside air temperature, and the phenomenon of thermal deformation occurs due to temperature distribution. Therefore, the AZ (Azimuth) axis and EL (Elevation) axis information that is driven to determine the direction of the primary mirror is detected by an encoder and fed back to correct the azimuth and elevation angles. Is applied (see, for example, Patent Document 1).
In addition, two sets of light beam generators and optical position detectors are provided on the AZ angle detector and EL angle detector, respectively, and the torsional component of the AZ axis is obtained from the difference in the output of the optical position detector for AZ. The twisted component of the EL axis is obtained from the difference between the sum of the output of the EL optical position detector and the sum of the output of the AZ optical position detector, and the angle from the angle detector directly connected to each axis by these components. A technique for correcting the signal and detecting the antenna directivity angle has been proposed (see, for example, Patent Document 2).

特開2003−315012号公報Japanese Patent Laid-Open No. 2003-315012 特許第2560475号公報(図1)Japanese Patent No. 2560475 (FIG. 1)

以上のような特許文献1に記載された技術を適用した場合、風力変形、熱変形を受けていても、アンテナの方位角、仰角は指令値通りに制御できているように見える。しかし、実際には風力や熱による架台の変形は仰角や方位角を決めるEL軸のねじれ歪みとなって現れるため、現エンコーダ(1個のEL角度検出器)だけでは検出できない指向誤差となる。このことが大型パラボラアンテナにおいて一定以上の指向精度を達成できない要因となっていた。
一方、特許文献2に記載された技術の場合、実際の構造では架台が光ビームを遮るため、それを防ぐ構造とするには限界ある。また、光ビームの熱的な安定性にも問題がある。特に、光ビームは光ビーム発生器そのものの発熱や周辺の熱の影響を受けて温度ドリフトを起こしやすいので、結果として架台の熱変形量を測定しているのか、そのビームの熱ドリフトを計測しているかの切分けが困難となる。なお、特許文献2には、EL角度検出器を2個備える場合の記載があるが、通常は1個使用するので、これは単なる予備用と考えられる。
When the technique described in Patent Document 1 as described above is applied, it seems that the azimuth angle and elevation angle of the antenna can be controlled according to the command values even when subjected to wind deformation and thermal deformation. However, in actuality, deformation of the pedestal due to wind force or heat appears as torsional distortion of the EL axis that determines the elevation angle and azimuth angle, resulting in a pointing error that cannot be detected only by the current encoder (one EL angle detector). This is a factor that cannot achieve a certain pointing accuracy in a large parabolic antenna.
On the other hand, in the case of the technique described in Patent Document 2, since the gantry blocks the light beam in the actual structure, there is a limit to the structure for preventing it. There is also a problem with the thermal stability of the light beam. In particular, the light beam is susceptible to temperature drift due to the heat generated by the light beam generator itself and the surrounding heat, and as a result, whether the thermal deformation of the gantry is being measured or the thermal drift of the beam is measured. It becomes difficult to determine whether it is present. Although Patent Document 2 describes a case where two EL angle detectors are provided, since usually one is used, this is considered to be merely a preliminary use.

この発明は、上記問題点を解決するためになされたもので、経緯台式のアンテナにおいて、風力や日射熱により発生する架台の変形に起因する指向誤差を、EL角度検出器を一つ追加した構成と補正アルゴリズムにより補正して指向精度を保つアンテナ装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and is a configuration in which an EL angle detector is added to a pointing error caused by deformation of a pedestal caused by wind power or solar heat in an abutment type antenna. An object of the present invention is to obtain an antenna device that maintains a pointing accuracy by correcting with a correction algorithm.

この発明に係るアンテナ装置はEL指令値、AZ指令値を対応するEL制御系、AZ制御系に与えてアンテナをEL軸とAZ軸の周りに回転させることによって当該アンテナを目標に指向させるアンテナ装置において、EL軸の両端を回転可能に支持する架台の両端にそれぞれEL角度検出器を設け、その一方のEL角度検出器をEL制御系と共用する構成とし、風力または日射熱による架台の変形によってEL軸にねじれが生じた際に各EL角度検出器で検出した仰角の角度差を算出するEL角度差計算手段と、EL角度差計算手段で算出された仰角の角度差に基づいてEL指令値を補正するEL歪み量補正手段と、EL角度差計算手段で算出された仰角の角度差、架台の高さおよび架台の両端間の長さに基づいて方位角誤差を算出するAZ誤差算出手段と、AZ誤差算出手段で算出された方位角誤差に基づいてAZ指令値を補正するAZ歪み量補正手段を備えたものである。   The antenna device according to the present invention is directed to an antenna device that directs the antenna to a target by applying the EL command value and the AZ command value to the corresponding EL control system and AZ control system and rotating the antenna around the EL axis and the AZ axis. In this case, an EL angle detector is provided at each end of the pedestal that rotatably supports both ends of the EL shaft, and one of the EL angle detectors is shared with the EL control system, and the gantry is deformed by wind force or solar heat. EL angle difference calculating means for calculating the angle difference of the elevation angle detected by each EL angle detector when the EL axis is twisted, and an EL command value based on the angle difference of the elevation angle calculated by the EL angle difference calculation means An azimuth angle error is calculated based on the elevation angle difference calculated by the EL distortion amount correcting means for correcting the angle, the height of the gantry, and the length between both ends of the gantry. And error calculating means, those having a AZ distortion amount correcting means for correcting the AZ command value based on the azimuth angle error calculated by AZ error calculation means.

この発明によれば、風力や日射熱により発生する架台の変形に起因するEL軸のねじれに関する成分をEL軸上に設置した2つのEL角度検出器で検出した角度の差として求め、この角度差に基づいて仰角および方位角の誤差を補正するアルゴリズムを本来のEL制御系、AZ制御系のシステムに組み込むようにしたので、架台の変形による指向誤差が発生しても、それを補正して指向精度を高く保つことができる。また、EL角度検出器としてはエンコーダやレゾルバを用いるので、EL角度検出器の検出出力は自身の熱影響を受けることが無い。   According to the present invention, a component relating to the twist of the EL axis caused by the deformation of the gantry caused by wind power or solar heat is obtained as the difference between the angles detected by the two EL angle detectors installed on the EL axis. Since the algorithm for correcting the elevation and azimuth angle errors based on the above is incorporated in the original EL control system and AZ control system, even if a pointing error occurs due to the deformation of the gantry, it is corrected and directed The accuracy can be kept high. Further, since an encoder or a resolver is used as the EL angle detector, the detection output of the EL angle detector is not affected by its own heat.

実施の形態1.
図1は、この発明の実施の形態1によるアンテナ装置の構成を示す外観図で、図1(a)は正面図、図1(b)は側面図である。
図において、このアンテナ装置は、AZ軸、EL軸の周りにアンテナを回転することでアンテナの指向を決める経緯台式のパラボラアンテナである。地上に架台基礎8を設置し、その上に方位角を変えるAZ回転台6が水平に設けられている。AZ回転台6は上にヨーク(架台)7を固定して、モータ(図示せず)によりAZ軸10を中心に回転可能になっている。また、ヨーク7とAZ軸10との間にはアンテナの方位角を検出するAZ角度検出器11が設けられている。ヨーク7の両肩部分には主鏡(主反射鏡)4および受信機室5を支持するEL軸2が設けられている。主鏡4の指向する仰角は、主鏡4とヨーク7間に設けられたEL回転駆動部1によりEL軸2を回転させることで設定される。そのため、EL回転駆動部1はヨーク7下部に設置されたモータとその回転をEL軸2に伝えるギア構造を備えている。EL軸2を支持するヨーク7の肩部の軸受け部にはアンテナの仰角を検出するEL角度検出器3が設けられている。EL角度検出器3、AZ角度検出器11としては、エンコーダあるいはレゾルバが用いられる。
Embodiment 1 FIG.
1A and 1B are external views showing the configuration of an antenna device according to Embodiment 1 of the present invention. FIG. 1A is a front view and FIG. 1B is a side view.
In the figure, this antenna device is a gravitational parabolic antenna that determines the antenna orientation by rotating the antenna about the AZ axis and the EL axis. The gantry base 8 is installed on the ground, and the AZ turntable 6 for changing the azimuth angle is horizontally provided thereon. The AZ turntable 6 has a yoke (mounting base) 7 fixed thereon, and can be rotated around the AZ shaft 10 by a motor (not shown). An AZ angle detector 11 for detecting the azimuth angle of the antenna is provided between the yoke 7 and the AZ axis 10. On both shoulder portions of the yoke 7, there are provided a main mirror (main reflecting mirror) 4 and an EL shaft 2 that supports the receiver chamber 5. The elevation angle directed by the primary mirror 4 is set by rotating the EL shaft 2 by the EL rotation drive unit 1 provided between the primary mirror 4 and the yoke 7. Therefore, the EL rotation driving unit 1 includes a motor installed at the lower portion of the yoke 7 and a gear structure that transmits the rotation to the EL shaft 2. An EL angle detector 3 that detects the elevation angle of the antenna is provided at the bearing portion of the shoulder portion of the yoke 7 that supports the EL shaft 2. As the EL angle detector 3 and the AZ angle detector 11, an encoder or a resolver is used.

ヨーク7の肩部の軸受け部の構造例を図5に示す。EL軸2は、EL固定側であるヨーク座面に載っているベアリング9によって回転可能に支持されている。EL角度検出器3は、EL固定側であるヨーク7に支持されており、EL軸2にその中心を合せて固定された軸31の回転角度(つまり仰角)を検出するようになっている。
以上の説明は従来からある大型パラボラアンテナの一般的な構成と同様であるが、この発明の場合には、ヨーク7の左右両肩部にEL角度検出器3を1個ずつ、計2個を備え、以下に述べる特徴を与える。
An example of the structure of the bearing portion of the shoulder portion of the yoke 7 is shown in FIG. The EL shaft 2 is rotatably supported by a bearing 9 mounted on a yoke seat surface that is an EL fixing side. The EL angle detector 3 is supported by a yoke 7 on the EL fixing side, and detects a rotation angle (that is, an elevation angle) of a shaft 31 fixed to the EL shaft 2 with its center aligned.
The above description is the same as the general configuration of a conventional large parabolic antenna. However, in the case of the present invention, two EL angle detectors 3 are provided on the left and right shoulders of the yoke 7, for a total of two. And provide the features described below.

図2は、パラボラアンテナを上部から見た図で、主鏡4が風を受けてヨーク7が変形し、EL軸2にねじれが生じ、AZ軸が実質上ずれた状態になるのを模式的に表したものである。図2(a)は正常な状態を表しているが、主鏡4が斜め方向からの風を受けた場合、風向きに正対する面に力がかかるため、主鏡4の片側(図では左側)に風力が集中し、対応するヨークが図2(b)に示す7’のようにねじれ、AZ軸2が歪んで主鏡4の方位角が変わることになる。
図3は、ヨーク7をEL軸上から見た図で、図2のように風を受けた場合、あるいはヨーク7の片側だけが日射を受けた場合にヨーク7が変形し、EL軸2がねじれる状態を模式的に表したものである。ヨーク7はEL軸2付近で変形が大きく、軸受座面が水平位置から下方に傾く。すなわちEL軸2は時計方向にねじれて変形するため、主鏡4の仰角が変わることになる。
FIG. 2 is a diagram of the parabolic antenna as viewed from above. The main mirror 4 receives wind and the yoke 7 is deformed, the EL shaft 2 is twisted, and the AZ axis is substantially deviated. It is shown in FIG. 2A shows a normal state, but when the main mirror 4 receives wind from an oblique direction, a force is applied to the surface facing the wind direction, so one side of the main mirror 4 (left side in the figure). The wind force concentrates, the corresponding yoke is twisted as indicated by 7 'shown in FIG. 2B, the AZ axis 2 is distorted, and the azimuth angle of the primary mirror 4 is changed.
FIG. 3 is a view of the yoke 7 as viewed from above the EL axis. When the wind is received as shown in FIG. 2 or when only one side of the yoke 7 is exposed to sunlight, the yoke 7 is deformed and the EL axis 2 is It is a schematic representation of the twisted state. The yoke 7 is largely deformed in the vicinity of the EL shaft 2, and the bearing seat surface is inclined downward from the horizontal position. That is, since the EL shaft 2 is twisted and deformed clockwise, the elevation angle of the primary mirror 4 changes.

図4は、図2および図3で説明したヨーク構造の変形によって引き起こされるEL軸2の変形と仰角および方位角の変化の関係を示す。ヨーク7の2つのEL軸受座面の傾きが左右で異なる場合、左右のEL角度検出器3は異なる角度の値を検出することになる。その角度差はEL軸2のねじれ量と密接な相関があるので、この角度差を算出して指向誤差を補正すればよい。以下に具体的な補正式を導出する。
EL角度検出器3は、ヨーク7とEL軸2との相対回転角を検出するもので、パラボラアンテナ装置が鋼体で風力などの荷重による歪が無い場合にはそのまま正しい仰角を検出することになる。しかし、上述したようにヨーク7が変形した場合、左右のEL角度検出器3には、仰角以外の要素が入り込むことになる。例えば、左右のEL角度検出器3の検出角に差がある場合は、その差はヨーク7の左右のねじれによるEL軸2の変形分を表している。右側のEL角度検出器3の検出角(仰角測定値)をER 、左側のレゾルバの検出角(仰角測定値)をEL とすると、その角度差χは(1)式のようになる。この角度差χを仰角補正に用いる。
χ=ER −EL (1)
FIG. 4 shows the relationship between the deformation of the EL axis 2 caused by the deformation of the yoke structure described in FIGS. 2 and 3 and the change in elevation angle and azimuth angle. When the inclinations of the two EL bearing seat surfaces of the yoke 7 are different on the left and right, the left and right EL angle detectors 3 detect values of different angles. Since the angle difference has a close correlation with the twist amount of the EL axis 2, the angle difference may be calculated to correct the pointing error. A specific correction formula is derived below.
The EL angle detector 3 detects the relative rotation angle between the yoke 7 and the EL shaft 2. When the parabolic antenna device is a steel body and is not distorted by a load such as wind force, the correct elevation angle is detected as it is. Become. However, when the yoke 7 is deformed as described above, elements other than the elevation angle enter the left and right EL angle detectors 3. For example, if there is a difference between the detection angles of the left and right EL angle detectors 3, the difference represents the deformation of the EL shaft 2 due to the left and right twists of the yoke 7. When the detection angle (elevation angle measurement value) of the right EL angle detector 3 is E R , and the detection angle (elevation angle measurement value) of the left resolver is E L , the angle difference χ is expressed by the following equation (1). This angle difference χ is used for elevation angle correction.
χ = E R −E L (1)

ここで、ヨーク7が直線的に傾いているとすれば、EL軸2の左右間で生じる前後(±Y)方向の変形量Dは、ヨーク7の高さHとχ(rad)を用いて(2)式で表せる。
D=H・χ (2)
実際には、ヨーク7は単純な変形をするわけではないので、式(2)に角度差χと架台のねじれ成分による方位角の指向誤差との関係を表す比例定数もしくは係数C乗じて(3)とする。Cは後述する方法で得られる。片持梁に近い変形を考慮し、Cを高次の式の係数とすればより精度を高めることが可能である。
D=C・H・χ (3)
次に、EL軸2を支持しているヨーク両端間の距離(または正常時のEL軸の長さと同じ)をLとおけば、AZ軸の誤差(方位角誤差)θAZは(4)で表せる。この誤差θAZを算出して方位角補正に用いる。
θAZ=D/L=C・H・χ/L (4)
Here, if the yoke 7 is inclined linearly, the deformation amount D in the front-rear (± Y) direction that occurs between the left and right sides of the EL shaft 2 is obtained by using the height H and χ (rad) of the yoke 7. It can be expressed by equation (2).
D = H · χ (2)
Actually, the yoke 7 is not simply deformed. Therefore, the equation (2) is multiplied by a proportional constant or coefficient C representing the relationship between the angle difference χ and the azimuth pointing error due to the torsional component of the gantry (3 ). C is obtained by the method described later. In consideration of deformation close to a cantilever, if C is a coefficient of a higher order expression, the accuracy can be further increased.
D = C ・ H ・ χ (3)
Next, if the distance between both ends of the yoke supporting the EL axis 2 (or the same as the length of the EL axis in a normal state) is L, the error (azimuth angle error) θ AZ of the AZ axis is (4). I can express. This error θ AZ is calculated and used for azimuth correction.
θ AZ = D / L = C · H · χ / L (4)

ここで、上記比例定数Cの決め方としては二つの方法が考えられる。
一つは、ヨークの変形を引き起こす典型的な風力変形や熱変形のモードを考え、EL軸がねじれた場合の左右のEL角度検出器の検出角度の差(上記角度差χ)と、指向ずれ量(上記式(4)の左辺;θAZ)の関係をFEM(Finite Element Method;有限要素法)を用いて求める方法である。なお、角度差χをEL軸受座面の傾きの差とすれば、解析は比較的容易となる。
また、もう一つの方法は、アンテナの実運用段階に入ってから左右のEL角度検出器の検出角度の差と、アンテナのポインティング(指向性)誤差との関係をモニタすることで、データ(経験則)を積み上げ、最適値を求める方法である。実機を用いて比例定数(高次の場合は係数)を決定することにより、上記FEMによるシミュレーションのみに頼ったAZ、EL補正値計算に比べて高い指向精度を持たせることができる。
Here, there are two methods for determining the proportional constant C.
One is a typical wind deformation or thermal deformation mode that causes the deformation of the yoke. When the EL axis is twisted, the difference between the detection angles of the left and right EL angle detectors (the above angle difference χ) and the misorientation This is a method for obtaining the relationship between the quantities (left side of the above formula (4); θ AZ ) using FEM (Finite Element Method). If the angle difference χ is the difference in the inclination of the EL bearing seat surface, the analysis becomes relatively easy.
Another method is to monitor the relationship between the difference in detection angle between the left and right EL angle detectors and the antenna pointing (directivity) error after entering the actual operation stage of the antenna. This is a method for calculating the optimum value. By determining a proportionality constant (a coefficient in the case of higher order) using an actual machine, it is possible to have higher directivity accuracy than AZ and EL correction value calculations that rely only on the FEM simulation.

図6は、この発明の実施の形態1によるアンテナ装置の制御機能構成を示すブロック図である。
まず、経緯台式パラボラアンテナの一般な方位角、仰角の設定制御について説明する。図外のオペレーション装置からアンテナを目標に指向させるためのAZ指令値、EL指令値が与えられる。AZ制御部202では、与えられたEL指令値に応じた制御信号を生成しAZ回転駆動部203に与える。AZ回転駆動部203では、モータを駆動してAZ軸を中心に架台を回転しアンテナの開口面の方位を変えていく。このときのアンテナの方位角はAZ角度検出器11で検出され、減算器201に与えられる。減算器201では、AZ指令値と検出された方位角との差を求めてAZ制御部202に与える。AZ制御部202は、その差分が0になるまでAZ回転駆動部203を制御する。このようなフィードバックの方法は、仰角の設定制御を行う構成、すなわち減算器101、EL制御部102、EL回転駆動部1、ヨークの片方に取り付けた第1EL角度検出器3Aからなるループにおいても同様である。
FIG. 6 is a block diagram showing a control function configuration of the antenna apparatus according to Embodiment 1 of the present invention.
First, a general azimuth angle and elevation angle setting control of a theft platform parabolic antenna will be described. An AZ command value and an EL command value for directing the antenna toward the target are given from an operation device (not shown). The AZ control unit 202 generates a control signal corresponding to the given EL command value and supplies it to the AZ rotation drive unit 203. In the AZ rotation driving unit 203, the motor is driven to rotate the gantry around the AZ axis to change the orientation of the opening surface of the antenna. The azimuth angle of the antenna at this time is detected by the AZ angle detector 11 and given to the subtractor 201. The subtractor 201 obtains the difference between the AZ command value and the detected azimuth angle and gives it to the AZ control unit 202. The AZ control unit 202 controls the AZ rotation driving unit 203 until the difference becomes zero. Such a feedback method is similarly applied to a loop that is configured to control the setting of the elevation angle, that is, the subtractor 101, the EL control unit 102, the EL rotation driving unit 1, and the first EL angle detector 3A attached to one of the yokes. It is.

この発明では、上記EL、AZ制御系の構成に対して、ヨークの反対側の肩部に取り付けられた第2EL角度検出器3B、EL角度差計算部106、EL歪み量補正部107、AZ誤差計算部206、AZ歪み量補正部207を追加している。
EL軸の両端に設けられた第1EL角度検出器3Aと第2EL角度検出器3Bから得られる検出角(仰角測定値)はEL角度差計算部106に与えられる。EL角度差計算部106では、(1)式に従って両検出角からEL角度差を算出する。上述したように風力や熱による架台の変形がEL軸のねじれ歪となって現れた場合、EL角度差は有限値を呈する。このEL角度差はEL歪み量補正部107とAZ誤差計算部206に与えられる。EL歪み量補正部107では、EL角度をEL指令値に加減することによりEL指令値を補正して、EL制御系に出力する。一方、AZ誤差計算部206では、(2)〜(4)式に従って、与えられたEL角度差、EL軸を支持するヨークの高さおよびEL軸の長さに基づいて方位角誤差を算出し、AZ歪み量補正部207に出力する。AZ歪み量補正部207では、AZ誤差計算部206で算出された方位角誤差をAZ指令値に加減することによりAZ指令値を補正して、AZ制御系に出力する。
In the present invention, the second EL angle detector 3B, the EL angle difference calculation unit 106, the EL distortion amount correction unit 107, and the AZ error attached to the shoulder on the opposite side of the yoke with respect to the configuration of the EL and AZ control system. A calculation unit 206 and an AZ distortion amount correction unit 207 are added.
Detection angles (elevation angle measurement values) obtained from the first EL angle detector 3A and the second EL angle detector 3B provided at both ends of the EL axis are given to the EL angle difference calculation unit 106. The EL angle difference calculation unit 106 calculates the EL angle difference from both detection angles according to the equation (1). As described above, when deformation of the pedestal due to wind force or heat appears as twist distortion of the EL axis, the EL angle difference exhibits a finite value. This EL angle difference is given to the EL distortion amount correction unit 107 and the AZ error calculation unit 206. The EL distortion amount correction unit 107 corrects the EL command value by adding or subtracting the EL angle to the EL command value, and outputs it to the EL control system. On the other hand, the AZ error calculation unit 206 calculates the azimuth error based on the given EL angle difference, the height of the yoke supporting the EL axis, and the length of the EL axis according to the equations (2) to (4). And output to the AZ distortion amount correction unit 207. The AZ distortion amount correcting unit 207 corrects the AZ command value by adding or subtracting the azimuth angle error calculated by the AZ error calculating unit 206 to the AZ command value, and outputs it to the AZ control system.

以上のように、この実施の形態1によれば、風力や日射熱により発生する架台の変形に起因するEL軸のねじれに関する成分をEL軸上に設置した2つのEL角度検出器で検出した角度の差として求め、この角度差に基づいてEL指令値を補正し、また角度差、架台の高さおよび前記架台の両端間の長さに基づいて方位角誤差を算出してAZ指令値を補正して、補正した指令値を本来のEL制御系、AZ制御系のシステムに組み込むようにしたので、架台の変形による指向誤差が発生しても、これを補正して指向精度を高く保つことができる。また、EL角度検出器としてはエンコーダやレゾルバを用いるので、EL角度検出器の検出出力は熱の影響を受けない検出角を得ることができるため、角度差に検出器自身の熱誤差が現れることが無い。   As described above, according to the first embodiment, the angle detected by the two EL angle detectors installed on the EL axis is a component related to the twist of the EL axis caused by the deformation of the gantry generated by wind power or solar heat. The EL command value is corrected based on this angle difference, and the AZ command value is corrected by calculating the azimuth error based on the angle difference, the height of the gantry, and the length between both ends of the gantry. Since the corrected command value is incorporated in the original EL control system and AZ control system, even if a pointing error occurs due to the deformation of the gantry, it can be corrected to maintain high pointing accuracy. it can. In addition, since an encoder or resolver is used as the EL angle detector, the detection output of the EL angle detector can obtain a detection angle that is not affected by heat, so that the thermal error of the detector itself appears in the angle difference. There is no.

この発明の実施の形態1によるアンテナ装置の構成を示す外観図である。It is an external view which shows the structure of the antenna apparatus by Embodiment 1 of this invention. 風力によるEL軸のねじれ現象でAZ軸がずれる状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state from which AZ axis | shaft shifts | deviates by the twist phenomenon of the EL axis | shaft by wind force. 風力または日射熱によるヨークの変形でEL軸がねじれる状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state in which EL axis | shaft twists by the deformation | transformation of the yoke by a wind force or solar radiation heat. EL軸の変形と仰角および方位角の変化の関係を示す説明図である。It is explanatory drawing which shows the relationship between a deformation | transformation of EL axis | shaft, and the change of an elevation angle and an azimuth. この発明の実施の形態1に係るヨークの軸受け部の構造例を示す説明図である。It is explanatory drawing which shows the structural example of the bearing part of the yoke which concerns on Embodiment 1 of this invention. この発明の実施の形態1によるアンテナ装置の制御機能構成を示すブロック図である。It is a block diagram which shows the control function structure of the antenna apparatus by Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 EL回転駆動部、2 EL軸、3 EL角度検出器、4 主鏡、5 受信機室、6 AZ回転台、7 ヨーク(架台)、8 架台基礎、9 ベアリング、10 AZ軸、11 AZ角度検出器、101,201 減算器、102 EL制御部、3A 第1EL角度検出器、3B 第2EL角度検出器、106 EL角度差計算部、107 EL歪み量補正部、202 AZ制御部、203 AZ回転駆動部、206 AZ誤差計算部、207 AZ歪み量補正部。   DESCRIPTION OF SYMBOLS 1 EL rotation drive part, 2 EL axis | shaft, 3 EL angle detector, 4 Primary mirror, 5 Receiver room, 6 AZ rotation stand, 7 Yoke (mounting base), 8 Mounting base, 9 Bearing, 10 AZ axis, 11 AZ angle Detector 101, 201 Subtractor, 102 EL control unit, 3A 1st EL angle detector, 3B 2nd EL angle detector, 106 EL angle difference calculation unit, 107 EL distortion amount correction unit, 202 AZ control unit, 203 AZ rotation Drive unit, 206 AZ error calculation unit, 207 AZ distortion amount correction unit.

Claims (4)

EL指令値、AZ指令値を対応するEL制御系、AZ制御系に与えてアンテナをEL軸とAZ軸の周りに回転させることによって当該アンテナを目標に指向させるアンテナ装置において、
EL軸の両端を回転可能に支持する架台の両端にそれぞれEL角度検出器を設け、その一方のEL角度検出器をEL制御系と共用する構成とし、
風力または日射熱による前記架台の変形によってEL軸にねじれが生じた際に前記各EL角度検出器で検出した仰角の角度差を算出するEL角度差計算手段と、
前記EL角度差計算手段で算出された仰角の角度差に基づいてEL指令値を補正するEL歪み量補正手段と、
前記EL角度差計算手段で算出された仰角の角度差、前記架台の高さおよび前記架台の両端間の長さに基づいて方位角誤差を算出するAZ誤差算出手段と、
前記AZ誤差算出手段で算出された方位角誤差に基づいてAZ指令値を補正するAZ歪み量補正手段を備えたことを特徴とするアンテナ装置。
In an antenna device for directing the antenna to a target by applying the EL command value and the AZ command value to the corresponding EL control system and AZ control system and rotating the antenna around the EL axis and the AZ axis.
An EL angle detector is provided at each end of a gantry that rotatably supports both ends of the EL axis, and one EL angle detector is shared with the EL control system.
EL angle difference calculating means for calculating the angle difference of the elevation angle detected by each EL angle detector when the EL axis is twisted due to deformation of the pedestal by wind force or solar heat;
EL distortion amount correction means for correcting the EL command value based on the angle difference of the elevation angle calculated by the EL angle difference calculation means;
AZ error calculation means for calculating an azimuth error based on the angle difference of the elevation angle calculated by the EL angle difference calculation means, the height of the gantry and the length between both ends of the gantry,
An antenna apparatus comprising: an AZ distortion amount correcting means for correcting an AZ command value based on the azimuth angle error calculated by the AZ error calculating means.
EL角度差計算手段は、
EL角度差計算手段で算出された仰角の角度差、架台の高さ、および前記角度差と架台のねじれ成分による方位角の指向誤差の関係を表す比例定数もしくは係数を乗じてEL軸の変形量を算出し、
当該EL軸の変形量を前記架台の両端間の長さで除して方位角誤差を算出することを特徴とする請求項1記載のアンテナ装置。
The EL angle difference calculation means
The amount of deformation of the EL axis by multiplying the angle difference of the elevation angle calculated by the EL angle difference calculating means, the height of the gantry, and a proportionality constant or coefficient representing the relationship between the angle difference and the azimuth angle pointing error due to the torsional component of the gantry To calculate
2. The antenna apparatus according to claim 1, wherein an azimuth angle error is calculated by dividing the deformation amount of the EL axis by the length between both ends of the gantry.
比例定数もしく係数は、風力または日射熱による架台の変形を有限要素法によるシミュレーションを用いて求めた値としたことを特徴とする請求項2記載のアンテナ装置。   3. The antenna device according to claim 2, wherein the proportionality constant or the coefficient is a value obtained by using a simulation by a finite element method for deformation of the gantry due to wind or solar heat. 比例定数もしくは係数は、アンテナ運用段階において蓄積した、両EL角度検出器の検出角度の差とアンテナの指向性誤差との関係データに基づいて求めた最適値としたことを特徴とする請求項2記載のアンテナ装置。   3. The proportionality constant or coefficient is an optimum value obtained based on relational data between a difference between detection angles of both EL angle detectors and an antenna directivity error accumulated in an antenna operation stage. The antenna device described.
JP2007045842A 2007-02-26 2007-02-26 Antenna apparatus Pending JP2008211487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045842A JP2008211487A (en) 2007-02-26 2007-02-26 Antenna apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045842A JP2008211487A (en) 2007-02-26 2007-02-26 Antenna apparatus

Publications (1)

Publication Number Publication Date
JP2008211487A true JP2008211487A (en) 2008-09-11

Family

ID=39787422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045842A Pending JP2008211487A (en) 2007-02-26 2007-02-26 Antenna apparatus

Country Status (1)

Country Link
JP (1) JP2008211487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216489A (en) * 2014-05-09 2015-12-03 株式会社東芝 Synchronizer, analyzer, and antenna drive system
CN107063172A (en) * 2017-05-25 2017-08-18 中国人民解放军空军预警学院 A kind of external optical orientation equipment and its direction-finding method
JP2020167564A (en) * 2019-03-29 2020-10-08 キヤノン株式会社 Communication system and control method for communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216489A (en) * 2014-05-09 2015-12-03 株式会社東芝 Synchronizer, analyzer, and antenna drive system
CN107063172A (en) * 2017-05-25 2017-08-18 中国人民解放军空军预警学院 A kind of external optical orientation equipment and its direction-finding method
JP2020167564A (en) * 2019-03-29 2020-10-08 キヤノン株式会社 Communication system and control method for communication system
JP7406877B2 (en) 2019-03-29 2023-12-28 キヤノン株式会社 Wireless system and wireless system control method

Similar Documents

Publication Publication Date Title
JP4275663B2 (en) Telescope system
US7430070B2 (en) Method and system for correcting angular drift of laser radar systems
Kribus et al. Closed loop control of heliostats
CN101713639B (en) radio telescope co-phase detection method based on four-point support of quadrilateral subpanel
US20130093879A1 (en) Device for optically measuring the curvature of a rotor blade of a wind power plant
US20130284162A1 (en) Heliostat calibration and control
Bretz et al. The drive system of the major atmospheric gamma-ray imaging Cherenkov telescope
US20090115850A1 (en) Mobile object image tracking apparatus and method
EP2104180A1 (en) Antenna device
JP2008211487A (en) Antenna apparatus
JP2003322676A (en) Satellite tracking method and satellite tracking device
US9606340B2 (en) Compound optical proxy for sensing and pointing of light sources
US7053828B1 (en) Systems and methods for correcting thermal distortion pointing errors
JP5153953B1 (en) Heliostat and control method thereof
Süss et al. The sardinia radio telescope (SRT) optical alignment
JP2007129624A (en) Antenna system
JP5246063B2 (en) Telescope device
Ukita et al. Wind-induced pointing errors and surface deformation of a 10-m submillimeter antenna
JP4536096B2 (en) Antenna device
Ellerbroek et al. Progress toward developing the TMT adaptive optical systems and their components
JP2008098853A (en) Lens antenna apparatus for satellite broadcasting and communication
JP2005003607A (en) Displacement measuring device, parallelism/displacement/inclination measuring device, and antenna device
JP4640091B2 (en) Antenna device
US6903870B2 (en) Telescopic apparatus
JP2003315012A (en) Parallel displacement and inclination measuring device, and antenna device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907