JP2008210007A - Liquid-cooled system - Google Patents

Liquid-cooled system Download PDF

Info

Publication number
JP2008210007A
JP2008210007A JP2007043879A JP2007043879A JP2008210007A JP 2008210007 A JP2008210007 A JP 2008210007A JP 2007043879 A JP2007043879 A JP 2007043879A JP 2007043879 A JP2007043879 A JP 2007043879A JP 2008210007 A JP2008210007 A JP 2008210007A
Authority
JP
Japan
Prior art keywords
heat
cooling system
liquid cooling
flow path
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007043879A
Other languages
Japanese (ja)
Inventor
Hitoshi Onishi
人司 大西
Jiro Nakajima
二郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2007043879A priority Critical patent/JP2008210007A/en
Priority to TW097104366A priority patent/TW200841163A/en
Priority to US12/032,459 priority patent/US20080202730A1/en
Publication of JP2008210007A publication Critical patent/JP2008210007A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-cooled system with excellent unit property in which all elements are provided on a heat radiation sheet without needing a tube body as the whole system, and to provide a liquid-cooled system capable of efficiently dispersing heat to the heat radiation sheet with hardly causing a partially hot part. <P>SOLUTION: The liquid-cooled system comprises a heat radiation sheet having a circulating flow passage between a pair of superposed heat conductive metal plates, the heat radiation sheet including an inlet port and an outlet port located at both ends of the circulating flow passage; a pump having a discharge port and a suction port connected respectively with the inlet port and the outlet port, which is set on the heat radiation sheet; and a heating element set on the heat radiation sheet through a heat spreader to form a heat receiving area. The circulating flow passage includes a heat absorbing passage located on the lower surface of the heat spreader and a heat radiating flow passage having a passage length sufficiently longer than that of the heat absorbing passage and located in a heat radiating area except the heat spreader. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄型の液冷(水冷)システムに関し、特にノート型パソコンに用いて好適な液冷システムに関する。   The present invention relates to a thin liquid cooling (water cooling) system, and more particularly to a liquid cooling system suitable for use in a notebook computer.

本出願人は、ノート型パソコンの発熱源(CPU)を冷却する液冷システムを開発中である。部品の収納スペースが限られているノート型パソコンでは、全体として薄型でユニット性の高い液冷システムが求められている。
特開2000-323880号公報 特開2001-177024号公報 特開2001-177283号公報 特開2003-269876号公報 特開2004-3816号公報 特開2004-6563号公報 特開2004-95891号公報 特開2004-211932号公報
The present applicant is developing a liquid cooling system for cooling a heat source (CPU) of a notebook personal computer. In notebook computers with limited storage space for components, a liquid cooling system that is thin overall and highly unity is required.
Japanese Unexamined Patent Publication No. 2000-323880 Japanese Patent Laid-Open No. 2001-177024 JP 2001-177283 A JP 2003-269876 JP 2004-3816 JP 2004-6563 A JP 2004-95891 A JP 2004-211932 A

しかし従来品は、ポンプ、吸熱部、放熱部等が別々に備えられていて各要素間を接続するためにチューブを必要としており、このため、一体性(ユニット性)に乏しく、組付性に問題があった。また、効果的に発熱源(CPU)を冷却して熱を分散させる(部分的に熱い部分をなくす)という点において改良の余地があった。   However, the conventional product is equipped with a pump, a heat absorbing part, a heat radiating part, etc. separately, and requires a tube to connect each element. There was a problem. In addition, there is room for improvement in that the heat source (CPU) is effectively cooled to dissipate heat (partial hot portions are eliminated).

従って本発明は、システム全体としてチューブ体を必要とせず、全ての要素を放熱シート上に備えたユニット性に優れた液冷システムを得ることを目的とする。また本発明は、放熱シートに効率的に熱を分散させることができ、部分的な熱い部分が生じにくい液冷システムを得ることを目的とする。   Accordingly, an object of the present invention is to obtain a liquid cooling system that does not require a tube body as a whole system and that has all elements on a heat radiating sheet and has excellent unit properties. It is another object of the present invention to obtain a liquid cooling system that can efficiently dissipate heat in a heat-dissipating sheet and that does not easily cause a partial hot part.

本発明による液冷システムは、重ね合わせた一対の伝熱性金属板を有し、該一対の伝熱性金属板の間に循環流路を有する放熱シート;この放熱シート表面に開口させた、循環流路の両端部に位置する入口孔と出口孔;この入口孔と出口孔に連通する吐出ポートと吸入ポートを有し、該放熱シート上に設置されたポンプ;放熱シート上に設定された受熱エリアと放熱エリア;この受熱エリア上に伝熱材料からなるヒートスプレッダを介して設置された発熱体;を備え、循環流路は、受熱エリアのヒートスプレッダの下面に位置する吸熱流路と、放熱エリアに位置する、吸熱流路の流路長より十分長い流路長の放熱流路とを有することを特徴としている。   The liquid cooling system according to the present invention includes a pair of heat conductive metal plates stacked, and a heat dissipation sheet having a circulation channel between the pair of heat conductive metal plates; An inlet hole and an outlet hole located at both ends; a pump having a discharge port and a suction port communicating with the inlet hole and the outlet hole, and installed on the heat radiating sheet; a heat receiving area and heat radiating set on the heat radiating sheet A heating element installed on the heat receiving area via a heat spreader made of a heat transfer material, and the circulation channel is located in the heat absorbing channel located on the lower surface of the heat spreader in the heat receiving area, and in the heat radiating area, And a heat radiation channel having a channel length sufficiently longer than the channel length of the heat absorption channel.

具体的には、放熱流路の流路長は吸熱流路の流路長の10倍以上とするのがよい。   Specifically, the channel length of the heat dissipation channel is preferably 10 times or more the channel length of the heat absorption channel.

吸熱流路には、発熱体の直下に位置する主吸熱流路と、この主吸熱流路に隣接する少なくとも一つの吸熱U字状流路とを設けることが好ましい。そして、この吸熱U字状流路から放熱エリアに至った放熱流路には、再び吸熱エリアに戻る前に、該放熱エリアにおいて複数回往復する放熱往復流路を設けることが好ましい。   The endothermic flow path is preferably provided with a main endothermic path located directly below the heating element and at least one endothermic U-shaped path adjacent to the main endothermic path. And, it is preferable to provide a heat dissipation reciprocating flow path that reciprocates a plurality of times in the heat dissipation area before returning to the heat absorbing area again in the heat dissipation flow path from the heat absorption U-shaped flow path to the heat dissipation area.

主吸熱流路は、入口部と出口部において1本とし、発熱源直下において複数本に分岐させるとよい。   One main heat absorption channel may be provided at the inlet portion and the outlet portion, and it may be branched into a plurality of portions immediately below the heat source.

主吸熱流路は、その一態様では、該主吸熱流路を通過した後、放熱シートの最外周を通って上記出口孔に戻る最外周放熱流路に接続される。   In one aspect, the main heat absorption flow path is connected to the outermost peripheral heat dissipation flow path that passes through the main heat absorption flow path and then returns to the outlet hole through the outermost periphery of the heat dissipation sheet.

放熱シートの面積は、具体的には、ヒートスプレッダの面積の10倍以上とするのがよい。   Specifically, the area of the heat dissipation sheet is preferably 10 times or more the area of the heat spreader.

循環流路の上記入口孔と出口孔は、放熱シートに筒状突起として形成し、ポンプの吐出ポートと吸入ポートは、この入口孔筒状突起に連通する吐出流路孔と出口孔筒状突起に連通する吸入ポート孔として形成するのが実際的である。   The inlet hole and the outlet hole of the circulation flow path are formed as cylindrical protrusions on the heat radiation sheet, and the discharge port and the suction port of the pump are a discharge flow path hole and an outlet hole cylindrical protrusion communicating with the inlet hole cylindrical protrusion. It is practical to form it as a suction port hole communicating with the.

ポンプは、圧電ポンプとすると小型化薄型化を図ることができる。   If the pump is a piezoelectric pump, it can be reduced in size and thickness.

ポンプと、放熱シートの間にはスペーサブロックを介在させ、このスペーサブロックに、循環流路への注水孔を形成することができる。   A spacer block is interposed between the pump and the heat dissipation sheet, and water injection holes to the circulation channel can be formed in the spacer block.

本発明の液冷システムは、ノートパソコンのCPUを冷却用に適用できる。この態様では、本液冷システム全体をキーボードを有する本体内部に収納するのがよい。このとき、本液冷システムの放熱シートは、キーボードの表面に沿わせて設けると放熱性がよい。   The liquid cooling system of the present invention can be used for cooling a CPU of a notebook computer. In this aspect, the entire liquid cooling system is preferably housed inside a main body having a keyboard. At this time, if the heat-dissipating sheet of the liquid cooling system is provided along the surface of the keyboard, heat dissipation is good.

本発明の液冷システムは、放熱シート上に、ポンプ、ヒートスプレッダ及び発熱源の全てを搭載しており、高いユニット性がある。また、放熱シート内の循環流路は、ヒートスプレッダの下方(吸熱エリア)に位置する吸熱流路と、放熱エリアに位置する放熱流路とを含み、放熱流路の流路長は吸熱流路の流路長より十分長いため、効果的な放熱及び比較的均等な熱分布を得ることができる。   The liquid cooling system of the present invention has a high unit property because all of the pump, heat spreader, and heat generation source are mounted on the heat dissipation sheet. In addition, the circulation flow path in the heat dissipation sheet includes a heat absorption flow path located below (heat absorption area) of the heat spreader and a heat dissipation flow path positioned in the heat dissipation area. Since it is sufficiently longer than the channel length, effective heat dissipation and relatively uniform heat distribution can be obtained.

図1は、本発明による液冷システムユニット100の一実施形態の全体の平面図である。この液冷システムユニット100は、図8に示すように、ノートパソコン101のキーボード102を有する本体部103内に収納されており、発熱源としてのCPU104を冷却するために用いられる。本実施形態の液冷システムユニット100は、本体部103に対して開閉可能なLCD(表示部)105とは全く無関係に設けられている。   FIG. 1 is an overall plan view of an embodiment of a liquid cooling system unit 100 according to the present invention. As shown in FIG. 8, the liquid cooling system unit 100 is housed in a main body 103 having a keyboard 102 of a notebook personal computer 101, and is used for cooling the CPU 104 as a heat source. The liquid cooling system unit 100 according to the present embodiment is provided regardless of the LCD (display unit) 105 that can be opened and closed with respect to the main body 103.

液冷システムユニット100は、図2ないし図4にも示すように、放熱シート10と、この放熱シート10上に載置した圧電ポンプ20と、伝熱性金属材料からなるヒートスプレッダ40とを有しており、ヒートスプレッダ40上にCPU104が載置されている。CPU104上には、カバー41が位置し(ヒートスプレッダ40とカバー41でCPU104が挟着され)、放熱シート10と圧電ポンプ20の間にはスペーサ42が位置している。なお、圧電ポンプ20、ヒートスプレッダ40及びCPU104は、放熱シート10の裏面(キーボード102の裏面側)に設けられているが、図示の便宜上、図1、図2及び図5は、本液冷システム100を裏面から見た状態を描いている。   As shown in FIGS. 2 to 4, the liquid cooling system unit 100 includes a heat dissipating sheet 10, a piezoelectric pump 20 placed on the heat dissipating sheet 10, and a heat spreader 40 made of a heat conductive metal material. The CPU 104 is mounted on the heat spreader 40. A cover 41 is located on the CPU 104 (the CPU 104 is sandwiched between the heat spreader 40 and the cover 41), and a spacer 42 is located between the heat dissipation sheet 10 and the piezoelectric pump 20. The piezoelectric pump 20, the heat spreader 40, and the CPU 104 are provided on the back surface of the heat radiating sheet 10 (the back surface side of the keyboard 102). For convenience of illustration, FIG. 1, FIG. 2, and FIG. Is drawn from the back side.

放熱シート10は、一対の重ね合わせた伝熱性金属板(ブレージングシート)10Uと10Lからなるもので、その一方のブレージングシート10Lに、循環流路11を構成する流路凹部11aが形成されている。流路凹部11aの深さは例えば0.2mm前後である。ブレージングシートは周知のように、金属材料(一般的にアルミニウム合金)からなるシート芯材の表裏にロウ材を付着形成したもので、プレス加工によって流路凹部11aを形成可能であり、一対を当接させて加圧下で加熱することにより、ロウ材が溶融して互いに接着される。一般的にブレージングプレート10U(10L)は、0.4mm程度の厚さを有するものであるが、本発明は、放熱シート10(ブレージングシート)の材質や厚みその他は問わない。   The heat radiation sheet 10 is composed of a pair of superposed heat conductive metal plates (brazing sheets) 10U and 10L, and one of the brazing sheets 10L is formed with a channel recess 11a that constitutes the circulation channel 11. . The depth of the channel recess 11a is, for example, about 0.2 mm. As is well known, a brazing sheet is formed by adhering and forming a brazing material on the front and back of a sheet core made of a metal material (generally an aluminum alloy), and the flow path recess 11a can be formed by pressing. By heating in contact and under pressure, the brazing material is melted and bonded together. In general, the brazing plate 10U (10L) has a thickness of about 0.4 mm, but the present invention is not limited to the material and thickness of the heat dissipation sheet 10 (brazing sheet).

放熱シート10の循環流路11の全体形状は、図1に表れている。この循環流路11は、入口部11bと出口部11c(図2、図5参照)の間を循環するもので、ブレージングシート10Uには、流路凹部11aの両端部である入口部11bと出口部11cに連通する入口突起(入口孔)12と出口突起(出口孔)13が突出形成されている。入口突起12と出口突起13は、スペーサ42を介して圧電ポンプ20の吐出ポート(孔)34と吸入ポート(孔)35にそれぞれ連通(嵌合)している。より詳細には、図7に示すように、スペーサ42には、中継孔42a、42bが形成されていて、この中継孔42a、42bに放熱シート10(ブレージングシート10U)の入口突起12、出口突起13が嵌まり、中継孔42a、42bと同軸に突出させた環状突起42a’、42b’が圧電ポンプ20の吐出ポート34と吸入ポート35に嵌まっている。   The overall shape of the circulation channel 11 of the heat radiation sheet 10 is shown in FIG. The circulation channel 11 circulates between the inlet portion 11b and the outlet portion 11c (see FIGS. 2 and 5), and the brazing sheet 10U has an inlet portion 11b and an outlet that are both ends of the channel recess portion 11a. An inlet protrusion (inlet hole) 12 and an outlet protrusion (outlet hole) 13 communicating with the portion 11c are formed to protrude. The inlet protrusion 12 and the outlet protrusion 13 communicate (fit) with a discharge port (hole) 34 and a suction port (hole) 35 of the piezoelectric pump 20 via a spacer 42, respectively. More specifically, as shown in FIG. 7, the spacer 42 is formed with relay holes 42a and 42b, and the relay holes 42a and 42b have the inlet protrusion 12 and the outlet protrusion of the heat radiation sheet 10 (brazing sheet 10U). 13, and annular projections 42 a ′ and 42 b ′ protruding coaxially with the relay holes 42 a and 42 b are fitted into the discharge port 34 and the suction port 35 of the piezoelectric pump 20.

スペーサ42にはまた、ブレージングシート10Uに形成した注液孔14に連通する注液栓42cが設けられている。スペーサ42は、注液栓42cを他の部分に設けることにより、省略することが可能である。すなわち、放熱シート10の入口突起12と出口突起13を圧電ポンプ20の吐出ポート34と吸入ポート35に直接嵌合させることも可能である。これら嵌合部分の液密構造は図示していない。環状突起42a’と、42b’と圧電ポンプ20の吐出ポート34と吸入ポート35の嵌合部はOリングを介して接続することも可能であり、この場合、より確実なシール性を得ることができる。   The spacer 42 is also provided with a liquid injection plug 42c communicating with the liquid injection hole 14 formed in the brazing sheet 10U. The spacer 42 can be omitted by providing the liquid injection stopper 42c in another part. That is, the inlet protrusion 12 and the outlet protrusion 13 of the heat radiating sheet 10 can be directly fitted to the discharge port 34 and the suction port 35 of the piezoelectric pump 20. The liquid tight structure of these fitting parts is not shown. The fitting portions of the annular projections 42a ′, 42b ′, the discharge port 34 and the suction port 35 of the piezoelectric pump 20 can be connected via an O-ring, and in this case, a more reliable sealing performance can be obtained. it can.

本発明は、ポンプ(圧電ポンプ)20自体の構成を問うものではないが、実施形態の圧電ポンプ20を、図6、図7について説明する。この圧電ポンプ20は、下方から順にロアハウジング21とアッパハウジング22を有している。   Although this invention does not ask | require the structure of pump (piezoelectric pump) 20 itself, the piezoelectric pump 20 of embodiment is demonstrated about FIG. 6, FIG. The piezoelectric pump 20 has a lower housing 21 and an upper housing 22 in order from the bottom.

ロアハウジング21には、該ハウジングの板厚平面に直交させて、上記吐出ポート34と吸入ポート35が互いに平行に穿設されている。ロアハウジング21とアッパハウジング22の間には、Oリング29を介して圧電振動子(ダイヤフラム)28が液密に挟着支持されていて、該圧電振動子28とロアハウジング21との間にポンプ室Pを構成している。圧電振動子28とアッパハウジング22との間には、大気室Aが形成される。   The lower housing 21 is provided with the discharge port 34 and the suction port 35 in parallel to each other so as to be orthogonal to the plate thickness plane of the housing. A piezoelectric vibrator (diaphragm) 28 is sandwiched and supported between the lower housing 21 and the upper housing 22 via an O-ring 29, and a pump is interposed between the piezoelectric vibrator 28 and the lower housing 21. Chamber P is configured. An atmospheric chamber A is formed between the piezoelectric vibrator 28 and the upper housing 22.

圧電振動子28は、中心部のシム28aと、シム28aの表裏の一面(図7の上面)に積層形成した圧電体28bとを有するユニモルフタイプである。ポンプ室Pには、シム28aが臨んで液体と接触する。シム28aは、導電性の金属薄板材料、例えば厚さ50〜300μm程度のステンレス、42アロイ等により形成された金属製の薄板からなる。圧電体28bは、例えば厚さ300μm程度のPZT(Pb(Zr、Ti)O3)から構成されるもので、その表裏方向に分極処理が施されている。このような圧電振動子は周知である。 The piezoelectric vibrator 28 is a unimorph type having a shim 28a at the center and a piezoelectric body 28b formed on one side of the front and back of the shim 28a (upper surface in FIG. 7). A shim 28a faces the pump chamber P and comes into contact with the liquid. The shim 28a is made of a conductive metal thin plate material, for example, a metal thin plate formed of stainless steel having a thickness of about 50 to 300 μm, 42 alloy, or the like. The piezoelectric body 28b is made of, for example, PZT (Pb (Zr, Ti) O 3 ) having a thickness of about 300 μm, and is polarized in the front and back directions. Such a piezoelectric vibrator is well known.

ロアハウジング21の吐出ポート34と吸入ポート35にはそれぞれ、逆止弁(アンブレラ)32と33が設けられている。逆止弁32は、吸入ポート35からポンプ室Pへの流体流を許してその逆の流体流を許さない吸入側逆止弁であり、逆止弁33は、ポンプ室Pから吐出ポート34への流体流を許してその逆の流体流を許さない吐出側逆止弁である。   The discharge port 34 and the suction port 35 of the lower housing 21 are provided with check valves (umbrellas) 32 and 33, respectively. The check valve 32 is a suction-side check valve that allows a fluid flow from the suction port 35 to the pump chamber P and does not allow the reverse fluid flow. The check valve 33 transfers from the pump chamber P to the discharge port 34. This is a discharge-side check valve that allows the fluid flow of the fluid but does not permit the reverse fluid flow.

逆止弁32、33は、同一の形態であり、流路に接着固定される穴あき基板32a、33aに、弾性材料からなるアンブレラ32b、33bを装着してなっている。このような逆止弁(アンブレラ)自体は周知である。   The check valves 32 and 33 have the same configuration, and are provided with umbrellas 32b and 33b made of an elastic material on perforated substrates 32a and 33a that are bonded and fixed to the flow path. Such a check valve (umbrella) itself is well known.

以上の圧電ポンプ20は、圧電振動子28が正逆に弾性変形(振動)すると、ポンプ室Pの容積が拡大する行程では、吸入側逆止弁32が開いて吐出側逆止弁33が閉じるため、吸入ポート35(放熱シート10の出口突起13)からポンプ室P内に液体が流入する。一方、ポンプ室Pの容積が縮小する行程では、吐出側逆止弁33が開いて吸入側逆止弁32が閉じるため、ポンプ室Pから吐出ポート34(放熱シート10の入口突起12)に液体が流出する。したがって、圧電振動子28を正逆に連続させて弾性変形させる(振動させる)ことで、ポンプ作用が得られ、液体は、放熱シート10の循環流路11の入口部11bから出口部11cに流れる。なお、図7においては、説明上放熱シート10上に圧電ポンプ20が配置されているように描かれているが、実際は放熱シート10を上にして圧電ポンプ20がその裏側、すなわち、放熱シート10のパソコン101のキーボード102側と反対側の面に設置されている。   In the piezoelectric pump 20 described above, when the piezoelectric vibrator 28 is elastically deformed (vibrated) in the forward and reverse directions, the suction-side check valve 32 is opened and the discharge-side check valve 33 is closed in the process of expanding the volume of the pump chamber P. Therefore, the liquid flows into the pump chamber P from the suction port 35 (the outlet protrusion 13 of the heat dissipation sheet 10). On the other hand, in the process of reducing the volume of the pump chamber P, the discharge-side check valve 33 is opened and the suction-side check valve 32 is closed, so that liquid is supplied from the pump chamber P to the discharge port 34 (the inlet protrusion 12 of the heat radiation sheet 10). Leaks. Accordingly, the pump action is obtained by elastically deforming (vibrating) the piezoelectric vibrator 28 continuously in the forward and reverse directions, and the liquid flows from the inlet portion 11b of the circulation passage 11 of the heat dissipation sheet 10 to the outlet portion 11c. . In FIG. 7, the piezoelectric pump 20 is illustrated as being disposed on the heat radiating sheet 10 for the sake of explanation. Actually, the piezoelectric pump 20 is disposed on the back side, that is, the heat radiating sheet 10 with the heat radiating sheet 10 facing upward. Of the personal computer 101 on the opposite side of the keyboard 102 side.

放熱シート10の表面は、ヒートスプレッダ40(カバー41)の設置部分が受熱エリアであり、ヒートスプレッダ40(カバー41)とスペーサ42(圧電ポンプ20)を除いたエリアが放熱エリアである。放熱シート10全体の面積は、ヒートスプレッダ40の面積の10倍以上(この実施形態では約17倍)に設定されている。また、ヒートスプレッダ40の下面に位置する吸熱流路における循環流路11の合計流路長は、放熱エリアに位置する放熱流路における循環流路11の合計流路長より十分長く(10倍以上(この実施形態では約20倍)設定されている。   On the surface of the heat radiating sheet 10, an installation portion of the heat spreader 40 (cover 41) is a heat receiving area, and an area excluding the heat spreader 40 (cover 41) and the spacer 42 (piezoelectric pump 20) is a heat radiating area. The area of the entire heat radiating sheet 10 is set to 10 times or more (about 17 times in this embodiment) of the area of the heat spreader 40. Moreover, the total flow path length of the circulation flow path 11 in the heat absorption flow path located on the lower surface of the heat spreader 40 is sufficiently longer than the total flow path length of the circulation flow path 11 in the heat dissipation flow path located in the heat radiation area (10 times or more ( In this embodiment, it is set to about 20 times.

上記構成の本液冷システムユニット100は、放熱シート10上にヒートスプレッダ40(CPU104)とポンプ20が搭載されていて、フレキシブルなチューブ体を用いることなく、全ての循環流路が形成されている。   In the liquid cooling system unit 100 having the above configuration, the heat spreader 40 (CPU 104) and the pump 20 are mounted on the heat dissipation sheet 10, and all circulation channels are formed without using a flexible tube body.

圧電ポンプ20の吐出ポート34(入口突起12、入口部11b)から出て吸入ポート35(出口突起13、出口部11c)に戻る本実施形態の循環流路11の流路を、図1において循環流路11内に付した符号1fないし38fによって、流れ順に追うと次の通りである。入口部11bから放熱直進流路1f、2fを直進した循環流路11は、放熱U字状流路3fにおいてU字状に折り返され、放熱直進流路4fを直進した後、ヒートスプレッダ40下面(吸熱エリア)に入って吸熱U字状流路5fで折り返される。この吸熱U字状流路5fを通るとき、通過液体に一次的にヒートスプレッダ40(CPU104)の熱が吸熱される。   The flow path of the circulation flow path 11 of this embodiment that returns from the discharge port 34 (inlet protrusion 12 and inlet portion 11b) of the piezoelectric pump 20 and returns to the suction port 35 (outlet protrusion 13 and outlet portion 11c) is circulated in FIG. It is as follows when it follows in order of a flow by the code | symbols 1f thru | or 38f attached | subjected in the flow path 11. FIG. The circulation flow path 11 that has traveled straight through the heat radiation straight flow paths 1f and 2f from the inlet portion 11b is folded back into a U shape in the heat radiation U-shaped flow path 3f, and travels straight through the heat radiation straight travel flow path 4f, and then the bottom surface of the heat spreader 40 (heat absorption) Area) and folded back by the endothermic U-shaped channel 5f. When passing through the endothermic U-shaped channel 5f, the heat of the heat spreader 40 (CPU 104) is primarily absorbed by the passing liquid.

次に、循環流路11は、ヒートスプレッダ40の下面を出た後、放熱直進流路6fを直進した後放熱U字状流路7fで折り返され、ヒートスプレッダ40直下に入ることなく、放熱U字状流路9fで折り返される。次に放熱直進流路10fを直進した後、放熱直角流路11f、12fで大きく外を回り、放熱直進流路13fを直進した後、放熱U字状流路14fで折り返される。この時点でも未だヒートスプレッダ40の直下には入ることなく放熱エリアを往復している。さらに、放熱直進流路15fを直進し、放熱U字状流路16fで折り返され、放熱直進流路17fを直進した後に、ヒートスプレッダ40の直下の吸熱エリアに達する。このように、吸熱U字状流路5fから放熱エリアに至った放熱流路は、再びヒートスプレッダ40(吸熱エリア)に戻る前に、該放熱エリアにおいて複数回往復しており、この間にヒートスプレッダ40(CPU104)で吸熱して昇温した液体が十分に冷却される。   Next, the circulation channel 11 exits from the lower surface of the heat spreader 40, then travels straight through the heat radiation straight flow channel 6f, and then is folded back by the heat radiation U-shaped channel 7f so that it does not enter directly below the heat spreader 40. It is folded in the flow path 9f. Next, after going straight through the heat radiating straight passage 10f, it turns largely outside by the heat radiating right flow passages 11f and 12f, and after going straight through the heat radiating straight passage 13f, it is folded back by the heat radiating U-shaped flow passage 14f. Even at this time, the heat radiating area is reciprocated without entering the heat spreader 40. Furthermore, it goes straight through the heat radiation straight flow path 15f, is turned back by the heat radiation U-shaped flow path 16f, goes straight through the heat radiation straight movement flow path 17f, and then reaches the heat absorption area directly below the heat spreader 40. In this way, the heat dissipation flow path from the heat absorption U-shaped flow path 5f to the heat dissipation area reciprocates a plurality of times in the heat dissipation area before returning to the heat spreader 40 (heat absorption area) again, during which the heat spreader 40 ( The liquid heated by the CPU 104) is sufficiently cooled.

吸熱エリアに達した循環流路11は、吸熱U字状流路18fで折り返されて吸熱した後、放熱エリアに出る。放熱エリアに出た後、放熱直進流路19fを直進し、放熱U字状流路20fで折り返され、放熱直進流路21fを直進し、放熱U字状流路22fで折り返され、放熱直進流路23fを直進し、放熱U字状流路24fで折り返され、放熱直進流路25fで直進する。この間、一度もヒートスプレッダ40の直下の吸熱エリアに入ることがない。すなわち、吸熱U字状流路18fから放熱エリアに至った放熱流路は、再びヒートスプレッダ40(吸熱エリア)に戻る前に、該放熱エリアにおいて複数回往復している。この放熱エリアでの複数回の往復により、同様に、ヒートスプレッダ40(CPU104)で吸熱して昇温した液体が十分に冷却される。   The circulation flow path 11 that has reached the heat absorption area is folded by the heat absorption U-shaped flow path 18f to absorb heat, and then exits the heat dissipation area. After exiting the heat dissipation area, go straight through the heat dissipation straight flow path 19f, bend back at the heat dissipation U-shaped flow path 20f, go straight through the heat dissipation straight flow path 21f, bend back at the heat dissipation U-shaped flow path 22f, and go straight through the heat dissipation flow It goes straight through the path 23f, is turned back by the heat radiation U-shaped flow path 24f, and goes straight by the heat radiation straight movement flow path 25f. During this time, the heat absorption area directly under the heat spreader 40 is never entered. In other words, the heat dissipation channel that reaches the heat dissipation area from the heat absorption U-shaped channel 18f reciprocates a plurality of times in the heat dissipation area before returning to the heat spreader 40 (heat absorption area) again. Similarly, the liquid that has been heated by the heat spreader 40 (CPU 104) and has risen in temperature is sufficiently cooled by a plurality of reciprocations in the heat dissipation area.

放熱直進流路25fを直進した循環流路11は、吸熱入口部26fにおいて、再びヒートスプレッダ40の下方に入る。この吸熱入口部26fから分岐流路27fを経て吸熱出口部28fに至る流路は、ヒートスプレッダ40上のCPU104の直下に位置する主吸熱流路である。この主吸熱流路は、吸熱U字状流路5fと18fの間に位置している。分岐流路27fは、吸熱入口部26fと出口部28fにおいては1本であった流路を、CPU104の直下において複数本に分岐させる(合計流路面積を広げる)もので、CPU104の下方において流速を低下させ、CPU104の発熱を効果的に吸熱する。   The circulation flow path 11 that has traveled straight through the heat radiation straight flow path 25f enters again below the heat spreader 40 at the heat absorption inlet 26f. The flow path from the endothermic inlet portion 26f to the endothermic outlet portion 28f via the branch flow path 27f is a main endothermic flow path located immediately below the CPU 104 on the heat spreader 40. This main endothermic channel is located between the endothermic U-shaped channels 5f and 18f. The branch flow path 27f is to branch a single flow path at the endothermic inlet portion 26f and the outlet portion 28f into a plurality of channels immediately below the CPU 104 (increase the total flow channel area). And the heat generated by the CPU 104 is effectively absorbed.

ヒートスプレッダ40(CPU104)の直下を出た循環流路11は、放熱シート10の最外周を通る外周流路29fから34fに至る。CPU104の直下を通り最も高温に昇温された液体が放熱シート10の最外周、すなわち、より外気との温度差が大きい部分を通ることにより、効果的な冷却が可能となる。そして、放熱U字状流路34fで内側に折り返された後、放熱直進流路35fを直進し、放熱U字状流路36fで折り返され、放熱直進流路37f、38fを直進して、吸入ポート35(出口突起13、出口部11c)に戻る。   The circulation flow path 11 exiting just below the heat spreader 40 (CPU 104) reaches the outer peripheral flow paths 29f to 34f passing through the outermost periphery of the heat dissipation sheet 10. The liquid that has been heated to the highest temperature immediately below the CPU 104 passes through the outermost periphery of the heat radiating sheet 10, that is, through a portion having a larger temperature difference from the outside air, thereby enabling effective cooling. Then, after being folded inward by the heat radiating U-shaped flow path 34f, it goes straight through the heat radiating straight flow path 35f, is turned back by the heat radiating U-shaped flow path 36f, goes straight through the heat radiating straight flow paths 37f and 38f, and is sucked. Return to the port 35 (exit protrusion 13, outlet 11c).

図9と図10は、放熱シート10の循環流路11の別の形成例を示している。図9は、ブレージングシート10Uと10Lの対向面にそれぞれ、流路凹部11aをスタンプ加工で形成した例、図10は、一方のブレージングシート10Lのみに同様に流路凹部11aを形成した例を示している。   9 and 10 show another example of forming the circulation flow path 11 of the heat dissipation sheet 10. FIG. 9 shows an example in which the channel recess 11a is formed by stamping on the facing surfaces of the brazing sheets 10U and 10L, and FIG. 10 shows an example in which the channel recess 11a is similarly formed only on one brazing sheet 10L. ing.

上記実施形態に示した循環流路11の態様は一例であり、変更が可能である。放熱シート10上のヒートスプレッダ40とポンプ20の位置は変更が可能である。   The aspect of the circulation flow path 11 shown in the said embodiment is an example, and can be changed. The positions of the heat spreader 40 and the pump 20 on the heat dissipation sheet 10 can be changed.

本発明による液冷システムをノートPCの冷却システムに適用した一実施形態を示す平面図である。It is a top view which shows one Embodiment which applied the liquid cooling system by this invention to the cooling system of notebook PC. 図1の一部拡大平面図である。FIG. 2 is a partially enlarged plan view of FIG. 1. 図2の右側面図である。FIG. 3 is a right side view of FIG. 2. 図3のIV-IV線に沿う断面図である。It is sectional drawing which follows the IV-IV line of FIG. 図2の部分の分解斜視図である。It is a disassembled perspective view of the part of FIG. 図1の液冷システム中の圧電ポンプの平面図である。It is a top view of the piezoelectric pump in the liquid cooling system of FIG. 図6のVII-VII線に沿う断面図である。It is sectional drawing which follows the VII-VII line of FIG. 図1の液冷システムをノートPCに組み込んだ状態を示す断面図である。It is sectional drawing which shows the state which integrated the liquid cooling system of FIG. 1 in notebook PC. 放熱シートの別の流路構成例を示す、図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 which shows another flow-path structural example of a thermal radiation sheet. 同別の流路構成例を示す断面図である。It is sectional drawing which shows the example of another flow-path structure.

符号の説明Explanation of symbols

100 液冷システムユニット
101 ノートパソコン
102 キーボード
103 本体部
104 CPU
10 放熱シート
10U 10L ブレージングシート
11 循環流路
11a 流路凹部
11b 入口部
11c 出口部
12 入口突起(入口孔)
13 出口突起(出口孔)
20 圧電ポンプ(ポンプ)
21 22 ハウジング
40 ヒートスプレッダ
41 カバー
42 スペーサ42
100 Liquid Cooling System Unit 101 Laptop PC 102 Keyboard 103 Main Body 104 CPU
DESCRIPTION OF SYMBOLS 10 Heat radiation sheet 10U 10L Brazing sheet 11 Circulation flow path 11a Flow path recessed part 11b Inlet part 11c Outlet part 12 Inlet protrusion (inlet hole)
13 Exit protrusion (exit hole)
20 Piezoelectric pump (pump)
21 22 Housing 40 Heat spreader 41 Cover 42 Spacer 42

Claims (12)

重ね合わせた一対の伝熱性金属板を有し、該一対の伝熱性金属板の間に循環流路を有する放熱シート;
この放熱シート表面に開口させた、上記循環流路の両端部に位置する入口孔と出口孔;
この入口孔と出口孔に連通する吐出ポートと吸入ポートを有し、該放熱シート上に設置されたポンプ;
上記放熱シート上に設定された受熱エリアと放熱エリア;
この受熱エリア上に伝熱材料からなるヒートスプレッダを介して設置された発熱体;
を備え、
上記循環流路は、受熱エリアのヒートスプレッダの下面に位置する吸熱流路と、放熱エリアに位置する、上記吸熱流路の流路長より十分長い流路長の放熱流路とを有することを特徴とする液冷システム。
A heat-dissipating sheet having a pair of heat conductive metal plates superposed and having a circulation channel between the pair of heat conductive metal plates;
An inlet hole and an outlet hole located at both ends of the circulation channel, which are opened on the surface of the heat dissipation sheet;
A pump having a discharge port and a suction port communicating with the inlet hole and the outlet hole, and installed on the heat dissipation sheet;
Heat receiving area and heat dissipation area set on the heat dissipation sheet;
A heating element installed on the heat receiving area via a heat spreader made of a heat transfer material;
With
The circulation flow path has a heat absorption flow path located on the lower surface of the heat spreader in the heat receiving area, and a heat radiation flow path located in the heat dissipation area and having a flow length sufficiently longer than the flow length of the heat absorption flow path. Liquid cooling system.
請求項1記載の液冷システムにおいて、上記放熱流路の流路長は吸熱流路の流路長の10倍以上である液冷システム。 2. The liquid cooling system according to claim 1, wherein a flow path length of the heat radiation flow path is 10 times or more a flow path length of the heat absorption flow path. 請求項1または2記載の液冷システムにおいて、上記吸熱流路は、発熱体の直下に位置する主吸熱流路と、この主吸熱流路に隣接する少なくとも一つの吸熱U字状流路とを有する液冷システム。 3. The liquid cooling system according to claim 1, wherein the endothermic channel includes a main endothermic channel located immediately below the heating element, and at least one endothermic U-shaped channel adjacent to the main endothermic channel. Having liquid cooling system. 請求項3記載の液冷システムにおいて、上記吸熱U字状流路から放熱エリアに至った放熱流路は、再び吸熱エリアに戻る前に、該放熱エリアにおいて複数回往復する放熱往復流路を有している液冷システム。 4. The liquid cooling system according to claim 3, wherein the heat dissipation flow path extending from the heat absorption U-shaped flow path to the heat dissipation area has a heat dissipation reciprocating flow path that reciprocates a plurality of times in the heat dissipation area before returning to the heat absorption area again. Liquid cooling system. 請求項3または4記載の液冷システムにおいて、上記主吸熱流路は、入口部と出口部において1本であり、発熱源直下において複数本に分岐している液冷システム。 5. The liquid cooling system according to claim 3, wherein the main heat absorption channel is one at the inlet and the outlet, and is branched into a plurality immediately below the heat generation source. 請求項3ないし5のいずれか1項記載の液冷システムにおいて、上記主吸熱流路は、該主吸熱流路を通過した後、放熱シートの最外周を通って上記出口孔に戻る最外周放熱流路に接続されている液冷システム。 The liquid cooling system according to any one of claims 3 to 5, wherein the main heat absorption channel passes through the main heat absorption channel and then returns to the outlet hole through the outermost periphery of the heat dissipation sheet. Liquid cooling system connected to the flow path. 請求項1ないし6のいずれか1項記載の液冷システムにおいて、放熱シートの面積は、ヒートスプレッダの面積の10倍以上である液冷システム。 The liquid cooling system according to any one of claims 1 to 6, wherein an area of the heat radiation sheet is 10 times or more of an area of the heat spreader. 請求項1ないし7のいずれか1項記載の液冷システムにおいて、循環流路の上記入口孔と出口孔は、放熱シートに筒状突起として形成されており、上記ポンプの吐出ポートと吸入ポートは、この入口孔筒状突起に連通する吐出流路孔と出口孔筒状突起に連通する吸入ポート孔として形成されている液冷システム。 The liquid cooling system according to any one of claims 1 to 7, wherein the inlet hole and the outlet hole of the circulation channel are formed as cylindrical protrusions on the heat dissipation sheet, and the discharge port and the suction port of the pump are A liquid cooling system formed as a discharge port hole communicating with the inlet hole cylindrical protrusion and a suction port hole communicating with the outlet hole cylindrical protrusion. 請求項1ないし8のいずれか1項記載の液冷システムにおいて、上記ポンプは圧電ポンプである液冷システム。 9. The liquid cooling system according to claim 1, wherein the pump is a piezoelectric pump. 請求項1ないし9のいずれか1項記載の液冷システムにおいて、上記ポンプと、放熱シートの間にはスペーサブロックが介在しており、このスペーサブロックに、上記循環流路への注水孔が形成されている液冷システム。 The liquid cooling system according to any one of claims 1 to 9, wherein a spacer block is interposed between the pump and the heat dissipation sheet, and a water injection hole to the circulation channel is formed in the spacer block. Liquid cooling system. 請求項1ないし10のいずれか1項記載の液冷システムにおいて、上記発熱源はノートパソコンのCPUであり、本液冷システムは全体がキーボードを有する本体内部に収納されている液冷システム。 11. The liquid cooling system according to claim 1, wherein the heat generation source is a CPU of a notebook personal computer, and the liquid cooling system is entirely housed in a main body having a keyboard. 請求項11に記載の液冷システムにおいて、本液冷システムの放熱シートは、キーボードの表面に沿わせて設けられている液冷システム。 12. The liquid cooling system according to claim 11, wherein the heat radiation sheet of the liquid cooling system is provided along the surface of the keyboard.
JP2007043879A 2007-02-23 2007-02-23 Liquid-cooled system Withdrawn JP2008210007A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007043879A JP2008210007A (en) 2007-02-23 2007-02-23 Liquid-cooled system
TW097104366A TW200841163A (en) 2007-02-23 2008-02-04 Liquid cooling system
US12/032,459 US20080202730A1 (en) 2007-02-23 2008-02-15 Liquid cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043879A JP2008210007A (en) 2007-02-23 2007-02-23 Liquid-cooled system

Publications (1)

Publication Number Publication Date
JP2008210007A true JP2008210007A (en) 2008-09-11

Family

ID=39714565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043879A Withdrawn JP2008210007A (en) 2007-02-23 2007-02-23 Liquid-cooled system

Country Status (3)

Country Link
US (1) US20080202730A1 (en)
JP (1) JP2008210007A (en)
TW (1) TW200841163A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892493B2 (en) * 2006-01-24 2012-03-07 日本電気株式会社 Liquid-cooled heat dissipation device
TWM371403U (en) * 2009-06-10 2009-12-21 Chun Teng Entpr Co Ltd Water-cooling thin-type cooling device
JP6190352B2 (en) * 2014-12-19 2017-08-30 株式会社神戸製鋼所 Fluid distribution device and operation method thereof
US20160377356A1 (en) * 2015-06-25 2016-12-29 Asia Vital Components Co., Ltd. Flexible and transformable water-cooling device
DE112018000429T5 (en) * 2017-01-19 2019-10-10 Dana Canada Corporation Countercurrent heat exchanger with inline fittings
JP6462737B2 (en) * 2017-01-24 2019-01-30 三菱電機株式会社 heatsink
CN108566768B (en) * 2018-06-01 2021-03-23 深圳市研派科技有限公司 Pipeless liquid cooling heat dissipation system
US11316216B2 (en) * 2018-10-24 2022-04-26 Dana Canada Corporation Modular heat exchangers for battery thermal modulation
USD975714S1 (en) * 2019-01-07 2023-01-17 EKWB d.o.o. Tube bending tool
FR3093357B1 (en) * 2019-03-01 2021-05-14 Valeo Systemes Thermiques Thermal regulation device, in particular for cooling, for a motor vehicle
CN112714582A (en) * 2019-10-25 2021-04-27 研能科技股份有限公司 Liquid heat radiation module
TWI750636B (en) * 2020-04-17 2021-12-21 建準電機工業股份有限公司 Liquid cooling module and electronic device including the same
CN115119462A (en) * 2021-03-19 2022-09-27 Oppo广东移动通信有限公司 Heat dissipation assembly, shell assembly and electronic equipment
EP4287800A4 (en) * 2021-03-19 2024-07-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. HEAT DISSIPATION ARRANGEMENT, HOUSING ARRANGEMENT AND ELECTRONIC DEVICE
CN113347817B (en) * 2021-06-11 2023-08-08 Oppo广东移动通信有限公司 Electronic equipment shell, manufacturing method thereof and electronic equipment
CN117803558A (en) * 2022-09-23 2024-04-02 深圳市锐尔觅移动通信有限公司 Fluid diaphragm assembly, housing and electronic equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316077A (en) * 1992-12-09 1994-05-31 Eaton Corporation Heat sink for electrical circuit components
US5763951A (en) * 1996-07-22 1998-06-09 Northrop Grumman Corporation Non-mechanical magnetic pump for liquid cooling
US5983997A (en) * 1996-10-17 1999-11-16 Brazonics, Inc. Cold plate having uniform pressure drop and uniform flow rate
US6490159B1 (en) * 2000-09-06 2002-12-03 Visteon Global Tech., Inc. Electrical circuit board and method for making the same
US6648064B1 (en) * 2002-11-14 2003-11-18 Lsi Logic Corporation Active heat sink
JP4561632B2 (en) * 2003-06-27 2010-10-13 日本電気株式会社 Electronic equipment cooling device
TW591984B (en) * 2003-07-04 2004-06-11 Sentelic Corp Micro-circulating flow channel system and its manufacturing method
US7215547B2 (en) * 2004-08-16 2007-05-08 Delphi Technologies, Inc. Integrated cooling system for electronic devices
US7230832B2 (en) * 2005-06-17 2007-06-12 Delphi Technologies, Inc. Cooled electronic assembly and method for cooling a printed circuit board
JP2007013689A (en) * 2005-06-30 2007-01-18 Toshiba Corp Information processing apparatus and decryption control method
JP4746361B2 (en) * 2005-06-30 2011-08-10 株式会社東芝 Electronics
JP4928749B2 (en) * 2005-06-30 2012-05-09 株式会社東芝 Cooling system
US8720531B2 (en) * 2006-01-30 2014-05-13 Nec Corporation Electronic device cooling apparatus

Also Published As

Publication number Publication date
TW200841163A (en) 2008-10-16
US20080202730A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP2008210007A (en) Liquid-cooled system
JP2008225731A (en) Liquid cooling system
US7694723B2 (en) Water block
TW200850137A (en) Cooling system
JP4928749B2 (en) Cooling system
US7486518B2 (en) Cooling device and electronic apparatus
US20060021737A1 (en) Liquid cooling device
JP4234722B2 (en) Cooling device and electronic equipment
US20080283225A1 (en) Water-cooling heat-dissipating system
US20160131438A1 (en) Evaporator with simplified assembly for diphasic loop
US20080029251A1 (en) Water-cooled heat sink and water-cooled system
US11755079B2 (en) Computer device, casing, and water cooling heat dissipation device
KR101079668B1 (en) Cooling and heating water system for peltier
JP4555114B2 (en) Heat storage device
US20070039716A1 (en) Heat dissipating unit
JP4778319B2 (en) Piezoelectric fan, cooling device using the same, and driving method thereof
JP2010080564A (en) Liquid cooling system
JPH10335550A (en) Boiling cooling device
KR102012450B1 (en) Thermoelectric module using air cooling
US20220128311A1 (en) Vapor-phase/liquid-phase fluid heat exchange uni
JP2009026950A (en) Liquid-cooling system
KR20140141960A (en) Heat exchanger using thermoelectric element
JP2009264719A (en) Heat exchanger
JP2009170513A (en) Liquid-cooling system
JP7092997B2 (en) Heat pump system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511