JP2008209870A - 光学補償シート、楕円偏光板及び液晶表装置 - Google Patents

光学補償シート、楕円偏光板及び液晶表装置 Download PDF

Info

Publication number
JP2008209870A
JP2008209870A JP2007049060A JP2007049060A JP2008209870A JP 2008209870 A JP2008209870 A JP 2008209870A JP 2007049060 A JP2007049060 A JP 2007049060A JP 2007049060 A JP2007049060 A JP 2007049060A JP 2008209870 A JP2008209870 A JP 2008209870A
Authority
JP
Japan
Prior art keywords
group
optical compensation
compensation sheet
substituted
optically anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007049060A
Other languages
English (en)
Inventor
Shuntaro Ibuki
俊太郎 伊吹
Kentaro Toyooka
健太郎 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007049060A priority Critical patent/JP2008209870A/ja
Publication of JP2008209870A publication Critical patent/JP2008209870A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】光学補償能に優れ、大型の液晶表示装置に適用した場合でも、ムラを生じさせることなく、視野角特性の改善に寄与する光学補償シート及び楕円偏光板を生産性高く提供し、また視野角特性が良好で、ムラの発生がない液晶表示装置を提供する。
【解決手段】液晶性化合物の少なくとも1種、及びフルオロ脂肪族基含有ポリマーの少なくとも2種を含み、且つ光学異方性層のn点平均粗さRzが5nm以下である光学異方性層を有することを特徴とする光学補償シート;該光学補償シートを有する楕円偏光板;及び液晶表示装置である。
【選択図】なし

Description

本発明は、液晶化合物を配向固定した光学異方性層を有する光学補償シート、該光学補償シートを備えた楕円偏光板及び液晶表示装置に関する。
光学補償シートは、画像着色を解消したり、視野角を拡大するために、様々な液晶表示装置で用いられている。従来、光学補償シートとしては、延伸複屈折フィルムが使用されていた。ただし延伸複屈折率フィルムを用いた光学補償シートでは、複雑な光学的性質を持たせながら、高生産性を得ることが難しかった。近年、延伸複屈折フィルムに代えて、支持体上にディスコティック液晶性化合物からなる光学異方性層を有する光学補償シートを使用することが提案されている。この光学異方性層は、通常、ディスコティック液晶性化合物を含むディスコティック液晶組成物を配向膜の上に塗布し、配向温度よりも高い温度で加熱してディスコティック液晶性化合物を配向させ、その配向状態を固定することにより形成される。一般に、ディスコティック液晶性化合物は、大きな複屈折率を有するとともに、多様な配向形態がある。ディスコティック液晶性化合物を用いることで、従来の延伸複屈折フィルムでは得ることができない光学的性質と、高生産性を実現することが可能になった。
ディスコティック液晶性化合物は、多様な配向形態があるため、所望の光学特性を発現させるためには、光学異方性層におけるディスコティック液晶性化合物の配向を制御する必要がある。ディスコティック液晶性化合物を平均傾斜角が5度未満の水平配向状態に制御する方法として、ディスコティック液晶性化合物に、セルロース低級脂肪酸エステル、含フッ素界面活性剤又は1,3,5−トリアジン環を有する化合物を添加する方法が提案されている(例えば、特許文献1参照)。また、フッ素置換アルキル基と親水基(スルホ基が連結基を介してベンゼン環に結合した)を有する化合物を光学異方性層に添加し、ディスコティック液晶性化合物の傾斜角を制御する方法が提案されている(例えば、特許文献2参照)。さらに、疎水性排除体積効果化合物を光学異方性層に併用して、液晶性化合物の配向を制御する方法が提案されている(例えば、特許文献3参照。)。しかし、液晶性化合物のハイブリッド配向を効果的に促進する化合物の効果及びその使用法については、言及されていない。
また、従来の技術では、主に、17インチ以下の小型あるいは中型の液晶表示装置を想定して、光学補償シートが開発されていた。しかし、最近では、19インチ以上の大型、かつ輝度の高い液晶表示装置も想定する必要がある。大型の液晶表示装置の偏光板に、従来の光学補償シートを保護フィルムとして装着したところ、パネル上にムラが発生していることが判明した。この欠陥は、小型あるいは中型の液晶表示装置では、あまり目立っていなかったが、大型化、高輝度化に対応して、光漏れムラに対処した光学フィルムをさらに開発する必要が生じている。
また従来は、光学異方性層の形成時には、ワイヤーバーを用いた塗布方法が主に用いられていた。しかし、ワイヤーバーを用いた塗布方法では、液受け槽中の塗布液振動、又は塗布に関連するロールの偏芯やたわみにより、段状のムラが発生しやすい。またこれらの塗布方式は後計量方式であるため、安定した膜厚の確保が比較的困難である。そのためこれらの塗布方式ではある速度以上の塗布の高速化が困難であり、塗布本来の生産性の高さが活かし切れていない。さらに、近年は、より高機能の光学補償シートを作製するために、従来よりも薄い膜厚(例えば湿潤膜厚として20μm以下)の光学異方性層を安定的に形成し得る塗布技術に対する要求が高まっている。高精度な薄層塗布技術としては、スロットダイの先端リップをシャープエッジ化する技術の提案がなされている(特許文献4)。
特開平11−352328号公報 特開2001−330725号公報 特開2002−20363号公報 特表平9−511682号公報
本発明は、光学補償機能に優れ、液晶表示装置の視野角特性の改善に寄与する光学補償シートを提供することを課題とする。とりわけ、大型の液晶表示装置に適用した場合でも、ムラを生じることなく、表示品位の高い画像を表示するのに寄与する光学補償シートを生産性高く、提供することを課題とする。また、本発明は、液晶表示装置の視野角拡大に寄与する楕円偏光板、及び視野角特性に優れ、表示品位の高い液晶表示装置を提供することを課題とする。
本発明の目的は、下記光学補償シート、該光学補償シートを備えた下記楕円偏光板、及びそれらから構成された液晶表示装置により達成される。
(1)平均膜厚1.5μm以下で、その膜厚バラツキが平均膜厚の±3%以下であり、及びその表面のn点平均粗さRzが5nm以下である光学異方性層を有することを特徴とする光学補償シート。
(2)前記光学異方性層の膜厚バラツキが、長手方向1m以上且つ幅方向1m以上の範囲で平均膜厚の±3%以下であることを特徴とする上記(1)の光学補償シート。
(3)前記光学異方性層が配向膜上に形成され、該配向膜表面のn点平均粗さRzが15nm以下であることを特徴とする上記(1)又は(2)の光学補償シート。
(4)支持体上に、前記配向膜及び前記光学異方性層をこの順序で有し、前記支持体の、平均膜厚が20μm〜80μmで、膜厚バラツキが±3%以下であり、及びその表面のn点平均粗さRzが15nm以下であることを特徴とする(1)〜(3)のいずれかの光学補償シート。
(5)前記光学異方性層及び該配向膜がスロットダイコート法により塗布して形成された膜である上記(1)〜(4)のいずれかの光学補償シート。
(6)液晶性化合物の少なくとも1種、及び下記(i)のモノマーから導かれる繰り返し単位を含むフルオロ脂肪族基含有ポリマーの少なくとも2種を含むことを特徴とする上記(1)〜(5)のいずれかに1項に記載の光学異方性層を有する光学補償シート:
(i)下記一般式[1]又は[2]で表されるフルオロ脂肪族基含有モノマー
Figure 2008209870
Figure 2008209870
一般式[1]において、R1は水素原子又はメチル基を表し、Xは酸素原子、イオウ原子又はN(R2)−を表し、Zは水素原子又はフッ素原子を表し、mは1〜6の整数、nは2〜4の整数を表し、R2は水素原子又は炭素数1〜4のアルキル基を表し;一般式[2]において、Aは下記の連結基群Aから選ばれる2価(q=1)もしくは3価(q=2)の連結基又は下記の連結基群Aから選ばれる2つ以上を組み合わせて形成される2価(q=1)もしくは3価(q=2)の連結基を表し、また、連結基同士は酸素原子を介して結合してもよく、
(連結基群A)
−CH2−、−CH2CH2−、−CH2CH2CH2−、−C64−及び−C63<:ただし、ベンゼン環上の置換位置は任意の位置でよい;
1は水素原子又はフッ素原子を表し、pは3〜8の整数、qは1又は2を表す。)
(7)前記一般式[1]中、Zが水素原子である上記(6)の光学補償シート。
(8)前記フルオロ脂肪族基含有ポリマーが、さらに下記(ii)のモノマーから導かれる繰り返し単位を含む共重合体である上記(6)又は(7)の光学補償シート:
(ii)下記一般式[3]で表されるモノマー
Figure 2008209870
式中、R11、R12及びR13はそれぞれ独立に、水素原子又は置換基を表し;L1は下記の連結基群から選ばれる2価の連結基又は下記の連結基群から選ばれる2つ以上を組み合わせて形成される2価の連結基を表し、
(連結基群)
単結合、−O−、−CO−、−NR4−(R4は水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(OR5)−(R5はアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基;
1はカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は、ポリ(アルキレンオキシ)基を含むアルキル基を表す。
(9)前記液晶性化合物が、ディスコティック化合物である上記(6)〜(8)のいずれかの光学補償シート。
(10)少なくとも、偏光膜と、上記(1)〜(9)のいずれかの光学補償シートとを有する楕円偏光板。
(11)上記(1)〜(9)のいずれかの光学補償シート、又は上記(10)の楕円偏光板を有する液晶表示装置。
本発明では、液晶性化合物とともに、前記一般式[1]又は[2]で表されるモノマー由来の繰り返し単位を含むフルオロ脂肪族基含有ポリマーを含有する組成物をスロットダイコート法により塗布して、光学異方性層を形成することにより、光学補償機能に優れ、且つ画像表示装置に適用した場合に、広い視野角拡大性能を有する光学補償シートを生産性高く提供することができる。本発明の光学補償シートは、光学異方性層の形成時の塗布ムラ、乾燥ムラに起因する表面粗さを小さく、また膜厚バラツキを低減することにより、画像ムラを生じさせることなく、表示品位を損なわずに、種々のモードの液晶表示装置の視野角特性の改善に寄与し得る。また、本発明によれば、液晶表示装置の視野角拡大に寄与する楕円偏光板、及び視野角特性に優れ、表示品位の高い大型の液晶表示装置を提供することができる。
発明の実施の形態
以下において、本発明の内容について詳細に説明する。尚、本願明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
本明細書では「重合体」は、「共重合体」を含む意味で用いる。
以下、本発明について詳細に説明する。
[光学補償シート]
本発明の光学補償シートは、平均膜厚1.5μm以下で、その膜厚バラツキが平均膜厚の±3%以下であり、その表面のn点平均粗さRzが5nm以下である光学異方性層を有することを特徴とする。光学異方性層の表面粗さが小さいということは、光学異方性層の膜厚バラツキを小さくすることに繋がる。光学異方性層の膜厚は光学性能と密接に関わるため、膜厚を設計値どおり一定にしておく必要がある。仮に光学異方性層の下地(例えば配向層)が平坦であるとしたならば、光学異方性層の表面粗さが小さいということは、当然光学異方性層の膜厚が均一であるということになる。逆に光学異方性層の下地が、ある粗さを持つ表面であるとしたならば、光学異方性層の膜厚を均一にするためには、同様な粗さを持つ表面である必要がある。この場合、同様な粗さというのは、完全に下地と同一周期と分布を持つことが要求され、例え同一周期と分布を満たしたとしても、光学異方性層の存在する角度はどうしても異なることから、必要な光学異方性を示す箇所が限られる。そのため、光学異方性層の表面粗さは小さい方が好ましく、本発明では、光学補償シートが有する光学異方性層の表面のn点平均粗さRzは5nm以下としている。前記光学異方性層の表面のRzは3nm以下であることが好ましく、1nm以下であることがより好ましい。また、光学異方性層の表面粗さは、その下地の表面粗さに影響されるので、下地である層の表面粗さは小さいのが好ましい。例えば、前記光学異方性層の下地の層が配向膜層である場合、該配向層の表面のn点平均粗さRzは、15nm以下であることが好ましく、10nm以下であることが更に好ましく、5nm以下であることがよりさらに好ましい。なお、本明細書において、表面のn点平均粗さRzは、JIS B 0601の規定に従って測定した値をいう。
前記光学異方性層の平均膜厚は、1.5μm以下である。前記光学方性層の平均膜厚は0.1〜1.5μmであるのが好ましく、0.2〜1.4μmであるのがより好ましく、0.3〜1.3μmであることがさらに好ましい。また同時に、光学異方性層の膜厚バラツキは、平均膜厚の±3%以下であり、±1.5%以下であることがより好ましい。なお、平均膜厚及び該平均膜厚に対する膜厚のバラツキは、光学異方性層の表面の15点以上の測定結果から算出するのが好ましい。
近年の液晶表示装置の大型化に伴い、使用される光学補償シートの大型化も進んでいるため、前記光学異方性層は幅方向1m以上及び長手方向1m以上の範囲で膜厚バラツキが、前記範囲内であるのが好ましい。
前記光学異方性層は、液晶性化合物の少なくとも1種を含有する組成物から形成してもよい。液晶性化合物の少なくとも1種とともに、フルオロ脂肪族基含有ポリマーの少なくとも2種を含有する組成物から形成することによって、膜厚バラツキや表面平均粗さRzが前記範囲の光学異方性層を安定的に形成することができる。
(フルオロ脂肪族基含有ポリマー)
本発明に使用可能なフルオロ脂肪族基含有ポリマー(以下、「フッ素系ポリマー」という場合もある)は、前記一般式[1]又は[2]で表されるフルオロ脂肪族基含有モノマーから導かれる繰り返し単位を含有しているのが好ましく、これらのフッ素系ポリマーの少なくとも2種類を使用するのが好ましい。少なくとも2種類含有することによって、光学異方性層の表面粗さを小さくしてムラ改良と液晶性化合物の制御を独立にできるようになり、面状と視野角特性を両立することが可能となる。前記フッ素系ポリマーは、下記一般式[1]又は[2]で表されるモノマーから導かれる繰り返し単位と、後述する一般式[3]で表されるモノマーから導かれる繰り返し単位のいずれをも含むアクリル樹脂又はメタアクリル樹脂であるのが好ましく、さらにはこれらモノマーと共重合可能なビニル系モノマーが共重合体したアクリル樹脂又はメタアクリル樹脂も好ましい。
前記フッ素系ポリマーにおけるフルオロ脂肪族基の一つは、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれるものである。これらのフルオロ脂肪族化合物の製造法に関しては、例えば、「フッ素化合物の合成と機能」(監修:石川延男、発行:株式会社シーエムシー、1987)の117〜118ページや、「Chemistry of Organic Fluorine Compounds II」(Monograph 187,Ed by Milos Hudlicky and Attila E.Pavlath,American Chemical Society 1995)の747−752ページに記載されている。テロメリゼーション法とは、ヨウ化物等の連鎖移動常数の大きいアルキルハライドをテローゲンとして、テトラフルオロエチレン等のフッ素含有ビニル化合物のラジカル重合を行い、テロマーを合成する方法である(Scheme−1に例を示した)。
Figure 2008209870
得られた、末端ヨウ素化テロマーは通常、例えば[Scheme2]のごとき適切な末端化学修飾を施され、フルオロ脂肪族化合物へと導かれる。これらの化合物は必要に応じ、さらに所望のモノマー構造へと変換され、フルオロ脂肪族基含有ポリマーの製造に使用される。[Scheme2]中のnは自然数を表す。
Figure 2008209870
前記フッ素系ポリマーは、下記一般式[1]又は[2]で表されるフルオロ脂肪族基含有モノマーから導かれる繰り返し単位を有する。
Figure 2008209870
上記一般式[1]において、R1は水素原子又はメチル基を表し、Xは酸素原子、イオウ原子又はN(R2)−を表し(R2は水素原子又は炭素数1〜4のアルキル基を表し、好ましくは水素原子又はメチル基である。)、Zは水素原子又はフッ素原子を表し、mは1以上6以下の整数、nは2〜4の整数を表す。
Xは好ましくは酸素原子であり、Zは好ましくは水素原子であり、mは好ましくは1又は2であり、nは好ましくは3又は4であり、これらの混合物を用いてもよい。
Figure 2008209870
上記一般式[2]において、Aは下記の連結基群Aから選ばれる2価(q=1)もしくは3価(q=2)の連結基、又は、下記の連結基群Aから選ばれる2つ以上を組み合わせて形成される2価(q=1)もしくは3価(q=2)の連結基を表し、また、連結基同士は酸素原子を介して結合してもよい。
(連結基群A)
−CH2−、−CH2CH2−、−CH2CH2CH2−、−C64−及び−C63<:ただし、ベンゼン環上の置換位置は任意の位置でよい。
上記一般式[2]中、Z1は水素原子又はフッ素原子を表し、pは3〜8の整数、qは1又は2を表す。
Aは好ましくは下記に示す構造である。
Figure 2008209870
1は好ましくはフッ素原子であり、pは好ましくは4又は6であり、これらの混合物を用いてもよい。
本発明に使用可能なフッ素系ポリマーの製造に利用可能なモノマーの具体例を以下に挙げるが、本発明は以下の具体例によってなんら制限されるものではない
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
本発明に使用可能なフッ素系ポリマーの一態様は、フルオロ脂肪族基含有モノマーより誘導される繰り返し単位と、下記一般式[3]で表される親水性基を含有するモノマーより誘導される繰り返し単位とを有する共重合体である。
Figure 2008209870
上記一般式[3]において、R11、R12及びR13はそれぞれ独立に、水素原子又は置換基を表す。Q1はカルボキシル基(−COOH)又はその塩、スルホ基(−SO3H)又はその塩、ホスホノキシ基{−OP(=O)(OH)2}又はその塩、アルキル基、もしくは、末端が水素原子もしくはアルキル基であるポリ(アルキレンオキシ)基を表す。L1は下記の連結基群から選ばれる任意の基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。
(連結基群)
単結合、−O−、−CO−、−NR4−(R4は水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(OR5)−(R5はアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基。
一般式[3]中、R11、R12及びR13は、それぞれ独立に、水素原子又は下記に例示した置換基群から選ばれる置換基を表す。
(置換基群)
アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリール基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、アラルキル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12のアラルキル基であり、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜10のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは2〜10のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
11、R12及びR13はそれぞれ独立に、水素原子、アルキル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、又は後述する−L1−Q1で表される基であることが好ましく、水素原子、炭素数1〜6のアルキル基、塩素原子、−L1−Q1で表される基であることがより好ましく、水素原子、炭素数1〜4のアルキル基であることがさらに好ましく、水素原子、炭素数1〜2のアルキル基であることが特に好ましく、R2及びR3が水素原子で、R1が水素原子又はメチル基であることが最も好ましい。該アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、sec−ブチル基等が挙げられる。該アルキル基は、適当な置換基を有していてもよい。該置換基としては、ハロゲン原子、アリール基、ヘテロ環基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシル基、ヒドロキシル基、アシルオキシ基、アミノ基、アルコキシカルボニル基、アシルアミノ基、オキシカルボニル基、カルバモイル基、スルホニル基、スルファモイル基、スルホンアミド基、スルホリル基、カルボキシル基などが挙げられる。なお、アルキル基の炭素数は、置換基の炭素原子を含まない。以下、他の基の炭素数についても同様である。
1は、上記連結基群から選ばれる2価の連結基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。上記連結基群中、−NR4−のR4は、水素原子、アルキル基、アリール基又はアラルキル基を表し、好ましくは水素原子又はアルキル基である。また、−PO(OR5)−のR5はアルキル基、アリール基又はアラルキル基を表し、好ましくはアルキル基である。R4及びR5がアルキル基、アリール基又はアラルキル基を表す場合の炭素数は「置換基群」で説明したものと同じである。Lとしては、単結合、−O−、−CO−、−NR4−、−S−、−SO2−、アルキレン基又はアリーレン基を含むことが好ましく、単結合、−CO−、−O−、−NR4−、アルキレン基又はアリーレン基を含んでいることが特に好ましく、単結合であることが最も好ましい。Lがアルキレン基を含む場合、アルキレン基の炭素数は好ましくは1〜12、より好ましくは1〜8、特に好ましくは1〜6である。特に好ましいアルキレン基の具体例として、メチレン、エチレン、トリメチレン、テトラブチレン、ヘキサメチレン基等が挙げられる。Lが、アリーレン基を含む場合、アリーレン基の炭素数は、好ましくは6〜24、より好ましくは6〜18、特に好ましくは6〜12である。特に好ましいアリーレン基の具体例として、フェニレン、ナフタレン基等が挙げられる。Lが、アルキレン基とアリーレン基を組み合わせて得られる2価の連結基(即ちアラルキレン基)を含む場合、アラルキレン基の炭素数は、好ましくは7〜36、より好ましくは7〜26、特に好ましくは7〜16である。特に好ましいアラルキレン基の具体例として、フェニレンメチレン基、フェニレンエチレン基、メチレンフェニレン基等が挙げられる。L1として挙げられた基は、適当な置換基を有していてもよい。このような置換基としては先にR11〜R13における置換基として挙げた置換基と同様なものを挙げることができる。
以下にL1の具体的構造を例示するが、本発明はこれらの具体例に限定されるものではない。
Figure 2008209870
Figure 2008209870
前記式[3]中、Q1はカルボキシル基、カルボキシル基の塩(例えばリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩(例えばアンモニウム、テトラメチルアンモニウム、トリメチル−2−ヒドロキシエチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム、ジメチルフェニルアンモニウムなど)、ピリジニウム塩など)、スルホ基、スルホ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、ホスホノキシ基、ホスホノキシ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、又はポリ(アルキレンオキシ)基を含むアルキル基表す。ポリ(アルキレンオキシ)基は(OR)x−Gで表すことができ、Rは2〜4個の炭素原子を有するアルキレン基、例えば−CH2CH2−、−CH2CH2CH2−、−CH(CH3)CH2−、又はCH(CH3)CH(CH3)−であることが好ましい。Gは水素原子又は炭素数1〜12のアルキル基であり、水素原子又はメチル基であるのが好ましい。xは自然数を表すが、前記のポリ(オキシアルキレン)基中のオキシアルキレン単位はポリ(オキシプロピレン)におけるように同一であってもよく、また互いに異なる2種以上のオキシアルキレンが不規則に分布されたものであってもよく、直鎖又は分岐状のオキシプロピレン又はオキシエチレン単位であったり、又は直鎖又は分岐状のオキシプロピレン単位のブロック及びオキシエチレン単位のブロックのように存在するものであってもよい。
このポリ(オキシアルキレン)鎖は1つ又はそれ以上の連結基(例えば−CONH−Ph−NHCO−、−S−など:Phはフェニレン基を表す)で連結されたものも含むことができる。連結基が3価以上の原子価を有する場合には、分岐状のオキシアルキレン単位が得られる。
また、ポリ(オキシアルキレン)基を有する重合単位を含む共重合体を本発明に用いる場合には、ポリ(オキシアルキレン)基の分子量は80〜3000が適当であり、250〜3000がより好ましい。
ポリ(オキシアルキレン)アクリレート及びメタクリレートは、市販のヒドロキシポリ(オキシアルキレン)材料、例えば商品名”プルロニック”[Pluronic(旭電化工業(株)製)、アデカポリエーテル(旭電化工業(株)製)”カルボワックス[Carbowax(グリコ・プロダクス)]、”トリトン”[Toriton(ローム・アンド・ハース(Rohm and Haas製))及びP.E.G(第一工業製薬(株)製)として販売されているものを公知の方法でアクリル酸、メタクリル酸、アクリルクロリド、メタクリルクロリド又は無水アクリル酸等と反応させることによって製造できる。別に、公知の方法で製造したポリ(オキシアルキレン)ジアクリレート等を用いることもできる。
本発明に使用可能なフッ素系ポリマーの製造に利用可能な前記式[3]に対応するモノマーの具体例を以下に挙げるが、本発明は以下の具体例によってなんら制限されるものではない。ポリ(アルキレンオキシ)基は重合度xが異なるものの混合物であることが多く、具体例として示す化合物においても重合度の平均に近い整数で重合度を表している。
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
前記フッ素系ポリマーは、前記一般式[3]で表される繰り返し単位を1種含んでいてもよいし、2種以上含んでいてもよい。また、前記フッ素系ポリマーは、上記各繰り返し単位以外の他の繰り返し単位を1種又は2種以上有していてもよい。前記他の繰り返し単位については特に制限されず、通常のラジカル重合反応可能なモノマーから誘導される繰り返し単位が好ましい例として挙げられる。以下、他の繰り返し単位を誘導するモノマーの具体例を挙げる。前記フッ素系ポリマーは、下記モノマー群から選ばれる1種又は2種以上のモノマーから誘導される繰り返し単位を含有していてもよい。
モノマー群
(1)アルケン類
エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、1−ドデセン、1−オクタデセン、1−エイコセン、ヘキサフルオロプロペン、フッ化ビニリデン、クロロトリフルオロエチレン、3,3,3−トリフルオロプロピレン、テトラフルオロエチレン、塩化ビニル、塩化ビニリデンなど;
(2)ジエン類
1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2−エチル−1,3−ブタジエン、2−n−プロピル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、1−α−ナフチル−1,3−ブタジエン、1−β−ナフチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、1−クロロブタジエン、2−フルオロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン、1,1,2−トリクロロ−1,3−ブタジエン及び2−シアノ−1,3−ブタジエン、1,4−ジビニルシクロヘキサンなど;
(3)α,β−不飽和カルボン酸の誘導体
(3a)アルキルアクリレート類
メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、sec−ブチルアクリレート、tert−ブチルアクリレート、アミルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルへキシルアクリレート、n−オクチルアクリレート、tert−オクチルアクリレート、ドデシルアクリレート、フェニルアクリレート、ベンジルアクリレート、2−クロロエチルアクリレート、2−ブロモエチルアクリレート、4−クロロブチルアクリレート、2−シアノエチルアクリレート、2−アセトキシエチルアクリレート、メトキシベンジルアクリレート、2−クロロシクロヘキシルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、2−メトキシエチルアクリレート、ω−メトキシポリエチレングリコールアクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、3−メトキシブチルアクリレート、2−エトキシエチルアクリレート、2−ブトキシエチルアクリレート、2−(2−ブトキシエトキシ)エチルアクリレート、1−ブロモ−2−メトキシエチルアクリレート、1,1−ジクロロ−2−エトキシエチルアクリレート、グリシジルアクリレートなど);
(3b)アルキルメタクリレート類
メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、sec−ブチルメタクリレート、tert−ブチルメタクリレート、アミルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−オクチルメタクリレート、ステアリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、アリルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート、2−メトキシエチルメタクリレート、3−メトキシブチルメタクリレート、ω−メトキシポリエチレングリコールメタクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、2−アセトキシエチルメタクリレート、2−エトキシエチルメタクリレート、2−ブトキシエチルメタクリレート、2−(2−ブトキシエトキシ)エチルメタクリレート、グリシジルメタクリレート、3−トリメトキシシリルプロピルメタクリレート、アリルメタクリレート、2−イソシアナトエチルメタクリレートなど;
(3c)不飽和多価カルボン酸のジエステル類
マレイン酸ジメチル、マレイン酸ジブチル、イタコン酸ジメチル、タコン酸ジブチル、クロトン酸ジブチル、クロトン酸ジヘキシル、フマル酸ジエチル、フマル酸ジメチルなど;
(3e)α,β−不飽和カルボン酸のアミド類
N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−n−プロピルアクリルアミド、N−tert−ブチルアクリルアミド、N−tert−オクチルメタクリルアミド、N−シクロヘキシルアクリルアミド、N−フェニルアクリルアミド、N−(2−アセトアセトキシエチル)アクリルアミド、N−ベンジルアクリルアミド、N−アクリロイルモルフォリン、ジアセトンアクリルアミド、N−メチルマレイミドなど;
(4)不飽和ニトリル類
アクリロニトリル、メタクリロニトリルなど;
(5)スチレン及びその誘導体
スチレン、ビニルトルエン、エチルスチレン、p−tert−ブチルスチレン、p−ビニル安息香酸メチル、α−メチルスチレン、p−クロロメチルスチレン、ビニルナフタレン、p−メトキシスチレン、p−ヒドロキシメチルスチレン、p−アセトキシスチレンなど;
(6)ビニルエステル類
酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、安息香酸ビニル、サリチル酸ビニル、クロロ酢酸ビニル、メトキシ酢酸ビニル、フェニル酢酸ビニルなど;
(7)ビニルエーテル類
メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、n−ドデシルビニルエーテル、n−エイコシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、フルオロブチルビニルエーテル、フルオロブトキシエチルビニルエーテルなど;及び
(8)その他の重合性単量体
N−ビニルピロリドン、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、2−ビニルオキサゾリン、2−イソプロペニルオキサゾリンなど。
他の繰り返し単位を誘導するモノマーとしては下記一般式[4]で表されるモノマーが好適に用いられる。
Figure 2008209870
上記一般式[4]において、R16は水素原子又はメチル基を表し、L2は2価の連結基を表し、R17は置換基を有してもよい炭素数1〜20の直鎖、分岐鎖又は環状のアルキル基を表す。環状アルキル基は単環構造であっても多環構造であってもよい。L2で表される2価の連結基としては、酸素原子、イオウ原子、又はN(R5)−が好ましい。ここで、R5は、水素原子、炭素数1〜4のアルキル基、例えばメチル、エチル、プロピル、ブチルが好ましい。R5はより好ましくは、水素原子又はメチルである。L2は、酸素原子、−NH−、又は−N(CH3)−であることが特に好ましい。
17で表される炭素数1以上20以下の直鎖、分岐又は環状のアルキル基としては、直鎖及び分岐してもよいメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロノニル基、ビシクロデシル基、トリシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基等の多環シクロアルキル基が好適に用いられる。
17で表されるアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、アルキルカルボニルオキシ基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。
上記一般式[4]で表されるモノマーは、アルキル(メタ)アクリレート又はポリ(アルキレンオキシ)(メタ)アクリレートであることが特に好ましい。
上記一般式[4]で示されるモノマーの具体例を次に示すが、本発明は以下の具体例によってなんら制限されるものではない
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
前記フッ素系ポリマー中、フルオロ脂肪族基含有モノマーの量は、該ポリマーの構成モノマー総量の5質量%以上であるのが好ましく、10質量%以上であるのがより好ましく、30質量%以上であるのがさらに好ましい。
本発明に用いる前記フッ素系ポリマーの質量平均分子量は1000以上1,000,000以下であるのが好ましく、1000以上500,000以下であるのがより好ましく、1000以上100,000以下であるのがさらに好ましい。質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。
前記フッ素系ポリマーの重合方法は、特に限定されるものではないが、例えば、ビニル基を利用したカチオン重合やラジカル重合、あるいは、アニオン重合等の重合方法を採ることができ、これらの中ではラジカル重合が汎用に利用できる点で特に好ましい。ラジカル重合の重合開始剤としては、ラジカル熱重合開始剤や、ラジカル光重合開始剤等の公知の化合物を使用することができるが、特に、ラジカル熱重合開始剤を使用することが好ましい。ここで、ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ジアシルパーオキサイド(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ケトンパーオキサイド(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ハイドロパーオキサイド(過酸化水素、tert−ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド(ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシエステル類(tert−ブチルパーオキシアセテート、tert−ブチルパーオキシピバレート等)、アゾ系化合物(アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等)、過硫酸塩類(過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。
ラジカル重合方法は、特に制限されるものでなく、乳化重合法、懸濁重合法、塊状重合法、溶液重合法等を採ることが可能である。典型的なラジカル重合方法である溶液重合についてさらに具体的に説明する。他の重合方法についても概要は同等であり、その詳細は例えば「高分子科学実験法」高分子学会編(東京化学同人、1981年)等に記載されている。
溶液重合を行うためには有機溶媒を使用する。これらの有機溶媒は本発明の目的、効果を損なわない範囲で任意に選択可能である。これらの有機溶媒は通常、大気圧下での沸点が50〜200℃の範囲内の値を有する有機化合物であり、各構成成分を均一に溶解させる有機化合物が好ましい。好ましい有機溶媒の例を示すと、イソプロパノール、ブタノール等のアルコール類;ジブチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸アミル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;が挙げられる。なお、これらの有機溶媒は、1種単独又は2種以上を組み合わせて用いることが可能である。さらに、モノマーや生成するポリマーの溶解性の観点から上記有機溶媒に水を併用した水混合有機溶媒も適用可能である。
また、溶液重合条件も特に制限されるものではないが、例えば、50〜200℃の温度範囲内で、10分〜30時間加熱することが好ましい。さらに、発生したラジカルが失活しないように、溶液重合中はもちろんのこと、溶液重合開始前にも、不活性ガスパージを行うことが好ましい。不活性ガスとしては通常窒素ガスが好適に用いられる。
前記フッ素系ポリマーを好ましい分子量範囲で得るためには、連鎖移動剤を用いたラジカル重合法が特に有効である。連鎖移動剤としてはメルカプタン類(例えば、オクチルメルカプタン、デシルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン、オクタデシルメルカプタン、チオフェノール、p−ノニルチオフェノール等)、ポリハロゲン化アルキル(例えば、四塩化炭素、クロロホルム、1,1,1−トリクロロエタン、1,1,1−トリブロモオクタンなど)、低活性モノマー類(α−メチルスチレン、α−メチルスチレンダイマー等)のいずれも用いることができるが、好ましくは炭素数4〜16のメルカプタン類である。これらの連鎖移動剤の使用量は、連鎖移動剤の活性やモノマーの組み合わせ、重合条件などにより著しく影響され精密な制御が必要であるが、通常は使用するモノマーの全モル数に対して0.01モル%〜50モル%程度であり、好ましくは0.05モル%〜30モル%、特に好ましくは0.08モル%〜25モル%である。これらの連鎖移動剤は、重合過程において重合度を制御するべき対象のモノマーと同時に系内に存在させればよく、その添加方法については特に問わない。モノマーに溶解して添加してもよいし、モノマーと別途に添加することも可能である。
以下に、本発明に好ましく用いられるフッ素系ポリマーの具体例を示すが、本発明はこれらの具体例によってなんら限定されるものではない。ここで式中の数値は、それぞれ各モノマーの組成比を示す質量百分率であり、MwはGPCにより測定されたPS換算の質量平均分子量である。a、b、c、d等の数値は質量比を表す。
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
本発明に用いられるフッ素系ポリマーは、公知慣用の方法で製造することができる。例えば先にあげたフルオロ脂肪族基を有するモノマー、水素結合性基を有するモノマー等を含む有機溶媒中に、汎用のラジカル重合開始剤を添加し、重合させることにより製造できる。また、場合によりその他の付加重合性不飽和化合物を、さらに添加して上記と同じ方法にて製造することができる。各モノマーの重合性に応じ、反応容器にモノマーと開始剤を滴下しながら重合する滴下重合法なども、均一な組成のポリマーを得るために有効である。
光学異方性層の形成に用いられる組成物中における前記フッ素系ポリマーの含有量の好ましい範囲は、その用途によって異なるが、一般的には、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜2.5質量%であるのがさらに好ましい。前記フッ素系ポリマーの添加量が上記範囲であると、その効果が十分に発揮でき、また、塗膜の乾燥が十分でき、光学補償シートとしての性能(例えばレターデーションの均一性等)が良好である。なお、本発明では、前記フッ素系ポリマーを少なくとも2種類用いるが、同一種のモノマーを重合して得られるポリマーであっても、分子量が互いに異なるポリマー、モノマー組成比が互いに異なるポリマーは、異種のポリマーであるとする。本発明では、一般式[1]又は[2]のモノマーから誘導される繰り返し単位が同一で、且つ一般式[3]のモノマーから誘導される繰り返し単位中のQ1が互いに異なる(例えば、一方がカルボキシル基又はその塩で、他方がポリ(アルキレンオキシ基)を含むアルキル基等である)2種以上の共重合体を組み合わせて用いるのが好ましい。
[塗布方式]
前記光学異方性層は、後述の溶媒を用いて液晶組成物の塗布液を調製し、該塗布液を配向膜等の表面に塗布し、組成物中の液晶性化合物の分子を配向させ、且つ該配向状態に固定することで形成することができる。前記塗布液の塗布を、スロットコーターを用いて塗布するスロットダイコート法にて行うと、光学異方性層の表面粗さを小さくしたまま高速塗布が可能となり、生産性が向上するので好ましい。
本発明の光学補償シートを作製するのに利用可能なスロットダイコート法について説明する。図1は、本発明に利用可能なスロットコーターの概略図である。コーター10は、バックアップロール11に支持されて連続走行するウェブ12(例えば、光学異方性層の支持体となる透明フィルム)に対して、スロットダイ13から塗布液14をビード14aにして塗布することにより、ウェブ12に塗布膜14bを形成する。
スロットダイ13は、その内部にポケット15及びスロット16が形成されている。ポケット15は、その形状の断面が曲線及び直線で構成される。例えば、図1に示すような略円形でもよいし、半円形でもよい。ポケット15は、スロットダイ13の幅方向(図1中では、紙面を垂直に貫く方向。以下同様である)に、同一の断面形状で延長された空間であり、塗布液を溜めておくのに利用される。その幅方向の延長の有効長さは、塗布幅(例えば、透明フィルムの幅)と同等か若干長めにするのが一般的である。ポケット15への塗布液14の供給は、スロットダイ13の側面から、あるいはスロットとは反対側の面中央から、例えば、供給量を制御可能な供給ポンプ(不図示)等で行われる。ポケット15には塗布液14が漏れ出ないようにするための栓を設けてもよい。
スロット16は、ポケット15と同様に、スロットダイ13の幅方向に、同一の断面形状で延長された空間であり、ポケット15からウェブ12への塗布液14の流路である。ウェブ側に位置する開口部16aは、一般に、幅規制板(不図示)等を用いて、概ね塗布幅と同じ長さの幅になるように調整する。このスロット16の、スロット先端におけるバックアップロール11のウェブ走行方向の接線とのなす角は、一般に30°〜90°であるのが好ましいが、この範囲に限定されるものではない。
スロット16の開口部16aが位置するスロットダイ13の先端リップ17は先細り状に形成されており、その先端はランドと呼ばれる平坦部17aとされている。この平坦部17aであって、スロット16に対してウェブ12の進行方向の上流側を以下、上流側リップランド18と称し、下流側を下流側リップランド19と称する。
下流側リップランド19のウェブ走行方向における長さILOは30μm〜500μmが好ましく、より好ましくは30μm〜100μm、さらに好ましくは30μm〜60μmである。また、上流側リップランド18のウェブ進行方向における長さIUPは特に限定されないが、500μm〜1mmの範囲で好ましく用いられる。
図2は、スロットダイ13の断面形状の概略図(A)と、他のスロットダイ30の断面形状の概略図(B)である。図2(B)に示すスロットダイ30では、下流側リップランド31のランド長さILOは、上流側リップランドの長さIUPと同様の長さになっている。なお、符号32はポケット、33はスロットを示している。これに対して、図2(A)に示すスロットダイ13では、下流側リップランド長さILOが上流側リップランドの長さIUPと比較して短くなっている。本発明では、いずれの形状のスロットダイを用いることもできるが、前記光学異方性層の形成には、平均膜厚スロットダイ13の様に、ILOがIUPより短い形状のスロットダイを用いるほうが、より高い精度で均一の膜厚の塗布を行えるので好ましい。さらに、下流側リップランド19のランド長さILOが30μm〜100μmの範囲であると、寸法精度のよいリップランドを形成することができるので、より好ましい。
また、塗膜の膜厚を高精度で均一化するためには、下流側リップランド19のランド長さILOのスロットダイ13の幅方向における変動幅を20μm以内にするのが好ましい。変動幅が前記範囲であると、ビードをより安定的に形成することができ、外乱等が生じてもビードが不安定となるのを防止し、製造適性を維持することができる。
スロットダイの材質については特に制限はないが、スロット16の開口部aを含む先端リップ17の強度や表面状態の向上の観点から、少なくともこの箇所を含むスロットダイの材質を、超硬材質にするのが好ましい。超硬材質を用いることにより、表面形状の均質性が改善するとともに、常に吐出される塗布液による先端リップの摩耗を防止することもできる。塗布液として研磨材を含む磁性液等を塗布する場合は特に有効である。超硬材質としては、WCを主成分とする材質が挙げられる。例えば、WC炭化物結晶をCoをはじめとする結合金属で結合して調製された材質などが挙げられる。結合金属はCoに限定されず、Ti、Ta、Nbをはじめとする各種金属を使用することもできる。前記WC結晶の平均粒径については特に制限はないが、平均粒径は小さいのが好ましく、5μm以内であるのが好ましい。
さらに、薄層の塗布膜厚を高精度に均一に維持するには、スロットダイ10の先端部における寸法精度のみならず、バックアップロール13の真直度の精度も重要である。従って、下流側リップランド19のランド長さILOの塗布幅方向における寸法精度を維持するほかに、スロットダイ13の先端リップ17とバックアップロール11の両方の真直度の精度が高いのが好ましい。真直度は下記の式(1)により、概算ではあるが、実用的に十分な精度で求めることができる。但し、下記式(1)を満たさないスロットダイコーターであっても、勿論、本発明に用いることができる。ここで、図1に示すように、Poはウェブ12の進行方向側におけるビードメニスカス外の圧力、Ppはポケット15の内圧、σは塗布液14の表面張力、μは塗布液14aの粘度、Uは塗布速度、hは膜厚、dは下流側リップランド19とウェブ12との隙間の長さ、Lはスロットダイ13のスロット16の長さ、Dはスロットダイ13のスロット間隙である。そしてスロットダイ13のポケット15の内圧Ppと、ウェブ進行方向側のビードメニスカス外の圧力Poの差圧Po−Ppを、スロットダイ13の幅方向に一定として、下記(1)式を用いて、必要真直度を求める。これは、スロットダイ13の先端部とバックアップロール11との隙間の長さdが変化しても、スロットダイ13のポケット15の中と前記ビードメニスカス外の差圧が一定となるように、スロットダイ13の幅方向の流れがポケット15の中で発生して、流量分布となることによる。
Po−Pp=1.34σ/h・(μU/σ)2/3+12μUILO(d/2−h)/d
3−12μhUL/D3・・・(1)
上記数式(1)を満たす条件でスロットダイコーターにより塗布を実施すると、一般の工業的生産に用いられる塗布系においては、5μm程度のダイブロック幅方向の真直度で、塗布膜厚分布が2%程度(条件により厳密には異なる場合もある)になる。従って、高精度の薄膜塗布を実施する際の限界はこの数字であるとみなすことができる。これにより、前記スロットダイ13を塗布位置にセットしたときに,前記先端リップとウェブとの隙間の前記スロットダイ幅方向における変動幅が5μm以内となるように、先端リップと前記バックアップロールの真直度を維持するのが好ましい。
(液晶性化合物)
前記光学異方性層の形成には少なくとも一種の液晶性化合物を用いる。液晶性化合物の少なくとも一種は円盤状化合物から選択されるのが好ましく、シクロプロピルカルボニル基を有する円盤状化合物から選択されるのがより好ましい。該シクロプロピルカルボニル基を有する円盤状化合物は、下記一般式(I)で表される化合物であるのが好ましい。
Figure 2008209870
一般式(I)において、Dは円盤状コアである。円盤状コアは、該円盤状化合物の中心に位置し、その円盤面を構成する。円盤状コアは、円盤状液晶性分子の分子構造において、よく知られている概念である。円盤状液晶(Discotic Liquid Crystal)は、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111 (1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al., Angew. Chem. Soc. Chem. Comm., page 1794 (1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655 (1994)等に記載されている。
以下に、円盤状コアの例を示す。各化合物中のYは下記一般式(VI)を意味する。下記一般式(VI)中のR1、R2、R3、R4及びR5は、前記一般式(I)のものと同義であり、好ましい範囲も同義である。
Figure 2008209870
Figure 2008209870
Figure 2008209870
円盤状コア(D)は、トリフェニレン(Z4)であることが特に好ましい。
円盤状コア(D)は、Y(前記一般式(VI))以外の置換基を有していてもよい。円盤状コアが有していてもよい置換基の例は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ヒドロキシル基、アミノ基、カルバモイル基、スルファモイル基、メルカプト基、ウレイド基、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基、置換アリール基、複素環基、アルコキシ基、置換アルコキシ基、アリールオキシ基、置換アリールオキシ基、アシル基、アシルオキシ基、アルコキシカルボニル基、置換アルコキシカルボニル基、アリールオキシカルボニル基、置換アリールオキシカルボニル基、置換アミノ基、アミド基、イミド基、アルコキシカルボニルアミノ基、置換アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、置換アリールオキシカルボニルアミノ基、置換カルバモイル基、スルホンアミド基、置換スルファモイル基、アルキルチオ基、置換アルキルチオ基、アリールチオ基、置換アリールチオ基、アルキルスルホニル基、置換アルキルスルホニル基、アリールスルホニル基、置換アリールスルホニル基、アルキルスルフィニル基、置換アルキルスルフィニル基、アリールスルフィニル基、置換アリールスルフィニル基、置換ウレイド基、リン酸アミド基、置換シリル基、アルコキシカルボニルオキシ基、置換アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基ならびに置換アリールオキシカルボニルオキシ基を含む。
アルキル基は、環状構造又は分岐構造を有していてもよい。アルキル基の炭素原子数は1〜30であることが好ましい。置換アルキル基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルキル基の置換基の例は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基及び置換アルキニル基が除外される以外は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
アルケニル基は、環状構造又は分岐構造を有していてもよい。アルケニル基の炭素原子数は2〜30であることが好ましい。置換アルケニル基のアルケニル部分は、アルケニル基と同義であり、好ましい範囲も同義である。置換アルケニル基の置換基の例は、置換アルキル基の置換基の例と同様である。アルキニル基は、環状構造又は分岐構造を有していてもよい。アルキニル基の炭素原子数は2〜30であることが好ましい。置換アルキニル基のアルキニル部分は、アルキニル基と同様である。置換アルキニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
アリール基の炭素原子数は、6〜30であることが好ましい。置換アリール基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリール基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
複素環基は、5員又は6員の複素環を有することが好ましい。複素環に、他の複素環、脂肪族環又は芳香族環が縮合していてもよい。複素環の複素原子は、窒素原子、酸素原子又は硫黄原子であることが好ましい。複素環基は置換基を有していてもよい。複素環基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
アルコキシ基及び置換アルコキシ基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルコキシ基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。アリールオキシ基及び置換アリールオキシ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシ基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
アシル基はホルミル又はCO−Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
アシルオキシ基はホルミルオキシ又はO−CO−Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
アルコキシカルボニル基及び置換アルコキシカルボニル基のアルキル部分は、アルキル基と同様である。置換アルコキシカルボニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
アリールオキシカルボニル基及び置換アリールオキシカルボニル基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニル基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
置換アミノ基は、−NH−R又はN(−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
アミド基は、−NH−CO−Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
イミド基は、−N(−CO−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
アルコキシカルボニルアミノ基及び置換アルコキシカルボニルアミノ基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルコキシカルボニルアミノ基の置換基の例は、置換アルキル基の置換基の例と同様である。
アリールオキシカルボニルアミノ基及び置換アリールオキシカルボニルアミノ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニルアミノ基の置換基の例は、円盤状コアの置換基の例と同様である。
置換カルバモイル基は、−CO−NH−R又はCO−N(−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
スルホンアミド基は、−NH−SO2−Rで表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。置換スルファモイル基は、−SO2−NH−R又はSO2−N(−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
アルキルチオ基及び置換アルキルチオ基のアルキル部分は、アルキル基と同様である。置換アルキルチオ基の置換基の例は、置換アルキル基の置換基の例と同様である。
アリールチオ基及び置換アリールチオ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールチオ基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
アルキルスルホニル基及び置換アルキルスルホニル基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルキルスルホニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
アリールスルホニル基及び置換アリールスルホニル基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールスルホニル基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
アルキルスルフィニル基及び置換アルキルスルフィニル基のアルキル部分は、アルキル基と同義であり、好ましい範囲も同義である。置換アルキルスルフィニル基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
アルキルスルフィニル基及び置換アルキルスルフィニル基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アルキルスルフィニル基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
置換ウレイド基は、−NH−CO−NH−R又はNH−CO−N(−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
リン酸アミド基は、−NH−O−P(=O)(−OH)−O−R又はNH−O−P(=O)(−O−R)2で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
置換シリル基は、−SiH2−R、−SiH(−R)2又はSi(−R)3で表され、Rはアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アリール基又は置換アリール基である。
アルコキシカルボニルオキシ基及び置換アルコキシカルボニルオキシ基のアルキル部分は、アルキル基と同様である。置換アルコキシカルボニルオキシ基の置換基の例は、置換アルキル基の置換基の例と同義であり、好ましい範囲も同義である。
アリールオキシカルボニルオキシ基及び置換アリールオキシカルボニルオキシ基のアリール部分は、アリール基と同義であり、好ましい範囲も同義である。置換アリールオキシカルボニルオキシ基の置換基の例は、円盤状コアの置換基の例と同義であり、好ましい範囲も同義である。
一般式(I)において、n1は3〜20の整数であって、3〜15の整数であることが好ましく、3〜12の整数であることがより好ましく、3〜10の整数であることがさらに好ましく、4〜8の整数であることがさらにまた好ましく、6であることが最も好ましい。
一般式(I)において、R1、R2、R3、R4及びR5は水素原子又は置換基を表し、これらの例は円盤状コアの置換基の例と同様なものが挙げられる。また、R1、R2、R3、R4及びR5のいずれか二つが結合して環を形成していてもよく、例えば、脂肪族又は芳香族環があげられる。好ましくはR1、R2、R3及びR5は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、シアノ基、置換もしくは無置換のアルコキシカルボニル基又はハロゲン原子である。
カルボニルオキシ基に対し、R2及びR3、R4及びR5は、シス・トランスの位置関係が存在する。シスとはシクロプロパン環面に対してカルボニルオキシ基と同方向に置換基が存在する状態であり、トランスとはシクロプロパン環面に対してカルボニルオキシ基と逆方向に置換基が存在する状態である。この位置関係は指定のない限り特には制限しない。
一般式(I)において、R1、R2、R3、R4及びR5の置換基の組み合わせにより、エナンチオマー及びジアステレオマー立体異性体が存在するが、これらは指定のない限り特には制限しない。
一般式(I)で表される円盤状化合物は、下記一般式(II)で表されることが好ましい。
Figure 2008209870
一般式(II)において、Dは円盤状コアである。n1は3〜20の整数である。R1、R2、R3及びR5は水素原子又は置換基を表し、互いに結合して環を形成していてもよい。mは1〜5の整数を表す。R6は置換基を表し、複数のR6が存在する時、それぞれ同じでも異なっていてもよく、互いに結合して環を形成していてもよい。
上記D、n1、R1、R2、R3及びR5は、一般式(I)で定義したD、n1、R1、R2、R3及びR5と同様であり、好ましい範囲も同義である。
一般式(II)において、R6は置換基を表し、これらの例は円盤状コアの置換基の例と同様なものが挙げられる。好ましいR6の例は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のアリール基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアルコキシカルボニルオキシ基、置換もしくは無置換のアリールオキシカルボニルオキシ基又は置換もしくは無置換のアシルオキシ基である。さらに好ましくは、少なくとも1つのR6が置換アルキル基、置換アルコキシ基、置換アルコキシカルボニル基、置換アリール基、置換アリールオキシ基、置換アルコキシカルボニルオキシ基、置換アリールオキシカルボニルオキシ基又は置換アシルオキシ基であり、置換基の末端に重合性基を有する。
一般式(II)において、R6の置換位置は指定のない限り特に制限しない。好ましくは少なくとも1つのR6がパラ位に存在する。
一般式(II)において、カルボニルオキシ基に対して、R5には、シス・トランスの位置関係が存在する。この位置関係は指定のない限り特には制限しない。好ましくはシスである。
本発明の円盤状化合物、例えば、一般式(I)で表される円盤状化合物は、重合性基を有していてもよい。重合性基を有する円盤状化合物(重合性円盤状化合物)は、重合反
応により円盤状化合物の円盤面が配向している状態を固定することができる。
一般式(I)で表される化合物が重合性基を有する場合、R4は置換アルキル基、置換アルコキシ基、置換アリール基又は置換アリールオキシ基であって、各置換基の末端に重合性基を有することが好ましい。
重合性円盤状化合物は、さらに、下記一般式(III)で表されることが好ましい。
Figure 2008209870
一般式(III)において、Dは円盤状コアである。n1は3〜20の整数を表す。R1、R2、R3及びR5は、それぞれ、水素原子又は置換基をあらわし、互いに結合して環を形成していてもよい。
D、n1、R1、R2、R3及びR5は、一般式(I)で定義したD、n1、R1、R2、R3及びR5と同様であり、好ましい範囲も同義である。
一般式(III)において、Lは酸素原子、硫黄原子、カルボニル基、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、及びそれらの組み合わせから選ばれる2価の連結基である。
アルキレン基は、環状構造又は分岐構造を有していてもよい。アルキレン基の炭素原子数は1〜30であることが好ましい。
置換アルキレン基のアルキレン部分は、アルキレン基と同様である。置換アルキレン基の置換基の例は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基及び置換アルキニル基が除外される以外は、一般式(I)で説明した円盤状コアの置換基の例と同様である。
アリーレン基の炭素原子数は、1〜30であることが好ましい。アリーレン基は、フェニレン又はナフチレンであることが好ましく、フェニレンであることがさらに好ましく、p−フェニレンであることが最も好ましい。
置換アリーレン基のアリーレン部分は、アリーレン基と同様である。置換アリーレン基の置換基の例は、一般式(I)で説明した円盤状コアの置換基の例と同様である。
一般式(III)において、Qは重合性基である。重合性基は、エポキシ基又はエチレン性不飽和基であることがさらに好ましく、エチレン性不飽和基(例、ビニル、1−プロペニル、イソプロペニル)であることが最も好ましい。
本発明の円盤状化合物として、特に、好ましい円盤状化合物は、下記一般式(IV)で表されるトリフェニレン化合物である。
Figure 2008209870
一般式(IV)において、D1はトリフェニレンを表し、n1は3〜6の整数を表し、R1、R2、R3、R4及びR5は、それぞれ、水素原子、炭素原子数が1〜20の置換もしくは無置換のアルキル基、炭素原子数が3〜20の置換もしくは無置換のアルケニル基、炭素原子数が1〜20の置換もしくは無置換のアルコキシ基、炭素原子数が3〜20の置換もしくは無置換のアルケニルオキシ基、炭素原子数が6〜20の置換もしくは無置換のアリール基又は炭素原子数が6〜20の置換もしくは無置換のアリールオキシ基、炭素原子数が1〜20の置換もしくは無置換のアルコキシカルボニル基である。各基の定義及び例は、一般式(I)と同様であり、好ましい範囲も同義である。
一般式(IV)において、R1、R2、R3及びR5は、それぞれ、水素原子、メチル基、エチル基、メチルオキシ基、エチルオキシ基、シアノ基、ハロゲン原子又は置換もしくは無置換のアルコキシカルボニル基であるのが好ましい。
一般式(IV)において、好ましくはR4が、炭素原子数が6〜20の置換もしくは無置換のアリール基である。一般式(IV)において、好ましくはR4が、カルボニルオキシ基に対して、トランスである。
一般式(IV)で表されるトリフェニレン化合物は、重合性基を有することができる。重合性基を有するトリフェニレン化合物(重合性トリフェニレン化合物)は、重合反応によりトリフェニレンからなる円盤面が配向している状態を固定することができる。
一般式(IV)で表されるトリフェニレン化合物が重合性基を有する場合、R4は炭素原子数が2〜20の置換アルキル基、炭素原子数が2〜20の置換アルコキシ基、炭素原子数が6〜20の置換アリール基又は炭素原子数が6〜20の置換アリールオキシ基であって、置換基の末端に重合性基を有することが好ましい。
上記一般式(IV)には、不斉炭素原子が存在するため、ジアステレオマーやエナンチオマーが存在するが、本発明においてはこれらを区別せず、すべて含まれるものとする。つまり、構造の記述方法により立体異性体を区別しないこととする。
以下に、一般式(I)で表される円盤状化合物の例を示す。なお、それぞれの例示化合物を表すとき、該例示化合物の横に記載されている数値(x)をもって、例示化合物(x)と示す。
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
Figure 2008209870
本発明で開示する円盤状化合物は、単独もしくは他の液晶と混合することより液晶性を示してもよい。本発明の化合物を他の円盤状液晶性化合物と混合して用いる場合、本発明に従う円盤状化合物の液晶性分子全体に対する割合は、1〜100質量%が好ましく、10〜98質量%がさらに好ましく、30〜95質量%が最も好ましい。
[光学異方性層]
前記光学異方性層は、液晶性化合物(好ましくは前記所定の円盤状化合物)の少なくとも1種、前記フッ素系ポリマーの少なくとも2種、及び所望により、その配向を制御するのに寄与する材料、配向状態を固定するのに寄与する材料等、他の材料を含有する組成物から形成してもよい。前記液晶性化合物は一度液晶相形成温度まで加熱し、次にその配向状態を維持したまま冷却することによりその液晶状態における配向形態を損なうことなく固定化することができる。また、前記液晶性化合物が重合性である場合は、組成物中に重合開始剤を添加し、該組成物を液晶相形成温度まで加熱した後、重合させ冷却することによっても固定化することができる。本発明で配向状態が固定化された状態とは、その配向が保持された状態が最も典型的、且つ好ましい態様ではあるが、それだけには限定されず、具体的には、通常0℃〜50℃、より過酷な条件下では−30℃〜70℃の温度範囲において、該層に流動性がなく、且つ外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を指すものである。
なお、配向状態が最終的に固定化された際に、液晶組成物はもはや液晶性を示す必要はない。例えば、液晶化合物として重合性化合物を用いた場合、結果的に熱、光等での反応により重合又は架橋反応が進行し、高分子量化して、液晶性を失ってもよい。
重合性基を有する前記円盤状化合物を用いて光学異方性層を作製する場合は、作製の過程で、該化合物が単独で又は他の化合物と重合し、最終的には本発明の化合物を重合単位とする高分子を含有する光学異方性層が作製されるが、かかる光学異方性層も本発明の範囲に含まれる。
前記光学異方性層は、配向膜を利用して作製するのが好ましい。但し、前記組成物を配向膜上に塗布した後、液晶性化合物の分子を配向させてその配向状態に固定した後は、該光学異方性層のみを支持体上に転写可能である。配向状態で固定化された液晶化合物は、配向膜がなくても配向状態を維持することができる。従って、本発明の光学補償シートは、配向膜を有していなくてもよい。
[光学異方性層の添加剤]
前記光学異方性層形成用の組成物中には、液晶性化合物及び上記フッ素系ポリマーとともに、他の添加剤を添加してもよい。他の添加剤の例には、空気界面配向制御剤、ハジキ防止剤、重合開始剤、重合性モノマー等が含まれる。
[空気界面配向制御剤]
液晶化合物は、空気界面においては空気界面のプレチルト角で配向する。このプレチルト角は、nx屈折率方向と空気界面がなすプレチルト角とny屈折率方向と空気界面がなすプレチルト角とnz屈折率方向と空気界面がなすプレチルト角の3種類がある。このプレチルト角は、化合物の種類によりその程度が異なるために、目的に応じて、空気界面のプレチルト角を任意に制御する必要がある。
このプレチルト角の制御には、例えば、電場や磁場のような外場を用いることや添加剤を用いることができるが、添加剤を用いることが好ましい。
このような添加剤としては、炭素原子数が6〜40の置換又は無置換脂肪族基もしくは炭素原子数が6〜40の置換又は無置換脂肪族置換オリゴシロキサノキシ基を、分子内に1本以上有する化合物が好ましく、分子内に2本以上有する化合物がさらに好ましい。例えば、空気界面配向制御剤としては、特開2002−20363号公報に記載の疎水性排除体積効果化合物を用いることができる。
空気界面側の配向制御用添加剤の添加量としては、円盤状化合物に対して、0.001質量%〜20質量%が好ましく、0.01質量%〜10質量%がさらに好ましく、0.1質量%〜5質量%がよりさらに好ましい。
[ハジキ防止剤]
前記組成物に添加し、該組成物の塗布時のハジキを防止するための材料としては、一般に高分子化合物を好適に用いることができる。使用するポリマーとしては、併用する液晶性化合物の分子の傾斜角変化や配向を著しく阻害しない限り、特に制限はない。
ポリマーの例としては、特開平8−95030号公報に記載があり、特に好ましい具体的ポリマー例としてはセルロースエステル類を挙げることができる。セルロースエステルの例としては、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロース及びセルロースアセテートブチレートを挙げることができる。円盤状化合物の配向を阻害しないように、ハジキ防止目的で使用されるポリマーの添加量は、円盤状化合物に対して一般に0.1〜10質量%の範囲にあり、0.1〜8質量%の範囲にあることがより好ましく、0.1〜5質量%の範囲にあることがさらに好ましい。
[重合開始剤]
本発明では、光学異方性層中において、液晶性化合物の分子はモノドメイン配向、つまり実質的に均一に配向している状態で固定されていることが好ましく、そのため重合性の液晶性化合物を用いている場合には重合反応により液晶性化合物の分子を固定することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応と電子線照射による重合反応が含まれるが、熱により支持体等が変形、変質するのを防ぐためにも、光重合反応と電子線照射による重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)及びオキサジアゾール化合物(米国特許4212970号明細書記載)等が挙げられる。光重合開始剤の使用量は、組成物(塗布液として調製される場合は固形分)の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。液晶性化合物の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、10mJ〜50J/cm2であることが好ましく、50mJ〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達しない場合には、窒素置換等の方法により酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好ましく、7%以下がさらに好ましく、3%以下が最も好ましい。
[重合性モノマー]
光学異方性層を形成するために用いられる液晶組成物には、重合性のモノマーを添加してもよい。液晶性化合物とともに使用する重合性モノマーとしては、液晶性化合物と相溶性を有し、液晶性化合物の傾斜角変化や配向阻害を著しく引き起こさない限り、特に限定はない。これらの中では重合活性なエチレン性不飽和基、例えばビニル基、ビニルオキシ基、アクリロイル基及びメタクリロイル基などを有する化合物が好ましく用いられる。上記重合性モノマーの添加量は、液晶性化合物に対して一般に0.5〜50質量%の範囲にあり、1〜30質量%の範囲にあることが好ましい。また反応性官能基数が2以上のモノマーを用いると、配向膜と光学異方性層間の密着性を高める効果が期待できるため、特に好ましい。
[塗布溶剤]
液晶組成物の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、トルエン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド、エステル及びケトンが好ましい。2種類以上の有機溶媒を併用してもよい。
[配向膜]
上記した通り、前記光学異方性層は、配向膜を利用して形成するのが好ましい。配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
液晶性化合物の分子を所望の配向を付与できるのであれば、配向膜としてはどのような層でもよいが、本発明においては、ラビング処理もしくは、光照射により形成される配向膜が好ましい。特にポリマーのラビング処理により形成する配向膜が特に好ましい。ラビング処理は、一般にはポリマー層の表面を、紙や布で一定方向に数回擦ることにより実施することができるが、特に本発明では液晶便覧(丸善(株))に記載されている方法により行うことが好ましい。配向膜の厚さは、0.01〜10μmであることが好ましく、0.05〜3μmであることがさらに好ましい。
本発明において、好ましい配向膜の例としては、特開平8−338913号公報に記載の、架橋されたポリマー、より好ましくは架橋されたポリビニルアルコールからなる配向膜が挙げられる。配向膜は、前記光学異方性層と同様、スロットダイコート法により塗布して形成するのが(膜厚の均一性、特に端部の膜厚の均一性)の点で好ましい。
なお、配向膜を用いて液晶性化合物を配向させてから、その配向状態のまま液晶性化合物を固定して光学異方性層を形成し、光学異方性層のみをポリマーフィルム(又は支持体)上に転写してもよい。配向状態の固定された液晶性化合物は、配向膜がなくても配向状態を維持することができる。
液晶性化合物、特に液晶性円盤状化合物を配向させるためには、配向膜の表面エネルギーを調節するポリマー(通常の配向用ポリマー)を用いるのが好ましい。具体的なポリマーの種類については液晶セル又は光学補償シートについて種々の文献に記載がある。いずれの配向膜においても、光学異方性層と支持体の密着性を改善する目的で、重合性基を有することが好ましい。重合性基は、側鎖に重合性基を有する繰り返し単位を導入するか、あるいは、環状基の置換基として導入することができる。界面で液晶性化合物と化学結合を形成する配向膜を用いることが好ましく、かかる配向膜としては特開平9−152509号公報に記載されている。
[配向膜のラビング密度]
配向膜のラビング密度と配向膜界面での液晶性化合物の分子のプレチルト角との間には、ラビング密度を高くするとプレチルト角は小さくなり、ラビング密度を低くするとプレチルト角は大きくなる関係があるので、配向膜のラビング密度を変えることで、プレチルト角の調整をすることができる。配向膜のラビング密度を変える方法としては、「液晶便覧」液晶便覧編集委員会編(丸善(株)、2000年)に記載されている方法を用いることができる。ラビング密度(L)は式(A)で定量化されている。
式(A) L=Nl{1+(2πrn/60v)}
式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm)、vはステージ移動速度(秒速)である。ラビング密度を高くするためには、ラビング回数を増やす、ラビングローラーの接触長を長く、ローラーの半径を大きく、ローラーの回転数を大きく、ステージ移動速度を遅くすればよく、一方、ラビング密度を低くするためには、この逆にすればよい。
[支持体]
本発明の光学補償シートは、支持体を有していてもよい。本発明の光学補償シートが、支持体上に前記光学異方性層を有する態様では、該支持体は、平均膜厚が20μm〜80μmで、且つ該支持体の膜厚バラツキが±3%以下であり、その表面のn点平均粗さRzが15nm以下であるのが好ましい。支持体の平均膜厚、膜厚バラツキ、及び平均粗さRzが前記範囲であると、その上に所定の表面特性を満足する光学異方性層を安定的に形成できるので好ましい。なお、支持体と光学異方性層との配向膜を有する態様では、前記した通り、配向膜表面のn点平均粗さRzは15nm以下であるのが好ましい。
前記支持体は、透明支持体であるのが好ましい。前記支持体は、主に光学的等方性で、光透過率が80%以上であれば、特に材料の制限はないが、ポリマーフィルムが好ましい。ポリマーの具体例として、セルロースエステル類(例、セルロースジアセテート、セルローストリアセテート)、ノルボルネン系ポリマー(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、)ポリ(メタ)アクリレートエステル類のフィルムなどを挙げることができ、多くの市販のポリマーを好適に用いることが可能である。このうち、光学性能の観点からセルロースエステル類が好ましく、セルロースの低級脂肪酸エステルがさらに好ましい。低級脂肪酸とは、炭素原子数が6以下脂肪酸で、炭素原子数は、2、3、4であることが好ましい。具体的には、セルロースアセテート、セルロースプロピオネート又はセルロースブチレートがあげられる。この中でも、セルローストリアセテートが特に好ましい。セルロースアセテートプロピオネートやセルロースアセテートブチレートのような混合脂肪酸エステルを用いてもよい。また、従来知られているポリカーボネートやポリスルホンのような複屈折の発現しやすいポリマーであっても国際公開第00/26705号パンフレットに記載の分子を修飾することで該発現性を低下させたものを用いることもできる。
以下、支持体として好ましく使用されるセルロースエステルについて詳述する。
セルロースエステルとしては、酢化度が55.0〜62.5%であるセルロースアセテートを使用することが好ましい。特に酢化度が57.0〜62.0%であることが好ましい。酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアセテート等の試験法)におけるアセチル化度の測定及び計算に従う。セルロースエステルの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。また、本発明に使用するセルロースエステルは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜1.7であることが好ましく、1.3〜1.65であることがさらに好ましく、1.4〜1.6であることが最も好ましい。
セルロースエステルでは、セルロースの2位、3位、6位の水酸基が全体の置換度の1/3ずつに均等に分配されるわけではなく、6位水酸基の置換度が小さくなる傾向がある。セルロースの6位水酸基の置換度が、2位、3位に比べて多いほうが好ましい。全体の置換度に対して6位の水酸基が30%〜40%でアシル基で置換されていることが好ましく、さらには31%以上、特に32%以上であることが好ましい。6位の置換度は、0.88以上であることが好ましい。6位水酸基は、アセチル基以外に炭素数3以上のアシル基(例、プロピオニル、ブチリル、バレロイル、ベンゾイル、アクリロイル)で置換されていてもよい。各位置の置換度の測定は、NMRによって求める事ができる。6位水酸基の置換度が高いセルロースエステルは、特開平11−5851号公報の段落番号0043〜0044に記載の合成例1、段落番号0048〜0049に記載の合成例2、段落番号0051〜0052に記載の合成例3の方法を参照して合成することができる。
支持体として用いるポリマーフィルム、特にセルロースアセテートフィルムは、レターデーション値を調整するために、少なくとも二つの芳香族環を有する芳香族化合物をレターデーション上昇剤として使用することも可能である。このようなレターデーション上昇剤を使用する場合、レターデーション上昇剤は、セルロースアセテート100質量部に対して、0.01〜20質量部の範囲で使用する。レターデーション上昇剤は、セルロースアセテート100質量部に対して、0.05〜15質量部の範囲で使用することが好ましく、0.1〜10質量部の範囲で使用することがさらに好ましい。2種類以上の芳香族化合物を併用してもよい。芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。
芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環及び1,3,5−トリアジン環が含まれる。芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピラジン環及び1,3,5−トリアジン環が好ましく、ベンゼン環及び1,3,5−トリアジン環がさらに好ましい。芳香族化合物は、少なくとも一つの1,3,5−トリアジン環を有することが特に好ましい。
芳香族化合物が有する芳香族環の数は、2〜20であることが好ましく、2〜12であることがより好ましく、2〜8であることがさらに好ましく、2〜6であることが最も好ましい。二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合及び(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)〜(c)のいずれでもよい。このようなレターデーション上昇剤については国際公開第01/88574号パンフレット、国際公開第00/2619号パンフレット、特開2000−111914号公報、同2000−275434号公報、特願2002−70009号明細書等に記載されている。
セルロースアセテートフィルムは、調製されたセルロースアセテート溶液(ドープ)から、ソルベントキャスト法により製造することが好ましい。ドープには、前記のレターデーション上昇剤を添加してもよい。ドープは、ドラム又はバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が18〜35%となるように濃度を調整することが好ましい。ドラム又はバンドの表面は、鏡面状態に仕上げておくことが好ましい。ソルベントキャスト法における流延及び乾燥方法については、米国特許2336310号、同2367603号、同2492078号、同2492977号、同2492978号、同2607704号、同2739069号、同2739070号、英国特許640731号、同736892号の各明細書、特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号、同62−115035号の各公報に記載がある。ドープは、表面温度が10℃以下のドラム又はバンド上に流延することが好ましい。流延してから2秒以上風に当てて乾燥することが好ましい。得られたフィルムをドラム又はバンドから剥ぎ取り、さらに100〜160℃まで逐次温度を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラム又はバンドの表面温度においてドープがゲル化することが必要である。
ドープは、原料フレークをハロゲン化炭化水素類(ジクロロメタン等)、アルコール類(メタノール、エタノール、ブタノール等)、エステル類(蟻酸メチル、酢酸メチル等)、エーテル類(ジオキサン、ジオキソラン、ジエチルエーテル等)等の溶剤にて溶解する。セルロースアシレートを溶解するための溶剤としては、ジクロロメタンが代表的である。しかし、地球環境や作業環境の観点では、溶剤はジクロロメタン等のハロゲン化炭化水素を実質的に含まないことが好ましい。「実質的に含まない」とは、有機溶剤中のハロゲン化炭化水素の割合が5質量%未満(好ましくは2質量%未満)であることを意味する。ジクロロメタン等のハロゲン化炭化水素を実質的に含まないセルロースアシレートフィルム及びその製造法については発明協会公開技報(公技番号2001−1745、2001年3月15日発行、以下公開技報2001−1745号と略す)に記載されている。
調製したセルロースアセテート溶液(ドープ)を用いて、ドープを2層以上流延することによりフィルム化することもできる。ドープは、ドラム又はバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が10〜40%となるように濃度を調整することが好ましい。ドラム又はバンドの表面は、鏡面状態に仕上げておくことが好ましい。複数のセルロースアセテート溶液を流延する場合、支持体の進行方向に間隔をおいて設けた複数の流延口からセルロースアセテートを含む溶液をそれぞれ流延させて、それらを積層させながらフィルムを作製してもよい。例えば、特開昭61−158414号、特開平1−122419号、及び特開平11−198285号の各公報に記載の方法を用いることができる。また、2つの流延口からセルロースアセテート溶液を流延することによりフィルム化してもよい。例えば、特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、及び特開平6−134933号の各公報に記載の方法を用いることができる。また、特開昭56−162617号公報に記載の、高粘度セルロースアセテート溶液の流れを低粘度のセルロースアセテート溶液で包み込み、高粘度及び低粘度のセルロースアセテート溶液を同時に押出すセルロースアセテートフィルムの流延方法を用いてもよい。
セルロースアセテートフィルムは、さらに延伸処理によりレターデーション値を調整することができる。延伸倍率は、0〜100%の範囲にあることが好ましい。本発明のセルロースアセテートフィルムを延伸する場合には、テンター延伸が好ましく使用され、遅相軸を高精度に制御するために、左右のテンタークリップ速度、離脱タイミング等の差をできる限り小さくすることが好ましい。
セルロースエステルフィルムには、機械的物性を改良するため、又は乾燥速度を向上するために、可塑剤を添加することができる。可塑剤としては、リン酸エステル又はカルボン酸エステルが用いられる。リン酸エステルの例には、トリフェニルホスフェート(TPP)及びトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)及びジ−2−エチルヘキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、o−アセチルクエン酸トリエチル(OACTE)及びo−アセチルクエン酸、トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DPP、DEHP)が好ましく用いられる。DEP及びDPPが特に好ましい。可塑剤の添加量は、セルロースエステルの量の0.1〜25質量%であることが好ましく、1〜20質量%であることがさらに好ましく、3〜15質量%であることが最も好ましい。
セルロースエステルフィルムには、劣化防止剤(例、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン類)や紫外線防止剤を添加してもよい。劣化防止剤については、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。劣化防止剤の添加量は、調製する溶液(ドープ)の0.01〜1質量%であることが好ましく、0.01〜0.2質量%であることがさらに好ましい。添加量が0.01質量%未満であると、劣化防止剤の効果がほとんど認められない。添加量が1質量%を越えると、フィルム表面への劣化防止剤のブリードアウト(滲み出し)が認められる場合がある。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)を挙げることができる。紫外線防止剤については、特開平7−11056号公報に記載がある。
セルロースアセテートフィルムは、表面処理を施すことが好ましい。具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理又は紫外線照射処理が挙げられる。また、特開平7−333433号公報に記載のように、下塗り層を設けることも好ましく利用される。フィルムの平面性を保持する観点から、これら処理においてセルロースアセテートフィルムの温度をTg(ガラス転移温度)以下、具体的には150℃以下とすることが好ましい。
セルロースアセテートフィルムの表面処理は、配向膜などとの接着性の観点から、酸処理又はアルカリ処理、すなわちセルロースアセテートに対するケン化処理を実施することが特に好ましい。
以下、アルカリ鹸化処理を例に、具体的に説明する。
アルカリ鹸化処理は、フィルム表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行われることが好ましい。アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられる。水酸化イオンの規定濃度は、0.1〜3.0Nの範囲にあることが好ましく、0.5〜2.0Nの範囲にあることがさらに好ましい。アルカリ溶液温度は、室温〜90℃の範囲にあることが好ましく、40〜70℃の範囲にあることがさらに好ましい。
また、セルロースアセテートフィルムの表面エネルギーは、55mN/m以上であることが好ましく、60〜75mN/mの範囲にあることがさらに好ましい。
セルロースアセテートフィルムの厚さは、通常5〜500μmの範囲が好ましく、20〜250μmの範囲が好ましく、30〜180μmの範囲がより好ましく、30〜110μmの範囲が特に好ましい。
本発明の光学補償シートは、偏光膜と組み合わせて楕円偏光板の用途に供することができる。さらに、透過型、反射型、及び半透過型液晶表示装置に、偏光膜と組み合わせて適用することにより、視野角の拡大に寄与する。以下に、光学補償シートを利用した楕円偏光板及び液晶表示装置について説明する。
[楕円偏光板]
光学補償シートと偏光膜とを積層することによって楕円偏光板を作製することができる。光学補償シートを利用することにより、液晶表示装置の視野角を拡大し得る楕円偏光板を提供することができる。前記偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光膜の偏光軸は、フィルムの延伸方向に垂直な方向に相当する。
偏光膜は、光学補償シートの光学異方性層側に積層してもよいし、支持体を有する場合は支持体の裏面(光学異方性層を有する表面と反対側の面)に積層してもよい。偏光膜の光学補償シートを積層した側と反対側の面に保護膜を形成することが好ましい。保護膜は、光透過率が80%以上であるのが好ましい。保護膜としては、一般にセルロースエステルフィルム、好ましくはトリアセチルセルロースフィルムが用いられる。セルロースエステルフィルムは、ソルベントキャスト法により形成することが好ましい。保護膜の厚さは、20〜500μmであることが好ましく、50〜200μmであることがさらに好ましい。
[液晶表示装置]
本発明の光学補償シートの利用により、視野角が拡大された液晶表示装置を提供することができる。液晶表示装置は、通常、液晶セル、偏光素子及び位相差板(光学補償シート)を有する。前記偏光素子は、一般に偏光膜と保護膜からなり、偏光膜と保護膜については、上記楕円偏光で説明したものを用いることができる。TNモードの液晶セル用位相差板(光学補償シート)は、特開平6−214116号公報、米国特許5583679号、同5646703号、ドイツ特許公報3911620A1号の各明細書に記載がある。また、IPSモード又はFLCモードの液晶セル用光学補償シートは、特開平10−54982号公報に記載がある。さらに、OCBモード又はHANモードの液晶セル用光学補償シートは、米国特許5805253号明細書及び国際公開WO96/37804号公報に記載がある。さらにまた、STNモードの液晶セル用光学補償シートは、特開平9−26572号公報に記載がある。そして、VAモードの液晶セル用光学補償シートは、特許番号第2866372号公報に記載がある。
本発明において、前記記載の公報を参考にして各種のモードの液晶セル用位相差板(光学補償シート)を作製することができる。位相差板は、TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Super Twisted Nematic)、VA(Vertically Aligned)及びHAN(Hybrid Aligned Nematic)モードのような様々な表示モードの液晶表示装置に用いることができる。位相差板は、TN(Twisted Nematic)、OCB(Optically Compensatory Bend)モードの液晶表示装置の光学補償に特に効果がある。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、割合、操作等は、本発明の精神から逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例に制限されるものではない。
Figure 2008209870
攪拌機、還流冷却器を備えた反応器に、1H,1H,7H−ドデカフルオロヘプチルアクリレート 39.13g、アクリル酸 0.80g、ジメチル2,2’−アゾビスイソブチレート 1.1g、2−ブタノン 30gを加え窒素雰囲気下で6時間78℃に加熱して反応を完結させた。質量平均分子量は1.0×104であった。
フルオロ脂肪族基含有ポリマー(P−33)の合成と類似の方法で、フッ素系ポリマー(P−34)、(P−136)、(P−138)を合成した。
[実施例1]
(ポリマー基材の作製)
下記の組成物をミキシングタンクに投入し、30℃に加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
────────────────────────────────────
セルロースアセテート溶液組成(質量部) 内層 外層
────────────────────────────────────
酢化度60.9%のセルロースアセテート 100 100
トリフェニルホスフェート(可塑剤) 7.8 7.8
ビフェニルジフェニルホスフェート(可塑剤) 3.9 3.9
メチレンクロライド(第1溶媒) 293 314
メタノール(第2溶媒) 71 76
1−ブタノール(第3溶媒) 1.5 1.6
シリカ微粒子(AEROSIL R972、日本アエロジル(株)製)
0 0.8
下記レターデーション上昇剤 1.7 0
────────────────────────────────────
Figure 2008209870
得られた内層用ドープ及び外層用ドープを、三層共流延ダイを用いて、0℃に冷却したドラム上に流延した。該ドラムの材質はSUS316製であり、十分な耐腐食性と強度を有するものとした。ドラム全体の厚みムラは0.5%以下であり、回転ムラが0.2mm以下の精度で回転させた。ドラム表面の算術平均粗さ(Ra)は6nmで、最大高さ(Ry)は60nmであり、またn点平均粗さ(Rz)は9nmであった。算術平均粗さ(Ra)、最大高さ(Ry)、の各測定は、JIS B 0601に規定によった。また、n点平均粗さ(Rz)の測定は、後述する光学異方性層におけるAFM測定と同様に行った。またドラムの表面欠陥はあってはならないものであり、30μm以上のピンホールは皆無であり、10μm〜30μmのピンホールは1個/m2以下、10μm以下のピンホールは2個/m2以下であるドラムを使用した。
前記流延ダイ及びドラムなどが設けられている流延室の温度は、25℃に保った。ドラム上に流延されたドープは、最初に平行流の乾燥風を送り乾燥した。乾燥風の温度は40℃とした。それぞれのガスの飽和温度は、いずれも−8℃付近であった。ドラム上での乾燥雰囲気における酸素濃度は窒素ガスを使用して、5vol%に保持した。
残留溶剤量が70質量%のフィルムをドラムから剥ぎ取り、両端をピンテンターにて固定して搬送方向のドロー比を110%として搬送しながら80℃で乾燥させ、残留溶剤量が10%となったところで、110℃で乾燥させた。その後、140℃の温度で30分乾燥し、残留溶剤が0.3質量%のセルロースアセテートフィルム(外層:3μm、内層:74μm、外層:3μm)を製造した。作製したセルロースアセテートフィルム(ポリマー基材PK−1)について、光学特性及び表面物性を測定した。
得られたポリマー基材(PK−1)の幅は1340mmであり、厚さは80μmであった。フィルムの厚みは、接触式膜厚測定計(アンリツ製)を用いて測定した。フィルムの平均膜厚及び膜厚バラツキを調べるために、上記測定を、幅方向1mに渡り等間隔に5点、長手方向1mに渡り等間隔に5点の計25点行い、平均膜厚及び膜厚バラツキを算出した。得られたポリマー基材(PK−1)の膜厚バラツキは、平均膜厚の±2%であり、また表面のn点平均粗さRzは13nmであった。
また、得られたポリマー基材の幅方向のカール値は−4.5/mであった。エリプソメーター(M−150、日本分光(株)製)を用いて、波長500nmにおけるレターデーション値(Re)を測定したところ、6nmであった。また、波長500nmにおけるレターデーション値(Rth)を測定したところ、83nmであった。また、作製したポリマー基材(PK−1)を2.0Nの水酸化カリウム溶液(25℃)に2分間浸漬した後、硫酸で中和し、純水で水洗、乾燥した。このPK−1の表面エネルギーを接触角法により求めたところ、63mN/mであった。
次に、図1に示した構成と同様のスロットダイコーターを用いて、作製したポリマー基材(PK−1)の面上に、光学異方性層を形成した。具体的には、表面に配向膜用樹脂層を形成したポリマー基材(PK−1)を、ウェブ12として送出機により搬送し、ガイドロールによって支持しつつ、ラビング処理ロールで樹脂層にラビング処理を施し、配向膜とした。その後、図1に示した構成と同様のスロットダイコーター10により、光学異方性層形成用塗布液を配向膜のラビング処理面に塗布した。次に、ウェブ12を、乾燥ゾーン及び加熱ゾーンに順次通過させ、液晶化合物の分子を配向させた後、紫外線ランプを照射してその配向を固定して光学異方性層を形成し、光学補償シートを得た。
以下、より具体的に、各工程について説明する。
上記ポリマー基材(PK−1)の表面に、下記組成の配向膜形成用塗布液を塗布して、60℃の温風で60秒、さらに90℃の温風で150秒乾燥し、配向膜用樹脂層を形成した。
得られた配向膜の厚さは2μmで、その表面のn点平均粗さRzは15nmであった。
(配向膜塗布液組成)
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
Figure 2008209870
次に、配向膜を形成したポリマー基材(PK−1)からなるウェブ12を搬送させつつ、スロットダイ13により下記組成の光学異方性層形成用塗布液14を配向膜のラビング処理面に、湿潤膜厚が5μmとなるように、5ml/m2で塗布した。塗布速度は60m/分とした。なお、ウェブ12の進行方向側とは反対側に、ビード14aに対して十分な減圧調整を行えるよう、接触しない位置に減圧チャンバーを設置した。スロットダイ13の上流側リップランド長IUPを1mm、下流側リップランド長ILOを50μmとした。下流側リップランド19とウェブ12との隙間の長さは40μmに設定した。
(光学異方性層形成用塗布液の組成)
下記の組成物を、102kgのメチルエチルケトンに溶解して塗布液を調製した。
下記のディスコティック液晶性化合物(1) 41.01質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製) 4.06質量部
セルロースアセテートブチレート
(CAB551−0.2、イーストマンケミカル社製) 0.34質量部
セルロースアセテートブチレート
(CAB531−1、イーストマンケミカル社製) 0.11質量部
フルオロ脂肪族基含有ポリマー例示化合物(P−33) 0.03質量部
フルオロ脂肪族基含有ポリマー例示化合物(P−136) 0.18質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 1.35質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 0.45質量部
Figure 2008209870
塗布液14を塗布したウェブ12を、100℃に設定した乾燥ゾーン、及び130℃に設定した加熱ゾーンを通過させ、この液晶層表面に60℃の雰囲気下で120W/cmの紫外線ランプにより紫外線を照射し、光学補償シート(KH−1)を作製した。
塗布可能性については目視によるビード状態の観察により判断し、ビード14aが破断した段階で塗布不可能とした。この結果、本実施例1では、塗布は可能であり、このときの減圧度は1000Paであった。
波長546nmで測定した光学異方性層のReレターデーション値は50nmであった。また、偏光板をクロスニコル配置とし、得られた光学補償シートのムラを観察したところ、正面、及び法線から60度まで傾けた方向から見ても、ムラは検出されなかった。
(光学異方性層の表面粗さ測定)
光学異方性層の表面粗さを、AFM(SPA400、セイコーインスルメンツ(株)製)を用いて測定した。光学異方性層の表面粗さを調べるために、サンプリングは幅方向1mに渡り等間隔に5点、長手方向1mに渡り等間隔に5点の計25点行い、それぞれについて表面粗さ測定を行った。n点平均粗さの結果は、表1に示す。
(光学異方性層の膜厚測定)
光学異方性層の膜厚を、光学干渉膜厚計(FE−3000、大塚電子(株)製)を用いて測定した。光学異方性層の厚みムラを調べるために、膜厚測定のサンプリングは、幅方向1mに渡り等間隔に5点、長手方向1mに渡り等間隔に5点の計25点行い、それぞれについて膜厚測定を行った。結果は、表1に示す。
(液晶性化合物の傾斜角評価)
光学異方性層における液晶性化合物の配向膜近傍の傾斜角及び空気界面近傍の傾斜角を、エリプソメーター(APE−100、島津製作所(株)製)を用いて観察角度を変えてレターデーションを測定し、Jpn.J.Appl.Phys.Vol.36(1997)pp.143−147に記載されている手法で算出した。測定波長は632.8nmであった。結果は、表1に示す。
(偏光板の作製)
ポリビニルアルコール系接着剤を用いて、KH−1(光学補償シート)を、偏光子(HF−1)の片側表面に貼り付けた。また、厚さ80μmのトリアセチルセルロースフィルム(TD−80U:富士フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光子(HF−1)の反対側表面に貼り付けた。
偏光子(HF−1)の透過軸と、光学補償シートの支持体であるポリマーフィルム(PK−1)の遅相軸とが平行になるように配置した。偏光子(HF−1)の透過軸と上記トリアセチルセルロースフィルムの遅相軸とは、直交するように配置した。このようにして偏光板(HB−1)を作製した。
(TN液晶セルでの評価)
TN型液晶セルを使用した液晶表示装置(AQUOS LC20C1S、シャープ(株)製)に設けられている一対の偏光板を剥がし、代わりに上記の作製した偏光板(HB−1)を、光学補償シート(KH−1)が液晶セル側となるように粘着剤を介して、観察者側及びバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸とは、Oモードとなるように配置した。
作製した液晶表示装置について、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までで視野角を測定した。上下左右で、コントラスト比(白透過率/黒透過率)が10以上、かつ黒側の階調反転(L1とL2での反転)のない領域を視野角として求めた。測定結果を第1表に示す。
(液晶表示装置パネル上でのムラ評価及び上視野角色味評価)
液晶表示装置の表示パネルを全面中間調に調整し、ムラを評価した。また、黒表示のときの上60°方向から見たときの色味を評価した(ニュートラルに近ければ○)。
[実施例2〜4、比較例1〜3]
表1に記載の如く、フルオロ脂肪族基含有ポリマーの種類及び/又は添加量を代えた、もしくは使用しなかった以外は、実施例1と同様にして光学補償シート及びそれを用いた液晶表示装置を作製し、同様に、光学異方性層の特性、及び層中の液晶性分子の傾斜角、ならびに液晶表示装置の視野角、ムラ、色味評価を行った。結果を表1に示す。
Figure 2008209870
上記表1の結果から、支持体及び配向層の表面粗さを抑えることとフルオロ脂肪族基含有ポリマーを2種併用することで、膜厚バラツキが少なく、表面粗さの低い光学異方性層を得ることが理解できる。この光学異方性層を有する光学補償シートを使用することでムラのない面状で、視野角、色味の表示特性がより良好な、液晶表示装置を提供することができた。
[実施例6]
前記配向膜塗布液の組成において、グルタルアルデヒド(架橋剤)の量を5質量部に変更した以外は、実施例1と同様にして、光学補償シート(KH−H2)、さらには、KH−H2付偏光板(HB−H2)を作製した。
得られた配向膜の厚さは2μmで、その表面のn点平均粗さRzは20nmであった。
また波長546nmで測定した光学補償シート中の光学異方性層のReレターデーション値は、51nmであった。形成した光学異方性層の平均膜厚は1.3μm、Rzは5nm、及び膜厚バラツキは±3%であった。
[実施例7]
前記セルロースアセテート溶液組成(外層)において、シリカ微粒子の量を8質量部に変更した以外は、実施例1と同様にして、光学補償シート(KH−H3)、さらには、KH−H3付偏光板(HB−H3)を作製した。
得られたポリマー基材(PK−3)の膜厚バラツキは、平均膜厚の±2%であり、また表面のn点平均粗さRzは25nmであった。
また波長546nmで測定した光学補償シート中の光学異方性層のReレターデーション値は、49nmであった。形成した光学異方性層の平均膜厚は1.3μm、Rzは5nm、及び膜厚バラツキは±3%であった。
[実施例8]
光学異方性層形成用塗布液の塗布について、#3.6のワイヤーバーで連続的に塗布した以外は、実施例1と同様にして、光学補償シート(KH−H4)、さらには、KH−H4付偏光板(HB−H4)を作製した。
波長546nmで測定した光学補償シート中の光学異方性層のReレターデーション値は、50nmであった。形成した光学異方性層の平均膜厚は1.3μm、Rzは5nm、及び膜厚バラツキは±3%であった。
作製した偏光板をクロスニコル配置とし、得られた光学補償シートのムラを観察したところ、正面から観察し、及び法線から60度まで徐々に傾けて観察したが、ムラがなく良好であった。しかし、法線から60度以上傾けた方向から観察すると、段状のムラ及びスジ状のムラが検出された。
[実施例9]
実施例1で用いたレターデーション上昇剤の添加量を代えて、Rthを76、83、100、110nmにしたポリマー基材を作製したこと以外は、実施例1と同様にして、光学補償シート、さらには光学補償シート付き偏光板を作製した。ポリマー基材のRthを76、83、100、110nmに代えても、ムラのない面状であることを確認した。
[実施例10]
実施例1で用いたレターデーション上昇剤を、下記のレターデーション上昇剤に代え、内層の添加量を1.2質量部にし、Rthを90nmにしたポリマー基材を作製した以外は、実施例1と同様にして、光学補償シート、さらには、光学補償シート付き偏光板を作製した。ムラのない面状であることを確認した。
Figure 2008209870
[実施例11]
実施例10で用いたレターデーション上昇剤の添加量を変えて、Rthを76、83、100、110nmにしたポリマー基材を作製したこと以外は、実施例1と同様にして、光学補償シート、さらには光学補償シート付き偏光板を作製した。ポリマー基材のRthを76、83、100、110nmに変えても、ムラのない面状であることを確認した。
本発明の光学補償シート及び楕円偏光板は、種々のモードの液晶表示装置の光学補償に利用することができる。特に、大型液晶表示装置用の光学補償シート又は楕円偏光板として用いても、表示ムラを発生させることがなく、表示品位の高い画像を表示することができる。
本発明に利用可能なスロットコーターの概略図である。 図1中のスロットダイ13の断面形状の概略図(A)と、他のスロットダイ30の断面形状の概略図(B)である。
符号の説明
10 コーター
11 バックアップロール
12 ウェブ
13、30 スロットダイ
14 塗布液
15、32 ポケット
16、33 スロット
17 先端リップ部
18 上流側リップランド
19 下流側リップランド

Claims (11)

  1. 平均膜厚1.5μm以下で、その膜厚バラツキが平均膜厚の±3%以下であり、及びその表面のn点平均粗さRzが5nm以下である光学異方性層を有することを特徴とする光学補償シート。
  2. 前記光学異方性層の膜厚バラツキが、長手方向1m以上且つ幅方向1m以上の範囲で平均膜厚の±3%以下であることを特徴とする請求項1に記載の光学補償シート。
  3. 前記光学異方性層が配向膜上に形成され、該配向膜表面のn点平均粗さRzが15nm以下であることを特徴とする請求項1又は2に記載の光学補償シート。
  4. 支持体上に、前記配向膜及び前記光学異方性層をこの順序で有し、前記支持体の、平均膜厚が20μm〜80μmで、膜厚バラツキが±3%以下であり、及びその表面のn点平均粗さRzが15nm以下であることを特徴とする請求項1〜3のいずれか1項に記載の光学補償シート。
  5. 前記光学異方性層及び/又は該配向膜がスロットダイコート法により塗布して形成された膜である請求項1〜4のいずれか1項に記載の光学補償シート。
  6. 前記光学異方性層が、液晶性化合物の少なくとも1種、及び下記(i)のモノマーから導かれる繰り返し単位を含むフルオロ脂肪族基含有ポリマーの少なくとも2種を含む組成物から形成された層である請求項1〜5のいずれかに1項に記載の光学補償シート:
    (i)下記一般式[1]又は[2]で表されるフルオロ脂肪族基含有モノマー
    Figure 2008209870
    Figure 2008209870
    一般式[1]において、R1は水素原子又はメチル基を表し、Xは酸素原子、イオウ原子又は−N(R2)−を表し、Zは水素原子又はフッ素原子を表し、mは1〜6の整数、nは2〜4の整数を表し、R2は水素原子又は炭素数1〜4のアルキル基を表し;一般式[2]において、Aは下記の連結基群Aから選ばれる2価(q=1)もしくは3価(q=2)の連結基又は下記の連結基群Aから選ばれる2つ以上を組み合わせて形成される2価(q=1)もしくは3価(q=2)の連結基を表し、また、連結基同士は酸素原子を介して結合してもよく、
    (連結基群A)
    −CH2−、−CH2CH2−、−CH2CH2CH2−、−C64−及び−C63<:ただし、ベンゼン環上の置換位置は任意の位置でよい;
    1は水素原子又はフッ素原子を表し、pは3〜8の整数、qは1又は2を表す。
  7. 前記一般式[1]中、Zが水素原子である請求項6に記載の光学補償シート。
  8. 前記少なくとも二種のフルオロ脂肪族基含有ポリマーのうち少なくも一種が、さらに下記(ii)のモノマーから導かれる繰り返し単位を含む共重合体である請求項6又は7に記載の光学補償シート:
    (ii)下記一般式[3]で表されるモノマー
    Figure 2008209870
    式中、R11、R12及びR13はそれぞれ独立に、水素原子又は置換基を表し;L1は下記の連結基群から選ばれる2価の連結基又は下記の連結基群から選ばれる2つ以上を組み合わせて形成される2価の連結基を表し、
    (連結基群)
    単結合、−O−、−CO−、−NR4−(R4は水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(OR5)−(R5はアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基;
    1はカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は、ポリ(アルキレンオキシ)基を含むアルキル基を表す。
  9. 前記液晶性化合物が、ディスコティック化合物である請求項6〜8のいずれか1項に記載の光学補償シート。
  10. 少なくとも、偏光膜と、請求項1〜9のいずれか1項に記載の光学補償シートとを有する楕円偏光板。
  11. 請求項1〜9のいずれか1項に記載の光学補償シート、又は請求項10に記載の楕円偏光板を有する液晶表示装置。
JP2007049060A 2007-02-28 2007-02-28 光学補償シート、楕円偏光板及び液晶表装置 Pending JP2008209870A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049060A JP2008209870A (ja) 2007-02-28 2007-02-28 光学補償シート、楕円偏光板及び液晶表装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049060A JP2008209870A (ja) 2007-02-28 2007-02-28 光学補償シート、楕円偏光板及び液晶表装置

Publications (1)

Publication Number Publication Date
JP2008209870A true JP2008209870A (ja) 2008-09-11

Family

ID=39786190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049060A Pending JP2008209870A (ja) 2007-02-28 2007-02-28 光学補償シート、楕円偏光板及び液晶表装置

Country Status (1)

Country Link
JP (1) JP2008209870A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242508A (ja) * 2012-04-26 2013-12-05 Dainippon Printing Co Ltd 光学フィルム、光学フィルム用転写体、画像表示装置及び光学フィルムの製造用金型
JP2014010220A (ja) * 2012-06-28 2014-01-20 Dainippon Printing Co Ltd 光学フィルム、画像表示装置及び光学フィルムの製造用金型
JP2014029459A (ja) * 2012-06-27 2014-02-13 Dainippon Printing Co Ltd 光学フィルム用転写体、光学フィルム、画像表示装置及び光学フィルムの製造方法
JP2014211524A (ja) * 2013-04-18 2014-11-13 大日本印刷株式会社 光学フィルム、光学フィルム用転写体、画像表示装置、光学フィルムの製造方法及び光学フィルム用転写体の製造方法
JP2016091022A (ja) * 2014-10-31 2016-05-23 住友化学株式会社 光学異方性フィルム及び光学異方性フィルムの製造方法
US20180088348A1 (en) * 2012-08-15 2018-03-29 3M Innovative Properties Company Polarizing beam splitter plates providing high resolution images and systems utilizing such polarizing beam splitter plates

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242508A (ja) * 2012-04-26 2013-12-05 Dainippon Printing Co Ltd 光学フィルム、光学フィルム用転写体、画像表示装置及び光学フィルムの製造用金型
JP2017083896A (ja) * 2012-04-26 2017-05-18 大日本印刷株式会社 光学フィルム、光学フィルム用転写体、画像表示装置及び光学フィルムの製造用金型
JP2014029459A (ja) * 2012-06-27 2014-02-13 Dainippon Printing Co Ltd 光学フィルム用転写体、光学フィルム、画像表示装置及び光学フィルムの製造方法
JP2014010220A (ja) * 2012-06-28 2014-01-20 Dainippon Printing Co Ltd 光学フィルム、画像表示装置及び光学フィルムの製造用金型
US20180088348A1 (en) * 2012-08-15 2018-03-29 3M Innovative Properties Company Polarizing beam splitter plates providing high resolution images and systems utilizing such polarizing beam splitter plates
JP2014211524A (ja) * 2013-04-18 2014-11-13 大日本印刷株式会社 光学フィルム、光学フィルム用転写体、画像表示装置、光学フィルムの製造方法及び光学フィルム用転写体の製造方法
JP2016091022A (ja) * 2014-10-31 2016-05-23 住友化学株式会社 光学異方性フィルム及び光学異方性フィルムの製造方法

Similar Documents

Publication Publication Date Title
JP4907881B2 (ja) 液晶組成物、光学補償フィルム、及び液晶表示装置
JP2007108732A (ja) 偏光板及び液晶表示装置
JP2005194451A (ja) 組成物、光学補償フィルム及び液晶表示装置
JP4619249B2 (ja) 光学異方性体、偏光板及び液晶表示装置
JP2008209870A (ja) 光学補償シート、楕円偏光板及び液晶表装置
US7968155B2 (en) Optically anisotropic material, liquid crystal display device and triphenylene compound
JP2006276817A (ja) 位相差板、偏光板および液晶表示装置
JP2008231396A (ja) 液晶性組成物、光学異方性膜、光学フィルム、ならびにそれを用いた偏光板及び液晶表示装置
JP2007045993A (ja) 液晶組成物、光学補償シート、及び液晶表示装置
JP2008058589A (ja) 光学補償フィルム、偏光板、及び液晶表示装置
JP2007241011A (ja) 光学異方性膜、位相差板、及び液晶表示装置
JP2006267183A (ja) 光学補償シート、その製造方法、ならびにそれを用いた偏光板及び液晶表示装置
JP2006091205A (ja) 光学補償シート、その製造方法、該光学補償シートを備えた偏光板および液晶表示装置
JP2006259129A (ja) 光学補償シートおよびこれを用いた液晶表示装置、光学補償シートの製造方法
JP4756832B2 (ja) 組成物、それを用いた光学補償シートおよび液晶表示装置
JP4382620B2 (ja) 光学補償シート、楕円偏光板および液晶表示装置
JP2007033712A (ja) 光学フィルムおよびこれを用いた偏光板、液晶表示装置
JP2009288259A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2004069730A (ja) 光学補償シートおよびその製造方法
JP2006251642A (ja) 光学フィルム、偏光板、及び液晶表示装置
JP2006023543A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2005037938A (ja) 液晶表示装置
JP5221592B2 (ja) 組成物、光学補償フィルム及び液晶表示装置
JP2005196064A (ja) 光学補償シートおよび液晶表示装置
JP2007025203A (ja) 光学補償シート及び液晶表示装置