JP2008209262A - Quick evaluation method of elasticity, plasticity, and creep characteristic - Google Patents

Quick evaluation method of elasticity, plasticity, and creep characteristic Download PDF

Info

Publication number
JP2008209262A
JP2008209262A JP2007046689A JP2007046689A JP2008209262A JP 2008209262 A JP2008209262 A JP 2008209262A JP 2007046689 A JP2007046689 A JP 2007046689A JP 2007046689 A JP2007046689 A JP 2007046689A JP 2008209262 A JP2008209262 A JP 2008209262A
Authority
JP
Japan
Prior art keywords
creep
stress
plastic
strain rate
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007046689A
Other languages
Japanese (ja)
Other versions
JP4899058B2 (en
Inventor
Kenichi Oguchi
健一 大口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007046689A priority Critical patent/JP4899058B2/en
Publication of JP2008209262A publication Critical patent/JP2008209262A/en
Application granted granted Critical
Publication of JP4899058B2 publication Critical patent/JP4899058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quick evaluation method of elasticity, plasticity, and a creep characteristic capable of executing evaluation of elasticity, plasticity, and creep characteristic wherein several kinds of tensile tests under strain rate and several kinds of creep test under retention stress are required to be executable hitherto, only by one kind of a step wave load test that comprises an instantaneous load part and a strain retention part. <P>SOLUTION: The step wave load test wherein an instantaneous load and strain retention are repeated is executed, and a stress-elastic/plastic strain curve is acquired from a stress-strain curve, corresponding to the instantaneous load part; and a material constant relative to an elastic/plastic characteristic is derived from the stress-elastic/plastic strain curve, and a relation between the stress and the creep strain rate is acquired from a stress mitigation curve. Then, the ratio between transient creep strain rate and steady creep strain rate is acquired from a repeated stress mitigation curve, and the material constants of a steady creep rule and a transient creep rule are derived, from the relation between the stress and the creep strain rate or the ratio between the transient creep strain rate and the steady creep strain rate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、弾・塑性・クリープ特性評価を、瞬間的負荷部とひずみ保持部から成る1種類の階段波負荷試験のみで実行可能とする弾・塑性・クリープ特性の迅速評価方法に関する。   The present invention relates to a rapid evaluation method for elastic / plastic / creep characteristics, which makes it possible to perform an elastic / plastic / creep characteristic evaluation by only one type of staircase load test composed of an instantaneous load section and a strain holding section.

従来、計算コストの削減のために、弾・塑性有限要素解析のみに因っていた機器の設計分野においても、弾・塑性・クリープ有限要素解析が実行される機会が増えてきている。 これは、クリープ変形が生じる部位の存在が予測される機器に対して、より高い安全性が要求されるようになった為である。
また、計算技術の発展により、弾・塑性・クリープ有限要素解析が従来に比べ短時間で実行できるようになったこともその一因と考えられる。
弾・塑性・クリープ有限要素解析を実行するためには、解析対象となる材料の弾・塑性・クリープ特性を調査し、その特性を反映させた材料定数を決定しなければならない。
これらの材料定数は、数種類のひずみ速度による引張試験と数種類の保持応力によるクリープ試験から決定する必要がある。
また、変形特性の温度依存性を考慮する際には、これらの試験は複数の温度下で実行しなければならず、弾・塑性・クリープ有限要素解析の実施までには、さらに多くの試験の実施が不可欠となる。
特に、クリープ試験は長時間におよぶことが多いため、このような試験を多数実施することは、材料定数を決定し弾・塑性・クリープ有限要素解析を実施するまでに膨大な時間を要することを意味する。
すなわち、計算技術の発展により弾・塑性・クリープ解析を如何に高速で実行できるようになっても、解析を実行するまでのクリープ試験時間を短縮できなければ、弾・塑性・クリープ解析を実行するためのハードルは依然高いままである。
以上のことから、材料の弾・塑性・クリープ特性を極少数の実験から速やかに評価し、この特性を反映した材料定数を的確に導出できる弾・塑性・クリープ特性の迅速評価方法の構築が望まれている。
Conventionally, in order to reduce the calculation cost, the opportunity for executing the elastic / plastic / creep finite element analysis is increasing also in the field of equipment design, which is based solely on the elastic / plastic finite element analysis. This is because a higher level of safety is required for a device that is predicted to have a site where creep deformation occurs.
Another reason is that the advancement of computational technology has made it possible to perform elastic / plastic / creep finite element analysis in a shorter time than before.
In order to perform elastic / plastic / creep finite element analysis, it is necessary to investigate the elastic / plastic / creep characteristics of the material to be analyzed and to determine the material constants that reflect the characteristics.
These material constants need to be determined from tensile tests with several strain rates and creep tests with several holding stresses.
In addition, when considering the temperature dependence of deformation characteristics, these tests must be performed at multiple temperatures, and many more tests are required before conducting an elasto-plastic-creep finite element analysis. Implementation is essential.
In particular, the creep test often takes a long time, so performing many such tests requires enormous amounts of time to determine the material constants and perform the elastic / plastic / creep finite element analysis. means.
In other words, even if it becomes possible to execute elastic / plastic / creep analysis at high speed due to the development of calculation technology, if the creep test time until analysis is not shortened, elastic / plastic / creep analysis is executed. The hurdles to remain remain high.
Based on the above, it is hoped that a rapid evaluation method for elastic, plastic, and creep properties that can quickly evaluate the elastic, plastic, and creep properties of materials from very few experiments and accurately derive material constants that reflect these properties is hoped for. It is rare.

なお、公知技術として、IC(集積回路)チップをプリント基板に実装したICパッケージなどの電子機器において、寿命サイクル数を簡単で正確に求めて、信頼性をより簡単で正確に評価できる電子機器の信頼性評価方法及びその信頼性評価装置が知られている(特許文献1を参照)。
この公知技術は、特定の電子機器に対する周期的温度条件下にさらす加速試験、すなわち温度サイクル試験を行って、全ての電気機器に普遍な寿命サイクル数と歪み振幅との関係式、すなわち寿命歪み関係式を求め、任意の電子機器の解析モデルに対して熱応力シミュレーションを行い、歪みの振幅を算出し、次に寿命歪み関係式に、任意の電子機器の解析モデルに対する歪み振幅を代入して、任意の電子機器の解析モデルの寿命サイクル数を求めるものである。
In addition, as a publicly known technique, in an electronic device such as an IC package in which an IC (integrated circuit) chip is mounted on a printed circuit board, an electronic device that can easily and accurately evaluate reliability by obtaining the number of life cycles easily and accurately. A reliability evaluation method and a reliability evaluation apparatus thereof are known (see Patent Document 1).
This known technology performs an accelerated test that is exposed to a periodic temperature condition for a specific electronic device, that is, a temperature cycle test, and a universal relationship between the number of life cycles and strain amplitude for all electrical devices, that is, a life strain relationship. Obtain the equation, perform thermal stress simulation on the analysis model of any electronic device, calculate the strain amplitude, and then substitute the strain amplitude for the analysis model of any electronic device into the lifetime strain relational expression, The life cycle number of an analysis model of an arbitrary electronic device is obtained.

特開2000−46905号公報JP 2000-46905 A

本発明は、従来は数種類のひずみ速度下での引張試験と数種類の保持応力でのクリープ試験を実施しなければならなかった弾・塑性・クリープ特性評価を、瞬間的負荷部とひずみ保持部から成る1種類の階段波負荷試験のみで実行可能とする弾・塑性・クリープ特性の迅速評価方法を提供することを目的とする。   In the present invention, an elastic, plastic, and creep property evaluation that has conventionally had to be carried out with a tensile test under several strain rates and a creep test with several holding stresses was performed from an instantaneous load section and a strain holding section. An object of the present invention is to provide a rapid evaluation method for elastic, plastic, and creep characteristics that can be executed only by one type of staircase load test.

本発明の弾・塑性・クリープ特性の迅速評価方法は、瞬間的負荷とひずみ保持を繰返す階段波負荷試験を実施し、瞬間的負荷部に対応する応力−ひずみ曲線から応力‐弾塑性ひずみ曲線を取得する第一工程と、前記応力−弾塑性ひずみ曲線から弾・塑性特性に関する材料定数を導出する第二工程と、応力緩和曲線から、応力とクリープひずみ速度の関係を取得する第三工程と、繰返し応力緩和曲線から,遷移クリープひずみ速度と定常クリープひずみ速度の比を取得する第四工程と、前記第三工程及び第四工程で得た情報から、定常クリープ則と遷移クリープ則の材料定数を導出する第五工程とを含むものである。   The rapid evaluation method for elastic / plastic / creep characteristics of the present invention performs a step wave load test that repeats instantaneous load and strain retention, and calculates a stress-elasto-plastic strain curve from the stress-strain curve corresponding to the instantaneous load part. A first step of acquiring, a second step of deriving a material constant relating to elastic / plastic properties from the stress-elastic-plastic strain curve, a third step of acquiring a relationship between stress and creep strain rate from the stress relaxation curve, From the fourth step of obtaining the ratio of the transition creep strain rate to the steady creep strain rate from the cyclic stress relaxation curve, and the information obtained in the third step and the fourth step, the material constants of the steady creep law and the transition creep law are obtained. And a fifth step to be derived.

前記第一工程では、階段波負荷の全ての瞬間的負荷から弾塑性変形部のみを抽出し、これらをつなぎ合わせることで、弾・塑性特性の評価に必要な応力‐弾・塑性ひずみ曲線を取得するものである。   In the first step, only the elasto-plastic deformation part is extracted from all the instantaneous loads of the staircase wave load, and these are connected to obtain the stress-elastic-plastic strain curve necessary for evaluating the elasto-plastic characteristics. To do.

前記第二工程では、弾・塑性特性を表す材料定数のヤング率と塑性接線係数は応力‐弾塑性ひずみ関係から取得するものである。   In the second step, the Young's modulus and the plastic tangent coefficient of the material constant representing the elastic / plastic characteristics are obtained from the stress-elastic-plastic strain relationship.

前記第三工程では、応力緩和曲線から得た応力と応力速度の関係から、クリープ特性を評価するために不可欠となる応力とクリープひずみ速度の関係を取得するものである。   In the third step, the relationship between stress and creep strain rate, which is indispensable for evaluating creep characteristics, is obtained from the relationship between stress and stress rate obtained from the stress relaxation curve.

前記第四工程では、応力緩和曲線を前記第三工程に適用して、応力とクリープひずみ速度の関係を取得し、繰返し応力緩和曲線を構成する複数の応力緩和曲線に前記第三工程を適用し、各応力緩和曲線の応力とクリープひずみ速度の関係を取得し、取得した複数の応力緩和曲線でのクリープひずみ速度中の定常クリープひずみ速度を算出し、前記クリープひずみ速度と前記定常クリープひずみ速度の差から、遷移クリープひずみ速度を算出し、算出した定常クリープひずみ速度と遷移クリープひずみ速度を用いて、遷移クリープひずみ速度と定常クリープひずみ速度の比を算出するものである。   In the fourth step, a stress relaxation curve is applied to the third step, the relationship between stress and creep strain rate is obtained, and the third step is applied to a plurality of stress relaxation curves constituting the repeated stress relaxation curve. The relationship between the stress of each stress relaxation curve and the creep strain rate is obtained, the steady creep strain rate is calculated during the creep strain rate of the obtained plurality of stress relaxation curves, and the creep strain rate and the steady creep strain rate are calculated. The transition creep strain rate is calculated from the difference, and the ratio between the transition creep strain rate and the steady creep strain rate is calculated using the calculated steady creep strain rate and transition creep strain rate.

本発明の弾・塑性・クリープ特性の迅速評価方法は、材料の弾・塑性・クリープ特性を極少数の実験から速やかに評価し、この特性を反映した材料定数を的確に導出することができる。   The rapid evaluation method of elastic / plastic / creep characteristics of the present invention can quickly evaluate the elastic / plastic / creep characteristics of a material from a very small number of experiments and accurately derive a material constant reflecting the characteristics.

本発明の弾・塑性・クリープ特性の迅速評価方法の一実施例を図面に基づいて、以下に説明する。
図1は、本発明の弾・塑性・クリープ特性の迅速評価方法の階段波負荷試験の概念摸式図を示す。
図1では、階段波負荷試験のIS部が瞬間的負荷部、MS部がひずみ保持部に相当する。
IS部ではひずみ増分Δεisが瞬間的に与えられるため、そこに対応する応力−ひずみ関係ではクリープの影響が排除される。
MS部では応力緩和が生じる。
また、この階段波負荷試験では、ひずみεendに到達したらΔtendの間、ひずみεendを保持し、MS部よりも長い時間に渡る応力緩和曲線を取得する。
表1に階段波負荷試験条件の例、εend=4.4×10−2、Δtend=600sec、を示す。
One embodiment of the rapid evaluation method for elastic / plastic / creep characteristics of the present invention will be described below with reference to the drawings.
FIG. 1 is a conceptual model diagram of a staircase wave load test of the rapid evaluation method for elastic / plastic / creep characteristics of the present invention.
In FIG. 1, the IS part of the staircase load test corresponds to the instantaneous load part, and the MS part corresponds to the strain holding part.
In the IS part, since the strain increment Δε is is given instantaneously, the influence of creep is eliminated in the corresponding stress-strain relationship.
Stress relaxation occurs in the MS part.
In this step wave load test, when the strain ε end is reached, the strain ε end is held for Δt end and a stress relaxation curve is acquired over a longer time than the MS portion.
Table 1 shows examples of staircase wave load test conditions, ε end = 4.4 × 10 −2 , Δt end = 600 sec.

Figure 2008209262
Figure 2008209262

図2は、階段波負荷試験で得られる応力−ひずみ曲線である。
図2の丸印で示す初期部での応力の増減は、図3の繰返し応力緩和曲線のように瞬間的負荷による応力の増加とひずみ保持による応力緩和が繰返し生じることに起因する。
また、丸印で示す終端部での応力の低下は、ひずみεendでΔtend間ひずみを保持したことで生じる図4の応力緩和曲線のように応力緩和に起因する。
FIG. 2 is a stress-strain curve obtained in a step wave load test.
The increase / decrease in stress at the initial portion indicated by a circle in FIG. 2 is caused by repeated increase in stress due to instantaneous load and stress relaxation due to strain retention as shown in the repeated stress relaxation curve in FIG.
Further, the decrease in stress at the terminal end indicated by a circle is caused by stress relaxation as shown in the stress relaxation curve of FIG. 4 generated by holding the strain during Δt end with strain ε end .

本発明では、図2の応力−ひずみ曲線と図3、図4の応力緩和曲線を、以下の5つの技術に適用することで弾・塑性・クリープ特性を評価する。
(1)瞬間的負荷部に対応する応力−ひずみ曲線から応力−弾塑性ひずみ曲線を取得する技術。
(2)前記応力−弾塑性ひずみ曲線から、弾・塑性特性に関する材料定数を導出する技術。
(3)応力緩和曲線から、応力とクリープひずみ速度の関係を取得する技術。
(4)繰返し応力緩和曲線から、遷移クリープひずみ速度と定常クリープひずみ速度の比を取得する技術。
(5)上記(3)、(4)で得た情報から、定常クリープ則と遷移クリープ則の材料定数を導出する技術。
上記5つの技術の詳細は,以下の通りである。
In the present invention, the elastic-plastic / creep characteristics are evaluated by applying the stress-strain curve of FIG. 2 and the stress relaxation curves of FIGS. 3 and 4 to the following five techniques.
(1) A technique for obtaining a stress-elasto-plastic strain curve from a stress-strain curve corresponding to an instantaneous load portion.
(2) A technique for deriving material constants relating to elastic / plastic properties from the stress-elastic-plastic strain curve.
(3) Technology for obtaining the relationship between stress and creep strain rate from a stress relaxation curve.
(4) A technique for obtaining a ratio between a transition creep strain rate and a steady creep strain rate from a cyclic stress relaxation curve.
(5) A technique for deriving the material constants of the steady creep law and the transition creep law from the information obtained in (3) and (4) above.
The details of the above five techniques are as follows.

Figure 2008209262
図6の丸印で示す曲線は、この処理を図2の応力−ひずみ曲線に適用して取得した応力−弾塑性ひずみ曲線に相当する。
Figure 2008209262
A curve indicated by a circle in FIG. 6 corresponds to a stress-elastic-plastic strain curve obtained by applying this process to the stress-strain curve of FIG.

(2)の技術:弾・塑性特性を表す材料定数のヤング率と塑性接線係数は応力−弾塑性ひずみ関係から取得する。
特に、塑性接線係数は、応力あるいはひずみの関数として取得すれば、正確な変形シミュレーションが可能となる。
本技術では、図6で得た応力−弾・塑性ひずみ曲線を、弾性ひずみと塑性ひずみの和で弾・塑性ひずみを表すRamberg-Osgood則で図7のように応力−弾・塑性ひずみ曲線を近似する。
Ramberg-Osgood則は、数1の形で与えられる。
Technique (2): The Young's modulus and plastic tangent coefficient of material constants representing elastic / plastic properties are obtained from the stress-elasto-plastic strain relationship.
In particular, if the plastic tangent coefficient is acquired as a function of stress or strain, an accurate deformation simulation is possible.
In this technology, the stress-elastic / plastic strain curve obtained in FIG. 6 is expressed by the Ramberg-Osgood law, which represents the elastic-plastic strain as the sum of elastic strain and plastic strain, as shown in FIG. Approximate.
The Ramberg-Osgood law is given in the form of number 1.

Figure 2008209262
Figure 2008209262

Figure 2008209262
また、右辺第1、2項目は、それぞれ弾性ひずみと塑性ひずみに相当する。
したがって、応力と塑性ひずみの関係を表す塑性接線係数Hは、右辺第2項目を微分すれば、数2のように応力の関数として得られる。
Figure 2008209262
The first and second items on the right side correspond to elastic strain and plastic strain, respectively.
Therefore, the plastic tangent coefficient H representing the relationship between the stress and the plastic strain can be obtained as a function of the stress as shown in Equation 2 by differentiating the second item on the right side.

Figure 2008209262
Figure 2008209262

Ramberg-Osgood則による近似処理は以下の順で行う。
(i) 応力とひずみが線形関係にある低応力域で、応力とひずみの関係を直線近似してヤング率Eを決定する。
(ii) 基準塑性ひずみを適当に設定し(図7の近似ではε0=5.0×10-4)、対応する基準応力Dを決定する。
(iii) (i),(ii)で決定したEとDの値と、応力−弾・塑性ひずみ曲線の任意の点における応力とひずみの値を用いて硬化指数mを算出する。
以上のRamberg-Osgood則による近似処理を通じ、ヤング率や塑性接線係数が取得できる。
The approximation process by the Ramberg-Osgood rule is performed in the following order.
(i) The Young's modulus E is determined by linearly approximating the relationship between stress and strain in a low stress region where the stress and strain are in a linear relationship.
(ii) The reference plastic strain is set appropriately (ε 0 = 5.0 × 10 −4 in the approximation of FIG. 7), and the corresponding reference stress D is determined.
(iii) The hardening index m is calculated using the values of E and D determined in (i) and (ii) and the stress and strain values at arbitrary points on the stress-elastic / plastic strain curve.
The Young's modulus and plastic tangent coefficient can be obtained through the approximation process based on the above Ramberg-Osgood rule.

(3)の技術:ひずみ保持による応力緩和では、クリープひずみの増加量と弾性ひずみの減少量が釣り合った状態にある。
本技術では、このことに着目し、応力緩和曲線から得た「応力と応力速度の関係」から、クリープ特性を評価するために不可欠となる「応力とクリープひずみ速度の関係」を取得する。
「応力と応力速度の関係」は、応力緩和曲線上の複数の点で、図8のように接線の傾きから応力速度を算出して取得する。
算出した応力速度は、数3の応力速度とクリープひずみ速度の関係に適用する。
Technique (3): In stress relaxation by strain retention, the amount of increase in creep strain is balanced with the amount of decrease in elastic strain.
In this technology, paying attention to this, the “relationship between stress and creep strain rate” which is indispensable for evaluating the creep characteristics is obtained from the “relationship between stress and stress rate” obtained from the stress relaxation curve.
The “relationship between stress and stress rate” is obtained by calculating the stress rate from the slope of the tangent as shown in FIG. 8 at a plurality of points on the stress relaxation curve.
The calculated stress rate is applied to the relationship between the stress rate of Equation 3 and the creep strain rate.

Figure 2008209262
Figure 2008209262

Figure 2008209262
応力緩和曲線上の複数の応力点で取得した応力速度を数3に適用すれば、「応力とクリープひずみ速度の関係」が得られる。
Figure 2008209262
If the stress rates acquired at a plurality of stress points on the stress relaxation curve are applied to Equation 3, the “relationship between stress and creep strain rate” can be obtained.

Figure 2008209262
Figure 2008209262

Figure 2008209262
Figure 2008209262

また、遷移クリープひずみ速度は数5のように、定常クリープひずみ速度に比例する型で与える。   The transition creep strain rate is given by a type proportional to the steady creep strain rate, as shown in Equation 5.

Figure 2008209262
Figure 2008209262

数5の比例係数C1は、遷移クリープひずみが発達するとゼロとなる関数として、数6で表す。 The proportionality coefficient C 1 in Equation 5 is expressed by Equation 6 as a function that becomes zero when the transition creep strain develops.

Figure 2008209262
Figure 2008209262

(4)の技術は、数5、数6を定式化するために必要となる「遷移クリープひずみ速度と定常クリープひずみ速度の比」を取得するためのものである。
「遷移クリープひずみ速度と定常クリープひずみ速度の比」は、以下の手順で取得する。
The technique (4) is for obtaining the “ratio between the transition creep strain rate and the steady creep strain rate” necessary for formulating the equations (5) and (6).
The “ratio between the transition creep strain rate and the steady creep strain rate” is obtained by the following procedure.

(i) ひずみεendでΔtend間ひずみを保持すること(図1、2参照)で得られる応力緩和曲線では、クリープひずみが十分に発達しているため、クリープ変形は定常クリープのみで生じる。
そこで、ここで得られる応力緩和曲線を(3)の技術に適用して、「応力とクリープひずみ速度の関係」を取得する。
そして、この関係を図9のようにプロットして、この関係の近似曲線から、定常クリープ則を定式化する。
図9では、定常クリープ則として数7のNorton則を用いた。
(i) the strain epsilon end The by holding the strain between Delta] t end The in stress relaxation curve obtained in (see FIGS. 1 and 2), since the creep strain is fully developed, creep deformation occurs only in the steady creep.
Therefore, the stress relaxation curve obtained here is applied to the technique (3) to obtain the “relationship between stress and creep strain rate”.
Then, this relationship is plotted as shown in FIG. 9, and a steady creep law is formulated from the approximate curve of this relationship.
In FIG. 9, the Norton law of Formula 7 is used as the steady creep law.

Figure 2008209262
Figure 2008209262

Figure 2008209262
Figure 2008209262

Figure 2008209262
Figure 2008209262

(iv) (iii)で算出した定常クリープひずみ速度と遷移クリープひずみ速度を用いて、「遷移クリープひずみ速度と定常クリープひずみ速度の比」を算出する。 (iv) Using the steady creep strain rate and the transition creep strain rate calculated in (iii), calculate the “ratio between the transition creep strain rate and the steady creep strain rate”.

(5)の技術:定常クリープ則の材料定数は、(4)の技術の手順(i)により決定する。
遷移クリープひずみ則は、(4)の技術で取得した「遷移クリープひずみ速度と定常クリープひずみ速度の比」と、その比を取得した時点での遷移クリープひずみの関係を図11のようにプロットし、その近似曲線から数6中の定数の値を決定することで定式化する。
Technique (5): The material constant of the steady creep rule is determined by the procedure (i) of technique (4).
The transition creep strain law plots the relationship between the “transition creep strain rate and steady creep strain rate” obtained by the technique (4) and the transition creep strain at the time when the ratio is obtained as shown in FIG. The formulation is formulated by determining the value of the constant in Equation 6 from the approximate curve.

本発明の弾・塑性・クリープ特性の迅速評価方法の階段波負荷試験の概念摸式図である。It is a conceptual model figure of the staircase wave load test of the rapid evaluation method of the elastic / plastic / creep characteristics of the present invention. 階段波負荷試験で得られる応力−ひずみ曲線の摸式図である。It is a model drawing of the stress-strain curve obtained by a staircase load test. 繰返し応力緩和曲線の摸式図である。It is a model drawing of a repetitive stress relaxation curve. 応力緩和曲線の摸式図である。It is a model drawing of a stress relaxation curve. 階段波負荷により応力の増減を繰返す応力−ひずみ曲線の模式図である。It is a schematic diagram of the stress-strain curve which repeats increase / decrease in stress by a staircase wave load. 応力−弾・塑性ひずみ曲線の模式図である。It is a schematic diagram of a stress-elastic / plastic strain curve. 応力−弾・塑性ひずみ曲線の近似模式図である。It is an approximate schematic diagram of a stress-elastic / plastic strain curve. 応力緩和中の応力速度の模式図である。It is a schematic diagram of the stress rate during stress relaxation. 応力緩和曲線から取得したクリープひずみ速度と応力の関係の模式図である。It is a schematic diagram of the relationship between the creep strain rate and stress acquired from the stress relaxation curve. 繰返し応力緩和曲線の模式図である。It is a schematic diagram of a repetitive stress relaxation curve. 遷移クリープひずみ速度と定常クリープひずみ速度の比と遷移クリープひずみの関係の模式図である。It is a schematic diagram of the relationship between the ratio of transition creep strain rate and steady creep strain rate, and transition creep strain.

Claims (5)

瞬間的負荷とひずみ保持を繰返す階段波負荷試験を実施し、瞬間的負荷部に対応する応力−ひずみ曲線から応力−弾塑性ひずみ曲線を取得する第一工程と、前記応力‐弾塑性ひずみ曲線から弾・塑性特性に関する材料定数を導出する第二工程と、応力緩和曲線から、応力とクリープひずみ速度の関係を取得する第三工程と、繰返し応力緩和曲線から,遷移クリープひずみ速度と定常クリープひずみ速度の比を取得する第四工程と、前記第三工程及び第四工程で得た情報から、定常クリープ則と遷移クリープ則の材料定数を導出する第五工程とを含むことを特徴とする弾・塑性・クリープ特性の迅速評価方法。   From the stress-elasto-plastic strain curve, a first step of performing a staircase load test that repeats instantaneous load and strain retention, and obtaining a stress-elasto-plastic strain curve from the stress-strain curve corresponding to the instantaneous load portion, and The second step of deriving material constants for elastic and plastic properties, the third step of obtaining the relationship between stress and creep strain rate from the stress relaxation curve, and the transient creep strain rate and steady state creep strain rate from the cyclic stress relaxation curve A fourth step of obtaining the ratio of the above, and a fifth step of deriving the material constants of the steady creep law and the transition creep law from the information obtained in the third step and the fourth step. Rapid evaluation method for plastic and creep properties. 前記第一工程では、階段波負荷の全ての瞬間的負荷から弾塑性変形部のみを抽出し、これらをつなぎ合わせることで、弾・塑性特性の評価に必要な応力‐弾・塑性ひずみ曲線を取得することを特徴とする請求項1記載の弾・塑性・クリープ特性の迅速評価方法。   In the first step, only the elasto-plastic deformation part is extracted from all the instantaneous loads of the staircase wave load, and these are connected to obtain the stress-elastic-plastic strain curve necessary for evaluating the elasto-plastic characteristics. The method for quickly evaluating elastic / plastic / creep characteristics according to claim 1. 前記第二工程では、弾・塑性特性を表す材料定数のヤング率と塑性接線係数は応力‐弾塑性ひずみ関係から取得することを特徴とする請求項1記載の弾・塑性・クリープ特性の迅速評価方法。   The rapid evaluation of elastic / plastic / creep characteristics according to claim 1, wherein in the second step, the Young's modulus and the plastic tangent coefficient of the material constant representing the elastic / plastic characteristics are obtained from a stress-elastic-plastic strain relationship. Method. 前記第三工程では、応力緩和曲線から得た応力と応力速度の関係から、クリープ特性を評価するために不可欠となる応力とクリープひずみ速度の関係を取得することを特徴とする請求項1記載の弾・塑性・クリープ特性の迅速評価方法。   The relationship between stress and creep strain rate, which are indispensable for evaluating creep characteristics, is obtained from the relationship between stress and stress rate obtained from the stress relaxation curve in the third step. Rapid evaluation method for elastic, plastic and creep properties. 前記第四工程では、応力緩和曲線を前記第三工程に適用して、応力とクリープひずみ速度の関係を取得し、繰返し応力緩和曲線を構成する複数の応力緩和曲線に前記第三工程を適用し、各応力緩和曲線の応力とクリープひずみ速度の関係を取得し、取得した複数の応力緩和曲線でのクリープひずみ速度中の定常クリープひずみ速度を算出し、前記クリープひずみ速度と前記定常クリープひずみ速度の差から、遷移クリープひずみ速度を算出し、算出した定常クリープひずみ速度と遷移クリープひずみ速度を用いて、遷移クリープひずみ速度と定常クリープひずみ速度の比を算出することを特徴とする請求項1記載の弾・塑性・クリープ特性の迅速評価方法。   In the fourth step, a stress relaxation curve is applied to the third step, the relationship between stress and creep strain rate is obtained, and the third step is applied to a plurality of stress relaxation curves constituting the repeated stress relaxation curve. The relationship between the stress of each stress relaxation curve and the creep strain rate is obtained, the steady creep strain rate is calculated during the creep strain rate of the obtained plurality of stress relaxation curves, and the creep strain rate and the steady creep strain rate are calculated. The transition creep strain rate is calculated from the difference, and the ratio between the transition creep strain rate and the steady creep strain rate is calculated using the calculated steady creep strain rate and the transition creep strain rate. Rapid evaluation method for elastic, plastic and creep properties.
JP2007046689A 2007-02-27 2007-02-27 Rapid evaluation method for elastic, plastic and creep properties Active JP4899058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046689A JP4899058B2 (en) 2007-02-27 2007-02-27 Rapid evaluation method for elastic, plastic and creep properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046689A JP4899058B2 (en) 2007-02-27 2007-02-27 Rapid evaluation method for elastic, plastic and creep properties

Publications (2)

Publication Number Publication Date
JP2008209262A true JP2008209262A (en) 2008-09-11
JP4899058B2 JP4899058B2 (en) 2012-03-21

Family

ID=39785691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046689A Active JP4899058B2 (en) 2007-02-27 2007-02-27 Rapid evaluation method for elastic, plastic and creep properties

Country Status (1)

Country Link
JP (1) JP4899058B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202908A (en) * 2011-03-28 2012-10-22 Hiroyuki Sato Prediction method of creep curve and creep lifetime
JP2016095241A (en) * 2014-11-14 2016-05-26 学校法人早稲田大学 Creep characteristic value acquisition method
CN107727497A (en) * 2017-09-19 2018-02-23 浙江大学 A kind of acquisition methods for austenitic stainless steel this structure curve for considering Room Temperature Creep
CN113707243A (en) * 2021-09-01 2021-11-26 上海交通大学 Multi-scale method for evaluating creep durability of steel-wood element wood
CN114334042A (en) * 2021-12-31 2022-04-12 中国工程物理研究院研究生院 Method for constructing stress relaxation model of polymer composite material
CN114894616A (en) * 2022-04-15 2022-08-12 安徽理工大学 Rock creep model viscous and elastic parameter obtaining method based on deformation modulus
CN110008620B (en) * 2019-04-15 2023-06-16 中国科学院宁波材料技术与工程研究所 Method for analyzing alpha-Fe strain rate sensitivity coefficient under dynamic load condition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203935A (en) * 1981-06-10 1982-12-14 Hitachi Ltd Creep tester
JPH08145864A (en) * 1994-11-15 1996-06-07 Mitsubishi Heavy Ind Ltd Method for measuring creep life consumption rate of material of high-temperature device
JPH09318515A (en) * 1996-05-29 1997-12-12 Kawasaki Refract Co Ltd Deflection evaluating method
JP2000214058A (en) * 1999-01-26 2000-08-04 Nihon University Method and device for creep test
JP2005345308A (en) * 2004-06-03 2005-12-15 Kyushu Electric Power Co Inc Residual lifetime estimation method of metal material utilizing creep strain rate
JP2007085778A (en) * 2005-09-20 2007-04-05 Fujitsu Ltd Creep physical property testing method, device, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203935A (en) * 1981-06-10 1982-12-14 Hitachi Ltd Creep tester
JPH08145864A (en) * 1994-11-15 1996-06-07 Mitsubishi Heavy Ind Ltd Method for measuring creep life consumption rate of material of high-temperature device
JPH09318515A (en) * 1996-05-29 1997-12-12 Kawasaki Refract Co Ltd Deflection evaluating method
JP2000214058A (en) * 1999-01-26 2000-08-04 Nihon University Method and device for creep test
JP2005345308A (en) * 2004-06-03 2005-12-15 Kyushu Electric Power Co Inc Residual lifetime estimation method of metal material utilizing creep strain rate
JP2007085778A (en) * 2005-09-20 2007-04-05 Fujitsu Ltd Creep physical property testing method, device, and program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202908A (en) * 2011-03-28 2012-10-22 Hiroyuki Sato Prediction method of creep curve and creep lifetime
JP2016095241A (en) * 2014-11-14 2016-05-26 学校法人早稲田大学 Creep characteristic value acquisition method
CN107727497A (en) * 2017-09-19 2018-02-23 浙江大学 A kind of acquisition methods for austenitic stainless steel this structure curve for considering Room Temperature Creep
CN107727497B (en) * 2017-09-19 2019-10-29 浙江大学 A kind of acquisition methods for austenitic stainless steel this structure curve considering Room Temperature Creep
CN110008620B (en) * 2019-04-15 2023-06-16 中国科学院宁波材料技术与工程研究所 Method for analyzing alpha-Fe strain rate sensitivity coefficient under dynamic load condition
CN113707243A (en) * 2021-09-01 2021-11-26 上海交通大学 Multi-scale method for evaluating creep durability of steel-wood element wood
CN113707243B (en) * 2021-09-01 2023-10-27 上海交通大学 Multi-scale method for evaluating creep durability of steel-wood element wood
CN114334042A (en) * 2021-12-31 2022-04-12 中国工程物理研究院研究生院 Method for constructing stress relaxation model of polymer composite material
CN114334042B (en) * 2021-12-31 2023-11-07 中国工程物理研究院研究生院 Method for constructing stress relaxation model of polymer composite material
CN114894616A (en) * 2022-04-15 2022-08-12 安徽理工大学 Rock creep model viscous and elastic parameter obtaining method based on deformation modulus
CN114894616B (en) * 2022-04-15 2023-06-06 安徽理工大学 Deformation modulus-based rock creep model visco-elastic parameter acquisition method
WO2023197824A1 (en) * 2022-04-15 2023-10-19 安徽理工大学 Rock creep model viscoelasticity parameter acquisition method based on deformation modulus

Also Published As

Publication number Publication date
JP4899058B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4899058B2 (en) Rapid evaluation method for elastic, plastic and creep properties
Mysore et al. Constitutive and aging behavior of Sn3. 0Ag0. 5Cu solder alloy
US6301970B1 (en) Cumulative damage model for structural analysis of filed polymeric materials
Hanß et al. Transient thermal analysis as measurement method for IC package structural integrity
JP2015094717A (en) Thermal fatigue life prediction device, thermal fatigue life prediction method, and program
Lee et al. Fatigue life prediction of solder joints with consideration of frequency, temperature and cracking energy density
JP6077042B2 (en) Notch coefficient estimation method, notch coefficient estimation system, and notch coefficient estimation device
JP2013058657A (en) Electronic device life estimation method and electronic device design method using the same
CN111090957B (en) Dangerous point stress-strain calculation method for high-temperature structure
Kim et al. Optimal material properties of molding compounds for MEMS package
CN105629052A (en) Chip power consumption real-time detection method
Lanning et al. The effect of notch geometry on critical distance high cycle fatigue predictions
JP2006313127A (en) System for evaluating soldered joint section
JPH03128431A (en) Method for evaluating life of soldering connection of electronic component
JPWO2008001922A1 (en) Substrate or electronic component warpage analysis method, substrate or electronic component warpage analysis system, and substrate or electronic component warpage analysis program
Sajith et al. Fatigue life prediction under mixed-mode loading using equivalent stress intensity factor models
Maniar et al. Solder joint lifetime modeling under random vibrational load collectives
AU2012286525B2 (en) Spark testing apparatus
US11703817B2 (en) Solder fatigue modeling
Fellner et al. Determination of cyclic mechanical properties of thin copper layers for PCB applications
Gomez et al. Damage mechanics modeling of concurrent thermal and vibration loading on electronics packaging
Hu et al. Characterization of viscoelastic behaviour of a molding compound with application to delamination analysis in IC packages
Reinhardt et al. Assessment of need for solder in modeling potted electronics during gun-shot
Stanley et al. Applications of the four function Weibull equation in the design of brittle components
Pao et al. A note on the implementation of temperature dependent coefficient of thermal expansion (CTE) in ABAQUS

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100121

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110909

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110915

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20111114

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20111130

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150