JPH09318515A - Deflection evaluating method - Google Patents

Deflection evaluating method

Info

Publication number
JPH09318515A
JPH09318515A JP13509996A JP13509996A JPH09318515A JP H09318515 A JPH09318515 A JP H09318515A JP 13509996 A JP13509996 A JP 13509996A JP 13509996 A JP13509996 A JP 13509996A JP H09318515 A JPH09318515 A JP H09318515A
Authority
JP
Japan
Prior art keywords
test
creep
equation
stress
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13509996A
Other languages
Japanese (ja)
Inventor
Izumi Oishi
泉 大石
Nanao Ishida
七雄 石田
Toru Kawai
河合  徹
Takeshi Shinozaki
斌 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd, Kubota Corp filed Critical Kawasaki Refractories Co Ltd
Priority to JP13509996A priority Critical patent/JPH09318515A/en
Publication of JPH09318515A publication Critical patent/JPH09318515A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable evaluating of the deflection of a member t6 be deformed under a bending stress by a method wherein one end of a test member made of a material of the same kind as that of a long-sized member in a heating furnace and a tensile stress is loaded on the other end thereof to measure a creep distortion. SOLUTION: A test member 15 is put into an oven 12 having a heater 11 and the lower end part thereof is fixed on a fixing device 13 while the upper end part thereof on a fixing device 14. A tensile stress 6 is applied so as to work upward. Then, a tensile test is performed, for example, under three kinds of temperature conditions to measure stress loading time and a distortion at a stationary creep stage and a creep distortion speed is calculated based on the stationary creep distortion of the test member 15 and the stress loading time. The rate of deflection converted from the stationary creep distortion speed at the tensile test is in a relationship of almost matching the rate of deflection at a three point bending test. So, the test member 15 comprising a material of the same kind as that of a long-sized member to be evaluated is produced and a handy tensile creep test is performed replacing a bending creep test to evaluate the deflective deformation of the long-sized member from the obtained stationary distortion speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温での曲げ応力
により変形する部材の撓みを、引張クリープ試験により
生ずるクリープ歪みを利用して評価できる方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating flexure of a member which is deformed by bending stress at high temperature by utilizing creep strain generated by a tensile creep test.

【0002】[0002]

【従来の技術】図7を参照すると、ウォーキングビーム
式加熱炉(1)は、例えば鉄鋼の熱間圧延工程において、
鋼片、スラブ等の加熱に使用されており、鋼片、スラブ
等の被加熱材(2)を支持し搬送するスキッドビーム(3)
が、炉の長手方向に沿って複数列設けられている。この
スキッドビームは、固定ビームと移動ビームが炉幅方向
に交互に配された構成であり、移動ビームの昇降・水平
往復動作が周期的に繰り返されることにより、被加熱材
は炉内を搬送される。
2. Description of the Related Art Referring to FIG. 7, a walking beam type heating furnace (1) is used, for example, in a hot rolling process of steel.
Skid beam (3) that is used for heating billets, slabs, etc. and supports and conveys heated materials (2) such as billets, slabs, etc.
Are provided in a plurality of rows along the longitudinal direction of the furnace. This skid beam has a structure in which a fixed beam and a moving beam are alternately arranged in the furnace width direction, and the material to be heated is conveyed in the furnace by periodically repeating the vertical movement and horizontal reciprocating operation of the moving beam. It

【0003】スキッドビームは、中空のスキッドパイプ
(5)(図8参照)の上に、軸方向に所定間隔をあけてスキ
ッドボタン(6)が多数立設され、スキッドパイプ(5)の外
周面及びスキッドボタン(6)の基部から上部にかけて耐
火材のライニング(7)が施されている。加熱炉(1)の内部
は、通常約1000℃以上の高温に保持されるので、ス
キッドパイプ(5)の昇温に伴う撓み等の変形を防止する
ために、中空孔には冷却水が流されている。しかし、ス
キッドパイプ(5)の中を流れる冷却水の影響により、ス
キッドボタン(6)は炉内温度よりも低温になるため、被
加熱材(2)はスキッドボタン(6)との接触部にコールドス
ポットが局部的に生じ、次の圧延工程で圧延製品の板厚
が不均一になる問題があった。また、スキッドパイプ
(5)の中に冷却水を流通させることは熱効率を低下させ
るため、熱エネルギーの有効利用の点で問題があった。
A skid beam is a hollow skid pipe.
(5) (See Fig. 8) A large number of skid buttons (6) are erected at a predetermined interval in the axial direction. From the outer peripheral surface of the skid pipe (5) and the base of the skid button (6) to the upper part. It has a refractory lining (7). Since the inside of the heating furnace (1) is usually kept at a high temperature of about 1000 ° C or higher, in order to prevent deformation such as bending due to the temperature rise of the skid pipe (5), cooling water flows through the hollow holes. Has been done. However, due to the influence of the cooling water flowing through the skid pipe (5), the skid button (6) will be lower than the temperature inside the furnace, so the material to be heated (2) will come into contact with the skid button (6). There is a problem that cold spots locally occur and the plate thickness of the rolled product becomes non-uniform in the next rolling step. Also, skid pipe
Circulating cooling water in (5) lowers the thermal efficiency, so there is a problem in effective utilization of thermal energy.

【0004】上記の問題は、スキッドパイプ(5)の中空
孔への冷却水の使用を止めることにより解消される。こ
のため、水冷式から非水冷式のスキッドパイプへの移行
に向け、図9に示す如く、スキッドパイプ(5)の外面に
コーティング(8)を施すと共に、パイプ材質、パイプ構
造に関して様々な研究が行なわれている。ところで、ス
キッドパイプを非水冷式にした場合、スキッドパイプは
高温環境化にさらされるため、長期間の使用により被加
熱材の荷重がスキッドボタンを通じて繰り返し負荷され
ると、スキッドパイプに撓み変形が生ずる。スキッドパ
イプの代表的なサイズは、支持ポスト(9)(9)間でのスパ
ン長さ約2000mm、外径約300mm、内径約240mm
もあるため、実際の操業条件をシミュレートしてスキッ
ドパイプの撓みを評価することは困難である。
The above problems are solved by stopping the use of cooling water in the hollow holes of the skid pipe (5). For this reason, in order to shift from the water-cooled type to the non-water-cooled type skid pipe, as shown in FIG. 9, the outer surface of the skid pipe (5) is coated (8), and various studies have been conducted on pipe materials and pipe structures. Has been done. By the way, when the skid pipe is made non-water-cooled, the skid pipe is exposed to high temperature environment, so if the load of the material to be heated is repeatedly applied through the skid button due to long-term use, the skid pipe will bend and deform. . The typical size of the skid pipe is about 2000 mm in span length between support posts (9) and (9), outside diameter about 300 mm, inside diameter about 240 mm.
Therefore, it is difficult to evaluate the deflection of the skid pipe by simulating the actual operating conditions.

【0005】このスキッドパイプに断続的に負荷される
荷重により生じる撓み変形を、スキッドパイプと同種の
材質から作成した試験部材の曲げ試験で評価するにして
も、曲げ試験では、試験部材のスパン距離、応力分布、
形状等への依存性が大きいため、数多くの試験を必要と
し、あまり実用的でない。
Even if the flexural deformation caused by the load intermittently applied to the skid pipe is evaluated by a bending test of a test member made of the same kind of material as the skid pipe, in the bending test, the span distance of the test member is increased. , Stress distribution,
Since it depends heavily on the shape, many tests are required and it is not very practical.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、加熱
炉内で被加熱材の荷重が垂直方向に繰り返し負荷されて
生ずる長尺部材の撓み変形を、該長尺部材と同種の材質
から作成した試験部材に引張クリープ試験を施して生ず
るクリープ歪みを利用して評価する方法を提供すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to prevent flexural deformation of a long member caused by repeated loading of a material to be heated in a heating furnace in a vertical direction from the same kind of material as the long member. It is an object of the present invention to provide a method for evaluating the created test member by utilizing a creep strain generated by performing a tensile creep test.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
に、本発明は、評価すべき長尺部材と同種の材質から試
験部材を作成し、試験部材の一端を固定し他端に引張応
力を負荷して試験部材にクリープ歪みを生じさせ、応力
の負荷時間と定常クリープ段階での歪みを測定し、測定
された試験部材の定常クリープ段階での歪みと応力負荷
時間に基づき算出されたクリープ歪み速度を用いて数2
の係数Aとべき指数nを求め、得られたAとnを数3に
代入して長尺部材の撓み速度を求め、得られた撓み速度
を以て長尺部材の撓みを評価するようにしたものであ
る。
In order to achieve the above object, the present invention is to prepare a test member from the same kind of material as a long member to be evaluated, fix one end of the test member and apply a tensile stress to the other end. Is applied to cause creep strain in the test member, the stress loading time and the strain at the steady creep stage are measured, and the creep calculated based on the measured strain at the steady creep stage and the stress load time is measured. Number 2 using strain rate
The coefficient A and the exponent n of are obtained, and the obtained A and n are substituted into Equation 3 to obtain the bending speed of the long member, and the bending speed of the long member is evaluated using the obtained bending speed. Is.

【0008】[0008]

【数2】 [Equation 2]

【0009】[0009]

【数3】 (Equation 3)

【0010】本発明において、クリープ変形の内、二次
クリープ、即ち定常クリープ段階でのクリープのみを対
象とするのは、定常段階でのクリープ変形速度が略一定
だからである。なお、クリープの過程は、図1に示され
る如く、負荷の瞬間に弾性歪みと時間に依存しない塑性
歪みの和からなる瞬間歪みを生じ、クリープの初期には
歪み速度が時間と共に減少する遷移クリープが現われ、
続いて略一定の歪み速度を示す定常クリープが認めら
れ、さらにその後に歪み速度が加速する加速クリープが
現われて破断に至る。
In the present invention, of the creep deformations, only the secondary creep, that is, the creep in the steady creep stage, is targeted because the creep deformation speed in the steady stage is substantially constant. In the creep process, as shown in FIG. 1, a transient creep that is a sum of elastic strain and plastic strain that does not depend on time occurs at the moment of load, and the strain rate decreases with time at the initial stage of creep. Appears,
Subsequently, steady creep showing a substantially constant strain rate is observed, and then accelerated creep in which the strain rate accelerates appears, leading to fracture.

【0011】引張クリープ試験により、応力の負荷時間
と定常クリープ段階での歪みを測定し、クリープ歪み速
度を算出する。クリープ歪み速度と応力の関係式は数2
に示される。次に、応力とクリープ歪み速度を夫々、対
数横軸及び対数縦軸にプロットして、一次関数の近似式
を作成する。数2の係数Aは得られた一次関数式の縦軸
切片として、数2のべき指数nは一次関数式の傾きとし
て求められる。
The tensile creep test measures the stress loading time and the strain at the steady creep stage to calculate the creep strain rate. The relational expression between creep strain rate and stress is Equation 2
Is shown in Next, the stress and the creep strain rate are plotted on the logarithmic horizontal axis and the logarithmic vertical axis, respectively, and an approximate expression of a linear function is created. The coefficient A of the equation 2 is obtained as the vertical axis intercept of the obtained linear function equation, and the power exponent n of the equation 2 is obtained as the slope of the linear equation.

【0012】得られた係数Aとべき指数nを、評価すべ
き長尺部材のL、W、b、hの値と共に、曲げクリープ
試験における撓み速度(数3参照)の式に代入して、評価
すべき長尺部材の撓み速度を求める。
Substituting the obtained coefficient A and exponent n together with the values of L, W, b and h of the long member to be evaluated into the equation of the bending speed (see Eq. 3) in the bending creep test, The bending speed of the long member to be evaluated is calculated.

【0013】数2と数3の関係は次の通りである。梁に
撓みが生じたときの曲率半径をRとし、梁の長手方向の
位置をXとすると、梁の撓みδは数4により与えられ
る。
The relationship between equations 2 and 3 is as follows. When the radius of curvature when the beam is deflected is R and the position in the longitudinal direction of the beam is X, the deflection δ of the beam is given by equation 4.

【0014】[0014]

【数4】 (Equation 4)

【0015】厚み方向の歪み分布を直線と仮定し、梁断
面の高さをh、最外層の歪みをε0、中立軸から高さ方
向の位置をyとすると、梁断面の歪みεは数5により与
えられる。
Assuming that the strain distribution in the thickness direction is a straight line, the height of the beam cross section is h, the strain of the outermost layer is ε 0 , and the position in the height direction from the neutral axis is y, the strain ε of the beam cross section is several. Given by 5.

【0016】[0016]

【数5】 (Equation 5)

【0017】ところで、数2を時間tで定積分すると、
数6が得られる。
When the equation 2 is definitely integrated at time t,
Equation 6 is obtained.

【0018】[0018]

【数6】 (Equation 6)

【0019】数5及び数6より、応力σは数7で示され
る。
From equations 5 and 6, the stress σ is represented by equation 7.

【0020】[0020]

【数7】 (Equation 7)

【0021】梁断面の幅をbとすると、梁断面のモーメ
ントの釣合いから、モーメントMは数8で示される。
Assuming that the width of the beam section is b, the moment M is expressed by the equation 8 from the balance of the moments of the beam section.

【0022】[0022]

【数8】 (Equation 8)

【0023】数7の応力σを数8に代入して計算する
と、モーメントMは数9で示される。
Substituting the stress σ of the equation 7 into the equation 8, the moment M is expressed by the equation 9.

【0024】[0024]

【数9】 [Equation 9]

【0025】数9を整理すると、数10として示され
る。
When Equation 9 is rearranged, it is shown as Equation 10.

【0026】[0026]

【数10】 (Equation 10)

【0027】数4を数10に代入すると、数11が得ら
れる。
By substituting equation 4 into equation 10, equation 11 is obtained.

【0028】[0028]

【数11】 [Equation 11]

【0029】ところで、荷重をWとしたとき、モーメン
トMは数12で示される。
By the way, when the load is W, the moment M is expressed by Eq.

【0030】[0030]

【数12】 (Equation 12)

【0031】数12を数11に代入すると、数13が得
られる。
By substituting the equation 12 into the equation 11, the equation 13 is obtained.

【0032】[0032]

【数13】 (Equation 13)

【0033】数13において、X=L/2のとき、dδ
/dX=0、X=0のとき、δ=0の条件の下でXにつ
いて積分を行なうと、数14が得られる。
In Expression 13, when X = L / 2, dδ
When / dX = 0 and X = 0, when X is integrated under the condition of δ = 0, Formula 14 is obtained.

【0034】[0034]

【数14】 [Equation 14]

【0035】問題にしているのは中央の撓みなので、数
14において、X=L/2とし、数15が得られる。
Since it is the bending of the center that is at issue, in the equation (14), X = L / 2 and the equation (15) is obtained.

【0036】[0036]

【数15】 (Equation 15)

【0037】数15で得られた撓みを負荷時間で除算す
ることにより、数3で示す撓み速度が得られる。
By dividing the deflection obtained by the equation 15 by the load time, the deflection speed shown by the equation 3 can be obtained.

【0038】[0038]

【発明の実施の形態】図2は、ヒータ(11)を具えたオー
ブン(12)の中で、試験部材(15)を引張クリープ試験する
状態を示している。オーブン(12)の中に入れられた試験
部材(15)は、下端部が固定具(13)に固定され、上端部は
固定具(14)で固定されており、上方に向けて引張応力σ
が作用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a state in which a test member (15) is subjected to a tensile creep test in an oven (12) equipped with a heater (11). The test member (15) placed in the oven (12) has a lower end fixed to the fixture (13) and an upper end fixed by the fixture (14), and has a tensile stress σ directed upward.
Works.

【0039】試験部材の寸法は外径8mm、標点間距離1
20mmの丸棒であり、材質は、重量%にて、Cr:25
%、Co:12%、W:9%、Nb:2%、残部Niか
らなるNi基合金である。817℃、871℃及び92
6℃の3種類の温度条件で引張試験を行ない、応力の負
荷時間と定常クリープ段階での歪みを測定した。試験部
材の定常クリープ歪みと応力負荷時間に基づいてクリー
プ歪み速度を算出し、前述した要領にて数2の係数Aと
べき指数nを求めた。
The test member has an outer diameter of 8 mm and a gauge length 1
20 mm round bar, made of Cr, 25% by weight
%, Co: 12%, W: 9%, Nb: 2%, and the balance Ni. 817 ° C, 871 ° C and 92
Tensile tests were carried out under three temperature conditions of 6 ° C., and the stress load time and strain at the steady creep stage were measured. The creep strain rate was calculated based on the steady creep strain of the test member and the stress load time, and the coefficient A and the exponent n of the equation 2 were obtained in the above-described manner.

【0040】各温度での係数Aとべき指数nの数値を図
3と図4に示す。なお、横軸は1000/(T+27
3)、単位103/Kで表わされており、817℃、8
71℃及び926℃は、夫々、0.92、0.87及び
0.83に対応している。図3と図4に示されるよう
に、係数Aとべき指数nは夫々、温度と相関関係を有す
ることがわかる。
The values of the coefficient A and the exponent n at each temperature are shown in FIGS. 3 and 4. The horizontal axis is 1000 / (T + 27
3), expressed in units of 10 3 / K, 817 ° C, 8
71 ° C. and 926 ° C. correspond to 0.92, 0.87 and 0.83, respectively. As shown in FIGS. 3 and 4, it can be seen that the coefficient A and the exponent n have a correlation with the temperature, respectively.

【0041】数3の妥当性を検討するために、下記要領
にて3点曲げ試験を行なった。図5は、ヒータ(11)を具
えたオーブン(12)の中で、試験部材(15)を3点曲げ試験
する状態を示している。オーブン(12)の中に入れられた
試験部材(15)は、両端が2つの支持点(16)(17)で支持さ
れ、支持点(16)(17)間の略中央位置にて荷重Pが垂直方
向に負荷される。
In order to examine the validity of Equation 3, a three-point bending test was conducted in the following manner. FIG. 5 shows a state in which the test member (15) is subjected to a three-point bending test in the oven (12) equipped with the heater (11). The test member (15) placed in the oven (12) is supported at its two ends by two supporting points (16) and (17), and the load P is approximately at the center between the supporting points (16) and (17). Is loaded vertically.

【0042】曲げクリープ試験の試験部材の寸法は5
(高さ)×10(幅)×140(長さ)mmであり、材質は前記
引張クリープ試験のものと同じである。試験は、応力
98MPa及び温度926℃、応力73.5MPa及び温度
871℃、応力49MPa及び温度817℃の3つの条
件で行ない、試験時間は全て70時間である。遷移クリ
ープ段階を経て、定常クリープ段階で一定の歪み速度を
示す定常クリープ段階で生じた撓みを求めた。曲げクリ
ープ試験により測定した撓み速度を図6の横軸に示して
いる。
The dimension of the test member in the bending creep test is 5
(Height) × 10 (width) × 140 (length) mm, and the material is the same as that used in the tensile creep test. The test is conducted under three conditions of stress 98 MPa and temperature 926 ° C., stress 73.5 MPa and temperature 871 ° C., stress 49 MPa and temperature 817 ° C., and the test time is all 70 hours. After the transitional creep stage, the deflection generated in the steady creep stage, which shows a constant strain rate in the steady creep stage, was obtained. The bending speed measured by the bending creep test is shown on the horizontal axis of FIG.

【0043】次に、数3において、L(スパン)、W(中
央集中荷重)、b(梁断面の幅)及びh(梁断面の高さ)に
ついては、3点曲げ試験の条件値を、係数Aとべき指数
nについては、図3及び図4に示された各温度に対応す
る値を代入することにより、撓み速度の換算値を求め
た。引張試験により換算された撓み速度を図6の縦軸に
示す。図6の結果から明らかなように、引張試験におけ
る定常クリープ歪み速度から換算した撓み速度と、3点
曲げ試験により実際に求めた撓み速度との間には、ほぼ
一致関係のあることがわかる。なお、低応力側で一致関
係に少しずれがあるのは、曲げ試験時間が70時間と比
較的短かく、低応力では、定常クリープが現われるのに
少し時間がかかったためと考えられ、前記の一致関係を
否定するものでない。
Next, in the equation 3, regarding L (span), W (central concentrated load), b (width of beam section) and h (height of beam section), the condition values of the three-point bending test are As for the coefficient A and the exponent n, values corresponding to the respective temperatures shown in FIGS. 3 and 4 were substituted to obtain the converted value of the bending speed. The bending speed converted by the tensile test is shown on the vertical axis of FIG. As is clear from the results shown in FIG. 6, there is a substantial agreement between the bending speed converted from the steady creep strain speed in the tensile test and the bending speed actually obtained by the three-point bending test. The reason why there is a slight deviation in the matching relationship on the low stress side is that the bending test time was relatively short at 70 hours, and at low stress it took some time for steady creep to appear. It does not deny the relationship.

【0044】このように、曲げクリープ試験における撓
み速度は、引張クリープ試験における定常クリープ速度
から換算した撓み速度と略一致する関係にあることか
ら、撓み評価を行なう必要ある長尺部材と同種の材料か
ら試験部材を作成し、曲げクリープ試験に代えて簡便な
引張クリープ試験を行ない、得られた定常クリープ歪み
速度を用いて、所望の長尺部材の撓み変形を評価するこ
とができる。つまり、所定温度条件において定常クリー
プ歪み速度から求めた数2の係数Aとべき指数nの値
を、評価すべき長尺部材のL(スパン)、W(中央集中荷
重)、b(梁断面の幅)、h(梁断面の高さ)の値と共に数
3に代入することにより、長尺部材の撓み速度を予想で
き、撓みを評価することができる。なお、前記長尺部材
は中実であるが、例えばスキッドパイプの如く中空の長
尺部材に対しても同様に、本発明の撓み評価方法を適用
できることは勿論である。
As described above, since the bending speed in the bending creep test is substantially in agreement with the bending speed converted from the steady creep speed in the tensile creep test, the same kind of material as the long member which needs to be evaluated for bending. A simple tensile creep test is carried out in place of the bending creep test by preparing a test member from the above, and using the obtained steady creep strain rate, it is possible to evaluate the flexural deformation of the desired long member. That is, the value of the coefficient A of Equation 2 and the exponent n obtained from the steady creep strain rate under a predetermined temperature condition is L (span), W (central concentrated load), b (beam cross section of the long member to be evaluated). By substituting the values of (width) and h (height of beam cross section) into Equation 3, the bending speed of the long member can be predicted and the bending can be evaluated. Although the long member is solid, it is needless to say that the bending evaluation method of the present invention can be similarly applied to a hollow long member such as a skid pipe.

【0045】試験部材の材質は、評価すべき部材と同一
にすることが好ましいが、完全同一である必要はなく、
少なくとも主要成分が同じであればよい。
The material of the test member is preferably the same as that of the member to be evaluated, but it does not have to be completely the same.
It is sufficient if at least the main components are the same.

【0046】試験温度は、評価すべき部材の使用温度と
同じ温度で実施することが好ましいが、少なくともクリ
ープを生じる温度であればよい。なお、評価すべき部材
の使用温度と異なる温度で実施するとき、その温度に応
じて係数Aとべき指数nを数3に適用すればよい。
The test temperature is preferably the same as the service temperature of the member to be evaluated, but may be any temperature at which creep occurs. When the temperature is different from the working temperature of the member to be evaluated, the coefficient A and the exponent n may be applied to the equation 3 according to the temperature.

【0047】[0047]

【発明の効果】曲げ応力により変形する部材の撓みを、
引張クリープ試験により生ずる定常クリープ歪みをパラ
メータとして評価することができるから、測定方法の簡
便化を図ることができる。
EFFECT OF THE INVENTION The bending of a member which is deformed by bending stress
Since the steady creep strain generated by the tensile creep test can be evaluated as a parameter, the measurement method can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】引張クリープ試験におけるクリープ曲線を示す
グラフである。
FIG. 1 is a graph showing a creep curve in a tensile creep test.

【図2】オーブン内での引張クリープ試験の説明図であ
る。
FIG. 2 is an explanatory diagram of a tensile creep test in an oven.

【図3】係数Aと絶対温度との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between coefficient A and absolute temperature.

【図4】べき指数nと絶対温度との関係を示すグラフで
ある。
FIG. 4 is a graph showing the relationship between power index n and absolute temperature.

【図5】オーブン内での3点曲げ試験の説明図である。FIG. 5 is an explanatory diagram of a three-point bending test in an oven.

【図6】引張クリープ試験における定常クリープ歪み速
度を用いて求めた撓み速度と、3点曲げ試験における撓
み速度の実測値との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a bending speed obtained by using a steady creep strain rate in a tensile creep test and an actually measured bending speed in a three-point bending test.

【図7】ウォーキングビーム式加熱炉の説明図である。FIG. 7 is an explanatory diagram of a walking beam type heating furnace.

【図8】水冷式スキッドパイプの横断面図である。FIG. 8 is a cross-sectional view of a water-cooled skid pipe.

【図9】非水冷式スキッドパイプの横断面図である。FIG. 9 is a cross-sectional view of a non-water cooled skid pipe.

【符号の説明】[Explanation of symbols]

(12) オーブン (13) 固定具 (14) 固定具 (15) 試験部材 (12) Oven (13) Fixture (14) Fixture (15) Test member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河合 徹 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 篠崎 斌 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tohru Kawai 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka Prefecture Kubota Hirakata Manufacturing Company (72) Inventor Shin Shinozaki 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka Prefecture No. 1 stock company Kubota Hirakata Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温の加熱炉内で被加熱材の荷重が垂直
方向に繰り返し負荷されて生ずる長尺部材の撓み変形
を、長尺部材と同種の材質から作成した試験部材により
評価する方法であって、一端が固定された試験部材の他
端に引張応力を負荷して試験部材にクリープ歪みを生じ
させ、応力の負荷時間と定常クリープ段階での歪みを測
定し、測定された試験部材の定常クリープ段階での歪み
と応力負荷時間に基づき算出されたクリープ歪み速度を
用いて式1の係数Aとべき指数nを求め、得られた係数
Aとべき指数nの値を式2に代入して長尺部材の撓み速
度を算出し、得られた撓み速度を以て長尺部材の撓みを
評価することを特徴とする撓み評価方法。 【数1】
1. A method for evaluating flexural deformation of a long member caused by repeated vertical load application of a material to be heated in a high-temperature heating furnace, using a test member made of the same material as the long member. Then, a tensile stress is applied to the other end of the test member with one end fixed to cause creep strain in the test member, the stress loading time and the strain at the steady creep stage are measured, and the measured test member's Using the creep strain rate calculated based on the strain and the stress load time in the steady creep stage, the coefficient A and the exponent n of Equation 1 are obtained, and the obtained values of the coefficient A and exponent n are substituted into Equation 2. A flexure evaluation method comprising: calculating the flexure speed of a long member by using the obtained flexure speed and evaluating the flexure of the long member using the obtained flexure speed. [Equation 1]
JP13509996A 1996-05-29 1996-05-29 Deflection evaluating method Withdrawn JPH09318515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13509996A JPH09318515A (en) 1996-05-29 1996-05-29 Deflection evaluating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13509996A JPH09318515A (en) 1996-05-29 1996-05-29 Deflection evaluating method

Publications (1)

Publication Number Publication Date
JPH09318515A true JPH09318515A (en) 1997-12-12

Family

ID=15143822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13509996A Withdrawn JPH09318515A (en) 1996-05-29 1996-05-29 Deflection evaluating method

Country Status (1)

Country Link
JP (1) JPH09318515A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359317C (en) * 2005-08-26 2008-01-02 中国科学院金属研究所 Method and device for three-point bending mechanical property test of small-sized sheet sample
JP2008209262A (en) * 2007-02-27 2008-09-11 Akita Univ Quick evaluation method of elasticity, plasticity, and creep characteristic
CN107831067A (en) * 2017-10-31 2018-03-23 河南理工大学 A kind of variable Three Point Bending Creep Test method of rock
CN111610109A (en) * 2019-02-25 2020-09-01 天津大学 Creep strain calculation method of material under small punch test and application thereof
CN113074854A (en) * 2021-03-31 2021-07-06 天津中环电炉股份有限公司 Method for evaluating high-temperature internal stress of ceramic coating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359317C (en) * 2005-08-26 2008-01-02 中国科学院金属研究所 Method and device for three-point bending mechanical property test of small-sized sheet sample
JP2008209262A (en) * 2007-02-27 2008-09-11 Akita Univ Quick evaluation method of elasticity, plasticity, and creep characteristic
CN107831067A (en) * 2017-10-31 2018-03-23 河南理工大学 A kind of variable Three Point Bending Creep Test method of rock
CN111610109A (en) * 2019-02-25 2020-09-01 天津大学 Creep strain calculation method of material under small punch test and application thereof
CN111610109B (en) * 2019-02-25 2023-07-21 天津大学 Creep strain calculation method of material under small punching test and application thereof
CN113074854A (en) * 2021-03-31 2021-07-06 天津中环电炉股份有限公司 Method for evaluating high-temperature internal stress of ceramic coating
CN113074854B (en) * 2021-03-31 2023-04-07 天津中环电炉股份有限公司 Method for evaluating high-temperature internal stress of ceramic coating

Similar Documents

Publication Publication Date Title
Xiong et al. Mechanical properties of heat-treated high tensile structural steel at elevated temperatures
Wang et al. Mechanical properties of high-strength Q960 steel at elevated temperature
Zhou et al. Mechanical properties deterioration of high strength steels after high temperature exposure
Sjöström et al. Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments
Chiew et al. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions
Yan et al. Post-fire mechanical properties of advanced high-strength cold-formed steel alloys
JPH09318515A (en) Deflection evaluating method
Sun et al. Material properties of structural aluminium alloys after exposure to fire
Xiong et al. Mechanical properties of TMCP high strength steels with different strength grades at elevated temperatures
Liang et al. Effect of cold-form and tensile strain rate on mechanical properties of Q345 steel at elevated temperatures
JP2007216298A (en) Method of manufacturing steel sheet
Fan et al. Corner material properties of cold-formed lean-duplex stainless steel sections at elevated temperatures
Sam et al. Investigation on Residual Mechanical Properties of Galvanized Iron Cold-Formed Steel Sections Exposed to Elevated Temperatures
Jiang et al. Thermomechanical fatigue behavior of Cr–Ni–Mo cast hot work die steel
EP3922371B1 (en) Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate
Roeder Experimental study of heat induced deformation
Li et al. Combined effects of elevated temperatures and high strain rates on compressive performance of S30408 austenitic stainless steel
Gasem Cracking in a multiple gas-nitrided H13 aluminum extrusion mandrel
JP7238282B2 (en) PC steel bar
JP2004337923A (en) Manufacturing method of steel for hot forming
Rumiński et al. Analysis of the effect of die shape on the distribution of mechanical properties and strain field in the tube sinking process
JPH09318514A (en) Deflection evaluating method
JP6962084B2 (en) A method for determining the cooling rate of a steel pipe and a method for manufacturing a steel pipe using the method.
JP7260765B2 (en) Method for manufacturing hot press-formed product, and steel plate
JP6533648B2 (en) Heat treatment method of heat treated high tensile steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805