JP2008208400A - Method for manufacturing terminal portion of flexible flat cable - Google Patents

Method for manufacturing terminal portion of flexible flat cable Download PDF

Info

Publication number
JP2008208400A
JP2008208400A JP2007044509A JP2007044509A JP2008208400A JP 2008208400 A JP2008208400 A JP 2008208400A JP 2007044509 A JP2007044509 A JP 2007044509A JP 2007044509 A JP2007044509 A JP 2007044509A JP 2008208400 A JP2008208400 A JP 2008208400A
Authority
JP
Japan
Prior art keywords
plated
terminal portion
plating
conductor
ffc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007044509A
Other languages
Japanese (ja)
Inventor
Masateru Ichikawa
雅照 市川
Kunihiro Naoe
邦浩 直江
Shoji Mimura
彰治 味村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007044509A priority Critical patent/JP2008208400A/en
Publication of JP2008208400A publication Critical patent/JP2008208400A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an FFC terminal portion, which does not cause a problem even if an oxide film grows or an organic matter or the like is adsorbed on an Ni-plated surface in a treatment step for an Ni-plated rectangular Cu wire or the like prior to Au plating treatment, when manufacturing the FFC terminal portion which uses the Ni-plated rectangular Cu wire having Au plated thereon, and further to provide a method for continuously manufacturing the FFC terminal portion in a way of Real to Real. <P>SOLUTION: The method for manufacturing the FFC terminal portion comprises the steps of: laminating a necessary number of Ni-plated rectangular Cu conductors by using an insulation tape provided with an adhesive so that exposed conductor parts of the Ni-plated rectangular Cu conductors are formed at a necessary distance; arranging them in parallel; subsequently removing the surface of the exposed conductor parts of the Ni-plated rectangular Cu conductors by a thickness of 0.01 μm to less than 0.2 μm with mechanical polishing treatment; and then plating Au on the surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金めっきされるニッケルめっき平角銅導体を用いたフレキシブルフラットケーブル端子部に於いて、金めっき層の剥離や接触抵抗が増加したりする問題がないフレキシブルフラットケーブル端子部の製造方法に関するものである。   The present invention relates to a method for producing a flexible flat cable terminal portion in which there is no problem of peeling of a gold plating layer or an increase in contact resistance in a flexible flat cable terminal portion using a nickel-plated rectangular copper conductor to be plated with gold. Is.

電子機器等に用いられる部品や配線基板等は、銅や銅合金を配線部に使用されている。そして、これ等を他の配線基板等と電気的に接続する場合には、半田付や超音波接合などの金属結合によって接合する他に、コネクタ接続も多く行われている。特にコネクタ接続する場合には、配線とコネクタの接触抵抗を低くして導通不良をなくすために、銅配線端子部を表面処理することが行われている。例えば、金(以下Au)、錫−鉛合金(以下Sn−Pb合金)等による電解めっき処理である。しかしながら、Pbを含む合金によるめっき処理では、Pbが酸性雨等により溶出して環境を汚染する問題が指摘されており、Pbフリー化が望まれている。このために、純錫(以下Sn)めっきやPbを含まないSn合金系のめっきが検討されている。しかし純SnめっきやPbを含まないSn合金めっきの場合、銅配線端子部をコネクタと嵌合して使用すると、コネクタのピンによって押付けられた箇所の周辺のめっき皮膜から、ウイスカーと称する髭状の結晶が急速に発生してくることが、純SnめっきやPbを含まないSn系合金めっきに於いて顕著であることも判ってきた。このようなウイスカーの発生は、配線どうしの短絡に繋がる問題がある。このため、発生するウイスカーの長さを抑制する集住の表面処理が提案されているが、純Sn系めっきを使用する限り、ウイスカーの発生をゼロにすることはできなかった。そこで、フレキシブルフラットケーブル端子部(以下FFC端子部)は、Pbを含有せず、配線端子部をコネクタ嵌合してもウイスカーが発生せず、また挿抜特性に優れたものであることが望まれている。   Components and wiring boards used in electronic devices and the like use copper or copper alloy for the wiring portion. When these are electrically connected to other wiring boards or the like, many connectors are connected in addition to joining by metal bonding such as soldering or ultrasonic bonding. In particular, when a connector is connected, the copper wiring terminal portion is subjected to a surface treatment in order to reduce the contact resistance between the wiring and the connector to eliminate the conduction failure. For example, electrolytic plating treatment with gold (hereinafter referred to as Au), tin-lead alloy (hereinafter referred to as Sn—Pb alloy) or the like. However, in the plating treatment with an alloy containing Pb, there is a problem that Pb is eluted by acid rain or the like and pollutes the environment, and Pb-free is desired. For this reason, pure tin (hereinafter Sn) plating and Sn alloy-based plating not containing Pb are being studied. However, in the case of pure Sn plating or Sn alloy plating that does not contain Pb, when the copper wiring terminal part is fitted to the connector and used, a hook-like shape called a whisker is formed from the plating film around the portion pressed by the connector pin. It has also been found that the rapid generation of crystals is significant in pure Sn plating and Sn-based alloy plating not containing Pb. The occurrence of such whiskers has a problem that leads to a short circuit between the wirings. For this reason, the surface treatment of the dwelling which suppresses the length of the whisker which generate | occur | produces is proposed, However, As long as pure Sn type plating was used, generation | occurrence | production of the whisker was not able to be made into zero. Therefore, it is desired that the flexible flat cable terminal portion (hereinafter referred to as FFC terminal portion) does not contain Pb, does not generate whiskers even when the wiring terminal portion is fitted to the connector, and has excellent insertion / extraction characteristics. ing.

このため、コネクタ嵌合する配線端子部の表面処理として、純錫に変えて金/ニッケル(以下Au/Ni)が考えられている。例えば、特許文献1に記載されるような方法である。すなわち、Niめっき平角導体をラミネート処理し、導体が露出した端子部のみにAuめっきした、Au/Niめっき層が形成されたFFCである。しかしがら、平角銅導体は銅線上(以下Cu線)にNiめっきした後に、圧延工程、焼鈍工程、ラミネート工程を経てからAuめっき工程となるため、これ等の工程を経たNiめっき表面には酸化膜が成長したり、有機物等が吸着したりしている。このような状態の表面にAuめっきを施すと、AuとNiめっきの界面の密着性が低くなることがある。このことは接触抵抗を増加させる原因となり、またコネクタ嵌合を行うために挿抜を複数回繰り返すと、耐摩耗性が十分でないために接触不良を生じる問題があった。このため、Niめっきを施した後に、圧延工程、焼鈍工程、ラミネート工程、保管等の工程を経た後も、Au/Ni界面の密着性を確保できるFFC端子部の表面処理方法が望まれていた。また、フレキシブルフラットケーブル(以下FFC)は、両側が端子部として導体が露出した製品形態であるので、製造途中ではそれぞれがつながった状態でリール状に巻かれており、端子部は窓状に導体が露出した状態となっている。そして、このような状態から切断されて1ピースの製品となる。このため、Au/Ni界面の密着性を確保するには、前述の処理工程が連続的にReal to Realで行えることが望ましい。
特開平8−293214号公報
For this reason, gold / nickel (hereinafter referred to as Au / Ni) is considered as a surface treatment of the wiring terminal portion to be fitted into the connector, instead of pure tin. For example, it is a method as described in Patent Document 1. That is, it is an FFC in which an Au / Ni plating layer is formed by laminating a Ni plated rectangular conductor and Au plating only on a terminal portion where the conductor is exposed. However, since the rectangular copper conductor is plated with Ni on a copper wire (hereinafter referred to as Cu wire) and then undergoes a rolling process, an annealing process, and a laminating process, it becomes an Au plating process. A film grows or an organic substance or the like is adsorbed. When Au plating is applied to the surface in such a state, the adhesion at the interface between Au and Ni plating may be lowered. This causes the contact resistance to increase, and when the insertion / extraction is repeated a plurality of times in order to engage the connector, there is a problem in that contact resistance is caused due to insufficient wear resistance. For this reason, the surface treatment method of the FFC terminal part which can ensure the adhesiveness of an Au / Ni interface was desired after passing through processes, such as a rolling process, an annealing process, a lamination process, and storage, after giving Ni plating. . In addition, the flexible flat cable (hereinafter referred to as FFC) is a product form in which the conductor is exposed as a terminal part on both sides, and thus is wound in the form of a reel in the middle of manufacturing, and the terminal part is a conductor in a window shape. Is exposed. And it is cut | disconnected from such a state and becomes a 1 piece product. For this reason, in order to ensure the adhesion of the Au / Ni interface, it is desirable that the above-described processing steps can be performed continuously by Real to Real.
JP-A-8-293214

よって本発明が解決しようとする課題は、端子部にAuめっきを施したNiめっき平角Cu導体を使用するFFC端子部を製造する場合に、Auめっき処理の前に、Niめっき平角Cu導体の工程処理等に於いてNiめっき平角Cu導体表面に酸化膜が成長したり、有機物等が吸着したりした場合でも、端子部に問題を生じることがないFFC端子部の製造方法を提供することにある。さらに、FFC端子部を連続的にReal to Realに行うことができるFFC端子部の製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is to manufacture a Ni-plated flat Cu conductor before the Au plating process when manufacturing an FFC terminal portion using a Ni-plated flat Cu conductor with Au plating applied to the terminal portion. An object of the present invention is to provide a method of manufacturing an FFC terminal part that does not cause a problem in the terminal part even when an oxide film grows on the surface of the Ni-plated flat Cu conductor or an organic substance is adsorbed in the treatment. . Furthermore, it is providing the manufacturing method of the FFC terminal part which can perform FFC terminal part continuously Real to Real.

前記解決しようとする課題は、請求項1に記載されるように、必要数のニッケルめっき平角銅導体を接着剤付絶縁テープによってラミネートして平行に配置し、必要な間隔で前記ニッケルめっき平角銅導体が露出する導体露出部を形成し、ついで、前記導体露出部のニッケルめっき平角銅導体表面を機械的研磨処理によって厚さ0.01μm以上0.2μm未満除去した後、金めっき処理を施すフレキシブルフラットケーブル端子部の製造方法とすることによって、解決される。   The problem to be solved is as described in claim 1, wherein a necessary number of nickel-plated flat copper conductors are laminated in parallel by an insulating tape with adhesive, and the nickel-plated flat copper is disposed at a necessary interval. Forming a conductor exposed portion where the conductor is exposed, and then removing the surface of the nickel-plated rectangular copper conductor of the conductor exposed portion by a mechanical polishing process to a thickness of 0.01 μm or more and less than 0.2 μm, and then performing a gold plating process It is solved by setting it as the manufacturing method of a flat cable terminal part.

また、請求項2に記載されるように、前記機械的研磨処理が、セラミックスまたはダイヤモンド微粒子を付着させたバフ研磨処理である請求項1に記載のフレキシブルフラットケーブル端子部の製造方法とすることによって、解決される。   Further, as described in claim 2, the mechanical polishing treatment is a buff polishing treatment in which ceramics or diamond fine particles are adhered. By using the manufacturing method of the flexible flat cable terminal portion according to claim 1, Solved.

以上のような本発明によれば、FFC端子部の製造方法として、導体露出部のNiめっき平角Cu導体表面を機械的研磨処理によって厚さ0.01μm以上0.2μm未満除去した後に、Auめっき処理を施すようにしたので、Niめっき平角Cu導体を用いたFFC端子部を得る場合に、NiめっきCu線がその後の工程処理等に於いて、Niめっき表面に酸化膜が成長したり、有機物等が吸着したりした場合にも完全に除去できるので、その後Auめっき層を施しても、Auめっき層が剥離したり、そのことによって接触抵抗が増加したりする問題を生じない。また、一例として示した図1のような製造工程とすることによって、FFC端子部の製造方法を連続的にReal to Realで行うことができ、Niめっき表面の酸化や有機物の付着等をよりなくすことができる。さらに、前記機械的研磨処理がセラミックスまたはダイヤモンド微粒子を付着させたバフ研磨処理であるFFC端子部の製造方法としたので、必要な厚さだけの酸化膜や有機物等の除去を確実に行うことができ実用的である。   According to the present invention as described above, as a method for manufacturing the FFC terminal portion, the surface of the Ni-plated rectangular Cu conductor in the exposed conductor portion is removed by a mechanical polishing process to a thickness of 0.01 μm or more and less than 0.2 μm, and then Au plating is performed. In order to obtain an FFC terminal using a Ni-plated flat Cu conductor, the Ni-plated Cu wire grows an oxide film on the Ni-plated surface in the subsequent process or the like. Therefore, even if the Au plating layer is applied thereafter, the Au plating layer is not peeled off, thereby causing no problem of increasing the contact resistance. Further, by adopting the manufacturing process as shown in FIG. 1 as an example, the manufacturing method of the FFC terminal portion can be continuously performed by Real to Real, and the oxidation of the Ni plating surface, the adhesion of organic substances, and the like are further eliminated. be able to. Further, since the mechanical polishing process is a manufacturing method of the FFC terminal portion which is a buffing process in which ceramics or diamond fine particles are adhered, it is possible to reliably remove an oxide film or an organic substance having a required thickness. And practical.

以下に本発明を詳細に説明する。請求項1に記載する発明は、必要数のニッケルめっき平角銅導体を接着剤付絶縁テープによってラミネートして平行に配置し、必要な間隔で前記ニッケルめっき平角銅導体が露出する導体露出部を形成し、ついで、前記導体露出部のニッケルめっき平角銅導体表面を機械的研磨処理によって厚さ0.01μm以上0.2μm未満除去した後、金めっき処理を施すフレキシブルフラットケーブル端子部の製造方法である。このような製造方法とすることによって、FFC端子部のNiめっき平角Cu導体はAuめっきを施しても、Auめっき層が剥離したり、接触抵抗が増加する等の問題が生じない、実用上的なFFC端子部とすることができる。   The present invention is described in detail below. According to the first aspect of the present invention, a necessary number of nickel-plated flat copper conductors are laminated with an insulating tape with adhesive and arranged in parallel to form a conductor exposed portion where the nickel-plated flat copper conductor is exposed at a necessary interval. Then, after the surface of the nickel-plated flat copper conductor in the exposed conductor portion is removed by a mechanical polishing process to a thickness of 0.01 μm or more and less than 0.2 μm, the flexible flat cable terminal part is subjected to a gold plating process. . By adopting such a manufacturing method, even if the Ni-plated rectangular Cu conductor of the FFC terminal portion is subjected to Au plating, there is no problem that the Au plating layer is peeled off or the contact resistance is increased. FFC terminal portion can be obtained.

まず、従来のFFC端子部について簡単に説明する。図2に示すような構造のもので、符号1がFFC端子部である。Niめっき層が施された平角Cu導体の必要本数を、プラスチックからなる接着剤付絶縁テープ2(以下絶縁テープ2)によってラミネートしたFFCの適所の絶縁テープ2を除去して導体露出部が形成され、この部分におけるAuめっき平角Cu導体3、3´が露出するようにして端子部4、4´とするものである。そして、このように構成されたFFCは適所で切断されてFFC端子部1となるものである。なお、ここで示したFFC端子部1は、片面側の絶縁テープ2が除去されたもので、反対側には絶縁テープ2が全体に渡って設けられていることになる。通常、このようなFFC端子部1は、例えば送り出しロールから送出された複数本のNiめっき平角Cu導体が絶縁テープによってラミネートされ、必要な間隔でスリッター等によって絶縁テープが除去され、Niめっき平角Cu導体が露出する導体露出部が形成され、ついで、前記導体露出部のNiめっき平角Cu導体上にAuめっきが施されて、端子部4、4´のAuめっき平角Cu導体が形成される。しかしながら、このFFC端子部を構成するNiめっき平角Cu導体は、銅線上にNiめっきした後に圧延工程、焼鈍工程等を経てNiめっき平角銅導体とされるので、これ等の工程を経たNiめっき表面には酸化膜が成長したり、有機物等が吸着したりしていることがある。このような状態の表面にAuめっきを施すと、AuとNiめっきの界面の密着性が低くなりAuめっき層の剥離や接触抵抗を増加させる原因となったり、またコネクタ嵌合を行うために挿抜を複数回繰り返すとAuめっき層が剥離し、接触不良を生じる問題がある。   First, a conventional FFC terminal portion will be briefly described. In the structure as shown in FIG. 2, reference numeral 1 denotes an FFC terminal portion. The conductor exposed portion is formed by removing the insulating tape 2 at an appropriate position of the FFC obtained by laminating the necessary number of flat Cu conductors with the Ni plating layer laminated with the insulating tape 2 with adhesive (hereinafter referred to as insulating tape 2) made of plastic. In this portion, the Au plated flat Cu conductors 3, 3 'are exposed to form terminal portions 4, 4'. The FFC configured as described above is cut at an appropriate position to become the FFC terminal unit 1. Note that the FFC terminal portion 1 shown here is obtained by removing the insulating tape 2 on one side, and the insulating tape 2 is provided over the entire opposite side. Usually, such an FFC terminal portion 1 is formed by laminating a plurality of Ni-plated flat Cu conductors fed from, for example, a feed roll with an insulating tape, and removing the insulating tape with a slitter or the like at a necessary interval. A conductor exposed portion where the conductor is exposed is formed, and then Au plating is performed on the Ni-plated flat Cu conductor of the conductor exposed portion to form Au-plated flat Cu conductor of the terminal portions 4 and 4 ′. However, the Ni-plated flat Cu conductor constituting the FFC terminal portion is Ni-plated flat copper conductor after the Ni plating on the copper wire and then through the rolling process, the annealing process, etc., so the Ni-plated surface that has undergone these processes In some cases, an oxide film grows or an organic substance or the like is adsorbed. When Au plating is applied to the surface in such a state, the adhesion at the interface between Au and Ni plating is lowered, which may cause peeling of the Au plating layer and increase in contact resistance, or insertion / removal for connector fitting. If the process is repeated a plurality of times, the Au plating layer peels off, resulting in a problem of contact failure.

そこで種々検討した結果、本発明では端子部を形成するために露出されているNiめっき平角Cu導体表面を、機械的研磨処理によって厚さ0.01μm以上0.2μm未満除去した後、Auめっき処理を施すようにしたFFC端子部の製造方法とすることによって、問題を解決した。このように特定厚さの表面処理を施すことによって、Niめっき平角Cu導体表面上のNi酸化物等を完全に除去することができ、その後にめっきを施すのでAuめっき層との界面の密着力を十分に確保でき、このため接触抵抗を増加させたり、コネクタ嵌合のために挿抜を複数回繰り返しても、十分な耐摩耗性を有し接触不良を生じる問題も生じなくなる。このように機械的研磨処理によって、除去厚さを0.01μm以上0.2μm未満としたのは、通常のNi酸化物膜の厚さが0.005〜0.010μm程度であるため0.010μm以上とすれば十分であり、また、大気中に長時間保持した場合にもNi酸化物膜の厚さは0.050μmを越えることがないことが確認されたので、0.2μm未満とすることで十分とした。なお、0.2μm以上除去する場合は、Niめっき層を余計に付ける必要があり無駄ともなるためである。   As a result of various investigations, in the present invention, the surface of the Ni-plated rectangular Cu conductor exposed to form the terminal portion is removed by a mechanical polishing process to a thickness of 0.01 μm or more and less than 0.2 μm, and then the Au plating process is performed. The problem was solved by adopting a method for manufacturing an FFC terminal portion that was subjected to the above. By performing surface treatment with a specific thickness in this manner, Ni oxide on the surface of the Ni-plated flat Cu conductor can be completely removed, and since plating is performed after that, adhesion at the interface with the Au plating layer is achieved. Therefore, even if contact resistance is increased or insertion / extraction is repeated a plurality of times for connector fitting, there is no problem of having sufficient wear resistance and causing contact failure. Thus, the removal thickness was set to 0.01 μm or more and less than 0.2 μm by the mechanical polishing treatment because the thickness of the ordinary Ni oxide film is about 0.005 to 0.010 μm. The above is sufficient, and the thickness of the Ni oxide film was confirmed not to exceed 0.050 μm even when kept in the atmosphere for a long time. Was enough. In addition, when removing 0.2 micrometer or more, it is because it is necessary to add Ni plating layer and it becomes useless.

図1によって詳細に説明する。Niめっき平角Cu導体の必要本数が平行に接着剤付絶縁テープによってラミネートされ、かつ必要箇所にFFCの端子部となるNiめっき平角Cu導体の露出部が形成されたFFC5を送り出しロール6から順次送出し、ついで、導体露出部の露出したNiめっき平角Cu導体表面に対して厚さ0.01μm以上0.2μm未満の除去処理を機械的研磨処理装置7によって施す。これによって、Niめっき平角Cu導体上の酸化皮膜や付着した有機物等が完全に除去される。機械的研磨処理装置7としては、バフ研磨処理が適用できる。
つづいて、酸化皮膜や付着した有機物等が除去されたNiめっき平角Cu導体は、水洗処理槽8によって水洗された後、脱脂処理槽9、水洗処理槽10、酸活性処理槽11、水洗処理槽12を順次通過させた後、Auめっき槽13に於いて必要厚さのAuめっき層が施されて、端子部4、4´が形成される。このような製造工程とすることによって、機械的な研磨処理時の汚れの問題もなくすことができる。ついで、水洗処理槽14で水洗処理した後、乾燥処理槽14を通過させて乾燥処理を行い巻取りロール15に巻き取ってFFC端子部1が得られる。このようにして製造されたFFC端子部は、FFCは端子部が残るように適当な箇所で切断されて必要長さのFFC端子部1とすることができる。このようなFFC端子部1は、AuとNiめっきの界面の密着性が良好でありAuめっき層の剥離がなく、接触抵抗を増加させる等の問題がないものである。なお、通常のFFC端子部は、通常Φ0.5〜1mm程度の丸銅線にNiめっきを施した後に、Φ0.1〜0.2mm程度に伸線加工を行ない、これをさらに圧延加工によって平角Cu導体とし、通常10〜50本程度並列に配置されたものである。
This will be described in detail with reference to FIG. FFC 5 in which the required number of Ni-plated flat Cu conductors are laminated in parallel with an insulating tape with adhesive and the exposed portions of Ni-plated flat Cu conductors forming the terminal portions of the FFC are formed in the necessary locations, and are sequentially sent from the feed roll 6 Next, a removal process having a thickness of 0.01 μm or more and less than 0.2 μm is performed on the surface of the Ni-plated flat Cu conductor exposed at the exposed conductor by the mechanical polishing apparatus 7. As a result, the oxide film on the Ni-plated flat Cu conductor and the attached organic matter are completely removed. As the mechanical polishing apparatus 7, a buff polishing process can be applied.
Subsequently, the Ni-plated rectangular Cu conductor from which the oxide film and attached organic matter and the like have been removed is washed in the water washing treatment tank 8, and then the degreasing treatment tank 9, the water washing treatment tank 10, the acid activation treatment tank 11, and the water washing treatment tank. After sequentially passing 12, an Au plating layer having a required thickness is applied in an Au plating tank 13 to form terminal portions 4 and 4 ′. By adopting such a manufacturing process, it is possible to eliminate the problem of contamination during mechanical polishing. Next, after washing with water in the washing treatment tank 14, the drying treatment tank 14 is passed through, the drying treatment is performed, the winding roll 15 is wound, and the FFC terminal portion 1 is obtained. The FFC terminal portion manufactured in this way can be cut into a suitable length so that the FFC terminal portion 1 remains, so that the FFC terminal portion remains. Such an FFC terminal portion 1 has good adhesion at the interface between Au and Ni plating, no peeling of the Au plating layer, and no problem of increasing contact resistance. In addition, a normal FFC terminal portion is generally subjected to wire drawing to about Φ0.1 to 0.2 mm after Ni plating is applied to a round copper wire of about Φ0.5 to 1 mm, and this is further flattened by rolling. It is a Cu conductor, and usually 10 to 50 wires are arranged in parallel.

また、前記機械的研磨処理としては、請求項2に記載するように、セラミックスまたはダイヤモンド微粒子を付着させたバフ研磨処理による端子部の表面処理方法とすることによって、比較的簡単な方法でNiめっき平角Cu導体のNiめっき層の酸化物や有機付着物等を確実に除去することができ好ましい。このようなセラミックス微粒子としては、SiC、Al等が用いられる。また、セラミックスまたはダイヤモンド微粒子は、その粒径が0.1〜1μm程度のもので、ナイロン布、ポリプロピレン等の生地に均一に固定され、ロール等に巻き付けて使用される。具体的には、セラミックスまたはダイヤモンド微粒子を付着させた2本のバフ研磨ロール間を通過させることによって行うのが、ブラシの回転数および試料への押し付力を変えることによって除去処理量を調整でき、また、連続してNiめっき平角Cu導体のNiめっき層の酸化物や有機付着物等を確実に除去処理することができ好ましい。 Further, as the mechanical polishing treatment, as described in claim 2, a surface treatment method for the terminal portion by buffing treatment with ceramics or diamond fine particles attached thereto is used to perform Ni plating by a relatively simple method. It is preferable because the oxides and organic deposits of the Ni plating layer of the flat Cu conductor can be reliably removed. As such ceramic fine particles, SiC, Al 2 O 3 or the like is used. Ceramic or diamond fine particles having a particle size of about 0.1 to 1 μm are uniformly fixed to a cloth such as nylon cloth or polypropylene and wound around a roll or the like. Specifically, the removal processing amount can be adjusted by changing the number of rotations of the brush and the pressing force against the sample by passing between two buffing rolls to which ceramics or diamond fine particles are adhered. In addition, it is preferable because the oxide or organic deposits of the Ni plating layer of the Ni plating flat Cu conductor can be reliably removed continuously.

表1に記載した実施例並びに比較例によって、本発明の効果を確認した。すなわち、Niめっきを施したCu線を幅0.3mm、厚さ0.035mmで長さ500mの平角状に加工して、Niめっき平角Cu導体とした。これをピッチ0.5mm(線間スペースで0.2mm)となるように20本並列に配置し、熱可塑性接着剤がコーティングされたポリエステルの絶縁テープで両側からラミネート処理を行ないFFCを作製した。ただし、一面を構成する熱可塑性接着剤がコーティングされたポリエステル絶縁テープには、予め端子部となる部分として被覆部が100mm、Niめっき平角Cu導体の露出部が10mmとなるように除去したものを用いた。ついで、前記FFCに対して、ナイロン布にSiCを固定したバフ研磨用のロールを配置した研磨装置によってNiめっき平角Cu導体表面を研磨し、ついで脱脂槽、酸活性槽を通過させた後、Auめっき槽に於いて、Niめっき平角Cu導体にAuめっき層を形成して試料とした。前記バフ研磨は、ブラシの回転数および試料への押し付力を変えることによって、研磨量を変化させた。また、比較のためにバフ研磨処理を行わない他は同様の処理を施した試料を用意した。   The effects of the present invention were confirmed by the examples and comparative examples described in Table 1. That is, a Cu wire subjected to Ni plating was processed into a rectangular shape having a width of 0.3 mm, a thickness of 0.035 mm, and a length of 500 m to obtain a Ni-plated rectangular Cu conductor. Twenty of these were arranged in parallel so as to have a pitch of 0.5 mm (0.2 mm in the space between lines), and laminate processing was performed from both sides with a polyester insulating tape coated with a thermoplastic adhesive to produce an FFC. However, the polyester insulating tape coated with the thermoplastic adhesive constituting one surface is previously removed so that the covering portion is 100 mm and the exposed portion of the Ni-plated flat Cu conductor is 10 mm as the terminal portion. Using. Next, the surface of the Ni-plated rectangular Cu conductor is polished with a polishing apparatus in which a buffing roll in which SiC is fixed to a nylon cloth is disposed on the FFC, and then passed through a degreasing tank and an acid activation tank. In the plating tank, an Au plating layer was formed on a Ni plating flat Cu conductor to prepare a sample. In the buffing, the polishing amount was changed by changing the number of rotations of the brush and the pressing force against the sample. For comparison, a sample subjected to the same treatment except that the buffing treatment was not performed was prepared.

ついで、この試料について、Au層とNi層間の密着性を評価するために、90°折り曲げ試験を行って剥離の有無を調べた。外観については実体顕微鏡により、断面をSEM(走査型電子顕微鏡)により観察し、剥離のないものを〇印で、剥離が見られたものを×印で示した。また、バフ研磨前後のNiめっき層の厚さ並びにAuめっき層の厚さを、蛍光X線測定器で測定した。Auめっき層の厚さは、いずれも0.085μmであった。結果を表1に記載した。   Next, for this sample, in order to evaluate the adhesion between the Au layer and the Ni layer, a 90 ° bending test was performed to examine the presence or absence of peeling. The appearance was observed with a stereomicroscope, and the cross section was observed with an SEM (scanning electron microscope). Further, the thickness of the Ni plating layer and the thickness of the Au plating layer before and after buffing were measured with a fluorescent X-ray measuring device. The thickness of each Au plating layer was 0.085 μm. The results are shown in Table 1.

Figure 2008208400
Figure 2008208400

表1の実施例並びに比較例から明らかなように、FFC端子部の導体露出部のNiめっき平角Cu導体表面を機械的研磨処理によって厚さ0.01μm以上、0.2μm未満の範囲で除去したものは、Niめっき層とAuめっき層の密着性に優れたFFC端子部が得られることが判る。
すなわち、実施例1および2に見られるように、研磨前のNiめっき層の厚さが1.32μmであるのに対して、研磨後のNiめっき層の厚さが1.30μm(研磨量が0.02μm)および1.27μm(研磨量が0.05μm)の場合には、Niめっき層とAuめっき層の間に剥離が見られない密着性に優れたものであった。また、実施例3に記載されるように、研磨前のNiめっき層の厚さが1.35μmであるのに対して、研磨後のNiめっき層の厚さが1.16μm(研磨量が0.19μm)の場合にも、Niめっき層とAuめっき層の間に剥離が見られない密着性に優れたものであった。これに対して、比較例1に見られるように、研磨前のNiめっき層の厚さが1.35μmであっても、研磨後のNiめっき層の厚さが1.341μm(研磨量が0.009μm)の場合には、Niめっき層とAuめっき層の間に剥離が見られ、密着性に問題があることが判る。また、比較例2のようにバフ研磨処理を行わない場合は、Niめっき層とAuめっき層の間に剥離が見られ、密着性に問題があることが判る。
As is clear from the examples and comparative examples in Table 1, the surface of the Ni-plated rectangular Cu conductor in the exposed portion of the conductor of the FFC terminal was removed by a mechanical polishing process in a thickness range of 0.01 μm or more and less than 0.2 μm. It can be seen that an FFC terminal portion having excellent adhesion between the Ni plating layer and the Au plating layer can be obtained.
That is, as seen in Examples 1 and 2, the thickness of the Ni plating layer before polishing is 1.32 μm, whereas the thickness of the Ni plating layer after polishing is 1.30 μm (the polishing amount is In the case of 0.02 [mu] m) and 1.27 [mu] m (polishing amount 0.05 [mu] m), excellent adhesion was observed in which no peeling was observed between the Ni plating layer and the Au plating layer. Further, as described in Example 3, the thickness of the Ni plating layer before polishing is 1.35 μm, whereas the thickness of the Ni plating layer after polishing is 1.16 μm (the polishing amount is 0). .19 μm), it was excellent in adhesion with no peeling between the Ni plating layer and the Au plating layer. On the other hand, as seen in Comparative Example 1, even if the thickness of the Ni plating layer before polishing is 1.35 μm, the thickness of the Ni plating layer after polishing is 1.341 μm (the polishing amount is 0). .009 μm), peeling is observed between the Ni plating layer and the Au plating layer, indicating that there is a problem in adhesion. Further, when the buffing treatment is not performed as in Comparative Example 2, it can be seen that peeling is observed between the Ni plating layer and the Au plating layer, and there is a problem in adhesion.

本発明のように、Auめっきを施したNiめっき平角Cu導体を必要本数配置したFFC端子部として、Niめっき平角Cu導体表面を機械的研磨処理によって厚さ0.01μm以上0.2μm未満除去した後にAuめっき処理を施すため、Auめっき層が剥離したり接触抵抗が増加する問題を生じることなく実用的な表面処理である。また、このような表面処理を行って得られたFFC端子部は、使用時にウイスカーが発生すると言う問題もなく、品質にも優れたものであるから種々の電子機器類に対して有用なものである。   As in the present invention, the surface of the Ni-plated rectangular Cu conductor was removed by a mechanical polishing process to remove the thickness of 0.01 μm or more and less than 0.2 μm as the FFC terminal portion in which the necessary number of Ni-plated rectangular Cu conductors plated with Au were disposed. Since the Au plating process is performed later, this is a practical surface treatment without causing the problem that the Au plating layer peels off or the contact resistance increases. Further, the FFC terminal portion obtained by performing such surface treatment has no problem that whiskers are generated during use, and is excellent in quality, so it is useful for various electronic devices. is there.

従来のFFC端子部の概略図。Schematic of the conventional FFC terminal part. 本発明のFFC端子部の製造方法における概略工程を示す図。The figure which shows the schematic process in the manufacturing method of the FFC terminal part of this invention.

符号の説明Explanation of symbols

1. FFC端子部
2. 絶縁テープ
3.3´ Auめっき平角Cu導体
4.4´ 端子部
5. FFC
7. 機械研磨処理機
8.10.12.14 水洗槽
9. 脱脂処理槽
11. 酸活性処理槽
13. Auめっき槽
15. 乾燥処理槽
1. FFC terminal section Insulating tape 3.3 'Au-plated flat Cu conductor 4.4' Terminal section 5. FFC
7). 8. Mechanical polishing processor 8.10.12.14 Washing tank 9. Degreasing tank 11. Acid activation treatment tank 13. Au plating tank 15. Drying tank

Claims (2)

必要数のニッケルめっき平角銅導体を接着剤付絶縁テープによってラミネートして平行に配置し、必要な間隔で前記ニッケルめっき平角銅導体が露出する導体露出部を形成し、ついで、前記導体露出部のニッケルめっき平角銅導体表面を機械的研磨処理によって厚さ0.01μm以上0.2μm未満除去した後、金めっき処理を施すことを特徴とするフレキシブルフラットケーブル端子部の製造方法。   The necessary number of nickel-plated flat copper conductors are laminated in parallel with an insulating tape with an adhesive and arranged in parallel to form a conductor exposed portion where the nickel-plated flat copper conductor is exposed at a necessary interval. A method for producing a flexible flat cable terminal part, wherein a surface of a nickel-plated rectangular copper conductor is removed by a mechanical polishing process to a thickness of 0.01 μm or more and less than 0.2 μm, and then a gold plating process is performed. 前記機械的研磨処理が、セラミックスまたはダイヤモンド微粒子を付着させたバフ研磨処理であることを特徴とする請求項1に記載のフレキシブルフラットケーブル端子部の製造方法。   2. The method of manufacturing a flexible flat cable terminal portion according to claim 1, wherein the mechanical polishing process is a buffing process in which ceramics or diamond fine particles are adhered.
JP2007044509A 2007-02-23 2007-02-23 Method for manufacturing terminal portion of flexible flat cable Pending JP2008208400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044509A JP2008208400A (en) 2007-02-23 2007-02-23 Method for manufacturing terminal portion of flexible flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044509A JP2008208400A (en) 2007-02-23 2007-02-23 Method for manufacturing terminal portion of flexible flat cable

Publications (1)

Publication Number Publication Date
JP2008208400A true JP2008208400A (en) 2008-09-11

Family

ID=39784958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044509A Pending JP2008208400A (en) 2007-02-23 2007-02-23 Method for manufacturing terminal portion of flexible flat cable

Country Status (1)

Country Link
JP (1) JP2008208400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160838A (en) * 2014-04-03 2014-09-04 Fujikura Ltd Printed-wiring board
US9006579B2 (en) 2011-10-11 2015-04-14 Fujikura Ltd. Method of manufacturing printed circuit board and printed circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173748A (en) * 1986-01-27 1987-07-30 Hitachi Cable Ltd Manufacture of lead frame for semiconductor
JPH08293214A (en) * 1995-04-25 1996-11-05 Sumitomo Electric Ind Ltd Flat cable and partial gold plating method for conductor
JP2006287148A (en) * 2005-04-05 2006-10-19 Matsushita Electric Ind Co Ltd Printed wiring board and method of manufacturing it, and method of packaging electronic part
JP2007035286A (en) * 2005-07-22 2007-02-08 Hitachi Cable Ltd HALF-FINISHED FLAT CABLE AND MANUFACTURING METHOD OF Au-PLATED FLAT CABLE USING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173748A (en) * 1986-01-27 1987-07-30 Hitachi Cable Ltd Manufacture of lead frame for semiconductor
JPH08293214A (en) * 1995-04-25 1996-11-05 Sumitomo Electric Ind Ltd Flat cable and partial gold plating method for conductor
JP2006287148A (en) * 2005-04-05 2006-10-19 Matsushita Electric Ind Co Ltd Printed wiring board and method of manufacturing it, and method of packaging electronic part
JP2007035286A (en) * 2005-07-22 2007-02-08 Hitachi Cable Ltd HALF-FINISHED FLAT CABLE AND MANUFACTURING METHOD OF Au-PLATED FLAT CABLE USING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006579B2 (en) 2011-10-11 2015-04-14 Fujikura Ltd. Method of manufacturing printed circuit board and printed circuit board
JP2014160838A (en) * 2014-04-03 2014-09-04 Fujikura Ltd Printed-wiring board

Similar Documents

Publication Publication Date Title
KR101574475B1 (en) Surface-treated copper foil, and copper-clad laminate obtained using surface-treated copper foil
JP2011192638A (en) Wire with terminal and method of manufacturing the same
JP2006188761A (en) Conductive metal-plated polyimide substrate and method for producing the same
CN104752865A (en) Tin-plated Copper-alloy Terminal Material
WO2018124114A1 (en) Surface treatment material and article fabricated using same
JP4904810B2 (en) Plating film, method for forming the same, and electronic component
JP5609064B2 (en) Shielded flat cable and manufacturing method thereof
JP2008210584A (en) Flexible flat cable terminal
JP2008208400A (en) Method for manufacturing terminal portion of flexible flat cable
JP5234487B2 (en) Flexible flat cable and manufacturing method thereof
JP3675471B1 (en) Flexible flat cable and manufacturing method thereof
CN113811641A (en) Printed wiring board
JP2010287378A (en) Solar battery cell connecting connector, and connection method of solar battery cell
JP5213494B2 (en) Manufacturing method of ceramic substrate
JP2002025353A (en) Flex resistant flat cable
JP4207862B2 (en) Flat cable and manufacturing method thereof
JP2001073186A (en) Production of parts for wiring laminated with insulating film
JP4427044B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JPH0681189A (en) Production of plated copper sheet or plated copper alloy sheet for producing electric connector
JP2007191674A (en) Adhesive with wiring
JP5154011B2 (en) Flexible flat cable
JP2003086024A (en) Sn PLATING FLAT CONDUCTOR AND FLAT CABLE USING THE SAME
JP2005206869A (en) Electrically conductive component, and its production method
CN211350158U (en) Anti-oxidation tin whisker-proof FFC wire rod
JP2010007111A (en) Copper or copper alloy rectangular conductive body and flexible flat cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Effective date: 20120305

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120625

Free format text: JAPANESE INTERMEDIATE CODE: A02