JP2008208247A - Resin or resin composition for laser welding use, and molded form using the same - Google Patents

Resin or resin composition for laser welding use, and molded form using the same Download PDF

Info

Publication number
JP2008208247A
JP2008208247A JP2007047331A JP2007047331A JP2008208247A JP 2008208247 A JP2008208247 A JP 2008208247A JP 2007047331 A JP2007047331 A JP 2007047331A JP 2007047331 A JP2007047331 A JP 2007047331A JP 2008208247 A JP2008208247 A JP 2008208247A
Authority
JP
Japan
Prior art keywords
resin
group
laser welding
laser
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007047331A
Other languages
Japanese (ja)
Inventor
Shuji Kubota
修司 久保田
Junichi Nakao
順一 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007047331A priority Critical patent/JP2008208247A/en
Publication of JP2008208247A publication Critical patent/JP2008208247A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7461Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/12Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin material or resin composition capable of forming a firm joint by laser welding, and to provide a molded form joined by laser welding using the resin or resin composition. <P>SOLUTION: The resin for laser welding use is provided, being 35 mN/m or greater in surface free energy, 150°C or higher in melting point and 20°C or higher in glass transition temperature. The resin contains, in its structure, either one kind of linkage component such as an imino group, amido group, ester group, urethane group, imido group, ether group, carbonate group or urea group, or an ionic group or reactive group such as a carboxylic acid group, hydroxy group, metal sulfonate group, amine group, glycidyl group, silanol group, carbodiimido group or isocyanate group. The resin composition for laser welding use comprises the above resin and, optionally, one or more ingredients among a heteroresin, reinforcing fiber, foaming agent, coloring material, filler and stabilizer. The molded form joined by laser welding using the above resin or resin composition is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、樹脂材料と樹脂材料の接合、樹脂材料と金属材料、樹脂材料とガラス、樹脂材料とセラミック等のレーザー溶着において適した樹脂および樹脂組成物に関する。また、本発明は、これら樹脂および樹脂組成物から得られたレーザー接合用成形体に関する。   The present invention relates to a resin and a resin composition suitable for laser welding of a resin material and a resin material, a resin material and a metal material, a resin material and glass, a resin material and ceramic, or the like. Moreover, this invention relates to the molded object for laser joining obtained from these resin and resin composition.

従来の樹脂材料と樹脂材料の接合、および金属材料、ガラス、セラミックと樹脂材料の接合に使用される方法としては、リベット締結や接着剤を用いる方法がある。接着は、金属材料と樹脂材料を接着剤によって物理的吸着力及び化学的吸着力により固定する方法である。一方、リベット締結は、金属材料と樹脂材料を貫通するように、数mmから数十mm程度の直径を有するリベットを打ち込んで固定する物理的な締結方法である。   As a conventional method used for joining a resin material and a resin material, and joining a metal material, glass, ceramic, and a resin material, there are a method using rivet fastening and an adhesive. Adhesion is a method in which a metal material and a resin material are fixed by an adhesive with a physical adsorption force and a chemical adsorption force. On the other hand, rivet fastening is a physical fastening method in which a rivet having a diameter of several millimeters to several tens of millimeters is driven and fixed so as to penetrate a metal material and a resin material.

しかしながら、接着剤を用いる方法やリベット締結では、適用分野が限定されるのが現状である。接着は、大型化・質量化することはないが、技術的な面で、接着剤が濡れ広がるために精密なピンポイントの接合が難しい点、平面より凸凹表面の方が接着強度は高くなるなど接着表面の制限、生産面では、硬化時間が長いため生産タクトの低下や接着剤の状態維持・管理が難しいなど課題が存在する。リベット締結では、締結部にある程度の大きさ・質量があるため、部品の大型化・質量化が避けられず、設計の自由度も低下するので、大型あるいは単純な商品あるいは部品に主に適用されている。その反面、樹脂材料と樹脂材料、樹脂材料と異種材料を簡便に接合する要望は非常に強い。その理由としては、必要な部分のみ樹脂材料を使用し、残りを他の樹脂材料または異種材料に置き換えることで、各種材料の特徴を併せ持った新しい複合機能性材料の創出など様々なメリットが挙げられる。例えば、従来の金属材料の一部を樹脂材料に変更した場合、樹脂材料のコストが金属材料に比べて半分以下であることから、大幅なコスト削減が期待できる。一方、樹脂材料の一部を金属材料に変更した場合、放熱等の特性を付与することが可能となる。その際の接合においては、適した場所に適した量を接合できることが好ましい。   However, the field of application is currently limited in methods using adhesives and rivet fastening. Bonding does not increase in size or mass, but technically, it is difficult to bond pinpoints precisely because the adhesive spreads wet, and adhesive strength is higher on uneven surfaces than on flat surfaces. In terms of limitation of the adhesive surface and production, there are problems such as a decrease in production tact and difficulty in maintaining and managing the state of the adhesive due to a long curing time. Since rivet fastening has a certain size and mass at the fastening part, it is inevitable to increase the size and weight of the part, and the degree of freedom in design is reduced, so it is mainly applied to large or simple products or parts. ing. On the other hand, there is a strong demand for simply joining a resin material and a resin material, or a resin material and a different material. The reason is that the resin material is used only in the necessary part and the rest is replaced with another resin material or a different material, and various merits such as the creation of a new composite functional material having the characteristics of various materials can be mentioned. . For example, when a part of a conventional metal material is changed to a resin material, since the cost of the resin material is less than half that of the metal material, a significant cost reduction can be expected. On the other hand, when a part of the resin material is changed to a metal material, it is possible to impart characteristics such as heat dissipation. In joining at that time, it is preferable that a suitable amount can be joined to a suitable place.

レーザーを用いた接合では、金属材料同士や同種樹脂同士を溶接または溶着することで接合する方法が実用化されているが、樹脂材料と異なる樹脂材料、または樹脂材料と金属やガラス、セラミックなどとの異種材料の接合は行われていない。ただ、近年、レーザー樹脂接合では,レーザー光の波長に対して透明な材料と不透明な材料を重ね合わせて、レーザー光を透明な材料側から照射し、接合部のみを溶融させ接合する画期的な方法が実用化されている。この方法では、接合面積も広くとれ、さらに加熱時の樹脂の分解に基づくガスの発生を抑えることもできる(特許文献1〜3、非特許文献1参照)。   In joining using a laser, a method of joining by welding or welding metal materials or the same kind of resins is put into practical use, but a resin material different from a resin material, or a resin material and metal, glass, ceramic, etc. The dissimilar materials are not joined. However, in recent years, laser resin bonding is an epoch-making process in which a transparent material and an opaque material are superposed on the wavelength of the laser beam, and the laser beam is irradiated from the transparent material side to melt and bond only the joint. Have been put to practical use. In this method, a large bonding area can be obtained, and generation of gas based on decomposition of the resin during heating can be suppressed (see Patent Documents 1 to 3 and Non-Patent Document 1).

金属材料同士や同種樹脂同士をレーザーを用いた溶接または溶着においては、レーザーは単なる熱源としてしか用いておらず、接合に対しては同種材料間の金属および樹脂の相互の拡散によるものだけであり、溶着には特別な技術を必要としない。一方、樹脂材料と異なる樹脂材料間の接着および、樹脂材料と金属やガラス、セラミックなどの異種材料の接合においては、樹脂および加工の観点で特別な技術が必要になるにも関わらずそのような技術は報告されていない。   In welding or welding using lasers between metal materials or the same type of resin, the laser is only used as a heat source, and bonding is only due to the mutual diffusion of metal and resin between the same type of materials. No special technique is required for welding. On the other hand, in the bonding between resin materials different from resin materials and the bonding of resin materials to dissimilar materials such as metal, glass, and ceramic, such techniques are required in spite of the necessity of special techniques from the viewpoint of resin and processing. No technology has been reported.

本発明は、かかる従来技術の課題に鑑み創案されたものであり、その目的は、適用分野に制限がなく、レーザー溶着で強固な接合部を形成することができる樹脂材料および樹脂組成物、その樹脂および樹脂組成物を用いレーザー溶着により接合された成形体を提供することにある。   The present invention was devised in view of the problems of the prior art, and its purpose is not limited in the application field, and a resin material and a resin composition capable of forming a strong joint by laser welding, It is providing the molded object joined by laser welding using resin and a resin composition.

特開2003−325710号公報JP 2003-325710 A 特開昭60−214931号公報JP-A-60-214931 特開2002−67165号公報JP 2002-67165 A 第59回レーザー加工学会論文集,第1〜7頁(2003年9月)Proceedings of the 59th Laser Processing Society, pp. 1-7 (September 2003)

本発明者等は、上記課題を解決するために鋭意研究した結果、以下に示す手段により上記課題を解決できることを見出し本発明に到達した。即ち、本発明は、下記(1)〜(6)の構成からなる。
(1)表面自由エネルギーが35mN/m以上であるレーザー溶着用樹脂
(2)融点が150℃以上である(1)のレーザー溶着用樹脂
(3)ガラス転移温度が20℃以上である(1)のレーザー溶着用樹脂
(4)(1)〜(3)のいずれかの樹脂の主鎖、側鎖及び/又は末端のいずれかにおいて、樹脂構造中にイミノ基、アミド基、エステル基、ウレタン基、イミド基、エーテル基、カーボネート基、ウレア基などの結合成分もしくは、カルボン酸、水酸基、スルホン酸金属塩基、アミン基、グリシジル基、シラノール基、カルボジイミド基、イソシアネート基などのイオン性基もしくは反応性基のうちいずれか一つを含むことを特徴とするレーザー溶着用樹脂。
(5)(1)〜(4)のいずれかの樹脂に、異種樹脂、補強繊維、発泡剤、着色材、フィラー、発泡剤、安定剤強繊維、着色剤、フィラー、発泡剤、安定剤、のうちいずれか一つ以上を含むレーザー用樹脂組成物。
(6)レーザーにより発泡することを特徴とする(1)〜(5)のいずれかのレーザー溶着用樹脂および樹脂組成物。
(7)(1)〜(6)のレーザー溶着用樹脂または樹脂組成物から得られたレーザー接合用成形体。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by the following means, and have reached the present invention. That is, this invention consists of the structure of following (1)-(6).
(1) Laser welding resin having a surface free energy of 35 mN / m or more (2) Laser welding resin having a melting point of 150 ° C. or higher (3) Glass transition temperature of 20 ° C. or higher (1) The resin for laser welding (4) In any one of the main chain, side chain and / or terminal of the resin of (1) to (3), an imino group, an amide group, an ester group, a urethane group in the resin structure Bonding components such as imide group, ether group, carbonate group, urea group or ionic groups such as carboxylic acid, hydroxyl group, sulfonic acid metal base, amine group, glycidyl group, silanol group, carbodiimide group, isocyanate group or reactivity A laser welding resin comprising any one of groups.
(5) In any one of the resins of (1) to (4), a different resin, a reinforcing fiber, a foaming agent, a colorant, a filler, a foaming agent, a stabilizer strong fiber, a colorant, a filler, a foaming agent, a stabilizer, The resin composition for lasers containing any one or more among these.
(6) The laser welding resin and resin composition according to any one of (1) to (5), which are foamed by a laser.
(7) A molded article for laser bonding obtained from the laser welding resin or resin composition of (1) to (6).

樹脂材料と異種材料、または樹脂材料と金属材料またはガラス、セラミックとの接合においては、レーザー溶着の際、その界面に特別な相互作用が発生する必要があるため、樹脂材料としては界面に共有結合や水素結合、イオン結合などの強い結合を形成可能な官能基を有することが好ましい。具体的には、樹脂材料の表面自由エネルギーが35mN/m以上有する場合、強固な接合が可能となる。さらに好ましくは、融点が150℃以上もしくはガラス転移温度が20℃以上であることが好ましい。室温において、非晶性かつガラス転移点が20℃未満であると、レーザー溶着時に樹脂が大幅に流れ出し良好な外観を得ることが難しい。さらには、その樹脂材料に、熱膨張係数を調節するためのフィラーやガラス繊維、発泡を促進するための発泡剤、界面の残留応力を緩和するためのゴム成分等がコンパウンドされた樹脂組成物を用いることが好ましい。
接合においては、材料を合わせた状態で、接合部の樹脂材料に対し、樹脂材料内部から気化もしくは熱分解されたガスが膨らみ、樹脂内部に気泡を発生させる程度まで加熱することが最も好ましい。この時、マイクロサイズ領域ではあるが、気泡発生に伴う爆発的な圧力が接合部にかかり、接合部の樹脂材料の温度が高くなっていることと相まって、気泡周辺部の樹脂材料と被着体材料が、アンカー効果などの物理的な接合、共有結合や水素結合、イオン結合を通した化学的な接合を可能にする条件を満たし接合する。さらに、樹脂材料が冷え固まる際には、気泡の温度も減少するため、気泡内部の圧力が低下し、吸着力も発生する。これらの接合力が複合した形で金属などと樹脂との接合が可能になる。さらに、加熱源としてレーザー光を使用することで、局所的な急激な加熱と急激な冷却が可能になり、気泡発生にともなう圧力・吸着力を増加させることができ、材料の接合を促進させることができる。したがって、レーザー照射時に発泡する樹脂もしくは樹脂組成物が好ましい。このような樹脂および樹脂組成物のレーザー溶着により接合された成形体は、優れた接着力、接着耐久性、界面の機密性を示す。
When joining resin materials and dissimilar materials, or resin materials and metal materials, glass, or ceramics, special interaction must occur at the interface during laser welding, so the resin material is covalently bonded to the interface. And a functional group capable of forming a strong bond such as a hydrogen bond or an ionic bond. Specifically, when the surface free energy of the resin material is 35 mN / m or more, strong bonding is possible. More preferably, the melting point is 150 ° C. or higher or the glass transition temperature is 20 ° C. or higher. If the material is amorphous and has a glass transition point of less than 20 ° C. at room temperature, it is difficult to obtain a good appearance when the resin flows out greatly during laser welding. Furthermore, a resin composition in which a filler or glass fiber for adjusting the thermal expansion coefficient, a foaming agent for promoting foaming, a rubber component for relaxing residual stress at the interface, or the like is compounded to the resin material. It is preferable to use it.
In the joining, it is most preferable to heat the resin materials in the joined portion to the extent that the vaporized or thermally decomposed gas swells from the inside of the resin material and generates bubbles in the inside of the resin in a state where the materials are combined. At this time, although it is a micro-sized region, explosive pressure accompanying the generation of bubbles is applied to the joint, and the temperature of the resin material at the joint is high, and the resin material and adherend around the bubble The materials meet the conditions that enable physical bonding such as anchor effect, and chemical bonding through covalent bonds, hydrogen bonds, and ionic bonds. Further, when the resin material cools and hardens, the temperature of the bubbles also decreases, so that the pressure inside the bubbles is reduced and an adsorption force is also generated. It becomes possible to bond a metal or the like to a resin in a form in which these bonding forces are combined. Furthermore, by using laser light as a heating source, local rapid heating and rapid cooling are possible, pressure and adsorption force associated with bubble generation can be increased, and material joining can be promoted. Can do. Therefore, a resin or resin composition that foams upon laser irradiation is preferred. A molded body joined by laser welding of such a resin and a resin composition exhibits excellent adhesive strength, adhesion durability, and interface confidentiality.

本発明のレーザー溶着用樹脂は、該樹脂材料を異種樹脂材料、金属材料、ガラス材料、又はセラミック材料と強固な接合を可能にする。具体的には、樹脂材料の表面自由エネルギーが35mN/m以上有する構造を持たせることにより、レーザー溶着時に被着体との界面に共有結合や水素結合、イオン結合などの強い結合が発生させ強固な接合を促進させることができる。さらに、異種樹脂、補強繊維、発泡剤、着色材、フィラー、発泡剤、安定剤長繊維、フィラー、発泡材、安定剤などを添加すること、またはレーザー照射時に樹脂内部で発泡させることによりレーザー溶着による接合がさらに良好となる。本発明の成形体は、自動車用内外装用部品、電気用部品、電子材料用部品、建材用部品、家庭用品、事務用品、医療用部品、産業資材用品、衣料用品等として提供することが出来て、産業上有用なものである。   The laser welding resin of the present invention enables the resin material to be strongly bonded to a different resin material, a metal material, a glass material, or a ceramic material. Specifically, by providing a structure having a surface free energy of 35 mN / m or more of the resin material, strong bonds such as covalent bonds, hydrogen bonds, and ionic bonds are generated at the interface with the adherend during laser welding, and the resin material is strong. Can be promoted. Furthermore, laser welding by adding different types of resin, reinforcing fiber, foaming agent, colorant, filler, foaming agent, stabilizer long fiber, filler, foaming material, stabilizer, etc., or foaming inside the resin during laser irradiation Bonding by is further improved. The molded body of the present invention can be provided as automotive interior / exterior parts, electrical parts, electronic material parts, building material parts, household goods, office supplies, medical parts, industrial material goods, clothing goods, etc. It is useful industrially.

また、加熱源としてレーザー光源や電離性放射線源などを使用することで、多くの利点が発生する。第一に、レーザー光源や電離性放射線源などは局所的に加熱することができるので小さな接合部を作り出すことができる。従って、リベット締結におけるリベットサイズの接合部やリベット自体が不要になり、接合部の大型化・質量化を防ぐことができる。第二に、接着剤を使用する接合方法では、接着剤が濡れ広がるために精密なピンポイントの接合が難しいが、例えばレーザー光源はミクロンオーダーまでビーム径を絞れるので、精密で微細な接合部も可能である。第三に、樹脂材料が冷え固まる際に発生する吸着力が平面ほど有利に働くので、接合表面の制限も軽減することができる。第四に、接合のために要するレーザー光照射時間は接着剤の硬化にかかる時間よりも短く、生産を律速させる工程にならない。また、レーザー光で接合する場合は接着剤で接合する場合より酸化・劣化を引き起こすことが抑制できる場合があり、維持・管理が比較的容易である。第五に、樹脂材料を透過するレーザー光の波長や電離性放射線源を選択することで、金属材料、ガラス材料、又はセラミック材料側からも樹脂材料側からも加熱することが可能になり、加熱源の加える方向の制約がなくなる。これは、設計自由度・材料選択の自由度も増え、生産技術的な面でも非常に有効である。事実、レーザー光を用いた樹脂材料同士の接合では、片方からしかレーザー光を照射できないという制約が存在する場合もある。   Moreover, many advantages are generated by using a laser light source or an ionizing radiation source as a heating source. First, laser light sources, ionizing radiation sources, and the like can be locally heated, so that small joints can be created. Therefore, a rivet-sized joint part and rivet itself in rivet fastening are not necessary, and an increase in the size and mass of the joint part can be prevented. Second, in the bonding method using an adhesive, it is difficult to bond a pinpoint precisely because the adhesive spreads wet, but for example, a laser light source can reduce the beam diameter to the micron order, so a precise and fine bonding part is also available. Is possible. Third, since the adsorption force generated when the resin material cools and hardens works more favorably on a flat surface, it is possible to reduce the limitation of the bonding surface. Fourth, the laser beam irradiation time required for bonding is shorter than the time required for curing the adhesive, and does not become a process for limiting production. In addition, when joining with a laser beam, it may be possible to suppress the occurrence of oxidation / deterioration than when joining with an adhesive, and maintenance and management are relatively easy. Fifth, by selecting the wavelength of the laser light that passes through the resin material and the ionizing radiation source, it is possible to heat from the metal material, glass material, or ceramic material side as well as the resin material side. There is no restriction on the direction of the source. This increases the degree of freedom of design and material selection, and is very effective in terms of production technology. In fact, there are cases where there is a restriction that laser light can be irradiated only from one side in joining of resin materials using laser light.

本発明の樹脂としては、表面自由エネルギーが35mN/m以上、さらに好ましくは40mN/m以上、最も好ましくは45mN/m以上のものの使用が必要である。表面自由エネルギーが35mN/m未満であると、樹脂中に水素結合やイオン結合をする部位が少なく、異種樹脂被着体と相互作用する部位が無いだけでなく、特に被着体が金属やガラス、セラミックの場合には、濡れ性の大幅な低下により接着不良を起こす。ここで示す表面自由エネルギーは接触角測定から求められた値を指す。接触角測定の液滴成分として水およびヨウ化メチレンを用い、γl(1+COSθ)=2(γsd・γld)0.5 + 2(γsp・γlp)0.5からγsd、γspを求め、γs=γsd+γspから樹脂の表面自由エネルギーを求めることができる。ここで、θは接触角、γsdは樹脂の表面自由エネルギー中の分散成分、γspは樹脂の表面自由エネルギー中の極性成分、γlは液成分の表面自由エネルギー、γldは液成分の表面自由エネルギー中の分散成分、γlpは液成分の表面自由エネルギー中の極性成分である。 As the resin of the present invention, it is necessary to use a resin having a surface free energy of 35 mN / m or more, more preferably 40 mN / m or more, and most preferably 45 mN / m or more. When the surface free energy is less than 35 mN / m, the resin has few sites for hydrogen bonding or ionic bonding, and there are no sites for interaction with different types of resin adherends. In the case of ceramic, adhesion failure occurs due to a significant decrease in wettability. The surface free energy shown here refers to a value obtained from contact angle measurement. Using water and methylene iodide as droplet components for contact angle measurement, calculate γsd and γsp from γl (1 + COSθ) = 2 (γsd · γld) 0.5 + 2 (γsp · γlp) 0.5, and the surface of the resin from γs = γsd + γsp Free energy can be obtained. Where θ is the contact angle, γsd is the dispersion component in the surface free energy of the resin, γsp is the polar component in the surface free energy of the resin, γl is the surface free energy of the liquid component, and γld is in the surface free energy of the liquid component. The dispersion component γlp is a polar component in the surface free energy of the liquid component.

本発明の樹脂としては、融点が150℃以上、もしくはガラス転移点が20℃以上であることが好ましい。融点が150℃未満でかつガラス転移点が20℃未満であると、レーザー照射時に容易に樹脂が流動してしまい良好な外観を得ることが難しいだけでなく、ヒートシールなどで容易に接着が可能なため、レーザー溶着を用いる利点が低減する。樹脂成分からレーザーを照射する場合には、非晶性樹脂もしくは、低結晶性樹脂、微結晶サイズから構成される結晶性樹脂がレーザーに対する透明性が高く好ましい。ここで記載の融点、およびガラス転移点は、十分に熱処理された樹脂をDSCを用い20℃/分で低温から昇温した際に現れる融解ピーク温度および比熱の変曲点の温度を指す。   The resin of the present invention preferably has a melting point of 150 ° C. or higher or a glass transition point of 20 ° C. or higher. If the melting point is less than 150 ° C and the glass transition point is less than 20 ° C, the resin will flow easily during laser irradiation and it will be difficult not only to obtain a good appearance, but it can also be easily bonded by heat sealing. Therefore, the advantage of using laser welding is reduced. In the case of irradiating a laser from a resin component, an amorphous resin, a low crystalline resin, or a crystalline resin composed of a microcrystalline size is preferable because of its high transparency to the laser. The melting point and glass transition point described here refer to the melting peak temperature and the inflection point temperature of specific heat that appear when a sufficiently heat-treated resin is heated from a low temperature at 20 ° C./min using DSC.

本発明の樹脂には極性基ないし、被着体である樹脂、金属、ガラス又はセラミックと反応性を有する基を側鎖及び/又は末端に有することが好ましい。そのような官能基としては下記に限定されないが、特に主鎖、側鎖及び/又は末端のいずれかにイミノ基、アミド基、エステル基、ウレタン基、イミド基、エーテル基、チオエーテル基、カーボネート基、ウレア基、もしくは、カルボン酸、水酸基、スルホン酸金属塩基、アミン基、グリシジル基、シラノール基、カルボジイミド基、イソシアネート基などの極性基、イオン性基や反応性基のうちいずれか一つを含むことが好ましい。例えば、ナイロン6やナイロン66に代表されるようなポリアミド樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレートに代表されるようなポリエステル樹脂、ポリカーボネイト樹脂、ポリメチルメタクリレートやポリアクリル酸に代表されるようなアクリル系樹脂、デュポン(株)製「カプトン」や宇部興産「ユーピレックス」に代表されるようなポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンサルファイド樹脂、ポリウレタン樹脂、スチレン樹脂の熱可塑性樹脂、またこれら熱可塑性樹脂をエポキシ樹脂やシランカップリング剤などで変性した樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿素樹脂、ポリカルボジイミド樹脂などの熱硬化性樹脂、変性した樹脂を挙げることができる。なかでも、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックとして用いられる、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンサルファイド樹脂が好ましい。具体的なポリエステルの構成成分としては、以下に示す多価カルボン酸、もしくはそのアルキルエステル、酸無水物を使用できる。多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボンル酸、4,4’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、5−スルホン酸ナトリウムイソフタル酸、5−ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,12−ドデカン二酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸、4−メチル−1,2−シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)等の芳香族多価カルボン酸等があげられる。ポリエステルのポリオール成分としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、1,2−ブタンジオ−ル、1,3−ブタンジオ−ル、1、4−ブタンジオール、1,5−ペンタンジオ−ル、1,6−ヘキサンジオ−ル、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコ−ル、ジプロピレングリコ−ル、2,2,4−トリメチル−1,5−ペンタンジオ−ル、ネオペンチルヒドロキシピバリン酸エステル、ビスフェノ−ルAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、水素化ビスフェノ−ルAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、1,9−ノナンジオール、2−メチルオクタンジオール、1,10−デカンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ダイマージオール、ポリカーボネートグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジメチロールブタン酸、ジメチロールプロピオン酸、ポリカーボネートジオール、ポリエーテルグリコール等が上げられる。ポリエーテルグリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリアルキレングリコール、およびそれらの共重合体、さらにはこれらアルキレングリコールにネオペンチルグリコールやビスフェノールAなどのジオール、ジフェノールなどを共重合したものもあてはまる。ポリエーテルグリコールの数平均分子量としては400〜10000のものが望ましい。好ましい下限は600、より好ましくは800である。さらには、ε−カプロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、β−プロピオラクトン、γ−ブチロラクトンなどのラクトン類、乳酸、グリコール酸、2−ヒドロキシイソブタン酸、3−ヒドロキシブタン酸、4−ヒドロキシブタン酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸およびその環状二量体などが上げられる。なかでも、ポリアリレート、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートなどの結晶性ポリエステル、これらにシクロヘキサンジメタノール、ネオペンチルグリコール、イソフタル酸などを共重合し、結晶性を低下もしくは非晶化した樹脂が好ましい。
ポリアミドのアミン成分としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ベンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン、ヘキサデカメチレンジアミン、オクタデカメチレンジアミン、2,2,4(または2,4,4)−トリメチルヘキサメチレンジアミンのような脂肪族ジアミン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、ビス−(4,4’−アミノシクロヘキシル)メタン、イソホロンジアミンのような脂環式ジアミン、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミンなどの芳香族ジアミンのような芳香族ジアミンおよびこれらの水添物等があげられる。ポリアミドの酸成分としては、以下に示す多価カルボン酸、もしくは酸無水物を使用できる。多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボンル酸、4,4’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、5−スルホン酸ナトリウムイソフタル酸、5−ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,12−ドデカン二酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸、4−メチル−1,2−シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)等の芳香族多価カルボン酸等があげられる。また、ε−カプロラクタムなどのラクタム、アミノカルボン酸などがあげられる。特に、ポリカプロアミド(ナイロン6)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ナイロン11T(H))、ポリビス(3−メチル−4−アミノヘキシル)メタンドデカンアミド(ナイロンPACM12)、ポリビス(3−メチル−4−アミノヘキシル)メタンドデカンアミド(ナイロンPACM12)、Tgが100℃以上の透明ナイロンおよびこれらの共重合ポリアミド、混合ポリアミドなどが好ましい。
The resin of the present invention preferably has a polar group or a group reactive with a resin, metal, glass, or ceramic as an adherend in the side chain and / or terminal. Such a functional group is not limited to the following, but in particular at any one of the main chain, side chain and / or terminal, imino group, amide group, ester group, urethane group, imide group, ether group, thioether group, carbonate group , Urea group, or any one of carboxylic acid, hydroxyl group, sulfonic acid metal base, polar group such as amine group, glycidyl group, silanol group, carbodiimide group, isocyanate group, ionic group or reactive group It is preferable. For example, a polyamide resin represented by nylon 6 or nylon 66, a polyester resin represented by polyethylene terephthalate or polybutylene terephthalate, a polycarbonate resin, an acrylic resin represented by polymethyl methacrylate or polyacrylic acid Polyimide resin, polyamide imide resin, polyphenylene sulfide resin, polyurethane resin, styrene resin thermoplastic resin, such as “Kapton” manufactured by DuPont Co., Ltd. and Ube Industries “Upilex”, and these thermoplastic resins as epoxy resins And resins modified with silane coupling agents, thermosetting resins such as epoxy resins, unsaturated polyester resins, melamine resins, urea resins, polycarbodiimide resins, and modified resins. Among these, polyester resins, polyamide resins, polycarbonate resins, polyimide resins, polyamideimide resins, and polyphenylene sulfide resins that are used as engineering plastics and super engineering plastics are preferable. As specific constituent components of the polyester, polyvalent carboxylic acids shown below, alkyl esters thereof, or acid anhydrides can be used. Examples of the polyvalent carboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 2,2′-diphenyl. Aromatic dicarboxylic acids such as dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, Sebacic acid, 1,12-dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, etc. Aliphatic and alicyclic dicarboxylic acids, trimellitic acid, pyromellitic acid Acid, benzophenonetetracarboxylic acid, biphenyltetracarboxylic acid, ethylene glycol bis (anhydrotrimellitate), and aromatic polycarboxylic acids, such as glycerol tris (anhydrotrimellitate) and the like. Examples of the polyol component of the polyester include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, 1,3. -Butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, dipropylene glycol 2,2,4-trimethyl-1,5-pentanediol, neopentylhydroxypivalate, bisphenol A ethylene oxide adduct and propylene oxide adduct, hydrogenated bisphenol A ethylene oxide adduct And propylene oxide adduct, 1,9- Nandiol, 2-methyloctanediol, 1,10-decanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, dimer diol, polycarbonate glycol, Examples thereof include glycerin, trimethylolpropane, pentaerythritol, dimethylolbutanoic acid, dimethylolpropionic acid, polycarbonate diol, and polyether glycol. Polyether glycols include polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and copolymers thereof. Furthermore, diols such as neopentyl glycol and bisphenol A, diphenols, and the like are co-polymerized with these alkylene glycols. Polymerized products also apply. The number average molecular weight of the polyether glycol is preferably 400 to 10,000. A preferred lower limit is 600, more preferably 800. Furthermore, lactones such as ε-caprolactone, δ-valerolactone, β-methyl-δ-valerolactone, β-propiolactone, γ-butyrolactone, lactic acid, glycolic acid, 2-hydroxyisobutanoic acid, 3-hydroxybutane Examples thereof include hydroxycarboxylic acids such as acid, 4-hydroxybutanoic acid and 6-hydroxycaproic acid and cyclic dimers thereof. Among them, polyarylate, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and other crystalline polyesters, these are copolymerized with cyclohexanedimethanol, neopentyl glycol, isophthalic acid, etc. A resin whose crystallinity is lowered or amorphous is preferred.
As the amine component of polyamide, ethylenediamine, trimethylenediamine, tetramethylenediamine, bentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, Tridecamethylenediamine, hexadecamethylenediamine, octadecamethylenediamine, aliphatic diamines such as 2,2,4 (or 2,4,4) -trimethylhexamethylenediamine, cyclohexanediamine, methylcyclohexanediamine, bis- ( 4,4'-aminocyclohexyl) methane, cycloaliphatic diamines such as isophoronediamine, metaxylylenediamine, paraxylylenediamine, paraphenylenediamine, metaphenyle Aromatic diamines and like these hydrogenated products such as an aromatic diamine such as diamines. As the acid component of the polyamide, the following polyvalent carboxylic acids or acid anhydrides can be used. Examples of the polyvalent carboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 2,2′-diphenyl. Aromatic dicarboxylic acids such as dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, Sebacic acid, 1,12-dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, etc. Aliphatic and alicyclic dicarboxylic acids, trimellitic acid, pyromellitic acid Acid, benzophenonetetracarboxylic acid, biphenyltetracarboxylic acid, ethylene glycol bis (anhydrotrimellitate), and aromatic polycarboxylic acids, such as glycerol tris (anhydrotrimellitate) and the like. Moreover, lactams, such as epsilon caprolactam, aminocarboxylic acid, etc. are mention | raise | lifted. In particular, polycaproamide (nylon 6), polyundecanamide (nylon 11), polydodecanamide (nylon 12), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyun Decamethylene adipamide (nylon 116), polymetaxylylene adipamide (nylon MXD6), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyhexamethylene terephthalamide (nylon 6T ), Polyhexamethylene isophthalamide (nylon 6I), polynonamethylene terephthalamide (nylon 9T), polyundecamethylene terephthalamide (nylon 11T), polyundecamethylene hexahydroterephthalamide (Niro) 11T (H)), polybis (3-methyl-4-aminohexyl) methane dodecanamide (nylon PACM12), polybis (3-methyl-4-aminohexyl) methane dodecanamide (nylon PACM12), Tg of 100 ° C. or higher Transparent nylon, copolymerized polyamides thereof, mixed polyamides and the like are preferable.

なお、本発明における樹脂材料には、異種樹脂、補強繊維、発泡剤、着色材、フィラー、安定剤等を添加したものを用いてもよい。異種樹脂としては、表面自由エネルギーが35mN/m以上の上記に代表される樹脂だけでなく、35mN/m未満の樹脂も使用可能である。35未満の樹脂としては、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコン樹脂、ゴムなどが上げられる。異種樹脂の添加により、界面の残留応力が低減し良好な接合が可能となる。補強繊維としては、カーボンファイバー、ガラスファイバー、金属ファイバー、セラミックファイバー、有機繊維などがあげられる。補強繊維の添加により、接合時の樹脂のそりが低減し、良好な接合を得ることができる。発泡剤としては、加熱時に液体から気化させることにより発泡する炭化水素類を利用した物理発泡剤、化合物の反応や熱分解を利用した化学発泡剤などがあげられる。なかでも、発泡開始温度がシャープであることから、アゾ化合物、ヒドラジン誘導体、セミカルバジド化合物、アジ化合物、ニトロソ化合物、トリアゾール化合物などの熱分解タイプの有機発泡剤が好ましい。また、樹脂中の水分や残溶剤、モノマーやオリゴマーも加熱により発泡することから発泡剤としての利用も可能である。着色剤としては、カーボンブラック、酸化チタンやその他顔料や染料があげられる。フィラーとしては、補強用フィラーや導電性フィラー、磁性フィラー、難燃フィラー、熱伝導フィラーなどがあげられる。具体的にはガラスビーズ、ガラスフレーク、シリカ、タルク、カオリン、ワラストナイト、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、カーボンナノチューブ、カーボンマイクロチューブ、フラーレン、酸化亜鉛、酸化亜鉛、酸化インジウム、酸化錫、酸化鉄、酸化チタン、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、赤燐、炭酸カルシウム、チタン酸カリウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、ホウ酸アルミニウム、硫酸バリウム、硫酸マグネシウムなどがあげられる。好ましくは、これらフィラーが1μm以下の粒径で分散していることが好ましい。粒径が1μm以上であるとレーザーの透過性が大幅に低下し、接着に大きなエネルギー量が必要となる。安定剤としては、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤、金属不活性化剤などがあげられる。これら添加剤は、1種のみの単独使用ではなく、数種を組み合わせて用いても良い。
本発明の樹脂材料の形態としては、特に限定されないがフィルム、シート、射出成形品、押出成形品、繊維、不織布、膜、積層体、発泡体の形状でも使用が可能である。また、本特許にはこのような形態に加工された樹脂材料を用い、レーザーにより接合された成型品も含まれる。
In addition, you may use for the resin material in this invention what added different resin, a reinforcing fiber, a foaming agent, a coloring material, a filler, a stabilizer, etc. As the dissimilar resin, not only the resin typified above having a surface free energy of 35 mN / m or more, but also a resin having a surface free energy of less than 35 mN / m can be used. Examples of the resin less than 35 include polyolefins such as polyethylene and polypropylene, fluorine-based resins such as polytetrafluoroethylene, silicon resins, and rubbers. Addition of a different resin reduces the residual stress at the interface and enables good bonding. Examples of the reinforcing fiber include carbon fiber, glass fiber, metal fiber, ceramic fiber, and organic fiber. By adding the reinforcing fiber, the warping of the resin at the time of bonding is reduced, and good bonding can be obtained. Examples of the foaming agent include a physical foaming agent that uses hydrocarbons that are foamed by being vaporized from a liquid during heating, and a chemical foaming agent that utilizes reaction of a compound or thermal decomposition. Among them, a thermal decomposition type organic foaming agent such as an azo compound, a hydrazine derivative, a semicarbazide compound, an azide compound, a nitroso compound, or a triazole compound is preferable because the foaming start temperature is sharp. Moreover, since the water, residual solvent, monomer, and oligomer in the resin are foamed by heating, it can be used as a foaming agent. Examples of the colorant include carbon black, titanium oxide and other pigments and dyes. Examples of the filler include a reinforcing filler, a conductive filler, a magnetic filler, a flame retardant filler, and a heat conductive filler. Specifically, glass beads, glass flakes, silica, talc, kaolin, wollastonite, mica, alumina, hydrotalcite, montmorillonite, carbon nanotubes, carbon microtubes, fullerene, zinc oxide, zinc oxide, indium oxide, tin oxide , Iron oxide, titanium oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, red phosphorus, calcium carbonate, potassium titanate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, boric acid Aluminum, barium sulfate, magnesium sulfate and the like can be mentioned. Preferably, these fillers are dispersed with a particle size of 1 μm or less. When the particle size is 1 μm or more, the laser transmittance is greatly reduced, and a large amount of energy is required for adhesion. Stabilizers include antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles, metal stabilizers, and the like. An activator is mentioned. These additives may be used in combination of several types, not just one type.
Although it does not specifically limit as a form of the resin material of this invention, A film, a sheet | seat, an injection molded product, an extrusion molded product, a fiber, a nonwoven fabric, a film | membrane, a laminated body, and the form of a foam can also be used. Further, this patent also includes a molded product that is joined by a laser using a resin material processed in such a form.

本発明での被着体としては、本発明の樹脂材料とは異なる組成を有する異種樹脂材料、金属材料、ガラス材料、セラミック材料を用いることが可能である。
本発明で被着体として使用する異種樹脂材料としては、特に樹脂は限定されないが、本発明の樹脂材料より、融点もしくはガラス転移点が同等もしくは高いことが好ましい。被着体の異種樹脂材料の融点およびガラス転移点が低い場合、レーザーにより被着体である異種樹脂材料も軟化し、形態を保つことが困難となる。また、異種樹脂材料の表面自由エネルギーは、樹脂の相溶性の観点から、本発明の樹脂材料の表面自由エネルギーに近い樹脂が好ましい。異種樹脂材料として、本発明の樹脂材料と同じものを使用することも可能である。
本発明で使用する金属材料としては、鉄、アルミニウム、チタン、銅等及びそれらの合金が挙げられるが、特に限定されない。但し、マグネシウム、アルミニウム、及びそれらの合金のように融点が低い金属材料は接合部に十分な熱を入力できないおそれがあるので好ましくない。本発明においては、接合部を高い温度まで急速加熱できる、炭素鋼、ステンレス鋼、チタン合金等からなる金属材料が特に好ましい。金属材料は、樹脂材料との接合力を高めるための表面処理を行ったものが好ましい。なお、オーステナイト系ステンレス鋼SUS304の場合、表面未研磨の受入れ材で高強度の接合部が得られ、接合される金属材料の表面の粗さは本発明者等の実験の結果、接合部の接合強度に対してほとんど影響しない場合があることが認められた。金属材料の厚さは特に限定されず、0.1mm以上、さらには1mm以上、さらには3mm以上の厚さの金属材料であっても構わない。
As the adherend in the present invention, it is possible to use a different resin material, metal material, glass material, or ceramic material having a composition different from that of the resin material of the present invention.
Although the resin is not particularly limited as the different resin material used as the adherend in the present invention, it is preferable that the melting point or the glass transition point is equal or higher than that of the resin material of the present invention. When the melting point and glass transition point of the different resin material of the adherend are low, the different resin material that is the adherend is also softened by the laser, and it becomes difficult to maintain the form. Further, the surface free energy of the different resin material is preferably a resin close to the surface free energy of the resin material of the present invention from the viewpoint of compatibility of the resin. It is possible to use the same resin material as that of the present invention as the different resin material.
Examples of the metal material used in the present invention include iron, aluminum, titanium, copper, and alloys thereof, but are not particularly limited. However, metal materials having a low melting point such as magnesium, aluminum, and alloys thereof are not preferable because there is a possibility that sufficient heat cannot be input to the joint. In the present invention, a metal material made of carbon steel, stainless steel, titanium alloy or the like that can rapidly heat the joint to a high temperature is particularly preferable. The metal material is preferably subjected to a surface treatment for increasing the bonding force with the resin material. In the case of austenitic stainless steel SUS304, a high-strength joint is obtained with an unpolished receiving material, and the roughness of the surface of the metal material to be joined is determined as a result of experiments by the present inventors. It has been observed that there may be little impact on strength. The thickness of the metal material is not particularly limited, and may be a metal material having a thickness of 0.1 mm or more, further 1 mm or more, and further 3 mm or more.

本発明の方法で使用するガラス材料としては、化学成分による分類から次のようなものである。即ち、珪酸、ソーダ灰および石灰から作られている「ソーダガラス」、珪酸、炭酸カルシウムおよび酸化鉛からなる「鉛ガラス」、珪酸、硼酸およびソーダ灰からなる「硼珪酸ガラス」などが挙げられるが、これらに限定されるものではない。ガラス材料の厚さは特に限定されず、0.1mm以上、さらには1mm以上、さらには3mm以上の厚さのガラス材料であっても構わない。   The glass materials used in the method of the present invention are as follows from the classification by chemical components. That is, “soda glass” made of silicic acid, soda ash and lime, “lead glass” made of silicic acid, calcium carbonate and lead oxide, “borosilicate glass” made of silicic acid, boric acid and soda ash, etc. However, it is not limited to these. The thickness of the glass material is not particularly limited, and may be a glass material having a thickness of 0.1 mm or more, further 1 mm or more, and further 3 mm or more.

本発明で使用するセラミック材料としては、組成の面から次のようなものである。即ち、酸化物系としてアルミナやジルコニヤなど、炭化物系として炭化珪素など、窒化物系として窒化珪素など、およびその他 炭酸塩系、リン酸塩系、水酸化物系、ハロゲン化物系および元素系等が挙げられるが、これらに限定されるものではない。セラミック材料の厚さは特に限定されず、0.1mm以上、さらには1mm以上、さらには3mm以上のセラミック材料であっても構わない。   The ceramic material used in the present invention is as follows from the viewpoint of composition. That is, alumina and zirconia as oxides, silicon carbide as carbides, silicon nitride as nitrides, and other carbonates, phosphates, hydroxides, halides, and elements Although it is mentioned, it is not limited to these. The thickness of the ceramic material is not particularly limited, and may be a ceramic material of 0.1 mm or more, further 1 mm or more, and further 3 mm or more.

また、本発明の樹脂材料は、レーザー光源や電離性放射線源などによる加熱によって気泡を発生することが好ましい。例えば、吸湿した樹脂材料中の水分が加熱されることによるガス発生や高温において樹脂材料が分解されることによるガス発生、発泡剤によるガス発生によって気泡を発生させることが可能である。   The resin material of the present invention preferably generates bubbles by heating with a laser light source or ionizing radiation source. For example, it is possible to generate bubbles by generating gas by heating moisture in the hygroscopic resin material, generating gas by decomposing the resin material at a high temperature, or generating gas by a foaming agent.

本発明の樹脂材料と、被着体(前述したように異種樹脂材料、金属材料、ガラス材料又はセラミック材料等を含む、以下被着体と記す)とを合わせた状態で接合部をレーザー光や電離性放射線などで加熱することにより両材料を強固に接合することができる。接合部の加熱温度は、樹脂材料内部に微細な気泡を発生させる温度であることが必要であり、具体的には樹脂の軟化温度以上で被着体の軟化温度未満であり、接合部において200℃〜1500℃であることが好ましい。また、加熱温度は、樹脂の気泡が接合部付近からの移動を伴うような高い温度にしないことが好ましい。樹脂中の気泡が移動すると、接合部における気泡発生に伴う圧力と熱による接合が期待できなくなるからである。なお、加熱により接合部の樹脂中に発生する気泡の球相当直径の上限は、接合強度や外観の点から5mm以下、好ましくは3mm以下、さら好ましくは1mm以下、特に好ましくは0.5mm以下である。下限は接合強度の点から0.0001mm以上、好ましくは0.001mm以上、さら好ましくは0.01mm以上、特に好ましくは0.05mm以上である。   In the state in which the resin material of the present invention and the adherend (including different resin materials, metal materials, glass materials, ceramic materials, etc., as described above) are combined, Both materials can be firmly joined by heating with ionizing radiation or the like. The heating temperature of the bonded portion needs to be a temperature at which fine bubbles are generated inside the resin material. Specifically, it is equal to or higher than the softening temperature of the resin and lower than the softening temperature of the adherend. It is preferable that it is a C-1500 degreeC. The heating temperature is preferably not set to such a high temperature that the resin bubbles are accompanied by movement from the vicinity of the joint. This is because if the bubbles in the resin move, bonding due to pressure and heat associated with the generation of bubbles in the bonded portion cannot be expected. In addition, the upper limit of the sphere equivalent diameter of bubbles generated in the resin at the joint by heating is 5 mm or less, preferably 3 mm or less, more preferably 1 mm or less, and particularly preferably 0.5 mm or less from the viewpoint of bonding strength and appearance. is there. The lower limit is 0.0001 mm or more, preferably 0.001 mm or more, more preferably 0.01 mm or more, and particularly preferably 0.05 mm or more from the viewpoint of bonding strength.

レーザー光源としては、例えば、YAGレーザー、ファイバーレーザー、半導体レーザー、炭酸ガスレーザー等を用いることができる。電離性放射線源としては、例えば、電子線、γ線、X線等を用いることができるが、特に電子線が好ましい。また、これらの加熱源の照射は、連続照射又はパルス照射のいずれでもよい。
なお、レーザー光源を使用する場合は、レーザーのパワー、パワー密度、加工速度(移動速度)や焦点はずし距離等の照射条件は、目的に応じて適宜設定可能である。例えば、レーザーのパワー密度は、1W/mm〜10kW/mmが好ましい。また、金属材料、ガラス材料又はセラミック材料と樹脂材料との接合面付近の樹脂材料のみに微細な気泡を発生させる条件を設定することが好ましい。具体的には、レーザーのパワーを大きくすると接合部が高温になり、その後の冷却も遅くなり樹脂中に発生する気泡も大きくなり、一方、パワーを小さくすると樹脂中に気泡が発生しないか、気泡が極端に少なくなり、接合強度は小さくなる。接合強度は、適切なサイズの気泡を急速に発生させることにより、溶融した状態の樹脂を金属、ガラス又はセラミックの表面に密着するようにすると、高くなる。また、レーザーの焦点はずし距離を大きくすると、パワー密度が小さくなるため、それをカバーする大きなパワーのレーザーを照射することができ、その結果広い条件範囲で良好な接合部が得られ、制御が容易である。また、レーザーの移動速度を大きくすると、好適な接合が得られるレーザーパワーの範囲が広くなるので制御が容易になる。なお、レーザーの照射の方向は、被着体と樹脂材料とを合わせた状態でいずれの材料側から行っても強固な接合部を形成することができる。
As the laser light source, for example, a YAG laser, a fiber laser, a semiconductor laser, a carbon dioxide gas laser, or the like can be used. As the ionizing radiation source, for example, an electron beam, γ-ray, X-ray or the like can be used, and an electron beam is particularly preferable. Further, the irradiation of these heating sources may be either continuous irradiation or pulse irradiation.
When a laser light source is used, irradiation conditions such as laser power, power density, processing speed (moving speed), and defocus distance can be set as appropriate according to the purpose. For example, the power density of the laser is preferably 1 W / mm 2 to 10 kW / mm 2 . Moreover, it is preferable to set conditions for generating fine bubbles only in the resin material in the vicinity of the joint surface between the metal material, the glass material, or the ceramic material and the resin material. Specifically, when the power of the laser is increased, the joint becomes hot, and the subsequent cooling also slows down and the bubbles generated in the resin also increase. On the other hand, if the power is decreased, bubbles are not generated in the resin, or bubbles are generated. Is extremely reduced, and the bonding strength is reduced. The bonding strength increases when the molten resin is brought into close contact with the surface of a metal, glass or ceramic by rapidly generating bubbles of an appropriate size. In addition, when the laser defocusing distance is increased, the power density decreases, so it is possible to irradiate a large power laser that covers it, and as a result, good joints can be obtained over a wide range of conditions, and control is easy It is. In addition, when the moving speed of the laser is increased, the range of the laser power for obtaining a suitable bonding is widened, so that the control becomes easy. Note that the direction of the laser irradiation can form a strong joint even if it is performed from any material side in a state where the adherend and the resin material are combined.

本発明の樹脂材料と被着体とを合わせた状態で、レーザーにより樹脂材料と被着体との接合部を加熱することによって、樹脂材料内部から熱分解されたガスが膨らみ、樹脂内部に微細な気泡を発生させる。原理は明確ではないが、この時マイクロサイズ領域で、気泡発生に伴う爆発的な圧力が接合部にかかり、接合部の樹脂材料と被着体の温度が高くなっていることと相まって、気泡周辺部の樹脂材料と被着体が、アンカー効果などの物理的な接合力及び/又は金属、ガラス又はセラミックの酸化物を通した化学的な接合力で被着体と樹脂材料とが接合できる条件を満たし接合する。さらに、樹脂材料が冷え固まる際には、気泡の温度も減少するため、気泡内部の圧力が低下し、吸着力も発生する。これらの接合力が複合した形で強固な金属、ガラス又はセラミックと樹脂との接合が可能になる。さらに、加熱源としてレーザー光を使用することで、局所的な急激な加熱と急激な冷却が可能になり、気泡発生に伴う圧力・吸着力を増加させることでき、被着体と樹脂材料との接合を促進させることができる。   In a state where the resin material of the present invention and the adherend are combined, the thermally decomposed gas swells from the inside of the resin material by heating the joint between the resin material and the adherend with a laser, and the resin inside Bubbles are generated. The principle is not clear, but at this time, in the micro-size region, the explosive pressure accompanying the generation of bubbles is applied to the joint, and the resin material at the joint and the temperature of the adherend are high. Conditions that the adherend and resin material can be bonded to each other by physical bonding force such as anchor effect and / or chemical bonding force through metal, glass or ceramic oxide Meet and join. Further, when the resin material cools and hardens, the temperature of the bubbles also decreases, so that the pressure inside the bubbles is reduced and an adsorption force is also generated. It is possible to bond a strong metal, glass or ceramic and resin in a form in which these bonding forces are combined. Furthermore, by using laser light as a heating source, local rapid heating and rapid cooling are possible, and the pressure and adsorption force associated with the generation of bubbles can be increased. Bonding can be promoted.

以下に実施例により本発明の方法を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   The method of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例において測定された樹脂材料と被着体との接合部の各物性について以下にその測定方法を示す。
1.接合部の接合強度(引張剪断強度および破壊状態)
レーザー接合用成形体として、フィルム状、板状の樹脂材料(それぞれ長さ70mm×幅30mm×厚さ(後述参照))および板状の被着体(それぞれ長さ70mm×幅30mm×厚さ(後述参照))を用意し、長さ70mmのうち20mmを引張試験用保持部として残し50mmを重ねて接合したものを引張剪断試験片とした。被着体と樹脂材料の試験用保持部のそれぞれ10mmを引張試験機(最大荷重1トン)の上下のチャックではさみ、速度5mm/分の速度で互いに引っ張り、荷重−伸び曲線を得るとともに、最大破断荷重を計測し、これを引張剪断強度とした。50kg以上の引張剪断接着力、または、破断(破壊)が接合部以外の樹脂材料の母材で起こる(母材破壊)場合に接着力評価を○とした。また、接合直後に自然剥離したもの、または引張剪断試験において50kg未満の接着力の場合に、接着性評価を×とした。
2.接合部の気泡
最大の接合強度が得られた接合体の接合部を実体顕微鏡で観察し、気泡の存在有無を確認した。
The measuring method is shown below about each physical property of the junction part of the resin material and to-be-adhered body measured in the Example.
1. Joint strength of joint (tensile shear strength and fracture state)
As a molded article for laser bonding, a film-like or plate-like resin material (each 70 mm long × 30 mm wide × thickness (see below)) and a plate-like adherend (each 70 mm long × 30 mm wide × thickness (each (See below))), and 20 mm out of 70 mm in length was left as a tensile test holding part, and 50 mm was overlapped and joined to obtain a tensile shear test piece. 10 mm each of the adherend and the resin material test holding part is sandwiched between the upper and lower chucks of a tensile tester (maximum load 1 ton) and pulled together at a speed of 5 mm / min to obtain a load-elongation curve, The breaking load was measured and used as the tensile shear strength. When the tensile shear adhesive strength was 50 kg or more, or the fracture (breakage) occurred in the base material of the resin material other than the joint (base material failure), the adhesive strength evaluation was evaluated as “good”. Moreover, adhesive evaluation was set to x in the case of what peeled spontaneously immediately after joining, or the adhesive force of less than 50 kg in a tensile shear test.
2. Bubbles in the bonded portion The bonded portion of the bonded body having the maximum bonding strength was observed with a stereomicroscope to confirm the presence or absence of bubbles.

〔実施例1〕
以下、本発明の実施例を図面に基づき説明する。
図1は、実施例1の金属樹脂接合方法の構成を示す図である。図1に示すように、ファイバーレーザー発振器1からファイバー2でレーザー加工ヘッド3に波長1090nmのファイバーレーザー光4を導入し、焦点距離80mmの集光レンズ5で絞り、焦点位置からレンズから遠ざかる方向に20mmはなれた位置(ビーム径は5mm)に、被加工物6の金属材料ステンレス鋼SUS 304板(厚さ2mm)と被加工物7の樹脂材料結晶性ポリアミド板(東洋紡績社製「T−714H」)(厚さ2mm)とを重ね合わせて、クランプ8で固定し、レーザー光4の照射中移動速度10mm/sで移動させた。その際、集光レンズ5側(加熱源側)に被加工物7の結晶性ポリアミドが位置している。レーザー光4が被加工物7に照射されると、図2に示すように、レーザー光4は被加工物7を透過し、レーザー光4の波長に対して吸収率が高い被加工物6のステンレス鋼が主に加熱され、被加工物6から被加工物7への熱輸送9により、被加工物6と被加工物7の境界部10及びその周辺部が熱を持つことになる。その結果、図3に示すように被加工物7の結晶性ポリアミド内部で、熱分解が生じ、ガスが発生することで、気泡11が形成される。この時、気泡11の発生にともなう圧力12が発生し、被加工物6の金属材料の温度が融点温度未満で、被加工物7の樹脂材料の温度が軟化温度以上に加熱されていることと相まって、気泡11の周辺部において、被加工物7の樹脂材料と被加工物6の金属材料とが、アンカー効果などの物理的な接合、又は金属酸化物を通した化学的な接合を可能にする条件を満たし接合する。さらに、レーザー光4の照射を停止すると急激に気泡11が冷却され、圧力12が低下し、図4に示すように被加工物6のステンレス鋼を吸着する力13が発生する。これらの接合力が複合され、図5に示すように金属樹脂接合部14が形成された。
[Example 1]
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a metal resin bonding method according to the first embodiment. As shown in FIG. 1, a fiber laser beam 4 having a wavelength of 1090 nm is introduced from a fiber laser oscillator 1 into a laser processing head 3 by a fiber 2 and stopped by a condensing lens 5 having a focal length of 80 mm, in a direction away from the lens from the focal position. At a position 20 mm apart (beam diameter is 5 mm), the metal material stainless steel SUS 304 plate (thickness 2 mm) of the workpiece 6 and the resin material crystalline polyamide plate of the workpiece 7 (“T-714H manufactured by Toyobo Co., Ltd.) ”) (Thickness: 2 mm) was superposed, fixed by the clamp 8, and moved at a moving speed of 10 mm / s during irradiation with the laser beam 4. At that time, the crystalline polyamide of the workpiece 7 is located on the condenser lens 5 side (heating source side). When the workpiece 7 is irradiated with the laser beam 4, the laser beam 4 passes through the workpiece 7 as shown in FIG. 2, and the workpiece 6 has a high absorption rate with respect to the wavelength of the laser beam 4. Stainless steel is mainly heated, and due to heat transport 9 from the workpiece 6 to the workpiece 7, the boundary portion 10 between the workpiece 6 and the workpiece 7 and its peripheral portion have heat. As a result, as shown in FIG. 3, thermal decomposition occurs inside the crystalline polyamide of the workpiece 7 and gas is generated, whereby bubbles 11 are formed. At this time, the pressure 12 accompanying the generation of the bubbles 11 is generated, the temperature of the metal material of the workpiece 6 is lower than the melting point temperature, and the temperature of the resin material of the workpiece 7 is heated above the softening temperature. In combination, the resin material of the workpiece 7 and the metal material of the workpiece 6 can be physically bonded such as an anchor effect or chemically bonded through a metal oxide in the periphery of the bubble 11. Meet the conditions to be joined. Further, when the irradiation of the laser beam 4 is stopped, the bubbles 11 are rapidly cooled, the pressure 12 is lowered, and a force 13 for adsorbing the stainless steel of the workpiece 6 is generated as shown in FIG. These bonding forces were combined to form a metal resin bonding portion 14 as shown in FIG.

実施例1において、レーザーパワーを0〜1000Wで変化した場合の接合部の引張剪断荷重を表すグラフを図6に示す。図6から明らかなように、気泡の発生がほとんどない低いレーザーパワーでは接合部の引張剪断荷重は低いが、レーザーパワーの上昇とともに適度な大きさの気泡が発生すると接合部において極めて高い引張剪断荷重が得られた。しかし、レーザーパワーを高くしすぎると、気泡が肥大化してしまい、逆に引張剪断荷重が低下した。なお、図6に示すように、引張剪断荷重測定試験では適度な大きさの気泡が発生した接合部は母材破壊を示したが、気泡の発生が不十分である接合部又は気泡が肥大化した接合部は接合部破壊を示した。このように接着力の向上には、発泡の有効であることは明らかである。
実施例2から10、比較例1および2においても同様に、レーザーパワー(0〜1000W)を変更させその際の最も高い接合強度およびその時の気泡の有無を観察した。なお、被着体側の厚みは2mmで統一した。
In Example 1, the graph showing the tensile shear load of a junction part when a laser power is changed at 0-1000W is shown in FIG. As is clear from FIG. 6, the tensile shear load at the joint is low at a low laser power with almost no bubbles, but when a moderately large bubble is generated as the laser power increases, an extremely high tensile shear load at the joint. was gotten. However, when the laser power was increased too much, the bubbles were enlarged and the tensile shear load was decreased. In addition, as shown in FIG. 6, in the tensile shear load measurement test, the joint where moderately large bubbles were generated showed fracture of the base material, but the joint or bubbles where bubble generation was insufficient was enlarged. The joints exhibited joint failure. Thus, it is clear that foaming is effective for improving the adhesive force.
Similarly, in Examples 2 to 10 and Comparative Examples 1 and 2, the laser power (0 to 1000 W) was changed, and the highest bonding strength and the presence or absence of bubbles at that time were observed. The thickness on the adherend side was unified at 2 mm.

以下に、実施例を示すが、これに限定するものではない。表1には、実施例、比較例で使用した樹脂およびその形状、厚み、接触角から求めた表面自由エネルギー、融点、ガラス転移温度を示した。表2には使用した樹脂もしくは樹脂組成物、被着体の種類、レーザー入射方向、接合強度、接合部の発泡の有無を示した。実施例から示されるように、表面自由エネルギーが35mN/mの樹脂において、被着体との接着は良好である。特に実施例1から4、6、8、10においては、発泡が見られた。実施例、5、7、9においては、発泡している条件においても優れた接着力を示したが、樹脂の強度上、未発泡状態の時にもっとも強い接着力を示した。一方、比較例においては、発泡するものもあったが、樹脂の表面自由エネルギーが35mN/m未満であり、十分な接着力は得られなかった。   Examples are shown below, but are not limited thereto. Table 1 shows the resins used in Examples and Comparative Examples and their surface free energy, melting point, and glass transition temperature obtained from their shapes, thicknesses, and contact angles. Table 2 shows the resin or resin composition used, the type of adherend, the laser incident direction, the bonding strength, and the presence or absence of foaming at the bonded portion. As shown from the Examples, the adhesion with the adherend is good in the resin having a surface free energy of 35 mN / m. In particular, in Examples 1 to 4, 6, 8, and 10, foaming was observed. In Examples 5, 7, and 9, excellent adhesive strength was exhibited even under foaming conditions, but the strongest adhesive strength was exhibited in the unfoamed state due to the strength of the resin. On the other hand, some of the comparative examples foamed, but the surface free energy of the resin was less than 35 mN / m, and sufficient adhesive strength was not obtained.

Figure 2008208247
Figure 2008208247

Figure 2008208247
Figure 2008208247

本発明の樹脂および樹脂組成物を用いることにより、異種樹脂材料、金属材料、ガラス材料又はセラミック材料と樹脂材料との強固なレーザー接合を可能にする。また、レーザーにより発泡させることでより強固なレーザー接合を可能にする。さらに、これらのレーザー溶着用樹脂または樹脂組成物から得られたレーザー接合用成形体を用いることも特徴とする。また、本発明の成形体は、自動車用内外装用部品、電気用部品、電子材料用部品、建材用部品、家庭用品、事務用品、医療用部品、産業資材用品、衣料用品等として提供することが出来て、産業上有用なものである。
By using the resin and the resin composition of the present invention, it is possible to perform strong laser bonding between a different resin material, a metal material, a glass material, or a ceramic material and the resin material. In addition, stronger laser bonding is possible by foaming with a laser. Furthermore, it is also characterized by using a molded article for laser bonding obtained from these laser welding resins or resin compositions. The molded article of the present invention can be provided as automotive interior / exterior parts, electrical parts, electronic material parts, building material parts, household goods, office supplies, medical parts, industrial material goods, clothing goods, etc. It can be industrially useful.

実施例1の形態に係る金属樹脂接合方法の構成を示す図The figure which shows the structure of the metal resin joining method which concerns on the form of Example 1. FIG. 実施例1の形態に係る金属樹脂接合方法におけるレーザ照射初期での接合プロセスの概略図Schematic of the joining process at the initial stage of laser irradiation in the metal resin joining method according to the form of Example 1 実施例1の形態に係る金属樹脂接合方法における空隙発生時での接合プロセスの概略図Schematic of the joining process at the time of void generation in the metal resin joining method according to the form of Example 1 実施例1の形態に係る金属樹脂接合方法におけるレーザ照射直後での接合プロセスの概略図Schematic of the bonding process immediately after laser irradiation in the metal resin bonding method according to the form of Example 1 実施例1の形態に係る金属樹脂接合方法で生成した金属樹脂接合を示す図The figure which shows the metal resin joining produced | generated with the metal resin joining method which concerns on the form of Example 1 実施例1の形態に係るレーザーパワー(0〜1000W)を変更させその際の最も高い接合強度およびその時の気泡の有無The laser power (0 to 1000 W) according to the form of Example 1 is changed, and the highest bonding strength at that time and the presence or absence of bubbles at that time

符号の説明Explanation of symbols

1 ファイバーレーザ発振器
2 ファイバー
3 レーザ加工ヘッド
4 ファイバーレーザ光
5 集光レンズ
6 被加工物
7 被加工物
8 クランプ
9 熱輸送
10 被加工物6と7の境界部
11 空隙
12 空隙11の発生にともなう圧力
13 吸着する力
14 金属樹脂接合部
DESCRIPTION OF SYMBOLS 1 Fiber laser oscillator 2 Fiber 3 Laser processing head 4 Fiber laser beam 5 Condensing lens 6 Work piece 7 Work piece 8 Clamp 9 Heat transport 10 Boundary part 11 of work pieces 6 and 7 Air gap 12 With generation of air gap 11 Pressure 13 Adsorbing force 14 Metal resin joint

Claims (7)

表面自由エネルギーが35mN/m以上であるレーザー溶着用樹脂。   Laser welding resin having a surface free energy of 35 mN / m or more. 融点が150℃以上である請求項1に記載のレーザー溶着用樹脂。   The resin for laser welding according to claim 1, having a melting point of 150 ° C or higher. ガラス転移温度が20℃以上である請求項1に記載のレーザー溶着用樹脂。   The laser welding resin according to claim 1, wherein the glass transition temperature is 20 ° C or higher. 請求項1〜3に記載のいずれかの樹脂の主鎖、側鎖及び/又は末端のいずれかにおいて、樹脂構造中にイミノ基、アミド基、エステル基、ウレタン基、イミド基、エーテル基、カーボネート基、ウレア基などの結合成分もしくは、カルボン酸、水酸基、スルホン酸金属塩基、アミン基、グリシジル基、シラノール基、カルボジイミド基、イソシアネート基などのイオン性基もしくは反応性基のうちいずれか一つを含むことを特徴とするレーザー溶着用樹脂。   Any one of the main chain, side chain and / or terminal of the resin according to any one of claims 1 to 3, wherein imino group, amide group, ester group, urethane group, imide group, ether group, carbonate in the resin structure Any one of a binding component such as a group, a urea group, or an ionic group or a reactive group such as a carboxylic acid, a hydroxyl group, a metal sulfonate group, an amine group, a glycidyl group, a silanol group, a carbodiimide group, or an isocyanate group. Laser welding resin characterized by containing. 請求項1〜4に記載のいずれかの樹脂に、異種樹脂、補強繊維、発泡剤、着色材、フィラー、発泡剤、安定剤強繊維、着色剤、フィラー、発泡剤、安定剤、のうちいずれか一つ以上を含むレーザー用樹脂組成物。     The resin according to any one of claims 1 to 4, wherein any one of a different resin, a reinforcing fiber, a foaming agent, a colorant, a filler, a foaming agent, a stabilizer strong fiber, a colorant, a filler, a foaming agent, and a stabilizer. A resin composition for lasers comprising one or more of these. レーザーにより発泡することを特徴とする請求項1〜5にいずれか記載のレーザー溶着用樹脂および樹脂組成物。     The resin and resin composition for laser welding according to any one of claims 1 to 5, wherein the resin is foamed by a laser. 請求項1〜6にいずれか記載のレーザー溶着用樹脂または樹脂組成物から得られたレーザー接合用成形体。     A molded article for laser bonding obtained from the laser welding resin or resin composition according to claim 1.
JP2007047331A 2007-02-27 2007-02-27 Resin or resin composition for laser welding use, and molded form using the same Withdrawn JP2008208247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047331A JP2008208247A (en) 2007-02-27 2007-02-27 Resin or resin composition for laser welding use, and molded form using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047331A JP2008208247A (en) 2007-02-27 2007-02-27 Resin or resin composition for laser welding use, and molded form using the same

Publications (1)

Publication Number Publication Date
JP2008208247A true JP2008208247A (en) 2008-09-11

Family

ID=39784842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047331A Withdrawn JP2008208247A (en) 2007-02-27 2007-02-27 Resin or resin composition for laser welding use, and molded form using the same

Country Status (1)

Country Link
JP (1) JP2008208247A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125653A (en) * 2008-11-26 2010-06-10 Nitto Denko Corp Method of manufacturing sheet joint body
WO2011045855A1 (en) * 2009-10-15 2011-04-21 株式会社アシックス Rubber member for laser bonding and shoe
JP2011103159A (en) * 2009-11-11 2011-05-26 Hitachi Media Electoronics Co Ltd Laser-welding structure of optical component and method for manufacturing optical pickup
CN106794636A (en) * 2014-10-10 2017-05-31 日立汽车系统株式会社 The manufacture method of laser connected structure and electronic-controlled installation and laser connected structure
IT201600118515A1 (en) * 2016-11-25 2018-05-25 Vincenzo Tagliaferri New process for making joints of polymeric material or polymeric material with other materials.
WO2022019092A1 (en) * 2020-07-22 2022-01-27 パナソニックIpマネジメント株式会社 Composite member

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214931A (en) * 1984-04-10 1985-10-28 Toyota Motor Corp Bonding of different synthetic resin materials
WO2001072872A1 (en) * 2000-03-28 2001-10-04 Asahi Kasei Kabushiki Kaisha Block copolymer
JP2002067165A (en) * 2000-09-04 2002-03-05 Toyota Motor Corp Resin molded article
JP2002348371A (en) * 2001-03-23 2002-12-04 Toray Ind Inc Welding member and molded item
JP2004269634A (en) * 2003-03-07 2004-09-30 Toray Ind Inc Weld-bondable member and molded product
JP2007092072A (en) * 2002-12-27 2007-04-12 Toray Ind Inc Preform comprising substrate for heat bonding and method for producing layered product
JP2007204683A (en) * 2006-02-03 2007-08-16 Toray Ind Inc Member for use in welding and molded article
JP2008050596A (en) * 2006-07-28 2008-03-06 Toray Ind Inc Polyester resin and thermoplastic resin composition containing the same
JP2008163167A (en) * 2006-12-28 2008-07-17 Toray Ind Inc Laser-weldable modified polyester resin composition and composite molding using the same
JP2008201812A (en) * 2007-02-16 2008-09-04 Fujifilm Corp Hydrophilic film transfer sheet, hydrophilic structure produced by using the same and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214931A (en) * 1984-04-10 1985-10-28 Toyota Motor Corp Bonding of different synthetic resin materials
WO2001072872A1 (en) * 2000-03-28 2001-10-04 Asahi Kasei Kabushiki Kaisha Block copolymer
JP2002067165A (en) * 2000-09-04 2002-03-05 Toyota Motor Corp Resin molded article
JP2002348371A (en) * 2001-03-23 2002-12-04 Toray Ind Inc Welding member and molded item
JP2007092072A (en) * 2002-12-27 2007-04-12 Toray Ind Inc Preform comprising substrate for heat bonding and method for producing layered product
JP2004269634A (en) * 2003-03-07 2004-09-30 Toray Ind Inc Weld-bondable member and molded product
JP2007204683A (en) * 2006-02-03 2007-08-16 Toray Ind Inc Member for use in welding and molded article
JP2008050596A (en) * 2006-07-28 2008-03-06 Toray Ind Inc Polyester resin and thermoplastic resin composition containing the same
JP2008163167A (en) * 2006-12-28 2008-07-17 Toray Ind Inc Laser-weldable modified polyester resin composition and composite molding using the same
JP2008201812A (en) * 2007-02-16 2008-09-04 Fujifilm Corp Hydrophilic film transfer sheet, hydrophilic structure produced by using the same and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125653A (en) * 2008-11-26 2010-06-10 Nitto Denko Corp Method of manufacturing sheet joint body
WO2011045855A1 (en) * 2009-10-15 2011-04-21 株式会社アシックス Rubber member for laser bonding and shoe
JP5114594B2 (en) * 2009-10-15 2013-01-09 株式会社アシックス Rubber member for laser bonding and shoes
JPWO2011045855A1 (en) * 2009-10-15 2013-03-04 株式会社アシックス Rubber member for laser bonding and shoes
US10660398B2 (en) 2009-10-15 2020-05-26 Asics Corporation Rubber member for laser bonding and shoe
JP2011103159A (en) * 2009-11-11 2011-05-26 Hitachi Media Electoronics Co Ltd Laser-welding structure of optical component and method for manufacturing optical pickup
CN106794636A (en) * 2014-10-10 2017-05-31 日立汽车系统株式会社 The manufacture method of laser connected structure and electronic-controlled installation and laser connected structure
EP3205480A4 (en) * 2014-10-10 2018-05-30 Hitachi Automotive Systems, Ltd. Laser bonded structure, electronic control device, and method for producing laser bonded structure
IT201600118515A1 (en) * 2016-11-25 2018-05-25 Vincenzo Tagliaferri New process for making joints of polymeric material or polymeric material with other materials.
WO2022019092A1 (en) * 2020-07-22 2022-01-27 パナソニックIpマネジメント株式会社 Composite member
JP7462243B2 (en) 2020-07-22 2024-04-05 パナソニックIpマネジメント株式会社 Composite Materials

Similar Documents

Publication Publication Date Title
JP5194629B2 (en) Joining method of thermoplastic resin material and metal material
US8168031B2 (en) Method for metal-resin joining and a metal-resin composite, a method for glass-resin joining and a glass-resin composite, and a method for ceramic-resin joining and a ceramic-resin composite
JP2008208247A (en) Resin or resin composition for laser welding use, and molded form using the same
JP2008208296A (en) Resin composition for laser welding and formed article using the same
JP4771371B2 (en) Dissimilar member joining method and dissimilar member joined product
US10576709B2 (en) Resin composite
JP4894761B2 (en) Laser welding material, laser welding method and molded product using the same
JP5085928B2 (en) Laser welding resin composition and molded article
JP5302683B2 (en) Laser welding resin composition and molded article
WO2007034970A1 (en) Laser welded product
TW200815505A (en) Molded object and method for producing the same
JP6769119B2 (en) Method for manufacturing composite molded product and carbon fiber reinforced thermoplastic resin composition for internal heat welding
CN101253036A (en) Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
JP2008230224A (en) Thermoplastic composite body
JP2012232531A (en) Laser welding method of resin molded body and metal molded body and composite molded body
WO2022209116A1 (en) Resin composition for adhesion use, adhesive film, and adhesive structure
JP6773175B2 (en) Method of joining metal, resin member and carbon fiber reinforced resin member
JP4873482B2 (en) Metal resin bonding method and metal resin composite using a plurality of laser light sources
JP5304636B2 (en) Laser welding thermoplastic resin injection molding
EP3695932B1 (en) Method for producing a bonded body of different materials
WO2023063271A1 (en) Metal member, metal-resin joined body, and method for manufacturing same
Zink et al. Joining and Characterization of PLA Aluminium Compounds for Industrial Applications
WO2018216804A1 (en) Resin molded article bonding method
WO2021233837A1 (en) Method for manufacturing a metal-polymer hybrid part and metal-polymer hybrid part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110527