JP2004269634A - Weld-bondable member and molded product - Google Patents

Weld-bondable member and molded product Download PDF

Info

Publication number
JP2004269634A
JP2004269634A JP2003060714A JP2003060714A JP2004269634A JP 2004269634 A JP2004269634 A JP 2004269634A JP 2003060714 A JP2003060714 A JP 2003060714A JP 2003060714 A JP2003060714 A JP 2003060714A JP 2004269634 A JP2004269634 A JP 2004269634A
Authority
JP
Japan
Prior art keywords
welding
pentamethylenediamine
resin
strength
polypentamethylene adipamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060714A
Other languages
Japanese (ja)
Other versions
JP4305011B2 (en
Inventor
Masaru Akita
大 秋田
Kimiya Kato
公哉 加藤
Koji Yamauchi
幸二 山内
Hideki Sawai
秀樹 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003060714A priority Critical patent/JP4305011B2/en
Publication of JP2004269634A publication Critical patent/JP2004269634A/en
Application granted granted Critical
Publication of JP4305011B2 publication Critical patent/JP4305011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1658Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning once, e.g. contour laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8246Pressure tests, e.g. hydrostatic pressure tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/301Three-dimensional joints, i.e. the joined area being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/547Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes
    • B29C66/5472Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes for making elbows or V-shaped pieces
    • B29C66/54721Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes for making elbows or V-shaped pieces for making L-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0609Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding characterised by the movement of the parts to be joined
    • B29C65/0636Orbital
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0672Spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/749Motors
    • B29L2031/7492Intake manifold

Abstract

<P>PROBLEM TO BE SOLVED: To provide a weld-bondable member excellent in the inherent properties, such as mechanical properties, heat resistance, oil resistance, and abrasion resistance, of a polyamide resin without imbalance among them and markedly excellent in weld strength, and to provide a molded product. <P>SOLUTION: The weld-bondable member comprises a polypentamethyleneadipamide resin (A) consisting mainly of pentamethylenediamine and adipic acid. The molded product has a weld-bonded part in which the resin is an adherend. In one embodiment, the weld-bondable member comprises 100 pts. wt. resin (A) and 5 to 200 pts. wt. filler (B), and the molding has a weld-bonded part in which the resin is an adherend. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は溶着接合用部材および成形品に関する。特に、溶着加工において優れた溶着強度および外観を有し、複雑な形状の部品、例えば二輪および四輪自動車のオイルタンク、吸気系部品、およびその集積部品、電装品ケース、その他容器類などの製造に適した溶着接合用部材あるいは成形品に関するものである。
【0002】
【従来の技術】
ポリアミド樹脂は、その優れた機械的特性、耐熱性、耐薬品性を有しており、自動車や電気部品材料として広く使用されている。また、ガラス繊維を配合することにより、更に強度が向上するため、ガラス繊維で強化した状態でも広く使用されている。
【0003】
ポリアミド樹脂部材の成形方法としては、射出成形法が広く利用されているが、中空の部品や複雑な形状の部品については、射出成形法のみで製造することは困難であり、2つあるいはそれ以上の部品に分割して成形した後、接合することによって製造されることがある。
【0004】
このような接合においては、接着剤を用いたり、噛合構造を用いたり、部材を構成する樹脂自身を熱等で流動化させて接合(溶着)する方法が挙げられる。しかし、接着剤を用いる方法は作業が繁雑であり、噛合構造を用いる方法は液体に接触する用途に向かない。一方、溶着法は簡便な方法であるが、近年の部品の大型化や複雑化に伴って、より高い溶着強度が要求されるようになり、溶着部分の強度が不十分であるために使用が制限されるのが現状であった。
【0005】
ポリアミド製の溶着接合用部材にはナイロン6樹脂が主に使用されてきたが、ナイロン6では、耐熱性、耐薬品性に劣るため高温で使用することができなかった。一方、ナイロン66樹脂は、耐熱性、耐薬品性に優れているものの、溶着強度が低いなどの問題があった。
【0006】
特許文献1においては、ナイロン66/6の共重合体による溶着接合用部材が提案されているが、それでも溶着強度は不十分であった。また特許文献2においては、ナイロン66/6Iの共重合体による溶着接合部材が提案されており、溶着強度は改善されているが、6I成分の共重合により強度、弾性率が低下し、機械物性の面で満足できるものではなかった。
【0007】
【特許文献1】
特開平8−337718号公報(実施例1〜3)
【特許文献2】
特開2002−348371号公報(実施例1〜6)
【0008】
【発明が解決しようとする課題】
本発明は機械的特性、耐熱性などを有し、かつ溶着強度に優れ外観が良好である、主としてポリペンタメチレンアジパミド樹脂からなる溶着接合用部材および成形品の提供を課題とする。
【0009】
【課題を解決するための手段】
本発明者らは、ポリアミド樹脂としてペンタメチレンジアミンとアジピン酸から構成されるポリペンタメチレンアジパミド樹脂を用いることで、溶着接合用樹脂部材あるいは溶着により接合された接合部を有する成形品において上記課題が達成されることを見出し、本発明に至った。
【0010】
すなわち、本発明は、
(1)主としてペンタメチレンジアミンとアジピン酸から構成されるポリペンタメチレンアジパミド樹脂(A)から成る溶着接合用部材。
【0011】
(2)ポリペンタメチレンアジパミド樹脂(A)100重量部に対し、充填材(B)を5〜200重量部含有することを特徴とする前記(1)記載の溶着接合用部材。
【0012】
(3)ポリペンタメチレンアジパミド樹脂(A)の相対粘度が1.9〜3.5であることを特徴とする前記(1)または(2)記載の溶着接合用部材。
【0013】
(4)充填材(B)が繊維状充填材であることを特徴とする前記(1)〜(3)いずれか記載の溶着接合用部材。
【0014】
(5)充填材(B)がガラス繊維であることを特徴とする前記(1)〜(4)いずれか記載の溶着接合用部材。
【0015】
(6)溶着により接合された接合部を有する成形品であって、該接合部を構成する被着材の少なくとも一つが、主としてペンタメチレンジアミンとアジピン酸から構成されるポリペンタメチレンアジパミド樹脂(A)から成ることを特徴とする成形品。
【0016】
(7)二段射出成形法、振動溶着法、レーザー溶着法および/または超音波溶着法により溶着された接合部を有することを特徴とする請求項6記載の成形品。
【0017】
(8)接合部を有する被着材の全てがポリペンタメチレンアジパミド樹脂(A)により構成されることを特徴とする請求項6または7記載の成形品。
【0018】
(9)ペンタメチレンジアミンが、リジン脱炭酸酵素を有する微生物、リジン脱炭酸酵素活性の向上した組換え微生物、またはその抽出物を用いて、リジンから産出されたものであることを特徴とする請求項1〜8いずれか記載の溶着接合用部材および成形品。
【0019】
(10)ポリペンタメチレンアジパミド樹脂(A)がペンタメチレンジアミンとアジピン酸を加熱重縮合して得られることを特徴とする前記(1)〜(8)いずれか記載の溶着接合用部材および成形品。
を提供するものである。
【0020】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0021】
本発明は機械的特性、耐熱性などを有し、かつ溶着強度に優れ外観が良好である、主としてペンタメチレンジアミンとアジピン酸から構成されるポリペンタメチレンアジパミド樹脂(A)から成る溶着接合用部材および成形品に関するものである。本発明において、主としてとは、後述するように充填材の含有や本発明の目的を損なわない範囲程度に他の成分を含有できることを意味する。
【0022】
本発明の溶着接合用部材および成形品を構成するポリペンタメチレンアジパミド樹脂(A)の重合度に関しては、靱性あるいは成形性において充分であれば特に制限されないが、0.01g/mlとした98%硫酸溶液の25℃における相対粘度が、1.9〜3.5であることが好ましく、2.1〜3.2であることが更に好ましい。相対粘度が1.9未満では、溶着接合部の耐久性が不十分である可能性があり、3.5を超えると流動性が低下するため外観に優れた成形品が得られ難くなる可能性があるため好ましくない。
【0023】
本発明で用いられる融点は、示差走査熱量計を用いて、不活性ガス雰囲気下、溶融状態から20℃/minの降温速度で30℃まで降温した後、20℃/minの昇温速度で昇温した場合に現れる吸熱ピークの温度と定義する。但し吸熱ピークが2つ以上検出される場合には、温度の高いピークを融点とする。
【0024】
本発明を構成するペンタメチレンジアミンの製法に制限はないが、例えば、2−シクロヘキセン−1−オンなどのビニルケトン類を触媒としてリジンから合成する方法や、リジン脱炭酸酵素を用いてリジンから転換する方法などが既に提案されている。前者の方法では、反応温度が約150℃と高いのに対し、後者の方法は100℃未満であり、後者の方法を用いる方が、副反応をより低減できると考えられるため、原料としては後者の方法によって得られたペンタメチレンジアミンを用いることが好ましい。
【0025】
後者の方法で使用するリジン脱炭酸酵素は、リジンをペンタメチレンジアミンに転換させる酵素であり、Escherichia coli K12株をはじめとするエシェリシア属微生物のみならず、多くの生物に存在することが知られている。
【0026】
本発明において使用するのが好ましいリジン脱炭酸酵素は、これらの生物に存在するものを使用することができ、リジン脱炭酸酵素の細胞内での活性が上昇した組換え細胞由来のものも使用できる。
【0027】
組換え細胞としては、微生物、動物、植物、または昆虫由来のものが好ましく使用できる。例えば動物を用いる場合、マウス、ラットやそれらの培養細胞などが用いられる。植物を用いる場合、例えばシロイヌナズナ、タバコやそれらの培養細胞が用いられる。また、昆虫を用いる場合、例えばカイコやその培養細胞などが用いられる。また、微生物を用いる場合、例えば、大腸菌などが用いられる。
【0028】
また、リジン脱炭酸酵素を複数種組み合わせて使用しても良い。
【0029】
このようなリジン脱炭酸酵素を持つ微生物としては、バシラス・ハロドゥランス(Bacillus halodurans)、バシラス・サブチリス(Bacillus subtilis)、エシェリシア・コリ(Escherichia coli)、セレノモナス・ルミナンチウム(Selenomonas ruminantium)、ビブリオ・コレラ(Vibrio cholerae)、ビブリオ・パラヘモリティカス(Vibrio parahaemolyticus)、ストレプトマイセス・コエリカーラ(Streptomyces coelicolor)、ストレプトマイセス・ピロサス(Streptomyces pilosus)、エイケネラ・コロデンス(Eikenella corrodens)、イユバクテリウム・アシダミノフィルム(Eubacterium acidaminophilum)、サルモネラ・ティフィムリウム(Salmonella typhimurium)、ハフニア・アルベイ(Hafnia alvei)、ナイセリア・メニンギチデス(Neisseria meningitidis)、テルモプラズマ・アシドフィルム(Thermoplasma acidophilum)、ピロコッカス・アビシ(Pyrococcus abyssi)またはコリネバクテリウム・グルタミカス(Corynebacterium
glutamicum)等が挙げられる。
【0030】
リジン脱炭酸酵素を得る方法に特に制限はないが、例えば、リジン脱炭酸酵素を有する微生物や、リジン脱炭酸酵素の細胞内での活性が上昇した組換え細胞などを適当な培地で培養し、増殖した菌体を回収し、休止菌体として用いることも可能であり、また当該菌体を破砕して無細胞抽出液を調製して用いることも可能であり、また必要に応じて精製して用いることも可能である。
【0031】
リジン脱炭酸酵素を抽出するために、リジン脱炭酸酵素を有する微生物や組換え細胞を培養する方法に特に制限はないが、例えば微生物を培養する場合、使用する培地は、炭素源、窒素源、無機イオンおよび必要に応じその他有機成分を含有する培地が用いられる。例えば、E.coliの場合しばしばLB培地が用いられる。炭素源としては、グルコース、ラクトース、ガラクトース、フラクトース、アラビノース、マルトース、キシロース、トレハロース、リボースや澱粉の加水分解物などの糖類、グリセロール、マンニトールやソルビトールなどのアルコール類、グルコン酸、フマール酸、クエン酸やコハク酸等の有機酸類を用いることができる。窒素源としては、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。有機微量栄養素としては、各種アミノ酸、ビタミンB1等のビタミン類、RNA等の核酸類などの要求物質または酵母エキス等を適量含有させることが望ましい。それらの他に、必要に応じて、リン酸カルシウム、硫酸カルシウム、鉄イオン、マンガンイオン等が少量添加される。
【0032】
培養条件にも特に制限はなく、例えばE.coliの場合、好気条件下で16〜72時間程度実施するのが良く、培養温度は30℃〜45℃に、特に好ましくは37℃に、培養pHは5〜8に、特に好ましくはpH7に制御するのがよい。なおpH調整には無機あるいは有機の酸性あるいはアルカリ性物質、さらにアンモニアガス等を使用することができる。
【0033】
増殖した微生物や組換え細胞は、遠心分離等により培養液から回収することができる。回収した微生物や組換え細胞から無細胞抽出液を調整するには、通常の方法が用いられる。すなわち、微生物や組換え細胞を超音波処理、ダイノミル、フレンチプレス等の方法にて破砕し、遠心分離により菌体残渣を除去することにより無細胞抽出液が得られる。
【0034】
無細胞抽出液からリジン脱炭酸酵素を精製するには、硫安分画、イオン交換クロマトグラフィー、疎水クロマトグラフィー、アフィニティークロマトグラフィー、ゲル濾過クロマトグラフィー、等電点沈殿、熱処理、pH処理等酵素の精製に通常用いられる手法が適宜組み合わされて用いられる。精製は、完全精製である必要は必ずしもなく、リジン脱炭酸酵素以外のリジンの分解に関与する酵素、生成物であるペンタメチレンジアミンの分解酵素等の夾雑物が除去できればよい。
【0035】
リジン脱炭酸酵素によるリジンからペンタメチレンジアミンへの変換は、上記のようにして得られるリジン脱炭酸酵素を、リジンに接触させることによって行うことができる。
【0036】
反応溶液中のリジンの濃度については、特に制限はない。
【0037】
リジン脱炭酸酵素の量は、リジンをペンタメチレンジアミンに変換する反応を触媒するのに十分な量であればよい。
【0038】
反応温度は、通常、28〜55℃、好ましくは40℃前後である。
【0039】
反応pHは、通常、5〜8、好ましくは、約6である。ペンタメチレンジアミンが生成するにつれ、反応溶液はアルカリ性へ変わるので、反応pHを維持するために無機あるいは有機の酸性物質を添加することが好ましい。好ましくは塩酸を使用することができる。
反応には静置または攪拌のいずれの方法も採用し得る。
リジン脱炭酸酵素は固定化されていてもよい。
反応時間は、使用する酵素活性、基質濃度などの条件によって異なるが、通常、1〜72時間である。また、反応は、リジンを供給しながら連続的に行ってもよい。
【0040】
このように生成したペンタメチレンジアミンを反応終了後、反応液から採取する方法としては、イオン交換樹脂を用いる方法や沈殿剤を用いる方法、溶媒抽出する方法、単蒸留する方法、その他通常の採取分離方法が採用できる。
【0041】
ポリペンタメチレンアジパミド樹脂(A)の製造方法としては、実質的にペンタメチレンジアミンとアジピン酸の塩、および水の混合物を、加熱して脱水反応を進行させる加圧加熱重縮合法が用いられる。加圧加熱重縮合とは、原料を水の共存下で加熱して、発生する水蒸気により重合系内を加圧状態としてプレポリマーを生成させた後、放圧して常圧に戻し、重合系内の温度を生成ポリマーの融点以上に上昇させ、さらに常圧あるいは減圧下に保持して重縮合させる方法である。
【0042】
ポリペンタメチレンアジパミド樹脂(A)の加圧加熱重縮合においては、高温で重合反応を行うため、ペンタメチレンジアミンが重合系内から揮発する、および/あるいは脱アンモニア反応により環化するなどの理由で、重合の進行に伴い、重合系内では全カルボキシル基量に対する全アミノ基量が少なくなる可能性がある。そのため、原料を仕込む段階で、あらかじめ特定量のペンタメチレンジアミンを過剰に添加して、重合系内のアミノ基量を制御することが、高分子量のポリペンタメチレンアジパミド樹脂(A)を合成するのに好ましい。原料として使用するペンタメチレンジアミンのモル数をa、アジピン酸のモル数をbとしたとき、その比a/bが1.005〜1.05となるように原料組成比を調整することが好ましく、1.01〜1.03となるように原料組成比を調整することがより好ましい。a/bが1.005未満の場合には、重合系内の全アミノ基量が、全カルボキシル基量よりも極めて少なくなり、十分に高分子量のポリマーが得られにくくなる。一方、a/bが1.05より大きい場合には、重合系内の全カルボキシル基量が、全アミノ基量よりも極めて少なくなり、十分に高分子量のポリマーが得られにくくなる。更にジアミン成分の揮散量も増加し、生産性、環境の点からも好ましくない。
【0043】
ポリペンタメチレンアジパミド樹脂(A)の加圧加熱重縮合においては、ポリアミドの溶融重合において通常必要とされる、重合系内を加圧状態で保持して、プレポリマーを生成させる工程が必要であり、水共存下で行うことが必要である。水の仕込量は、原料と水をあわせた全仕込量に対して10〜70重量%とすることが好ましい。水が10重量%未満の場合には、ナイロン塩の均一溶解に時間がかかり、過度の熱履歴がかかる傾向があり好ましくない。逆に、水が70重量%より多い場合には、水の除去に多大な熱エネルギーが費やされ、プレポリマーを生成させるのに、時間がかかるため、好ましくない。さらに、加圧状態で保持する圧力は、10〜20kg/cmとすることが好ましい。10kg/cm未満に保持する場合には、ペンタメチレンジアミンが重合系外へ揮発し易いため好ましくない。また、20kg/cmより高く保持する場合には、重合系内の温度を高くする必要があり、結果としてペンタメチレンジアミンが系外へ揮発し易くなるため好ましくない。
【0044】
ポリペンタメチレンアジパミド樹脂(A)の加圧加熱重縮合においては、ペンタメチレンジアミンの揮発や、脱アンモニア反応による環化を抑制するためには、重合工程全体でポリマーが受ける熱履歴を極力小さくすることが重要であり、その手段として、重合系内の最高到達温度を低くすることが有効であるが、高分子量のポリペンタメチレンアジパミド樹脂を得るためには、重合系内の最高到達温度は特定の温度領域に制御することが好ましい。本発明では、重合系内の最高到達温度を、得られるポリペンタメチレンアジパミド樹脂(A)の融点以上300℃以下にすることが好ましく、260〜290℃にすることがより好ましい。最高到達温度が融点未満の場合には、重合系内でポリマーが析出し、生産性が大幅に低下するので好ましくない。また、300℃より高い温度の場合には、ペンタメチレンジアミンの揮発や環化が促進される上、得られるポリペンタメチレンアジパミドが劣化する傾向がある。
【0045】
ポリペンタメチレンアジパミド樹脂(A)は、加圧加熱重縮合後、さらに固相重合あるいは溶融押出機で高重合度化することによって、分子量を上昇させることも可能である。固相重合は、100℃〜融点の温度範囲で、真空中、あるいは不活性ガス中で加熱することにより進行する。
【0046】
本発明の溶着接合用部材および成形品を構成するポリペンタメチレンアジパミド樹脂(A)には、充填材(B)を好ましく含有することができる。かかる充填材(B)としては有機、無機あるいは繊維状充填材、非繊維状充填材いずれの態様としても用いることができるが、好ましくは繊維状充填材である。繊維状充填材としては、例えばガラス繊維、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、硼酸アルミウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などが挙げられ、特に好ましくはガラス繊維である。非繊維状充填材としては、例えばワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属酸化物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの水酸化物、ミルドガラスファイバー、ガラスフレーク、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素などが挙げられ、これらの充填材は中空であってもよく、複数種類併用することも可能である。また、これら充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤をポリペンタメチレンアジパミド樹脂への配合時同時に配合し、もしくは予め充填材に処理して配合することは、より優れた機械的特性や外観性を得る意味において好ましい。
【0047】
充填材(B)の含有量はポリペンタメチレンアジパミド樹脂(A)100重量部に対して、5〜200重量部の範囲であることが好ましい。含有量が5重量部未満の場合には強度、剛性の補強効果が小さいため5重量部以上であることが好ましい。含有量が200重量部より多い場合には溶着強度の低下や外観が悪くなるため200重量部以下にすることが好ましい。
【0048】
本発明の溶着接合用部材は射出成形、押出成形やブロー成形などにより成形することができる。また、本発明の成形品は、溶着により接合された接合部を有する成形品であり、該接合部を構成する被着材の少なくともひとつが、前記ポリペンタメチレンアジパミド樹脂(A)により構成されている。この時溶着により接合される全ての被着材が前記ポリペンタメチレンアジパミド樹脂(A)により構成されていると、溶着強度において極めて優れるため非常に好ましい。
【0049】
本発明は、溶着接合法を適用する場合に優れた溶着強度を発現し、また、外観等の特性においても良好である。溶着接合法としては、例えば、振動溶着法、オービタル溶着法、超音波溶着法、レーザー溶着法、熱板溶着法、スピン溶着法、二段射出成形法、二色成形溶着法、高周波溶着法などが挙げられる。好ましくは、二段射出成形法、振動溶着法、レーザー溶着法、オービタル溶着法、超音波溶着法である。
【0050】
前記二段射出成形法には、例えば、一次中空成形品を成形した後に、別の金型に装着して二次成形を実施する通常の二色成形法や、また、ダイスライドインジェクションあるいはダイロータリーインジェクションのように一次成形と二次成形を、金型の一部をスライドさせることにより、同一金型内で実施する方法などが挙げられる。
【0051】
レーザー溶着法は、重ね合わせた樹脂成形体にレーザ光を照射し、照射した一方を透過させてもう一方で吸収させ溶融、融着させる工法であり、三次元接合が可能、非接触加工、バリ発生が無いなどの利点を利用して、幅広い分野に広がりつつある工法である。当工法において、レーザ光線透過側成形体に適用する樹脂材料においては、レーザ光線を透過する特徴が必須となり、照射したレーザ光線のエネルギーを100%とした場合、そのレーザ光線透過側成形体の裏側に透過して出てくるエネルギーは、10%以上は必要であることが本発明者らの検討結果から判明した。10%未満のレーザ光線透過率の成形体をレーザ光線透過側成形体に用いた場合、レーザ光線入射表面で溶融、発煙するなどの不具合を生じる可能性が十分に考えられる。
【0052】
また、本発明の溶着接合用部材あるいは成形品を構成するポリペンタメチレンアジパミド樹脂(A)には、本発明の目的を損なわない範囲で、要求される特性に応じて他のポリアミド樹脂や他のポリマー類を含有させることができる。具体的にはポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリキシリレンアジパミド(ナイロンXD6)およびこれらの混合物ないし共重合体などが挙げられる。中でも好ましいものとしては、ナイロン6、ナイロン66、ナイロン610、ナイロン6/66コポリマー、ナイロン6/12コポリマーなどの例を挙げることができる。
【0053】
また同様に、発明の目的を損なわない範囲で、要求される特性に応じて添加剤、結晶核剤、耐熱剤や紫外線吸収剤などの安定剤、難燃剤、帯電防止剤、可塑剤、滑剤、着色剤、カップリング剤などを含有させることもできる。
【0054】
充填材(B)を含有させる方法は特定の方法に限定されない。効率的な例としては、前記ポリペンタメチレンアジパミド樹脂(A)、前記充填材(B)を単軸あるいは二軸押出機などの公知の機器に供給して溶融混練する方法などを挙げることができる。
【0055】
【実施例】
以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。
【0056】
[相対粘度(ηr)測定]
98%硫酸中、0.01g/ml濃度、25℃でオストワルド式粘度計を用いて測定を行った。
【0057】
[融点(Tm)測定]
セイコー電子工業製 ロボットDSC RDC220を用い、窒素雰囲気下、試料を約5mgを採取し、溶融状態まで昇温し、20℃/minの降温速度で30℃まで降温した後、20℃/minの昇温速度で昇温した場合に現れる吸熱ピークの温度を融点(Tm)とした。
【0058】
[成形方法]
各特性評価用テストピースは東芝機械IS80型射出成形機を用いて成形した。条件はいずれもシリンダー温度:280℃、金型温度:80℃、射出−冷却時間:10−10秒、射出速度:70%、射出圧力:充填下限圧力+0.98MPa(G)とした。特に記載のない測定項目は、成形後20時間以上、常温下デシケータ中にて保管後に実施した。
【0059】
[機械特性]
引張強度 :ASTM D638に準じ測定した
曲げ弾性率 :ASTM D790に準じ測定した。
【0060】
[二段射出溶着強度評価]

Figure 2004269634
【0061】
一次射出により、図1、図2に示す2つの分割片を得た。金型のスライド構造を利用し、2つの分割片を同金型内で対向させ、次いで、前記条件で2次射出を実施、内容積500cc、一般部肉厚3mm、フランジ厚み5mmの図3に示す中空成形品を得た。該成形品に電動式水ポンプ(株式会社イワキ製)で1.13g/秒の速度の水圧を負荷し、溶着部が破裂する破裂時の圧力を溶着強度とした。
【0062】
[振動溶着強度評価]
溶着強度評価に用いた試験片の形状は図4、図5に示すとおりである。また、図4に示す試験片の溶着面には、幅1.5mm、高さ2.5mmのリブを設けてあり、溶着の際には摩擦によりリブが溶融して接合される。図4、図5に示す形状の試験片を成形し、ブランソン社製2850型振動溶着装置を用いて以下の条件で溶着した。
振動数 : 240Hz
加圧力 : 70kgf
振幅 : 1.5mm
溶着代 : 1.5mm。
【0063】
溶着によって得られた中空成形品の形状を図6に示す。得られた中空成形品中に水を充填し、水槽中にて中空成形品に内圧をかけ、溶着部が破裂する破裂時の圧力を溶着強度とした。
【0064】
[超音波溶着強度評価]
超音波溶着強度評価に用いた試験片の形状は図7に示すとおりである。溶着の際には超音波により接触部が溶融して接合される。図7に示す形状の試験片を成形し、ブランソン社製8400Z型超音波溶着装置を用いて以下の条件で溶着した。
加圧力 : 100kPa
溶着時間: 0.3秒。
【0065】
溶着によって得られた成形品の形状を図8に示す。得られた成形品のツバを固定し剥離時の力を溶着強さとした。
【0066】
[レーザ溶着強度評価]
試験片は、図9のレーザ光線透過性評価試験片5の厚さDが3mmと5mmと異なる2種類の成形品からそれぞれ切削加工してなる、幅Wが24mm、長さLが70mm、厚さDは3mmと5mmのレーザ溶着用試験片6を用いた。
【0067】
図10(a)は上記切削加工後の試験片の平面図であり、(b)はその側面図である。レーザ溶着機は、ライスター社のMODULAS Cを用いた。該溶着機は半導体レーザ使用の機器であり、レーザ光の波長は940nmの近赤外線である。最大出力が35W、焦点距離Lが38mm、焦点径Dが0.6mmである。
【0068】
図11はレーザ溶着方法の概略を示す概略図である。レーザ溶着方法は図11に示すように、レーザ光線を透過させる材料を用いたレーザ光線透過側試験片10を上部に、下部にはレーザ光線を吸収させる材料を用いたレーザ光線吸収側試験片11を置き、重ね合わせ、上部よりレーザ光線を照射する。レーザ照射はレーザ溶着軌道9に沿って行い、レーザ溶着条件は、出力15〜35W範囲および、レーザ走査速度1〜80mm/secの範囲で最も良好な溶着強度が得られる条件で行った。尚、焦点距離は38mm、焦点径は0.6mm固定で実施した。
【0069】
図12(a)は上記方法でレーザ溶着したレーザ溶着強度測定用試験片12の平面図であり、(b)は同試験片の側面図である。試験片厚みは透過側と吸収側が同じになるようにセットする。レーザ溶着強度測定用試験片12は図10に示したレーザ溶着試験片であるレーザ光線透過側試験片10とレーザ光線吸収側試験片11とが、重ね合わせ長さLを30mmとし、溶着距離Yは20mmとして、重ね合わせて溶着部13で溶着したものである。溶着強度測定には一般的な引張試験器(AG−500B)を用い、該試験片の両端を固定し、溶着部位には引張剪断応力が発生するように引張試験を行った。強度測定時の引張速度は1mm/min、スパンは40mmである。溶着強度は溶着部位が破断したときの応力とした。尚、レーザ光線透過試料へは本発明のポリペンタメチレンアジパミド樹脂を用い、レーザ光線吸収側試料へは、透過試料の樹脂組成物100重量部に対し、カーボンブラックを0.4部添加した材料を用いた。
【0070】
参考例1(リジン脱炭酸酵素の調整)
E.coli JM109株の培養は以下のように行った。まず、この菌株をLB培地5mlに1白金耳植菌し、30℃で24時間振とうして前培養を行った。
【0071】
次に、LB培地50mlを500mlの三角フラスコに入れ、予め115℃、10分間蒸気滅菌した。この培地に前培養した上記菌株を植え継ぎ、振幅30cmで、180rpmの条件下で、1N塩酸水溶液でpHを6.0に調整しながら、24時間培養した。こうして得られた菌体を集め、超音波破砕および遠心分離により無細胞抽出液を調製した。これらのリジン脱炭酸酵素活性の測定を定法に従って行った(左右田健次,味園春雄,生化学実験講座,vol.11上,P.179−191(1976))。
【0072】
リジンを基質とした場合、本来の主経路と考えられるリジンモノオキシゲナーゼ、リジンオキシダーゼおよびリジンムターゼによる転換が起こり得るので、この反応系を遮断する目的で75℃で5分間、E.coli JM109株の無細胞抽出液を加熱した。さらにこの無細胞抽出液を40%飽和および55%飽和硫酸アンモニウムにより分画した。こうして得られた粗精製リジン脱炭酸酵素溶液を用いて、リジンからペンタメチレンジアミンの生成を行った。
【0073】
参考例2(ペンタメチレンジアミンの製造)
50mM リジン塩酸塩(和光純薬工業製)、0.1mM ピリドキサルリン酸(和光純薬工業製)、40mg/L−粗精製リジン脱炭酸酵素(参考例1で調製)となるように調製した水溶液1000mlを、0.1N塩酸水溶液でpHを5.5〜6.5に維持しながら、45℃で48時間反応させ、ペンタメチレンジアミン塩酸塩を得た。この水溶液に水酸化ナトリウムを添加することによって1,5−ジアミノペンタン塩酸塩をペンタメチレンジアミンに変換し、クロロホルムで抽出して、減圧蒸留(8mmHg、70℃)することにより、ペンタメチレンジアミンを得た。
【0074】
参考例3(ペンタメチレンジアミンとアジピン酸の塩(56塩)の調製)
参考例2のペンタメチレンジアミンの水溶液を、40℃のウォーターバスに浸して撹拌しているところに、アジピン酸(HCI製)を添加していき、アジピン酸添加量に対する水溶液のpH変化を調べ中和点を求めると、濃度50wt%においてpH8.34であった。pHが8.34になるように、ペンタメチレンジアミンとアジピン酸の等モル塩を調製した。
【0075】
参考例4(ヘキサメチレンジアミンとイソフタル酸の塩(6I塩)の調製)
ヘキサメチレンジアミンの水溶液を、60℃のウォーターバスに浸して撹拌しているところに、イソフタル酸(AGIC製)を添加していき、イソフタル酸添加量に対する水溶液のpH変化を調べ中和点を求めると、濃度30wt%においてpH7.15であった。pHが7.15になるように、ヘキサメチレンジアミンとイソフタル酸の等モル塩を調製した。
【0076】
実施例1
参考例3で調製した56塩および過剰ペンタメチレンジアミン14倍mol/kmol56塩を配合し、さらに全仕込量に対して水含有量が30wt%になるように、水を反応容器に仕込み、密閉し、窒素置換した。加熱を開始して、缶内圧力が17.5kg/cm2に到達した後、水分を系外へ放出させながら缶内圧力を17.5kg/cm2で1.5時間保持した。その後1時間かけて缶内圧力を常圧に戻し、更に−160mmHgの減圧下270℃で30分間反応させ重合を完了した。その後、重合缶からポリマーをガット状に吐出してペレタイズし、これを80℃で24時間真空乾燥して、ηr=2.70、Tm=254℃のポリペンタメチレンアジパミド樹脂(A)を得た。ついで、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表1に示す。
【0077】
比較例1
東レ社製ナイロン66(CM3000)を用いて、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表1に示す。
【0078】
比較例2
東レ社製ナイロン6(CM1010)を用いて、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表1に示す。
【0079】
比較例3
東レ社製ナイロン66/6共重合体(CM3301)を用いて、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表1に示す。
【0080】
比較例4
ヘキサメチレンジアミンとアジピン酸の等モル塩(66塩、Rhodia製)、参考例4で調製した6I塩、安息香酸5倍mol/kmol塩を表1に示した組成になるように配合し、さらに全仕込量に対して水含有量が30wt%になるように、水を反応容器に仕込み、密閉し、窒素置換した。加熱を開始して、缶内圧力が17.5kg/cmに到達した後、水分を系外へ放出させながら缶内圧力を17.5kg/cmで1.5時間保持した。その後1時間かけて缶内圧力を常圧に戻し、更に−160mmHgの減圧下260℃で10分間反応させ重合を完了した。その後、重合缶からポリマーをガット状に吐出してペレタイズし、これを80℃で24時間真空乾燥して、ηr=2.30、Tm=240℃のナイロン66/6I樹脂を得た。ついで、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表1に示す。
【0081】
実施例2、3
実施例1で重合したポリペンタメチレンアジパミド樹脂(A)100重量部を、シリンダー温度270℃、スクリュー回転数250rpmに設定した二軸押出機(日本製鋼所製TEX30型)へ供給し、サイドフィーダーからガラス繊維(日本電気硝子社製 T289)を表2に示す重量部供給して溶融混練した。押出されたガットはペレタイズした後、80℃で24時間真空乾燥した。ついで、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表2に示す。
【0082】
比較例5
東レ社製ナイロン66(CM3000)100重量部を、シリンダー温度280℃、スクリュー回転数250rpmに設定した二軸押出機(日本製鋼所製TEX30型)へ供給し、サイドフィーダーからガラス繊維(日本電気硝子社製 T289)を30重量部供給して溶融混練した。押出されたガットはペレタイズした後、80℃で24時間真空乾燥した。ついで、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表2に示す。
【0083】
比較例6
東レ社製ナイロン6(CM1010)100重量部を、シリンダー温度250℃、スクリュー回転数250rpmに設定した二軸押出機(日本製鋼所製TEX30型)へ供給し、サイドフィーダーからガラス繊維(日本電気硝子社製 T289)を30重量部供給して溶融混練した。押出されたガットはペレタイズした後、80℃で24時間真空乾燥した。ついで、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表2に示す。
【0084】
比較例7
東レ社製ナイロン66/6共重合体(CM3301)100重量部を、シリンダー温度260℃、スクリュー回転数250rpmに設定した二軸押出機(日本製鋼所製TEX30型)へ供給し、サイドフィーダーからガラス繊維(日本電気硝子社製 T289)を30重量部供給して溶融混練した。押出されたガットはペレタイズした後、80℃で24時間真空乾燥した。ついで、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表2に示す。
【0085】
比較例8
比較例4で重合したナイロン66/6I樹脂100重量部を、シリンダー温度260℃、スクリュー回転数250rpmに設定した二軸押出機(日本製鋼所製TEX30型)へ供給し、サイドフィーダーからガラス繊維(日本電気硝子社製T289)を30重量部供給して溶融混練した。押出されたガットはペレタイズした後、80℃で24時間真空乾燥した。ついで、種々の試験片を射出成形し、機械物性試験、溶着試験を行い、強度、弾性率、溶着強度の評価を行った。結果を表2に示す。
【0086】
【表1】
Figure 2004269634
【0087】
【表2】
Figure 2004269634
【0088】
実施例1と比較例1〜4の比較および実施例2、3と比較例5〜8の比較より、本発明の溶着接合用部材および成形品においては、機械的特性、耐熱性に優れるのみならず、各種溶着接合技術を採用した場合での溶着強度に優れ、実用価値の非常に高いものである。
【0089】
【発明の効果】
本発明の溶着接合用部材および成形品は、機械的特性、耐熱性などに優れ、加えて溶着接合技術を採用した場合に溶着強度において顕著に優れたものである。この利点を活かして例えば、高度の強度、耐久性が要求される自動車のインテークマニホールドなどの吸気系部品、シリンダーヘッドカバーとインテークマニホールドさらにはエアクリーナーなどを統合した吸気系モジュール部品、ウォーターインレット、ウォーターアウトレットなどの冷却系部品、フューエルインジェクション、フューエルデリバリーパイプなどの燃料系部品、オイルタンクなどの容器類、スイッチなどの電装品ケース類といった中空形状部品用などに好適に用いることができる。
【図面の簡単な説明】
【図1】二段射出成形で使用した溶着強度測定用試験片の形状を示す平面図である。
【図2】二段射出成形で使用した溶着強度測定用試験片の形状を示す平面図である。
【図3】二段射出成形で使用した試験片を溶着することにより得られた中空成形品の形状を示す平面図である。
【図4】振動溶着試験で使用した溶着強度測定用試験片の形状を示す平面図である。
【図5】振動溶着試験で使用した溶着強度測定用試験片の形状を示す平面図である。
【図6】振動用着試験で使用した試験片を溶着することにより得られた中空成形品の形状を示す平面図。
【図7】超音波溶着強度試験で使用した試験片の形状を示す平面図である。
【図8】超音波溶着強度試験の溶着後の成形体の形状を示す平面図である。
【図9】切削前のレーザー溶着用試験片成形体の形状を示す(a)平面図(b)側面図である。
【図10】レーザー溶着用試験片切削品の形状を示す(a)平面図(b)側面図である。
【図11】レーザー溶着方法の概略図である。
【図12】レーザー溶着強度測定用試験片を示す(a)平面図(b)側面図である。
【符号の説明】
A 上面図
B 側面図
C 前面図
D 底面図
1 溶着部リブ
2 スプルー
3 ランナー
4 ゲート
5 レーザ光線透過性評価試験片
6 レーザ溶着用試験片
7 レーザ光線照射部
8 レーザ光線
9 レーザ光の軌道
10 レーザ光線透過側試験片
11 レーザ光線吸収側試験片
12 レーザ溶着強度測定用試験片
13 レーザ溶着部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welding joint member and a molded product. In particular, it has excellent welding strength and appearance in welding processing, and manufactures parts with complex shapes, such as oil tanks for two- and four-wheeled vehicles, intake system parts, integrated parts thereof, electrical component cases, and other containers The present invention relates to a welding joint member or molded product suitable for the above.
[0002]
[Prior art]
Polyamide resins have excellent mechanical properties, heat resistance, and chemical resistance, and are widely used as materials for automobiles and electrical parts. Moreover, since intensity | strength improves further by mix | blending glass fiber, it is used widely also in the state reinforced with glass fiber.
[0003]
As a method for molding a polyamide resin member, an injection molding method is widely used. However, it is difficult to manufacture a hollow part or a part having a complicated shape by only the injection molding method, and two or more of them are used. After being divided into parts and molded, they may be manufactured by joining.
[0004]
In such joining, there are a method of joining (welding) by using an adhesive, using a meshing structure, or fluidizing the resin constituting the member with heat or the like. However, the method using an adhesive is complicated, and the method using a meshing structure is not suitable for an application in contact with a liquid. On the other hand, the welding method is a simple method, but with the recent increase in size and complexity of parts, higher welding strength is required, and it is used because the strength of the welded portion is insufficient. The current situation was limited.
[0005]
Nylon 6 resin has been mainly used for polyamide welding and joining members. However, nylon 6 cannot be used at high temperatures because it is inferior in heat resistance and chemical resistance. On the other hand, nylon 66 resin has problems such as low welding strength, although it has excellent heat resistance and chemical resistance.
[0006]
In Patent Document 1, a member for welding and bonding using a nylon 66/6 copolymer has been proposed, but the welding strength is still insufficient. In Patent Document 2, a welded joint member made of a nylon 66 / 6I copolymer has been proposed, and the weld strength has been improved. However, the copolymerization of the 6I component reduces the strength and elastic modulus, and mechanical properties. It was not satisfactory in terms of
[0007]
[Patent Document 1]
JP-A-8-337718 (Examples 1 to 3)
[Patent Document 2]
JP 2002-348371 A (Examples 1 to 6)
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a welding joint member and a molded product mainly composed of polypentamethylene adipamide resin, which have mechanical characteristics, heat resistance, etc., have excellent welding strength and good appearance.
[0009]
[Means for Solving the Problems]
The present inventors use a polypentamethylene adipamide resin composed of pentamethylene diamine and adipic acid as a polyamide resin, so that the above-mentioned molded article having a joint part joined by welding or by welding is used. The inventors have found that the object can be achieved, and have reached the present invention.
[0010]
That is, the present invention
(1) A member for welding and bonding comprising a polypentamethylene adipamide resin (A) mainly composed of pentamethylenediamine and adipic acid.
[0011]
(2) The fusion bonding member according to (1), wherein the filler (B) is contained in an amount of 5 to 200 parts by weight with respect to 100 parts by weight of the polypentamethylene adipamide resin (A).
[0012]
(3) The member for welding and bonding as described in (1) or (2) above, wherein the polypentamethylene adipamide resin (A) has a relative viscosity of 1.9 to 3.5.
[0013]
(4) The welding joint member according to any one of (1) to (3), wherein the filler (B) is a fibrous filler.
[0014]
(5) The welding and bonding member according to any one of (1) to (4), wherein the filler (B) is a glass fiber.
[0015]
(6) Polypentamethylene adipamide resin, which is a molded product having a bonded portion bonded by welding, wherein at least one of the adherends constituting the bonded portion is mainly composed of pentamethylenediamine and adipic acid A molded product comprising (A).
[0016]
(7) The molded article according to claim 6, which has a joint portion welded by a two-stage injection molding method, a vibration welding method, a laser welding method and / or an ultrasonic welding method.
[0017]
(8) The molded article according to claim 6 or 7, wherein all of the adherends having joints are made of polypentamethylene adipamide resin (A).
[0018]
(9) The pentamethylenediamine is produced from lysine using a microorganism having lysine decarboxylase, a recombinant microorganism having improved lysine decarboxylase activity, or an extract thereof. Item 9. A member for welding and bonding according to any one of Items 1 to 8.
[0019]
(10) The member for welding and bonding according to any one of (1) to (8) above, wherein the polypentamethylene adipamide resin (A) is obtained by heat polycondensation of pentamethylenediamine and adipic acid; Molding.
Is to provide.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0021]
The present invention is a welded joint comprising a polypentamethylene adipamide resin (A) mainly composed of pentamethylenediamine and adipic acid, which has mechanical properties, heat resistance, etc., has excellent welding strength and good appearance. The present invention relates to a member and a molded product. In the present invention, mainly means that other components can be contained to the extent that the inclusion of the filler and the object of the present invention are not impaired as described later.
[0022]
The degree of polymerization of the polypentamethylene adipamide resin (A) constituting the welded joint member and molded product of the present invention is not particularly limited as long as it is sufficient in toughness or moldability, but is 0.01 g / ml. The relative viscosity at 25 ° C. of the 98% sulfuric acid solution is preferably 1.9 to 3.5, and more preferably 2.1 to 3.2. If the relative viscosity is less than 1.9, the durability of the welded joint may be insufficient, and if it exceeds 3.5, the fluidity may decrease and it may be difficult to obtain a molded product with excellent appearance. This is not preferable.
[0023]
The melting point used in the present invention is increased at a rate of temperature increase of 20 ° C./min after the temperature is lowered from the molten state to 30 ° C. at a rate of temperature decrease of 20 ° C./min using a differential scanning calorimeter. It is defined as the temperature of the endothermic peak that appears when heated. However, when two or more endothermic peaks are detected, the peak having the higher temperature is defined as the melting point.
[0024]
Although there is no restriction | limiting in the manufacturing method of the pentamethylenediamine which comprises this invention, For example, it converts from lysine using the method of synthesize | combining from lysine using vinyl ketones, such as 2-cyclohexen-1-one, and a lysine decarboxylase. Methods have already been proposed. In the former method, the reaction temperature is as high as about 150 ° C., whereas the latter method is less than 100 ° C., and it is considered that side reactions can be further reduced by using the latter method. It is preferable to use pentamethylenediamine obtained by the method.
[0025]
The lysine decarboxylase used in the latter method is an enzyme that converts lysine to pentamethylenediamine, and is known to exist not only in Escherichia microorganisms such as Escherichia coli K12 strain but also in many organisms. Yes.
[0026]
As the lysine decarboxylase preferably used in the present invention, those existing in these organisms can be used, and those derived from recombinant cells in which the intracellular activity of lysine decarboxylase is increased can also be used. .
[0027]
As the recombinant cell, those derived from microorganisms, animals, plants, or insects can be preferably used. For example, when animals are used, mice, rats and cultured cells thereof are used. When plants are used, for example, Arabidopsis thaliana, tobacco and cultured cells thereof are used. In addition, when insects are used, for example, silkworms and cultured cells thereof are used. In addition, when microorganisms are used, for example, E. coli is used.
[0028]
Further, a plurality of lysine decarboxylases may be used in combination.
[0029]
Examples of microorganisms having such lysine decarboxylase include Bacillus halodurans, Bacillus subtilis, Escherichia coli, Selenomonas ruminumium, and Selenomonas ruminumium. Vibrio cholerae), Vibrio parahaemolyticus, Streptomyces coelicolor, Streptomyces pirosus, Streptomyces epirusus Um acididamino film (Eubacterium acidaminophilum), Salmonella typhimurium (Hafnia albei), Neisseria meningocide (Neisseria meningitis) Pyrococcus abyssi) or Corynebacterium glutamicus (Corynebacterium)
glutamicum) and the like.
[0030]
The method for obtaining lysine decarboxylase is not particularly limited. For example, a microorganism having lysine decarboxylase or a recombinant cell having increased intracellular lysine decarboxylase activity is cultured in an appropriate medium. The proliferated cells can be collected and used as resting cells, and the cells can be disrupted to prepare a cell-free extract and used as necessary. It is also possible to use it.
[0031]
In order to extract lysine decarboxylase, there is no particular limitation on the method of culturing microorganisms or recombinant cells having lysine decarboxylase. For example, when culturing microorganisms, the medium used is a carbon source, nitrogen source, A medium containing inorganic ions and other organic components as required is used. For example, E.I. In the case of E. coli, LB medium is often used. Carbon sources include glucose, lactose, galactose, fructose, arabinose, maltose, xylose, trehalose, sugars such as ribose and starch hydrolysates, alcohols such as glycerol, mannitol and sorbitol, gluconic acid, fumaric acid, citric acid And organic acids such as succinic acid can be used. As the nitrogen source, inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas, aqueous ammonia and the like can be used. As organic micronutrients, it is desirable to contain appropriate amounts of various substances, required substances such as vitamins such as vitamin B1, nucleic acids such as RNA, yeast extract and the like. In addition to these, a small amount of calcium phosphate, calcium sulfate, iron ion, manganese ion or the like is added as necessary.
[0032]
There are no particular restrictions on the culture conditions. In the case of E. coli, it is preferable to carry out for about 16 to 72 hours under aerobic conditions, the culture temperature is 30 ° C. to 45 ° C., particularly preferably 37 ° C., the culture pH is 5 to 8, particularly preferably pH 7. It is good to control. In addition, an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used for pH adjustment.
[0033]
Proliferated microorganisms and recombinant cells can be recovered from the culture solution by centrifugation or the like. In order to prepare a cell-free extract from the collected microorganisms or recombinant cells, a normal method is used. That is, a cell-free extract can be obtained by crushing microorganisms and recombinant cells by a method such as ultrasonic treatment, dynomill, French press, etc., and removing cell residue by centrifugation.
[0034]
To purify lysine decarboxylase from cell-free extracts, ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, gel filtration chromatography, isoelectric precipitation, heat treatment, pH treatment, etc. The methods usually used are combined with each other as appropriate. The purification does not necessarily have to be complete purification, and it is sufficient that impurities other than lysine decarboxylase, such as an enzyme involved in the degradation of lysine and a product degrading enzyme of pentamethylenediamine, can be removed.
[0035]
The conversion from lysine to pentamethylenediamine by lysine decarboxylase can be performed by bringing the lysine decarboxylase obtained as described above into contact with lysine.
[0036]
There is no particular limitation on the concentration of lysine in the reaction solution.
[0037]
The amount of lysine decarboxylase may be sufficient to catalyze the reaction of converting lysine to pentamethylenediamine.
[0038]
The reaction temperature is usually 28 to 55 ° C, preferably around 40 ° C.
[0039]
The reaction pH is usually 5-8, preferably about 6. As pentamethylenediamine is produced, the reaction solution changes to alkaline. Therefore, it is preferable to add an inorganic or organic acidic substance to maintain the reaction pH. Preferably hydrochloric acid can be used.
Any method of standing or stirring may be employed for the reaction.
The lysine decarboxylase may be immobilized.
The reaction time varies depending on conditions such as enzyme activity and substrate concentration to be used, but is usually 1 to 72 hours. The reaction may be continuously performed while supplying lysine.
[0040]
The method of collecting the pentamethylenediamine thus produced from the reaction solution after completion of the reaction includes a method using an ion exchange resin, a method using a precipitating agent, a method of solvent extraction, a method of simple distillation, and other normal collection and separation. The method can be adopted.
[0041]
As a method for producing the polypentamethylene adipamide resin (A), a pressure heating polycondensation method in which a mixture of pentamethylenediamine, adipic acid, and water is heated to advance a dehydration reaction is used. It is done. Pressure heating polycondensation is a process in which a raw material is heated in the presence of water, and a prepolymer is produced by making the inside of the polymerization system into a pressurized state with water vapor generated, and then released to return to normal pressure. Is raised to a temperature equal to or higher than the melting point of the produced polymer, and further polycondensation is carried out while maintaining the pressure at normal pressure or reduced pressure.
[0042]
In the pressure heating polycondensation of the polypentamethylene adipamide resin (A), since the polymerization reaction is carried out at a high temperature, the pentamethylene diamine volatilizes from the polymerization system and / or cyclizes by the deammonia reaction. For the reason, as the polymerization proceeds, the total amino group amount with respect to the total carboxyl group amount may decrease in the polymerization system. Therefore, it is possible to control the amount of amino groups in the polymerization system by adding an excess of a specific amount of pentamethylenediamine in advance at the stage of charging the raw material, thereby synthesizing a high molecular weight polypentamethylene adipamide resin (A). It is preferable to do. It is preferable to adjust the raw material composition ratio so that the ratio a / b is 1.005 to 1.05, where a is the number of moles of pentamethylenediamine used as the raw material and b is the number of moles of adipic acid. More preferably, the raw material composition ratio is adjusted to 1.01 to 1.03. When a / b is less than 1.005, the total amount of amino groups in the polymerization system is extremely smaller than the total amount of carboxyl groups, making it difficult to obtain a sufficiently high molecular weight polymer. On the other hand, when a / b is larger than 1.05, the total amount of carboxyl groups in the polymerization system becomes extremely smaller than the total amount of amino groups, and it becomes difficult to obtain a sufficiently high molecular weight polymer. Furthermore, the volatilization amount of the diamine component increases, which is not preferable from the viewpoint of productivity and environment.
[0043]
In the pressure heating polycondensation of the polypentamethylene adipamide resin (A), a step is usually required in the melt polymerization of polyamide, and a step of maintaining the polymerization system in a pressurized state to generate a prepolymer is necessary. It is necessary to carry out in the presence of water. The amount of water charged is preferably 10 to 70% by weight with respect to the total amount of raw material and water combined. When the water content is less than 10% by weight, it takes a long time to uniformly dissolve the nylon salt, and an excessive heat history tends to be applied. On the other hand, when the amount of water is more than 70% by weight, a great amount of heat energy is consumed for removing the water, and it takes time to produce the prepolymer. Furthermore, the pressure held in the pressurized state is 10 to 20 kg / cm. 2 It is preferable that 10 kg / cm 2 If it is kept below, pentamethylenediamine is not preferable because it easily volatilizes out of the polymerization system. 20kg / cm 2 When the temperature is kept higher, it is necessary to increase the temperature in the polymerization system, and as a result, pentamethylenediamine tends to volatilize out of the system, which is not preferable.
[0044]
In the pressure heating polycondensation of the polypentamethylene adipamide resin (A), in order to suppress the volatilization of pentamethylenediamine and the cyclization by the deammonification reaction, the thermal history received by the polymer throughout the polymerization process is minimized. It is important to make it smaller, and as a means for this, it is effective to lower the maximum temperature reached in the polymerization system, but in order to obtain a high molecular weight polypentamethylene adipamide resin, the highest temperature in the polymerization system is required. It is preferable to control the reached temperature within a specific temperature range. In the present invention, it is preferable that the maximum temperature reached in the polymerization system is not less than the melting point of the obtained polypentamethylene adipamide resin (A) and not more than 300 ° C., more preferably 260 to 290 ° C. When the maximum temperature reached is lower than the melting point, the polymer is precipitated in the polymerization system, which is not preferable because the productivity is greatly reduced. When the temperature is higher than 300 ° C., volatilization and cyclization of pentamethylenediamine are promoted, and the resulting polypentamethylene adipamide tends to deteriorate.
[0045]
The molecular weight of the polypentamethylene adipamide resin (A) can also be increased by increasing the degree of polymerization with solid-phase polymerization or a melt extruder after pressurizing and heating polycondensation. Solid phase polymerization proceeds by heating in a vacuum or in an inert gas within a temperature range of 100 ° C. to a melting point.
[0046]
The filler (B) can be preferably contained in the polypentamethylene adipamide resin (A) constituting the welding and joining member and molded article of the present invention. The filler (B) can be used in any form of organic, inorganic or fibrous filler, and non-fibrous filler, but is preferably a fibrous filler. Examples of the fibrous filler include glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone koji fiber, and metal fiber. Particularly preferred is glass fiber. Non-fibrous fillers include, for example, silicates such as wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, alumina silicate, alumina, silicon oxide, magnesium oxide, zirconium oxide , Metal oxides such as titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, hydroxides such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide , Milled glass fiber, glass flake, glass bead, ceramic bead, boron nitride, silicon carbide and the like. These fillers may be hollow, and a plurality of types may be used in combination. In addition, these fillers are blended at the same time with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, and an epoxy compound when blended into the polypentamethylene adipamide resin, or in advance. It is preferable that the filler is processed and blended in terms of obtaining more excellent mechanical properties and appearance.
[0047]
The content of the filler (B) is preferably in the range of 5 to 200 parts by weight with respect to 100 parts by weight of the polypentamethylene adipamide resin (A). When the content is less than 5 parts by weight, the reinforcing effect of strength and rigidity is small, so that the content is preferably 5 parts by weight or more. When the content is more than 200 parts by weight, the welding strength is lowered and the appearance is deteriorated.
[0048]
The welding and joining member of the present invention can be formed by injection molding, extrusion molding, blow molding or the like. Further, the molded product of the present invention is a molded product having a joined portion joined by welding, and at least one of the adherends constituting the joined portion is constituted by the polypentamethylene adipamide resin (A). Has been. At this time, it is very preferable that all the adherends bonded by welding are composed of the polypentamethylene adipamide resin (A) because the welding strength is extremely excellent.
[0049]
The present invention expresses excellent welding strength when applying the welding method, and is also good in properties such as appearance. Examples of the welding method include vibration welding method, orbital welding method, ultrasonic welding method, laser welding method, hot plate welding method, spin welding method, two-stage injection molding method, two-color molding welding method, high frequency welding method, etc. Is mentioned. A two-stage injection molding method, a vibration welding method, a laser welding method, an orbital welding method, and an ultrasonic welding method are preferable.
[0050]
The two-stage injection molding method includes, for example, a normal two-color molding method in which a primary hollow molded product is molded and then mounted on another mold to perform secondary molding, or die slide injection or die rotary Examples include a method of performing primary molding and secondary molding in the same mold by sliding a part of the mold as in injection.
[0051]
The laser welding method is a method of irradiating a laser beam onto the laminated resin molded body, transmitting one of the irradiated parts, and absorbing and melting and fusing one of the other, allowing three-dimensional bonding, non-contact processing, burring. It is a construction method that is spreading in a wide range of fields, taking advantage of the absence of occurrence. In this construction method, in the resin material applied to the laser beam transmission side molded body, the characteristic of transmitting the laser beam is essential, and when the energy of the irradiated laser beam is 100%, the back side of the laser beam transmission side molded body From the examination results of the present inventors, it has been found that the energy that permeates through and needs to be 10% or more. When a molded product having a laser beam transmittance of less than 10% is used as the molded product on the laser beam transmission side, there is a sufficient possibility that defects such as melting and smoke generation may occur on the laser beam incident surface.
[0052]
In addition, the polypentamethylene adipamide resin (A) constituting the fusion bonding member or molded product of the present invention may contain other polyamide resins or the like depending on the required properties within a range not impairing the object of the present invention. Other polymers can be included. Specifically, polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (Nylon 612), polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (nylon 66 / 6T), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6T / 6I), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 6T / 6I), polyxylylene adipamide (nylon XD6), and mixtures or copolymers thereof. Among them, preferred examples include nylon 6, nylon 66, nylon 610, nylon 6/66 copolymer, nylon 6/12 copolymer and the like.
[0053]
Similarly, as long as the object of the invention is not impaired, additives, crystal nucleating agents, stabilizers such as heat-resistant agents and ultraviolet absorbers, flame retardants, antistatic agents, plasticizers, lubricants, A coloring agent, a coupling agent, etc. can also be contained.
[0054]
The method for containing the filler (B) is not limited to a specific method. As an efficient example, there may be mentioned a method in which the polypentamethylene adipamide resin (A) and the filler (B) are supplied to a known apparatus such as a single screw or twin screw extruder and melt kneaded. Can do.
[0055]
【Example】
Examples Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of these examples.
[0056]
[Relative viscosity (ηr) measurement]
Measurement was performed using an Ostwald viscometer at a concentration of 0.01 g / ml in 25% sulfuric acid in 98% sulfuric acid.
[0057]
[Melting point (Tm) measurement]
Using a DSC RDC220 robot manufactured by Seiko Denshi Kogyo, approximately 5 mg of a sample was collected in a nitrogen atmosphere, heated to a molten state, cooled to 30 ° C. at a cooling rate of 20 ° C./min, and then increased to 20 ° C./min. The temperature of the endothermic peak that appears when the temperature was raised at a temperature rate was defined as the melting point (Tm).
[0058]
[Molding method]
Each characteristic evaluation test piece was molded using a Toshiba Machine IS80 injection molding machine. The conditions were as follows: cylinder temperature: 280 ° C., mold temperature: 80 ° C., injection-cooling time: 10-10 seconds, injection speed: 70%, injection pressure: filling lower limit pressure + 0.98 MPa (G). Measurement items not specifically described were performed after storage in a desiccator at room temperature for 20 hours or more after molding.
[0059]
[Mechanical properties]
Tensile strength: measured according to ASTM D638
Flexural modulus: Measured according to ASTM D790.
[0060]
[Two-stage injection weld strength evaluation]
Figure 2004269634
[0061]
Two divided pieces shown in FIGS. 1 and 2 were obtained by primary injection. Using the slide structure of the mold, the two divided pieces are made to face each other in the same mold, and then the secondary injection is performed under the above conditions. The internal volume is 500 cc, the general part thickness is 3 mm, and the flange thickness is 5 mm. The hollow molded product shown was obtained. The molded article was loaded with a water pressure of 1.13 g / second by an electric water pump (manufactured by Iwaki Co., Ltd.), and the pressure at the time of rupture at which the welded part ruptured was defined as the welding strength.
[0062]
[Vibration welding strength evaluation]
The shape of the test piece used for the welding strength evaluation is as shown in FIGS. Further, ribs having a width of 1.5 mm and a height of 2.5 mm are provided on the welding surface of the test piece shown in FIG. 4, and the ribs are melted and joined by friction during welding. Test pieces having the shapes shown in FIGS. 4 and 5 were molded and welded under the following conditions using a Branson 2850 type vibration welding apparatus.
Frequency: 240Hz
Applied pressure: 70kgf
Amplitude: 1.5 mm
Welding allowance: 1.5 mm.
[0063]
The shape of the hollow molded product obtained by welding is shown in FIG. The obtained hollow molded article was filled with water, an internal pressure was applied to the hollow molded article in the water tank, and the pressure at the time of rupture at which the welded portion ruptured was defined as the welding strength.
[0064]
[Ultrasonic welding strength evaluation]
The shape of the test piece used for ultrasonic welding strength evaluation is as shown in FIG. At the time of welding, the contact portion is melted and joined by ultrasonic waves. A test piece having the shape shown in FIG. 7 was molded and welded under the following conditions using a Branson 8400Z type ultrasonic welding apparatus.
Applied pressure: 100 kPa
Welding time: 0.3 seconds.
[0065]
The shape of the molded product obtained by welding is shown in FIG. The brim of the obtained molded product was fixed, and the force at the time of peeling was defined as the welding strength.
[0066]
[Laser welding strength evaluation]
The test piece is obtained by cutting from two types of molded products having a thickness D of 3 mm and 5 mm different from the thickness D of the laser beam transmission evaluation test piece 5 of FIG. 9. The width W is 24 mm, the length L is 70 mm, and the thickness. The thickness D used 3 mm and 5 mm laser welding test pieces 6.
[0067]
FIG. 10A is a plan view of the test piece after the cutting, and FIG. 10B is a side view thereof. As the laser welding machine, MODULAS C manufactured by Leister was used. The welding machine is a device using a semiconductor laser, and the wavelength of the laser beam is near infrared at 940 nm. The maximum output is 35 W, the focal length L is 38 mm, and the focal diameter D is 0.6 mm.
[0068]
FIG. 11 is a schematic view showing an outline of the laser welding method. As shown in FIG. 11, the laser welding method includes a laser beam transmission side test piece 10 using a material that transmits a laser beam at the top and a laser beam absorption side test piece 11 using a material that absorbs the laser beam at the bottom. Are placed, overlapped, and irradiated with a laser beam from the top. Laser irradiation was performed along the laser welding trajectory 9, and laser welding conditions were performed so that the best welding strength was obtained in the range of 15 to 35 W output and in the range of laser scanning speed of 1 to 80 mm / sec. The focal length was 38 mm and the focal diameter was fixed at 0.6 mm.
[0069]
FIG. 12A is a plan view of a laser welding strength measurement test piece 12 laser-welded by the above method, and FIG. 12B is a side view of the test piece. The specimen thickness is set so that the transmission side and the absorption side are the same. The laser welding strength measurement test piece 12 is a laser welding test piece 10 and a laser beam transmission side test piece 11 and a laser beam absorption side test piece 11 shown in FIG. Is 20 mm and is overlapped and welded at the welded portion 13. A general tensile tester (AG-500B) was used to measure the welding strength, and both ends of the test piece were fixed, and a tensile test was performed so that a tensile shear stress was generated at the welding site. The tensile speed during strength measurement is 1 mm / min, and the span is 40 mm. The welding strength was the stress when the welded site was broken. The polypentamethylene adipamide resin of the present invention was used for the laser beam transmission sample, and 0.4 parts of carbon black was added to the laser beam absorption side sample with respect to 100 parts by weight of the resin composition of the transmission sample. Material was used.
[0070]
Reference example 1 (adjustment of lysine decarboxylase)
E. E. coli strain JM109 was cultured as follows. First, this platinum strain was inoculated into 5 ml of LB medium, and precultured by shaking at 30 ° C. for 24 hours.
[0071]
Next, 50 ml of LB medium was placed in a 500 ml Erlenmeyer flask and preliminarily steam sterilized at 115 ° C. for 10 minutes. The strain was precultured in this medium, and cultured for 24 hours under the condition of 30 cm in amplitude and 180 rpm while adjusting the pH to 6.0 with 1N aqueous hydrochloric acid. The bacterial cells thus obtained were collected and a cell-free extract was prepared by ultrasonic disruption and centrifugation. These lysine decarboxylase activities were measured according to a standard method (Kenji Sokota, Haruo Misono, Biochemistry Experiment Course, vol.11, P.179-191 (1976)).
[0072]
When lysine is used as a substrate, conversion by lysine monooxygenase, lysine oxidase, and lysine mutase, which are considered to be the main main pathways, can occur. The cell-free extract of E. coli strain JM109 was heated. Furthermore, this cell-free extract was fractionated with 40% saturated and 55% saturated ammonium sulfate. Using the crude purified lysine decarboxylase solution thus obtained, pentamethylenediamine was produced from lysine.
[0073]
Reference Example 2 (Production of pentamethylenediamine)
1000 ml of aqueous solution prepared to be 50 mM lysine hydrochloride (manufactured by Wako Pure Chemical Industries), 0.1 mM pyridoxal phosphate (manufactured by Wako Pure Chemical Industries), 40 mg / L-crudely purified lysine decarboxylase (prepared in Reference Example 1) Was reacted for 48 hours at 45 ° C. while maintaining the pH at 5.5 to 6.5 with 0.1N hydrochloric acid aqueous solution to obtain pentamethylenediamine hydrochloride. By adding sodium hydroxide to this aqueous solution, 1,5-diaminopentane hydrochloride is converted to pentamethylenediamine, extracted with chloroform, and distilled under reduced pressure (8 mmHg, 70 ° C.) to obtain pentamethylenediamine. It was.
[0074]
Reference Example 3 (Preparation of pentamethylenediamine and adipic acid salt (56 salts))
Adipic acid (manufactured by HCI) is added to the stirring solution of the aqueous solution of pentamethylenediamine of Reference Example 2 in a 40 ° C. water bath, and the pH change of the aqueous solution with respect to the added amount of adipic acid is being investigated. When the sum was determined, the pH was 8.34 at a concentration of 50 wt%. An equimolar salt of pentamethylenediamine and adipic acid was prepared so that the pH was 8.34.
[0075]
Reference Example 4 (Preparation of hexamethylenediamine and isophthalic acid salt (6I salt))
Isophthalic acid (manufactured by AGIC) is added to an agitated solution of hexamethylenediamine in a water bath at 60 ° C., and the neutralization point is obtained by examining the pH change of the aqueous solution relative to the amount of isophthalic acid added. The pH was 7.15 at a concentration of 30 wt%. An equimolar salt of hexamethylenediamine and isophthalic acid was prepared so that the pH was 7.15.
[0076]
Example 1
The 56 salt prepared in Reference Example 3 and excess pentamethylenediamine 14-fold mol / kmol 56 salt were blended, and water was charged into the reaction vessel so that the water content was 30 wt% with respect to the total charged amount, and sealed. And replaced with nitrogen. After heating was started and the internal pressure of the can reached 17.5 kg / cm 2, the internal pressure of the can was maintained at 17.5 kg / cm 2 for 1.5 hours while moisture was released out of the system. Thereafter, the internal pressure of the can was returned to normal pressure over 1 hour and further reacted at 270 ° C. for 30 minutes under a reduced pressure of −160 mmHg to complete the polymerization. Thereafter, the polymer was discharged from the polymerization can into pellets and pelletized, and this was vacuum-dried at 80 ° C. for 24 hours to obtain a polypentamethylene adipamide resin (A) having ηr = 2.70 and Tm = 254 ° C. Obtained. Next, various test pieces were injection molded, subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 1.
[0077]
Comparative Example 1
Various test pieces were injection molded using nylon 66 (CM3000) manufactured by Toray Industries, Inc., subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 1.
[0078]
Comparative Example 2
Various test pieces were injection molded using nylon 6 (CM1010) manufactured by Toray Industries, Inc., subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 1.
[0079]
Comparative Example 3
Various test pieces were injection-molded using a nylon 66/6 copolymer (CM3301) manufactured by Toray Industries, Inc., subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 1.
[0080]
Comparative Example 4
Hexamethylene diamine and adipic acid equimolar salt (66 salt, manufactured by Rhodia), 6I salt prepared in Reference Example 4 and benzoic acid 5 times mol / kmol salt were formulated so as to have the composition shown in Table 1, and Water was charged into the reaction vessel so that the water content was 30 wt% with respect to the total charged amount, sealed, and purged with nitrogen. Heating is started and the pressure inside the can is 17.5 kg / cm 2 The pressure inside the can is 17.5 kg / cm while releasing moisture out of the system. 2 For 1.5 hours. Thereafter, the internal pressure of the can was returned to normal pressure over 1 hour, and the reaction was further carried out at 260 ° C. for 10 minutes under a reduced pressure of −160 mmHg to complete the polymerization. Thereafter, the polymer was discharged from the polymerization can in a gut shape and pelletized, and this was vacuum-dried at 80 ° C. for 24 hours to obtain a nylon 66 / 6I resin having ηr = 2.30 and Tm = 240 ° C. Next, various test pieces were injection molded, subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 1.
[0081]
Examples 2 and 3
100 parts by weight of the polypentamethylene adipamide resin (A) polymerized in Example 1 was supplied to a twin-screw extruder (TEX30 type manufactured by Nippon Steel) set to a cylinder temperature of 270 ° C. and a screw rotation speed of 250 rpm. Glass parts (T289 manufactured by Nippon Electric Glass Co., Ltd.) by weight shown in Table 2 were supplied from the feeder and melt kneaded. The extruded gut was pelletized and then vacuum dried at 80 ° C. for 24 hours. Next, various test pieces were injection molded, subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 2.
[0082]
Comparative Example 5
100 parts by weight of nylon 66 (CM3000) manufactured by Toray Industries, Inc. is supplied to a twin-screw extruder (TEX30 type manufactured by Nippon Steel) with a cylinder temperature of 280 ° C. and a screw rotation speed of 250 rpm, and glass fiber (Nippon Electric Glass) 30 parts by weight of T289) manufactured by the company was supplied and melt-kneaded. The extruded gut was pelletized and then vacuum dried at 80 ° C. for 24 hours. Next, various test pieces were injection molded, subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 2.
[0083]
Comparative Example 6
100 parts by weight of nylon 6 (CM1010) manufactured by Toray Industries, Inc. is supplied to a twin-screw extruder (TEX30 type manufactured by Nippon Steel) with a cylinder temperature of 250 ° C. and a screw rotation speed of 250 rpm, and glass fiber (Nippon Electric Glass) 30 parts by weight of T289) manufactured by the company was supplied and melt-kneaded. The extruded gut was pelletized and then vacuum dried at 80 ° C. for 24 hours. Next, various test pieces were injection molded, subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 2.
[0084]
Comparative Example 7
100 parts by weight of nylon 66/6 copolymer (CM3301) manufactured by Toray Industries, Inc. is supplied to a twin-screw extruder (TEX30 manufactured by Nippon Steel) set at a cylinder temperature of 260 ° C. and a screw rotation speed of 250 rpm, and glass is supplied from the side feeder. 30 parts by weight of fiber (T289 manufactured by Nippon Electric Glass Co., Ltd.) was supplied and melt kneaded. The extruded gut was pelletized and then vacuum dried at 80 ° C. for 24 hours. Next, various test pieces were injection molded, subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 2.
[0085]
Comparative Example 8
100 parts by weight of the nylon 66 / 6I resin polymerized in Comparative Example 4 is supplied to a twin screw extruder (TEX30 type manufactured by Nippon Steel Works) set to a cylinder temperature of 260 ° C. and a screw rotation speed of 250 rpm, and glass fibers (from the side feeder) 30 parts by weight of Nippon Electric Glass Co., Ltd. T289) was supplied and melt-kneaded. The extruded gut was pelletized and then vacuum dried at 80 ° C. for 24 hours. Subsequently, various test pieces were injection molded, subjected to mechanical property tests and welding tests, and evaluated for strength, elastic modulus, and welding strength. The results are shown in Table 2.
[0086]
[Table 1]
Figure 2004269634
[0087]
[Table 2]
Figure 2004269634
[0088]
From the comparison between Example 1 and Comparative Examples 1 to 4, and the comparison between Examples 2 and 3 and Comparative Examples 5 to 8, the welding joint member and molded product of the present invention are only excellent in mechanical properties and heat resistance. In other words, it has excellent welding strength when various welding joining techniques are employed, and has very high practical value.
[0089]
【The invention's effect】
The welding joint member and molded product of the present invention are excellent in mechanical properties, heat resistance, and the like, and are markedly superior in welding strength when a welding joint technique is employed. Taking advantage of this advantage, for example, intake system parts such as automobile intake manifolds that require high strength and durability, intake system module parts that integrate a cylinder head cover, intake manifold, and air cleaner, water inlet, water outlet It can be preferably used for cooling system parts such as fuel injection parts, fuel system parts such as fuel injection pipes, containers such as oil tanks, and electrical parts cases such as switches.
[Brief description of the drawings]
FIG. 1 is a plan view showing the shape of a test piece for measuring welding strength used in two-stage injection molding.
FIG. 2 is a plan view showing the shape of a weld strength measurement test piece used in two-stage injection molding.
FIG. 3 is a plan view showing the shape of a hollow molded product obtained by welding a test piece used in two-stage injection molding.
FIG. 4 is a plan view showing the shape of a test piece for measuring welding strength used in a vibration welding test.
FIG. 5 is a plan view showing the shape of a test piece for measuring welding strength used in a vibration welding test.
FIG. 6 is a plan view showing the shape of a hollow molded product obtained by welding a test piece used in a vibration wearing test.
FIG. 7 is a plan view showing the shape of a test piece used in an ultrasonic welding strength test.
FIG. 8 is a plan view showing the shape of a molded body after welding in an ultrasonic welding strength test.
FIG. 9A is a plan view and FIG. 9B is a side view showing the shape of a laser welded test piece molded body before cutting.
FIG. 10A is a plan view and FIG. 10B is a side view showing the shape of a laser-welded test piece cut product.
FIG. 11 is a schematic view of a laser welding method.
12A is a plan view of a test piece for measuring laser welding strength, and FIG.
[Explanation of symbols]
A Top view
B side view
C Front view
D Bottom view
1 Welding part rib
2 Sprue
3 runners
4 Gate
5 Test piece for laser beam transmission evaluation
6 Laser welding specimen
7 Laser beam irradiation unit
8 Laser beam
9 Orbit of laser beam
10 Laser beam transmission side test piece
11 Laser beam absorption side test piece
12 Test piece for laser welding strength measurement
13 Laser welding part

Claims (10)

主としてペンタメチレンジアミンとアジピン酸から構成されるポリペンタメチレンアジパミド樹脂(A)から成る溶着接合用部材。A member for welding and bonding comprising a polypentamethylene adipamide resin (A) mainly composed of pentamethylenediamine and adipic acid. ポリペンタメチレンアジパミド樹脂(A)100重量部に対し、充填材(B)を5〜200重量部含有することを特徴とする請求項1記載の溶着接合用部材。2. The welding joint member according to claim 1, comprising 5 to 200 parts by weight of the filler (B) with respect to 100 parts by weight of the polypentamethylene adipamide resin (A). ポリペンタメチレンアジパミド樹脂(A)の相対粘度が1.9〜3.5であることを特徴とする請求項1または2記載の溶着接合用部材。The member for welding and bonding according to claim 1 or 2, wherein the relative viscosity of the polypentamethylene adipamide resin (A) is 1.9 to 3.5. 充填材(B)が繊維状充填材であることを特徴とする請求項1〜3いずれか記載の溶着接合用部材。The member for welding and bonding according to any one of claims 1 to 3, wherein the filler (B) is a fibrous filler. 充填材(B)がガラス繊維であることを特徴とする請求項1〜4いずれか記載の溶着接合用部材。The member for welding and bonding according to any one of claims 1 to 4, wherein the filler (B) is a glass fiber. 溶着により接合された接合部を有する成形品であって、該接合部を構成する被着材の少なくとも一つが、主としてペンタメチレンジアミンとアジピン酸から構成されるポリペンタメチレンアジパミド樹脂(A)から成ることを特徴とする成形品。A polypentamethylene adipamide resin (A), which is a molded article having a joined portion joined by welding, wherein at least one of the adherends constituting the joined portion is mainly composed of pentamethylenediamine and adipic acid A molded product characterized by comprising: 二段射出成形法、振動溶着法、レーザー溶着法および/または超音波溶着法により溶着された接合部を有することを特徴とする請求項6記載の成形品。The molded article according to claim 6, which has a joint portion welded by a two-stage injection molding method, a vibration welding method, a laser welding method and / or an ultrasonic welding method. 接合部を有する被着材の全てがポリペンタメチレンアジパミド樹脂(A)により構成されることを特徴とする請求項6または7記載の成形品。The molded article according to claim 6 or 7, characterized in that all of the adherends having joints are made of polypentamethylene adipamide resin (A). ペンタメチレンジアミンが、リジン脱炭酸酵素を有する微生物、リジン脱炭酸酵素活性の向上した組換え微生物、またはその抽出物を用いて、リジンから産出されたものであることを特徴とする請求項1〜8いずれか記載の溶着接合用部材および成形品。The pentamethylenediamine is produced from lysine using a microorganism having lysine decarboxylase, a recombinant microorganism having improved lysine decarboxylase activity, or an extract thereof. 8. The member for welding and bonding according to any one of 8 above. ポリペンタメチレンアジパミド樹脂(A)がペンタメチレンジアミンとアジピン酸を加熱重縮合して得られることを特徴とする請求項1〜8いずれか記載の溶着接合用部材および成形品。The member for welding and bonding according to any one of claims 1 to 8, wherein the polypentamethylene adipamide resin (A) is obtained by heat polycondensation of pentamethylenediamine and adipic acid.
JP2003060714A 2003-03-07 2003-03-07 Welded joint members and molded products Expired - Lifetime JP4305011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060714A JP4305011B2 (en) 2003-03-07 2003-03-07 Welded joint members and molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060714A JP4305011B2 (en) 2003-03-07 2003-03-07 Welded joint members and molded products

Publications (2)

Publication Number Publication Date
JP2004269634A true JP2004269634A (en) 2004-09-30
JP4305011B2 JP4305011B2 (en) 2009-07-29

Family

ID=33123139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060714A Expired - Lifetime JP4305011B2 (en) 2003-03-07 2003-03-07 Welded joint members and molded products

Country Status (1)

Country Link
JP (1) JP4305011B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113643A1 (en) * 2004-05-21 2005-12-01 Mitsubishi Chemical Corporation Polyamide resin and hinged molded articles
JP2006348057A (en) * 2004-05-21 2006-12-28 Mitsubishi Chemicals Corp Polyamide resin
JP2007332353A (en) * 2006-05-16 2007-12-27 Mitsubishi Chemicals Corp Polyamide resin
JP2008208247A (en) * 2007-02-27 2008-09-11 Toyobo Co Ltd Resin or resin composition for laser welding use, and molded form using the same
JP2009191156A (en) * 2008-02-14 2009-08-27 Mitsubishi Chemicals Corp Polyamide resin and polyamide resin composition
JP2009235352A (en) * 2008-03-28 2009-10-15 Mitsubishi Chemicals Corp Polyamide resin composition
WO2010122886A1 (en) * 2009-04-20 2010-10-28 三菱化学株式会社 Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film
JP2011225630A (en) * 2010-03-19 2011-11-10 Mitsubishi Chemicals Corp Conductive polyamide resin composition and conductive polyamide film
JP2014193619A (en) * 2007-03-15 2014-10-09 Dsm Ip Assets Bv Method of depositing two polyamide parts
CN109562941A (en) * 2017-02-08 2019-04-02 森田化学工业株式会社 The manufacturing method of double fluorine sulfimide metal salts and the metal salt

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595668B2 (en) * 2004-05-21 2010-12-08 三菱化学株式会社 Polyamide resin
JP2006348057A (en) * 2004-05-21 2006-12-28 Mitsubishi Chemicals Corp Polyamide resin
WO2005113643A1 (en) * 2004-05-21 2005-12-01 Mitsubishi Chemical Corporation Polyamide resin and hinged molded articles
US8362191B2 (en) 2004-05-21 2013-01-29 Mitsubishi Chemical Corporation Polyamide resin and hinged molded product
CN1954014B (en) * 2004-05-21 2012-02-08 三菱化学株式会社 Polyamide resin and chain type molded article
JP2007332353A (en) * 2006-05-16 2007-12-27 Mitsubishi Chemicals Corp Polyamide resin
JP2008208247A (en) * 2007-02-27 2008-09-11 Toyobo Co Ltd Resin or resin composition for laser welding use, and molded form using the same
JP2014193619A (en) * 2007-03-15 2014-10-09 Dsm Ip Assets Bv Method of depositing two polyamide parts
JP2009191156A (en) * 2008-02-14 2009-08-27 Mitsubishi Chemicals Corp Polyamide resin and polyamide resin composition
JP2009235352A (en) * 2008-03-28 2009-10-15 Mitsubishi Chemicals Corp Polyamide resin composition
WO2010122886A1 (en) * 2009-04-20 2010-10-28 三菱化学株式会社 Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film
JP2011225630A (en) * 2010-03-19 2011-11-10 Mitsubishi Chemicals Corp Conductive polyamide resin composition and conductive polyamide film
CN109562941A (en) * 2017-02-08 2019-04-02 森田化学工业株式会社 The manufacturing method of double fluorine sulfimide metal salts and the metal salt
CN109562941B (en) * 2017-02-08 2023-04-14 株式会社日本触媒 Bis-fluorosulfonylimide metal salt and method for producing same

Also Published As

Publication number Publication date
JP4305011B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
EP2305735B1 (en) Polyamide resin, composition containing the polyamide resin, and molded articles of the polyamide resin and the composition
JP4305011B2 (en) Welded joint members and molded products
WO2010113736A1 (en) Polyamide resin, polyamide resin composition, and molded article comprising same
JP4165106B2 (en) Polypentamethylene adipamide resin and process for producing the same
EP0997496B1 (en) Weldable polyamide resin compositions production thereof, and moulded products thereof
JP5504812B2 (en) Polyamide resin and polyamide resin composition
CN111138852B (en) Polyamide compound for improving laser weldability
KR101472650B1 (en) High-viscosity polyamide composition
JPWO2003085029A1 (en) Resin composition for light-emitting diode reflector
KR20140051930A (en) Method for manufacturing crystalline polyamide resin
JP4158399B2 (en) Polyamide resin
CN109715705B (en) Polyamide, preparation method thereof and metal conjugant
JP2013194196A (en) Polyamide resin composition, and molded product obtained by molding the same
CN86104955A (en) Modified block copolymer, contain this multipolymer impact-resistant compositions and the preparation this multipolymer method
JP2010031266A (en) Polyamide resin, polyamide resin composition and molded article of those
JP4482449B2 (en) Polyamide composition, preparation method and method of use for producing molded articles
JP5369676B2 (en) Polyamide resin
JP4633532B2 (en) Airtight switch parts
EP1383825A1 (en) Process for the welding of two polyamide parts
JP2004075962A (en) Method for producing polyamide resin
JP2006273992A (en) Resin composition for welding and method for welding resin
JP2002348371A (en) Welding member and molded item
JP2007204683A (en) Member for use in welding and molded article
EP1060216B1 (en) Polyamide compositions for friction-weldable molded articles
JPH08294970A (en) Oscillation-welded hollow molding made of polyamide resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R151 Written notification of patent or utility model registration

Ref document number: 4305011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

EXPY Cancellation because of completion of term